
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

Statistical Theory and Related Fields

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

High-dimensional proportionality test of two
covariance matrices and its application to gene
expression data

Long Feng, Xiaoxu Zhang & Binghui Liu

To cite this article: Long Feng, Xiaoxu Zhang & Binghui Liu (2022) High-dimensional
proportionality test of two covariance matrices and its application to gene expression data,
Statistical Theory and Related Fields, 6:2, 161-174, DOI: 10.1080/24754269.2021.1984373

To link to this article:  https://doi.org/10.1080/24754269.2021.1984373

© 2021 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Published online: 06 Oct 2021.

Submit your article to this journal 

Article views: 418

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2021.1984373
https://doi.org/10.1080/24754269.2021.1984373
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2021.1984373
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2021.1984373
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2021.1984373&domain=pdf&date_stamp=2021-10-06
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2021.1984373&domain=pdf&date_stamp=2021-10-06


SS

T
A

T
I
S

T
I
C

A
L

 T

H
E

ORY AND
 R

E
L

A
T

E
D

 
F

I
E

L
D

S

STATISTICAL THEORY AND RELATED FIELDS
2022, VOL. 6, NO. 2, 161–174
https://doi.org/10.1080/24754269.2021.1984373

High-dimensional proportionality test of two covariance matrices and its
application to gene expression data

Long Fenga, Xiaoxu Zhangb and Binghui Liub

aSchool of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, People’s Republic of China; bSchool of Mathematics
and Statistics and KLAS, Northeast Normal University, Changchun, People’s Republic of China

ABSTRACT
With the development of modern science and technology, more and more high-dimensional
data appear in the application fields. Since the high dimension can potentially increase the com-
plexity of the covariance structure, comparing the covariance matrices among populations is
stronglymotivated in high-dimensional data analysis. In this article, we consider the proportion-
ality test of two high-dimensional covariance matrices, where the data dimension is potentially
much larger than the sample sizes, or even larger than the squares of the sample sizes. We devise
a novel high-dimensional spatial rank test that has much-improved power than many exist-
ing popular tests, especially for the data generated from some heavy-tailed distributions. The
asymptotic normality of the proposed test statistics is established under the family of elliptically
symmetric distributions, which is a more general distribution family than the normal distribu-
tion family, including numerous commonly used heavy-tailed distributions. Extensive numerical
experiments demonstrate the superiority of the proposed test in terms of both empirical size
and power. Then, a real data analysis demonstrates the practicability of the proposed test for
high-dimensional gene expression data.
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1. Introduction

High-dimensional data are nowadays more and more
common in bioinformatics, material science, astron-
omy and other application fields, as data collec-
tion technology rapidly evolves (Bühlmann & van de
Geer, 2011).However, due to limited resources available
to replicate observations, the sample sizes are usually
much smaller than the dimension, which makes most
traditional statistical approaches no longer appropri-
ate. Under such an embarrassing background, scien-
tists in many application fields urgently need powerful
approaches to gather the greatest scientific insight from
data. Testing equality of the distributions of twopopula-
tions is a crucial problem in high-dimensional statistics,
which is extremely complex and far more challeng-
ing than that for fixed-dimensional data. Due to this
extreme complexity, it is usually replaced by a simpler
problem, i.e. testing equality of some numerical char-
acteristics, such as means and covariances, of the two
populations, which is very useful but much easier to
implement.

There is already a large number of literature on
detecting the difference between themeans of two high-
dimensional populations, such as Bai and Saranadasa
(1996), Chen and Qinm (2010), and Feng et al. (2016),
to name just a few. In contrast, there are much fewer

studies on high-dimensional covariance matrix test of
two high-dimensional populations. Hence, in this arti-
cle, we focus on comparing the covariance matrices
among two populations, which is strongly motivated
for high-dimensional data, as high data dimensions can
potentially increase the complexity of the covariance
structure (Li & Chen, 2012). In particular, we con-
sider the testing problem of the proportionality of two
high-dimensional covariance matrices, which investi-
gates the simplest heteroscedasticity of the population
covariance matrices (Xu et al., 2014). It is often a prepa-
ration procedure before the case–control analysis of
genomic data. LetX andY be two p-dimensional popu-
lations with themean vectorsμ1,μ2 and the covariance
matrices �1, �2, respectively. The proportionality test
of two population covariance matrices is formulated as
follows:

H0 : �1 = c�2 versus H1 : �1 �= c�2, (1)

where c is an unknown scalar.
The proportionality testing problem in (1) has been

widely studied in various areas, such as in discrimi-
nant analysis and principal component analysis (Flury
& Riedwyl, 1988; Schott, 1991), and there is a lot
of early literature on its methodological researches,
such as Eriksen (1987), Federer (1951), Flury (1986),
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Kim (1971), Rao (1983), and Schott (1999). For exam-
ple, the most traditional test statistic is

(n1 + n2)
p∑

j=1
log(λ̂j) − n1 log(|�̂1|)

+ n2(p log(ĉ − log(|�̂2|))) d→ χ2
(p2+p−2)/2,

where (λ̂j, ĉ) are obtained by an iterative algorithm
proposed in Flury (1986) and �̂1, �̂2 are the cor-
responding sample covariance matrices, respectively.
These researches are constructed based on the classi-
cal limit theorems, assuming that the sample sizes tend
to infinity and the dimension is fixed, hence have dif-
ficulties to analyse the high-dimensional data, where
the dimension is much larger than the sample sizes.
To alleviate such difficulties, Xu et al. (2014) pro-
posed to use a pseudo-likelihood ratio test by extending
the traditional likelihood ratio test with the statistic
p log(p−1 tr(�̂1�̂

−1
2 )) − log |�̂1�̂

−1
2 |, which allows the

dimension to increase proportionally with each sam-
ple size; furthermore, Liu et al. (2014) proposed an
improved method, which allows the dimension to be
larger than one of the sample sizes. In addition, for
the special case of c ≡ 1 in (1), Li and Chen (2012)
proposed a test statistic

TLC = An1 + An2 − 2Cn1,n2 ,

where

Ani = 1
ni(ni − 1)

∑
k �=l

(X�
ikXil)

2

− 2
ni(ni − 1)(ni − 2)

∑
j,k,l not equal

X�
ikXijX�

ij Xil

+ 1
ni(ni − 1)(ni − 2)(ni − 3)∑

j,k,l,t not equal

X�
ikXijX�

it Xil,

Cn1,n2 = 1
n1n2

n1∑
k=1

n2∑
l=1

(X�
1kX2l)

2

− 1
n1n2(n1 − 1)

n1∑
k �=l

n2∑
j=1

X�
1kX2jX�

2jX1l

− 1
n1n2(n2 − 1)

n2∑
k �=l

n1∑
j=1

X�
2kX1jX�

1jX2l

+ 1
n1n2(n1 − 1)(n2 − 1)

×
n1∑
k �=t

n2∑
j �=l

X�
1kX2jX�

1tX2l.

Asmentioned in Li andChen (2012),TLC is an unbiased
estimation of tr{(�1 − �2)

2}. Despite some progress,

there are also drawbacks: first, these methods may have
extremely poor performance for heavy-tailed distribu-
tions; second, the sample covariance matrices, which
need to be inverted in the construction of the test statis-
tic, are singular when the dimension is larger than both
of the sample sizes.

To overcome these two drawbacks, more attention
has been paid to nonparametric testing methods based
on themultivariate sign or rank. Just recently, for testing
the proportionality of two high-dimensional covari-
ancematrices, Cheng et al. (2018) proposed to use a test
procedure based on the multivariate sign and demon-
strated its good performance in high-dimensional data
analysis, especially for the heavy-tailed distributions.
Recall that for fixed-dimensional data, the multivari-
ate sign and rank are widely used to construct robust
tests (Oja, 2010). However, most of these tests can-
not be effective for high-dimensional data. There-
fore, many researches extend the traditional multivari-
ate sign- or rank-based testing methods to the high-
dimension data, such as Feng and Sun (2016) andWang
et al. (2015) for one-sample problems; Feng et al. (2016)
for two-sample problems; Feng and Liu (2017) and
Zou et al. (2014) for sphericity testing problems.
These researches clearly demonstrate the advantages of
the high-dimensional multivariate sign- or rank-based
methods in high-dimensional and heavy-tailed cases.

Unfortunately, due to the bias caused by estimating
the location parameters, the test procedure based on the
multivariate sign can only allow the dimension to be the
squares of the sample sizes at most (Cheng et al., 2018),
which makes the test procedure too restrictive for var-
ious practical applications, hence greatly affects the
validity of the test procedure. For example, in genomic
data analysis, genomic data typically carry thousands
of dimensions for measurements on the genome, where
the dimension can be much larger than the squares of
the sample sizes. Therefore, it is very urgent to develop
a new method to deal with the proportionality testing
problem in (1) for the high-dimensional data, where the
dimension is much higher than the squares of the sam-
ple sizes. This is the motivation and intention of this
article.

The rest of the article is organized as follows. In
Section 2, we introduce the proposed high-dimensional
spatial rank test and establish its asymptotic normal-
ity under the elliptically symmetric populations. Then,
we demonstrate the numerical performance of the pro-
posed test in Sections 3, followed by a real data anal-
ysis in Section 4. Finally, we conclude this article in
Section 5 and relegate the technical proofs to Appendix.

2. Method

2.1. The proposed test

A p-dimensional random vector Z is said to fol-
low an elliptically symmetric distribution, denoted by
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Ep(μ,�, Fξ ), if it has the following stochastic represen-
tation:

Z = μ + ξAU,

where μ is the p-dimensional mean vector, ξ is a non-
negative random variable, Fξ is the cumulative distri-
bution function of ξ , U is independent of ξ and is
uniformly distributed on the unit sphere Rp and A
is a deterministic p × p-dimensional matrix satisfying
AAT = � with tr(�) = 1. It is known that the covari-
ance matrix � and shape matrix � of the elliptical
symmetric population Z will satisfy the equation � =
p−1E(ξ 2)�.

Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 denote the sam-
ples of two p-dimensional random vectors X and
Y , which are generated from the two independent
elliptically symmetric populations Ep(μ1,�1, Fξ1) and
Ep(μ2,�2, Fξ2), respectively. From Section 3.1 in Mag-
yar and Tyler (2014), it is known that�i and §i have the
same eigenvectors for each i ∈ {1, 2} under the assump-
tion of elliptically symmetric distribution. Also, from
Equation 3.9 in Magyar and Tyler (2014), it is known
that when the eigenvalues of the covariance matrices
�1 and �2 are proportional, the spatial sign covari-
ance matrices §1 and §2 have the same eigenvalues.
Theorem 1 in Cheng et al. (2018) showed that when §1
and §2 have the same eigenvalues, the eigenvalues of�1
and �2 are proportional. Hence, the hypotheses in (1)
are equivalent to the following hypotheses:

H0 : §1 = §2 versus H1 : §1 �= §2, (2)

where §1 = E{U(X − μ1)U(X − μ1)
T}, §2 =

E{U(Y − μ2)U(Y − μ2)
T} are the spatial sign covari-

ance matrices of X, Y , respectively, and U(z) =
z

‖z‖ I(z �= 0) for each z ∈ Rp is the spatial sign function
with ‖ · ‖ denoting the L2-norm and I(·) denoting the
indicator function. On this ground, Cheng et al. (2018)
suggested to use a test statistics based on the square
Frobenius norm of §1 − §2, i.e. tr{(§1 − §2)2}.

The proposed spatial rank test in this article is also
based on the square Frobenius norm of §1 − §2, which
is a high-dimensional extension of Kendall’s tau test for
the hypotheses in (2) (Oja, 2010). Specifically, the test
statistic is

THT = p
n1(n1 − 1)(n1 − 2)(n1 − 3)

×
∗∑

{U(Xi − Xj)
TU(Xk − Xl)}2

+ p
n2(n2 − 1)(n2 − 2)(n2 − 3)

×
∗∑

{U(Y i − Y j)
TU(Yk − Y l)}2

− 2p
n1(n1 − 1)n2(n2 − 1)

×
n1∑
i=1

n1∑
j �=i

n2∑
k=1

n2∑
l �=k

{U(Xi − Xj)
TU(Yk − Y l)}2,

(3)

where
∑∗ denotes summation over distinct indexes

{i, j, k, l} ⊆ {1, . . . , n1} or {1, . . . , n2}. Note that recently
many developed versions of Kendall’s tau test are fre-
quently used on many related issues (Barber & Kolar,
2018; Cai & Zhang, 2016; Han et al., 2017; Leung
& Drton, 2018).

In deriving the asymptotic properties of THT, we
impose the following two conditions used in Cheng
et al. (2018):

(C1) n1/(n1 + n2) → κ ∈ (0, 1) as min{n1, n2} →
∞;

(C2) tr(�i�j�k�l) = o{tr(�i�j) tr(�k�l)} for i, j,
k, l ∈ {1, 2}.

Note that: (1) Condition (C1) is a commonly used
condition in high-dimensional two sample testing
problems; (2) Condition (C2) is similar to Condition
(A2) in Li and Chen (2012); (3) If all the eigenvalues of
�1 and �2 are bounded, Condition (C2) holds.

Remark 2.1: Note that the above Conditions (C1) and
(C2) do not contain any restriction on p and n1, n2,
since such restriction is not needed to control the fol-
lowing terms:∑

i,j,k,l

{U(Xi − Xj)
TU(Xk − Xl)}2

−
∗∑

{U(Xi − Xj)
TU(Xk − Xl)}2,∑

i,j,k,l

{U(Y i − Y j)
TU(Yk − Y l)}2

−
∗∑

{U(Y i − Y j)
TU(Yk − Y l)}2,

n1∑
i=1

n1∑
j=1

n2∑
k=1

n2∑
l=1

{U(Xi − Xj)
TU(Yk − Y l)}2

−
n1∑
i=1

n1∑
j �=i

n2∑
k=1

n2∑
l �=k

{U(Xi − Xj)
TU(Yk − Y l)}2,

which have been removed from THT. That is to say, we
remove all the items that include at least one pair of
identical vectors, such as {U(Xi − Xj)

TU(Xi − Xj)}2,
{U(Xi − Xj)

TU(Xi − Xl)}2 and so on. Such type of
strategy was previously used in Chen andQinm (2010).
By removing the terms

∑
i X

T
i Xi and

∑
k Y

T
kYk from

the test statistic proposed by Chen and Qinm (2010),
no restriction on p, n1 and n2 is needed.

Under the above two conditions, the limiting null
distribution of THT is given in the following theorem.
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Theorem 2.1: Under Conditions (C1), (C2) and H0, as
n1, n2, p → ∞,

σ−1
0,n THT

d→N(0, 1),

where σ 2
0,n = 4(n−1

1 + n−1
2 )2(p + 2)−2 tr2(�2) with �

= �1 = �2.

Moreover, we obtain the limiting distribution ofTHT
under H1.

Theorem 2.2: Under Conditions (C1), (C2) and H1, as
n1, n2, p → ∞,

σ−1
n [THT − p tr{(§1 − §2)

2}] d→N(0, 1),

where

σ 2
n = 4

n1(n1 − 1)
tr2(�2

1)

(p + 2)2
+ 8

n1
p tr(�4

1) − tr2(�2
1)

p2(p + 2)

× 4
n2(n2 − 1)

tr2(�2
2)

(p + 2)2
+ 8

n2
p tr(�4

2) − tr2(�2
2)

p2(p + 2)

+ 8
n1n2

tr2(�1�2)

(p + 2)2
+
(

8
n1

+ 8
n2

)

× p tr(�1�2)
2 − tr2(�1�2)

p2(p + 2)

− 16
n1

p tr(�3
1�2) − tr(�1�2) tr(�2

1)

p2(p + 2)

− 16
n2

p tr(�3
2�1) − tr(�1�2) tr(�2

2)

p2(p + 2)
.

Due to the fact that p tr(§2l ) = p−1 tr(�2
l ){1 + o(1)}

for l = 1, 2 obtained by Cheng et al. (2018), we propose
to use the following estimator of σ 2

0,n:

σ̂ 2
0,n = 4(n−1

1 + n−1
2 )2(n1 + n2)−1(p + 2)−2

× p2(n1A1 + n2A2),

where

A1 = 1
n1(n1 − 1)(n1 − 2)(n1 − 3)

×
∗∑

{U(Xi − Xj)
TU(Xk − Xl)}2,

A2 = 1
n2(n2 − 1)(n2 − 2)(n2 − 3)

×
∗∑

{U(Y i − Y j)
TU(Yk − Y l)}2.

As presented by the following proposition, σ̂ 2
0,n is a

consistent estimator of σ 2
0,n under H0.

Proposition 2.1: Under Conditions (C1), (C2) and H0,
σ̂ 2
0,n/σ

2
0,n → 1.

Therefore, the proposed test with a nominal α level
of significance rejects H0 if THT ≥ zασ̂0,n, where zα is
the upper α-quantile of N(0, 1). The asymptotic power
function of THT is

βn1,n2(§1, §2,α)

= 	{−σ−1
n σ0,nzα + pσ−1

n tr(§1 − §2)
2},

where	(·) denotes the cumulative probability function
of N(0, 1).

2.2. Relationship with the test proposed in Cheng
et al. (2018)

The proposed spatial rank test seems to be more com-
plex than the existing ones, such as the spatial sign test
proposed by Cheng et al. (2018). This is a price that we
have to pay for making the proposed method power-
ful in testing the high-dimensional data, where the data
dimension is potentially much larger than the squares
of the sample sizes, especially for the data generated
from heavy-tailed distributions. Below we will explain
the motivation of the proposed method in detail.

First, we recall Lemma B.1 in Han and Liu (2018).

Lemma 2.3: Let X, X̃ ∼ Ep(μ,�, Fξ ), where X and X̃
are independent, then

E{U(X − X̃)U(X − X̃)T} = E{U(X − μ)U(X − μ)}.

By Lemma 2.3, we have that

E{U(Xi − Xj)U(Xi − Xj)
T}

= E{U(Xi − μ1)U(Xi − μ1)
T} = §1,

for each i, j ∈ {1, . . . , n1} with i �= j, where E{U(Xi −
Xj)U(Xi − Xj)

T} is the so-called population multivari-
ate Kendall’s tau matrix of X (Oja, 2010). Similarly,

E{U(Y i − Y j)U(Y i − Y j)
T}

= E{U(Y i − μ2)U(Y i − μ2)
T} = §2,

for each i, j ∈ {1, . . . , n2} with i �= j, where E{U(Y i −
Y j)U(Y i − Y j)

T} is the population multivariate
Kendall’s tau matrix of Y . Lemma 2.3 suggests that
for each of the two populations, the population mul-
tivariate Kendall’s tau matrix is the same as the spatial
sign covariance matrix. As a result, testing equality of
the two spatial sign covariance matrices is identical
to testing equality of the two population multivariate
Kendall’s tau matrices.

Moreover, it can be seen that the three components
of the Frobenius norm of the difference between §1 and
§2, tr{(§1 − §2)2} = tr(§21) + tr(§22) − 2tr(§1§2), have
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the following equivalent representations:

tr(§21) = E[{U(Xi − Xj)
TU(Xk − Xl)}2],

for each i, j, k, l ∈ {1, . . . , n1}, where i, j, k, l are not equal
to each other;

tr(§22) = E[{U(Y i − Y j)
TU(Yk − Y l)}2],

for each i, j, k, l ∈ {1, . . . , n2}, where i, j, k, l are not equal
to each other;

tr(§1§2) = E[{U(Xi − Xj)
TU(Yk − Y l)}2],

for each i, j ∈ {1, . . . , n1} with i �= j and each k, l ∈
{1, . . . , n2} with k �= l. These representations finally
enlighten us to construct THT as that in the above
subsection, which is actually a consistent estimator of
p tr{(§1 − §2)2}.

Unlike the spatial sign covariancematrix, to estimate
themultivariate Kendall’s taumatrix, it is not necessary
to estimate the spatial medians, whose estimators may
bring a bias hence strengthens the condition imposed
on the dimension p. That is the reason why we propose
to use a new test procedure based on the multivariate
Kendall’s tau matrix rather than the spatial sign covari-
ance matrix. Therefore, the condition imposed on the
dimension p can be released to some extent, which
makes the proposed test procedure powerful in high-
dimensional data, evenwith the dimensionmuch larger
than the sample sizes.

In fact, in the spatial sign test proposed by Cheng
et al. (2018), to test the equality of the two spatial sign
covariance matrices §1 and §2, the test statistic is

TSS = p
n1(n1 − 1)

n1∑
i�=j

(ûTi ûj)
2 + p

n2(n2 − 1)

×
n2∑
i�=j

(v̂Ti v̂j)
2 − 2p

n1n2

n1∑
i=1

n2∑
j=1

(ûTi v̂j)
2,

where ûi = U(Xi − μ̂1) and v̂j = U(Y j − μ̂2) for i =
1, . . . , n1, j = 1, . . . , n2. Here, μ̂1 and μ̂2 are the spatial
median estimators of X and Y , respectively, obtained
by using the estimation method proposed in Motto-
nen and Oja (1995). TSS is an estimator of p tr{(§1 −
§2)2}, but unfortunately E(TSS/p) − tr{(§1 − §2)2} =
δn1,n2 �= 0, due to the spatial median estimators μ̂1
and μ̂2 (see Lemma 2 in Cheng et al., 2018). To
obtain a consistent estimator of the bias δn1,n2 , the
condition p = O{(n1 + n2)2} was imposed in Cheng
et al. (2018), which limits the application of TSS for the
high-dimensional data where the dimension is much
larger than the squares of sample sizes.

3. Simulation study

In this section, we will present some numerical results
to demonstrate the performance of the proposed test

(abbreviated asHT) in high-dimensional cases, in com-
parison with two existing popular tests, the test pro-
posed by Li and Chen (2012) (abbreviated as LZ) and
the spatial sign test proposed by Cheng et al. (2018)
(abbreviated as SS). The following three scenarios are
considered.

(I) Multivariate normal distribution: X ∼ Np(0,�1)

and Y ∼ Np(0,�2).
(II) Multivariate t-distribution: X ∼ tp(0,�1, 3) and

Y ∼ tp(0,�2, 3).
(III) Multivariate mixture normal distribution: X ∼

MNp,γ ,9(0,�1) � γNp(0,�1) + (1 − γ )Np(0,
9�1), Y ∼ MNq,γ ,9(0,�2), γ = 0.8.

For all the above scenarios, let �1 = (0.3|i−j|) and
�2 = (ρ|i−j|)with ρ = 0.3, 0.6, 0.7. Then, ρ = 0.3 cor-
responds to the situation where the null hypothesis is
true, while ρ = 0.6 or 0.7 corresponds to the situation
where the alternative hypothesis is true. Note that all
the following simulation results are obtained based on
1000 replications.

First, to observe the influence of the dimension
p to the potential bias of the methods involved, we
summarize the results of the mean-standard deviation-
ratio E(T)/

√
var(T) and the variance estimator ratio

v̂ar(T)/var(T) under the null hypothesis in Table 1
for each T ∈ {THT,TSS,TLZ} with n1 = n2 = 15 and
p = 100, 200, 400, 800, 1200, where TLZ is the test
statistic proposed in Li and Chen (2012). Since the
exact value of E(T) and var(T) are difficult to calcu-
late, we replace themwith theirMonte-Carlo estimators
respectively, using 1000 repeated samplings.

Table 1 indicates that SS has worse mean-standard
deviation-ratio results than the other two methods
in high-dimensional situations, particularly when p >

(n1 + n2)2. This is most likely due to the fact that in TSS
the bias correction process is limited by the condition
that p = O{(n1 + n2)2}. On the other hand, suggested
by the variance estimator ratio results of Table 1, the
estimated variances of LZ are eventually larger than
the real ones, particularly in non-normal situations.
In contrast, HT has better performance in these two
aspects.

Then, we will compare the performance of the three
methods in empirical size and empirical power. Let
n1 = n2 = 15, 20, 30 and p = 100, 200, 400, 800, 1200.
Tables 2–4 summarize the empirical size and power
results of the three methods. First, the empirical size
results in Tables 2–4, corresponding to the setting of
ρ = 0.3, suggest that LZ fails to control the empirical
size in the non-normal cases. Moreover, when com-
paring HT with SS, we find that their performance is
very similar, except in the cases where the dimension
is comparable to or larger than the squares of the sam-
ple sizes, i.e. 1200 > (15 + 15)2. In such cases, SS may
lose control of the empirical size, which is consistent
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Table 1. Comparison of the mean-standard deviation-ratio and the variance estimator
ratio at the 5% level with n1 = n2 = 15 and p = 100, 200, 400, 800, 1200.

E(T)/
√
var(T) ̂var(T)/var(T)

p HT SS LZ HT SS LZ

Scenario I: multivariate normal distribution
100 −0.04 −0.01 −0.02 1.06 1.27 1.01
200 −0.03 −0.01 −0.05 1.13 1.17 1.03
400 −0.04 0.03 0.03 1.18 1.09 1.03
800 0.03 0.23 0.03 1.15 1.20 1.04
1200 0.03 0.50 0.06 1.12 1.14 1.15

Scenario II: multivariate t-distribution
100 −0.07 −0.22 −0.28 1.13 3.75 495
200 −0.03 −0.18 −0.72 1.14 1.63 202
400 0.00 −0.25 −0.18 1.24 4.21 144
800 0.01 −0.35 0.65 1.22 7.50 195
1200 0.05 −0.48 −0.06 1.21 7.60 100

Scenario III: multivariate mixture normal distribution
100 −0.04 −0.02 −0.03 1.12 1.27 7.91
200 −0.06 −0.03 −0.04 1.13 1.32 7.15
400 −0.01 0.16 −0.01 1.24 1.13 8.63
800 0.03 0.42 0.11 1.19 1.12 8.14
1200 0.00 0.67 −0.06 1.22 1.03 8.16

Table 2. Empirical size and power comparison at the 5% level with n1 = n2 = 15 and p = 100, 200, 400, 800, 1200.

ρ = 0.3 ρ = 0.6 ρ = 0.7

p HT SS LZ HT SS LZ HT SS LZ

Multivariate normal distribution
100 4.1 4.6 3.6 21 20 22 56 53 58
200 3.7 5.0 3.5 22 21 23 59 56 60
400 4.3 4.5 3.7 25 23 23 59 59 61
800 4.5 6.8 3.5 24 28 23 62 65 63
1200 5.2 13 4.6 24 37 24 62 69 62

Multivariate t-distribution
100 4.7 4.8 19 22 21 33 53 52 47
200 4.8 4.6 20 23 20 32 57 55 46
400 5.7 4.2 23 26 21 34 60 55 48
800 6.0 6.2 22 26 22 35 61 54 47
1200 6.4 8.4 22 25 25 37 63 57 51

Multivariate mixture normal distribution
100 4.2 4.6 22 25 22 35 54 55 50
200 4.8 5.9 20 21 26 32 56 58 48
400 5.8 6.3 23 26 25 36 59 60 50
800 5.6 9.1 24 26 32 37 59 69 51
1200 6.1 13 24 26 39 34 60 72 48

Table 3. Empirical size and power comparison at the 5% level with n1 = n2 = 20 and
p = 100, 200, 400, 800, 1200.

ρ = 0.3 ρ = 0.6 ρ = 0.7

p HT SS LZ HT SS LZ HT SS LZ

Multivariate normal distribution
100 5.1 3.9 5.3 35 29 37 79 75 78
200 4.1 4.1 3.9 34 33 35 81 81 82
400 5.6 6.4 5.1 35 36 35 84 83 84
800 4.3 3.9 4.1 36 36 35 84 86 86
1200 4.2 2.6 2.8 35 37 36 86 84 82
Multivariate t-distribution
100 5.8 4.1 25 36 31 42 75 77 58
200 5.0 4.2 22 36 35 38 78 79 58
400 6.7 4.6 27 37 34 40 80 82 57
800 5.8 4.8 26 39 33 45 84 80 63
1200 4.8 4.4 26 37 34 46 83 81 63
Multivariate mixture normal distribution
100 6.5 4.2 25 36 31 45 78 76 61
200 5.1 4.3 26 36 33 42 79 78 61
400 5.9 5.0 24 38 36 43 82 85 60
800 5.2 7.1 25 37 40 43 83 85 62
1200 4.6 6.2 25 39 42 43 84 89 63
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Table 4. Empirical size and power comparison at the 5% level with n1 = n2 = 30 and
p = 100, 200, 400, 800, 1200.

ρ = 0.3 ρ = 0.6 ρ = 0.7

p HT SS LZ HT SS LZ HT SS LZ

Multivariate normal distribution
100 3.9 4.7 3.1 60 58 60 98 98 99
200 4.2 3.6 4.1 62 61 62 98 98 99
400 5.4 5.2 4.7 64 63 64 99 98 99
800 4.7 5.0 3.8 64 60 64 99 99 99
1200 6.2 5.8 5.1 68 65 66 99 99 99
Multivariate t-distribution
100 4.4 3.9 27 58 57 53 97 98 72
200 5.7 4.8 27 62 59 49 97 98 72
400 5.2 5.6 29 62 62 51 98 99 73
800 5.9 4.5 28 61 62 51 99 99 74
1200 6.4 5.6 29 64 61 50 99 99 73
Multivariate mixture normal distribution
100 4.6 5.8 27 59 58 54 97 97 77
200 5.8 6.2 24 60 62 50 98 99 75
400 5.7 6.2 25 62 62 54 98 99 77
800 5.6 7.3 26 63 63 53 98 99 77
1200 5.8 5.4 26 63 66 54 99 99 78

Figure 1. ROC curves of the involved tests under the three scenarios with (n1, n2, p) = (15, 15, 800).

with the conclusion made by analysing Table 1. In the
above results about the empirical size, in a few cases,
the empirical size is slightly larger than 5%, but still
within a reasonable range. To comprehensively com-
pare the empirical size and power of the three tests, in
Figure 1, we present the receiver operating characteris-
tic curves (ROCs) for the three tests with (n1, n2, p) =
(15, 15, 800). Suggested by Figure 1, these tests have
similar performance under themultivariate normal dis-
tributions, while under the remaining heavy-tailed dis-
tributions, the area under ROC (AUC) of the proposed
HT test is larger than the AUCs of its competitors. This
further demonstrates the advantages of the proposed
test.

Next, we consider an alternative structure of the
covariance matrices, i.e. �i = (aikl) for each i ∈ {1, 2},

where

aikk = 1, aik,k+1 = ρi + ρ2
i

1 + 2ρ2
i
, ak,k+2 = ρi

1 + 2ρ2
i

for each k ∈ {1, . . . , p} and the remaining entries of
�i are all zeros. Note that �i is the corresponding
covariance matrix of xi following the MA(2) model:

xit = zit + ρizi,t−1 + ρizi,t−2,

where zit ’s are i.i.d. random variables with mean zero
and variance 1

1+2ρ2
i
. Under the null hypothesis, we set

ρ1 = ρ2 = 0.7, while under the alternative hypothesis,
we set ρ1 = 0.7 and ρ2 = 0.1 for instance. The other
settings are all the same as the above. Tables 5 and 6
report the empirical sizes and power of these three
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Table 5. Empirical size comparisonat the5% levelwith theMA(2) covariancematriceswith
n1 = n2 = 15, 20, 30 and p = 100, 200, 400, 800, 1200.

n1 = n2 = 15 n1 = n2 = 20 n1 = n2 = 30

p HT SS LZ HT SS LZ HT SS LZ

Multivariate normal distribution
100 2.7 4.1 2.6 4.2 3.7 5.6 3.6 4.3 4.8
200 3.6 2.9 3.4 4.0 3.4 3.8 4.1 3.7 4.3
400 5.1 4.4 4.0 5.7 4.6 5.6 4.7 4.5 4.8
800 4.2 5.3 3.6 3.9 3.8 2.2 4.4 4.1 3.8
1200 5.8 7.8 5.8 3.1 5.6 3.0 3.9 4.3 6.6
Multivariate t-distribution
100 4.2 3.3 19 6.5 4.0 24 4.8 5.6 29
200 6.0 4.4 19 6.0 3.9 23 5.9 4.0 28
400 6.0 4.0 22 6.5 3.2 25 6.1 4.9 28
800 5.7 7.0 22 6.1 4.2 26 6.7 3.4 27
1200 6.7 7.8 23 6.1 4.9 26 6.9 5.1 30
Multivariate mixture normal distribution
100 5.0 3.5 22 5.6 3.7 27 4.8 3.5 26
200 5.7 4.0 25 6.3 4.1 26 6.3 4.4 27
400 5.8 5.8 23 6.3 4.3 28 6.2 3.2 26
800 5.4 7.0 24 5.1 7.0 26 5.9 4.7 26
1200 5.9 8.8 24 4.9 7.9 25 5.2 5.2 26

Table 6. Empirical power comparison at the 5% level with the MA(2) covariance
matrices with n1 = n2 = 15, 20, 30 and p = 100, 200, 400, 800, 1200.

n1 = n2 = 15 n1 = n2 = 20 n1 = n2 = 30

p HT SS LZ HT SS LZ HT SS LZ

Multivariate normal distribution
100 42 40 44 65 63 66 92 92 93
200 42 41 43 67 64 67 93 93 94
400 45 44 48 67 66 68 94 94 94
800 44 47 41 66 68 67 93 93 94
1200 45 55 44 65 70 64 94 95 94
Multivariate t-distribution
100 42 40 40 65 62 56 91 92 67
200 42 40 42 64 63 50 91 92 67
400 43 40 46 64 66 51 92 92 65
800 44 45 46 64 64 51 91 94 65
1200 45 45 46 62 61 54 92 94 68
Multivariate mixture normal distribution
100 43 45 42 64 61 57 90 92 68
200 44 44 44 66 66 56 91 93 73
400 45 48 43 66 68 55 93 93 69
800 43 55 43 65 71 53 92 95 70
1200 43 61 46 62 74 53 92 94 66

methods, respectively. Although Table 6 suggests that
the performance of empirical power of the three meth-
ods is similar, Table 5 suggests that the abilities of LZ
and SS to control the empirical size areweakeningmuch
more quickly thanHTwith the increase of p for fixed n1
and n2, especially when the dimension is comparable to
or larger than the squares of the sample sizes.

Overall, the comprehensive numerical results sug-
gest that the proposed HT test has obvious advantages
in terms of controlling empirical size over the exist-
ing two methods. Such gain is especially clear when the
original distribution deviates fromnormality, andwhen
the dimension is larger than the squares of sample sizes.

4. Application

In this section, we apply the proposed testing method
to a gene dataset, which contains the expression of
the 2000 genes with the highest minimal intensity
across the 62 tissues. Each entry in the dataset is a

gene intensity derived using the filtering process pro-
posed in Alon et al. (1999). The dataset was previously
studied by Alon et al. (1999), and now can be freely
downloaded at the following website: http://genomics-
pubs.princeton.edu/oncology/affydata/index.html.

Among the 62 tissues, there are 22 normal tissues
and 40 tumour colon tissues.We aim to test the hypoth-
esis that the tissues in the tumour group and those in the
normal group have the proportional covariance matri-
ces in terms of the expression levels of the 2000 genes,
where the dimension 2000 is larger than the squares of
the sample sizes, 484 and 1600.

First, the normal distribution was tested for the
expression data of each gene, using the Shapiro–Wilk
test. The top two panels of Figure 1 present the his-
tograms of the p-values of the normality tests for
the tumour group and the normal group, respectively,
which indicate that for a large number of genes the
expression data are non-normal. In fact, under the
significance level of 0.05, the overall rejection rates

http://genomics-pubs.princeton.edu/oncology/affydata/index.html
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Figure 2. Histograms of the p-values of the normality tests and the gene expression means, for the tumour group and the normal
group, respectively.

of all the normality tests are 93.55% and 37.75% for
the tumour group and the normal group, respec-
tively. This motivates us to use a nonparametric
approach for testing the above hypothesis, which can
deal with the high-dimensional data from non-normal
distributions.

The bottom two panels of Figure 2 indicate that there
exist some genes with very high values of sample mean
in terms of expression. We see that the sample means
vary largely for each of the two groups and recall that
the dimension is larger than the squares of the sample
sizes, which raises a concern that using a spatial sign-
based approach may lead to an uncontrollable bias.
Hence, in theory, a spatial rank-based approach is more
appropriate for this dataset.

Based on the above reasons, we apply the proposed
HT test to this dataset. The test statistic and p-value
of the HT test are 4.823 and 0.000, respectively, hence
the null hypothesis is rejected, which suggests that
the covariance matrix of the gene expression levels
of the tumour group is significantly not proportional
to that of the normal group. This result can also be
intuitively verified by comparing the sample correla-
tion matrices of the two groups. As a convenience and
for demonstration purposes, in Figure 3, we only plot
the heatmaps of the sample correlation matrices of the
two groups as well as the difference of the two matri-
ces using the first 100 genes in the original data. The
heatmaps demonstrate that there are some intuitive dif-
ferences between the two sample correlation matrices,

Figure 3. Heatmaps of the sample correlation matrices of the two groups as well as the difference of the two matrices, which are
constructed via the first 100 genes in the original data. (a) Normal group, (b) tumour group and (c) difference of two groups.
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which tends to support our result of rejecting the null
hypothesis.

5. Conclusion

Wehave proposed theHT test, a new high-dimensional
spatial rank test, for the proportionality testing problem
of two high-dimensional covariance matrices, which
is a high-dimensional extension of Kendall’s tau test.
It inherits the robustness advantage of the traditional
spatial rank-based methods, and also has strong poten-
tial in dealing with the high-dimensional data, where
the dimension can be potentially much larger than the
squares of the sample sizes. We establish the asymp-
totic distributions of the proposed method rigorously.
In comparison with some existing test procedures, the
gain in empirical power and empirical size of HT is
especially clear in high-dimensional and heavy-tailed
data, shown bymany numerical evidence. The real data
analysis shows the applicability and pertinence of the
proposedmethod to high-dimensional gene expression
data.
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Appendix

Define

UX,i = U(Xi − θX), UY ,i = U(Y i − θY).

Before proving the main theorem, below we recall some
necessary lemmas.

Lemma A.1: Under Conditions (C1) and (C2), for any p × p
symmetric matrixW,

E{(UT
X,iUX,j)

4} = O(1)E2{UT
X,iUX,j)

2},
E{(UT

X,iWUX,i)
2} = O(1)E2(UT

X,iWUX,i),

E{(UT
X,iWUX,j)

2} = O(1)E2(UT
X,iWUX,j).

Note that Lemma A.1 is the same as Lemma 1 of Wang
et al. (2015).

Lemma A.2: Let U∗ = (U∗
1 , . . . ,U

∗
p )T be a random vector

uniformly distributed on the unit sphere of Rp, then we have
that

(1) E(U∗) = 0, Cov(U∗) = p−1Ip, E(U∗4
k ) = 3p−1(p +

2)−1 and E(U∗2
k U∗2

l ) = p−1(p + 2)−1 for each k, l ∈
{1, . . . , p} with k �= l;

(2) for any p × p symmetric matrixW, E{(U∗TWU∗)2} =
p−1(p + 2)−1{tr2(W) + 2tr(W2)} andE{(U∗TWU∗)4}
= p−2(p + 2)−2{3tr2(W2) + 6tr(W2)}.

In Lemma A.2, the first statement has been proved in
Section 3.1 of Fang et al. (1990) and the second statement has
been proved in Zou et al. (2014).

Now,we are ready to present the proof of Theorem2.2. Then,
the proof of Theorem 2.1 can be directly obtained.

Proof of Theorem 2.2:
Define

VX,i
.= E{U(Xi − Xj)|Xi}, VY ,i

.= E{U(Y i − Y j)|Y i},
WY ,ij

.= U(Y i − Y j) − VY ,i + VY ,j,

WX,ij
.= U(Xi − Xj) − VX,i + VX,j,

B1
.= E(VX,iVT

X,i), B2
.= E(VY ,iVT

Y ,i).

Hence we have that E(VT
X,iVX,j) = 0 and E(VT

X,iWX,ij) = 0.
According to Lemma 1 in Feng and Liu (2017), we have that
E(WT

X,ijWX,ij) → 0 as p goes to infinity and B1 = 0.5§1{1 +

o(1)}. The same goes for WY ,ij and B2. On this ground, by
Lemma A.1, we have that

E{(VT
X,iVX,j)

4} = O(1)E2{(VT
X,iVX,j)

2},
E{(VT

X,iAVX,i)
2} = O(1)E2(VT

X,iAVX,i),

E{(VT
X,iAVX,j)

2} = O(1)E2(VT
X,iAVX,j).

As a result, the first part of THT has the following decompo-
sition:

p
n1(n1 − 1)(n1 − 2)(n1 − 3)

∗∑
{U(Xi − Xj)

TU(Xk − Xl)}2

= 4p
n1(n1 − 1)

∗∑
(VT

X,iVX,j)
2

+ 2p
n1(n1 − 1)(n1 − 2)

∗∑
(VT

X,iWX,kl)
2

+ p
n1(n1 − 1)(n1 − 2)(n1 − 3)

∗∑
(WT

X,ijWX,kl)
2

.= J1 + J2 + J3.

According to Lemma A.2 and the fact that E(WT
X,ijWX,ij) →

0 as p goes to infinity, we similarly have that E(J22) =
o{p2n−3 tr(§21)} = o(σ 2

n ) and E(J23) = o(p2n−4) = o(σ 2
n ).

Using the similar techniques, we can decompose the rest two
parts of THT, hence conclude that

THT = 4p
n1(n1 − 1)

∗∑
(VT

X,iVX,j)
2

+ 4p
n2(n2 − 1)

∗∑
(VT

Y ,iVY ,j)
2

− 8p
n1n2

n1∑
i=1

n2∑
j=1

(VT
X,iVY ,j)

2 + op(σn)

.= pAn1 + pBn2 − 2pCn1,n2 + op(σn).

Therefore, we have that

var(THT)/σ 2
n

= p2σ−2
n {var(An1) + var(Bn2) + 4var(Cn1,n2)

− 4cov(An1 ,Cn1,n2) − 4cov(Bn2 ,Cn1,n2)} + o(1).

Belowwe will consider each item in var(THT)/σ 2
n one by one.

Before we can get the further expression of var(An1), we need
to study E(A2

n1) first. We have that

E(A2
n1) = 16

n21(n1 − 1)2
E

⎡
⎣{ ∗∑

(VT
X,iVX,j)

2

}2
⎤
⎦

= 16
n21(n1 − 1)2

[2n1(n1 − 1)E{(VT
X,iVX,j)

4}

+ 4n1(n1 − 1)(n1 − 2)E{(VT
X,iVX,j)

2(VT
X,iVX,k)

2}
+ n1(n1 − 1)(n1 − 2)(n1 − 3)

× E{(VT
X,iVX,j)

2(VT
X,kVX,l)

2}].
Using the same proof techniques as in Cheng et al. (2018), we
can get the following equations:

E{(VT
X,iVX,j)

4}

= 1
4
p2(p + 2)−2{3tr2(�2

1) + 6tr(�4
1)}{1 + o(1)},

https://doi.org/10.1093/biomet/78.4.771
https://doi.org/10.1016/S0167-9473(99)00032-8
https://doi.org/10.1080/01621459.2014.988215
https://doi.org/10.1016/j.csda.2014.03.014
https://doi.org/10.1093/biomet/ast040
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E{(VT
X,iVX,j)

2}

= 1
2
tr(§21){1 + o(1)} = p−2 tr(�2

1){1 + o(1)},

E{(VT
X,iVX,j)

2(VT
X,iVX,k)

2}

= 1
4
p−3(p + 2)−1{tr2(�2

1) + 2tr(�4
1)}{1 + o(1)}.

On this ground, we have that

var(An1)

=
{

4
n1(n1 − 1)

tr2(�2
1)

p2(p + 2)2
+ 8

n1
p tr(�4

1) − tr2(�2
1)

p4(p + 2)

}

× {1 + o(1)}.
Similarly, we have that

var(Bn2)

=
(

4
n2(n2 − 1)

tr2(�2
2)

p2(p + 2)2
+ 8

n2
p tr(�4

2) − tr2(�2
2)

p4(p + 2)

)

× {1 + o(1)},
var(Cn1,n2)

=
[

2
n1n2

tr2(�1�2)

p2(p + 2)2
+
(

2
n1

+ 2
n2

)

× p tr{(�1�2)
2} − tr2(�1�2)

p4(p + 2)

]
{1 + o(1)},

cov(An1 ,Cn1,n2)

=
{
4
n1

p tr(�3
1�2) − tr(�1�2) tr(�2

1)

p4(p + 2)

}
{1 + o(1)},

cov(Bn2 ,Cn1,n2)

=
{
4
n2

p tr(�3
2�1) − tr(�1�2) tr(�2

2)

p4(p + 2)

}
{1 + o(1)}.

To sum up, we conclude that var(THT) = σ 2
n {1 + o(1)}.

Define a sequence of random variables {z1, . . . , zn1+n2} as
follows:

zi = VX,i for each i ∈ {1, . . . , n1} and

zn1+j = VY ,j for each j ∈ {1, . . . , n2}.
Let Ek(·) denote the conditional expectation conditional
on {z1, . . . , zk}. Define Dn,k = p−1{Ek(THT) − Ek−1(THT)},
then p−1{THT − E(THT)} = ∑n1+n2

k=1 Dn,k. As a result, the
sequence {Dn,1, . . . ,Dn,n1+n2} constitutes a martingale differ-
ence with respect to the σ -fields σ(z1, z2, . . . , zk). To use the
martingale central limit theorem,we need to get the following
results first:

p2
n1+n2∑
k=1

σ 2
n,k/var(THT)

p−→ 1 and

n1+n2∑
k=1

E(D4
nk) = p−4o{var2(THT)}, (A1)

where σ 2
n,k

.= Ek−1(D2
n,k).

Proof of the first part of (A1): As E(
∑n1+n2

k=1 σ 2
n,k) = p−2 ×

var(THT), we only need to show that as min{n1, n2} →
∞, var(

∑n1+n2
k=1 σ 2

n,k) = o{p−4var2(THT)}. Define �1,k−1 =∑k−1
i=1 (ziz′

i − B1) for each k ∈ {1, . . . , n1 − 1}, and define

�2,n1+l−1 = ∑l−1
i=1(zn1+iz′

n1+i − B2) for each l ∈ {1, . . . ,
n2 − 1}. For each k ∈ {1, . . . , n1}, we have that

(Ek − Ek−1)(An1)

= 2
n1(n1 − 1)

{VT
X,k�1,k−1VX,k − tr(�1,k−1B1)}

+ 2
n1

{VT
X,kB1VX,k − tr(B2

1)},

(Ek − Ek−1)(Bn2) = 0,
and

(Ek − Ek−1)(Cn1,n2) = 1
n1

{VT
X,kB2VX,k − tr(B1B2)}.

For each k ∈ {n1 + 1, . . . , n1 + n2}, we have that
(Ek − Ek−1)(An1) = 0,

(Ek − Ek−1)(Bn2)

= 2
n2(n2 − 1)

{VT
Y ,k−n1�2,k−1VY ,k−n1 − tr(�2,k−1B2)}

+ 2
n2

{VT
Y ,k−n1B2VY ,k−n1 − tr(B2

2)},

and

(Ek − Ek−1)(Cn1,n2)

= 1
n1n2

{
VT
Y ,k−n1

( n1∑
i=1

VX,iVT
X,i

)
VY ,k−n1

−tr

( n1∑
i=1

VX,iVT
X,iB2

)}
.

Thus, for each k ∈ {1, . . . , n1},

σ 2
n,k = Ek−1

([
2

n1(n1 − 1)
{VT

X,k�1,k−1VX,k − tr(�1,k−1B1)}

+ 2
n1

{VT
X,kB1VX,k − tr(B2

1)}

− 2
n1

{VT
X,kB2VX,k − tr(B1B2)}

]2)

=
(

8
n21(n1 − 1)2

p tr(�1,k−1�1)
2 − tr2(�1,k−1�1)

p2(p + 2)

+ 16
n21(n1 − 1)

p tr(�1,k−1�
3
1) − tr(�1,k−1�1) tr(�2

1)

p3(p + 2)

− 16
n21(n1 − 1)

× p tr(�1,k−1�1�2�1) − tr(�1,k−1�1) tr(�1�2)

p3(p + 2)

+ 8
n21

p tr[{�1(�1 − �2)}2] − tr2{�1(�1 − �2)}
p4(p + 2)

)

× {1 + o(1)},
and for each k ∈ {n1 + 1, . . . , n1 + n2},

σ 2
n,k = Ek−1

([
2

n2(n2 − 1)
{VT

Y ,k−n1�2,k−1VY ,k−n1

−tr(�2,k−1B2)}

+ 2
n2

{VT
Y ,k−n1B2VY ,k−n1 − tr(B2

2)}



STATISTICAL THEORY AND RELATED FIELDS 173

+ 2
n1n2

{
VT
Y ,k−n1

( n1∑
i=1

VX,iVT
X,i

)
VY ,k−n1

−tr

( n1∑
i=1

VX,iVT
X,iB2

)}]2⎞⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8
n22(n2 − 1)2

p tr(�2,k−1�2)
2 − tr2(�2,k−1�2)

p2(p + 2)

+ 16
n22(n2 − 1)

p tr(�2,k−1�
3
2) − tr(�2,k−1�2) tr(�2

2)

p3(p + 2)

− 16
n1n22(n2 − 1)

×
tr{�2,k−1�2(

n1∑
i=1

VX,iVT
X,i)�2}

p2(p + 2)

−
tr(�2,k−1�2) tr{�2(

n1∑
i=1

VX,iVT
X,i)}

p2(p + 2)

+ 8
n22

p tr(�4
2) − tr2(�2

2)

p4(p + 2)

− 16
n1n22

p tr(
n1∑
i=1

VX,iVT
X,i�

3
2)

p3(p + 2)

−
tr(

n1∑
i=1

VX,iVT
X,i�2) tr(�2

2)

p3(p + 2)

+ 8
n21n

2
2

p tr{(
n1∑
i=1

VX,iVT
X,i�2)

2}

p2(p + 2)

−
tr2(�2

n1∑
i=1

VX,iVT
X,i)

p2(p + 2)

⎤
⎥⎥⎥⎥⎦ {1 + o(1)}.

Hence

n1+n2∑
k=1

σ 2
n,k = (R1 + R2 + R3 + R4 + R5

+ R6 + R6 + R7 + C0){1 + o(1)},

where C0 is a constant, and

R1 =
n1∑
k=1

8
n21(n1 − 1)2

× p tr{(�1,k−1�1)
2} − tr2(�1,k−1�1)

p2(p + 2)
,

R2 =
n2∑
l=1

8
n22(n2 − 1)2

× p tr{(�2,n1+l−1�2)
2} − tr2(�2,n1+l−1�2)

p2(p + 2)
,

R3 =
n1∑
k=1

16
n21(n1 − 1)

×
[
p tr{�1,k−1(�

3
1 − �1�2�1)}

p3(p + 2)
,

− tr(�1,k−1�1) tr{�1(�1 − �2)}
p3(p + 2)

]
,

R4 =
n2∑
l=1

16
n22(n2 − 1)

× p tr(�2,n1+l−1�
3
2) − tr(�2,n1+l−1�2) tr(�2

2)

p3(p + 2)
,

R5 = −
n2∑
l=1

16
n1n22(n2 − 1)

×

⎡
⎢⎢⎢⎢⎣
p tr{�2,n1+l−1�2(

n1∑
i=1

VX,iVT
X,i)�2}

p2(p + 2)

−
tr(�2,n1+l−1�2) tr{�2(

n1∑
i=1

VX,iVT
X,i)}

p2(p + 2)

⎤
⎥⎥⎥⎥⎦ ,

R6 =
n2∑
l=1

8
n21n

2
2

p tr{(
n1∑
i=1

VX,iVT
X,i�2)

2}

p2(p + 2)

−
tr2(�2

n1∑
i=1

VX,iVT
X,i)

p2(p + 2)
,

R7 =
n2∑
l=1

− 16
n1n22

p tr(
n1∑
i=1

VX,iVT
X,i�

3
2)

p3(p + 2)

−
tr(

n1∑
i=1

VX,iVT
X,i�2) tr(�2

2)

p3(p + 2)
.

Moreover, to calculate the order of var(R1), we need to eval-
uate var[

∑n1
k=1 p

−2 tr{(�1,k−1�1)
2}] . Since

E

⎛
⎝
⎡
⎣p−2

n1∑
k=1

k−1∑
i=1

k−1∑
j=1

{(VT
X,i�1VX,j)

2 − tr(�1B1)
2}
⎤
⎦
2⎞
⎠

= p−4
n1∑
k=1

n1∑
m=1

E

⎡
⎣k−1∑

i=1

k−1∑
j=1

{(VT
X,i�1VX,j)

2 − tr(�1B1)
2}
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×
m−1∑
l=1

m−1∑
h=1

{(VT
X,l�1VX,h)

2 − tr(�1B1)
2}
]

≤ n1
n1∑
k=1

(k − 1)2p−4E{(VT
X,i�1VX,j)

4 − tr2(�1B1)
2}

+ n21
n1∑
k=1

(k − 1)2p−4.

E{(VT
X,i�1VX,j)

2(VT
X,i�1VX,l)

2 − tr2(�1B1)
2}

= C1n41p
−4p−4{tr2(�4

1) + tr(�8
1)}

+ C2n51p
−4p−4{tr(�8

1) − p−1 tr2(�4
1)},

where C1 and C2 are constants, we have that

var(R1) ≤ C1n−4
1 p−8 tr2(�2

1) tr(�
4
1)

+ C2n−3
1 p−8 tr(�4

1){tr(�4
1) − p−1 tr2(�2

1)}.
Based on the fact that tr(�4

1)/tr2(�
2
1) → 0 and the following

inequality

var2(THT) ≥ K
{
tr4(�2

1)

p4n41
+ tr4(�2

2)

p4n42

}

for some constant K, we conclude that

p4var(R1)/var2(THT) → 0,

which indicates that var(R1) = o{p−4var2(THT)}. By using
similar techniques, we conclude that var(Rl) = o{p−4 ×
var2(THT)} for each l ∈ {1, . . . , 7}, based on which we finally
conclude that var(

∑n1+n2
k=1 σ 2

n,k) = o{p−4var2(THT)}. �

Proof of the second part of (A1): For 1 ≤ k ≤ n1,
n1∑
k=1

E(D4
nk)

=
n1∑
k=1

E

([
2

n1(n1 − 1)
{VT

X,k�1,k−1VX,k − tr(�1,k−1B1)}

+ 2
n1

{VT
X,kB1VX,k − tr(B2

1)}

− 2
n1

{VT
X,kB2VX,k − tr(B1B2)}

]4)

≤ c1
{
n−3
1 p−8 tr[{�1(�1 − �2)}2]

(
tr[{�1(�1 − �2)}2]

−p−1 tr2{�1(�1 − �2)}
)+ n−5

1 p−8 tr4(�2
1)
}
,

where c1 is some constant. Then

p4
n1+n2∑
k=1

E(D4
nk)/var

2(THT) → 0.

Similarly, for n1 ≤ k ≤ n1 + n2,
n1+n2∑
k=n1

E(D4
nk)

≤ c2
(
n−1
1 n−4

2 p−8 tr2(�1�2) tr{�2(�1 − �2)}2

× [tr{�2(�1 − �2)}2

−p−1 tr2{�2(�1 − �2)}] + n−5
2 p−8 tr4(�2

2)

+n−2
1 n−4

2 p−8 tr4(�1�2)
)
,

where c2 is some constant. Then we have that as n1, n2 → ∞,

p4
∑n1+n2

k=1 E(D4
nk)

var2(THT)
→ 0.

By using the martingale central limit theorem (Hall & Hyde,
1980), we finally conclude that

THT − E(THT)

var(THT)

d−→ N(0, 1).

�

Proof of Proposition 2.1:
Using the same techniques as in the proof of Theorem 2.1,

we have that E(A1) = tr2(§1) and

Var
{

p2A1

tr(�2
1)

}
= O

(
p4

tr2�2
1

[
2

n1(n1 − 1)

×
{
3tr2(�2

1) + 6tr(�4
1)

p2(p + 2)2
− tr2(�2

1)

p4

}])
.

Therefore, p2A1
tr(�2

1)
→ 1, and similarly, p2A2

tr(�2
2)

→ 1, hence
σ̂ 2
0,n

σ 2
0,n

→ 1.
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