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ABSTRACT
This paper concerns with optimal designs for a wide class of nonlinear models with informa-
tion driven by the linear predictor. The aim of this study is to generate an R-optimal design
which minimizes the product of the main diagonal entries of the inverse of the Fisher informa-
tionmatrix at certain values of the parameters. An equivalence theorem for the locally R-optimal
designs is provided in terms of the intensity function. Analytic solutions for the locally saturated
R-optimal designs are derived for themodels having linear predictorswith andwithout intercept,
respectively. The particle swarm optimization method has been employed to generate locally
non-saturated R-optimal designs. Numerical examples are presented for illustration of the locally
R-optimal designs for Poisson regression models and proportional hazards regression models.
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1. Introduction

Generalized linearmodels (GLMs) have been used quite effectively in statistical modelling but the associated design
issues are undoubtedly challenging, since the intensity function within their information matrices depends on the
value of the linear predictor, which means that the optimal designs are related to the unknown parameters. Follow-
ing Konstantinou et al. (2014), we note that the information matrix of the proportional hazards regression models
used in survival analysis also has the same feature when type I and random censoring are considered, and their
intensity functions, which are similar to Poisson regression models and negative binomial regression models, are
strictly monotonic rather than a symmetric structure that appears in the logistic and probit models. In this paper,
we focus on such models with monotonic intensity functions.

In this direction, there is increasing interest in determining optimal designs under various criteria, especially
for models with multiple covariates. Initial work was done by Konstantinou et al. (2014) who provided analyt-
ical results of D- and c-optimal designs for this class of models with only one covariate. Subsequently, Schmidt
and Schwabe (2015) extended the results concerning D-optimality to one-dimensional discrete design space. For
multiple regression, Schmidt and Schwabe (2017) determined D-optimal designs by identifying a complete sub-
class, which contains the results of Russell et al. (2009) for the Poisson regression model as a special case. Radloff
and Schwabe (2019) gave a construction method of D-optimal designs when the design region is a k-dimensional
ball. Recently, Schmidt (2019) systematically characterized c-, L- and �k-optimal designs for models with a single
covariate and for multiple regression with an arbitrary number of covariates.

It should be noted that the linear predictor in the previously mentioned literature always includes an intercept
term. The intercept inGLMs and proportional hazards regressionmodels with censoring, respectively, characterizes
the expected mean and expected survival time when all the explanatory variables are equal to zero. In this case, the
linear predictor reflects the influence of all the unobserved fixed variables in these models. As pointed out by Idais
and Schwabe (2021), when the intercept is significantly zero, i.e., the average impact of all the unobserved fixed
variables is significantly zero, one may claim that the model includes probably most variables which explain the
outcome. For the gamma models without intercept, Idais and Schwabe (2021) obtained some explicit solutions of
D- and A-optimal designs in some multi-linear cases, including the two-factor model with interaction.

This paper aims to provide a characterization of R-optimality for multiple regression models with and without
intercept. It is well known that the R-optimality criterion proposed by Dette (1997) has a nice statistical interpreta-
tion, namely minimizing the volume of the Bonferroni rectangular confidence region of the regression parameters.
Moreover, it satisfies an extremely useful invariance property which allows an easy calculation of optimal designs on
many linearly transformed design spaces. This optimality has been frequently applied to the cases ofmulti-response
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experiments, multi-factor experiments andmixture experiments, see, e.g., X. Liu and Yue (2020), P. Liu et al. (2022)
and Hao et al. (2021) for some recent references.

In general, the dependence of designs on parameters whose values are unknown a priori occurs in nonlinear
regression models. Hence, utilizing a pre-specified parameter value we can obtain the so-called locally optimal
designs in accordance with Chernoff (1953). In this paper, we concentrate on the construction of locally optimal
designs and takeR-optimal designs to replace locallyR-optimal designs for simplicity. Some general notations and a
brief introduction of the R-criterion are presented in Section 2. In Sections 3 and 4, we analytically and numerically
determine R-optimal designs for models having an intensity function which only depends on the value of the linear
predictor with and without intercept, respectively. A brief discussion is given in Section 5. All proofs are included
in the Appendix.

2. Model specification and R-optimality criterion

Throughout the paper, we focus on a class of nonlinear multiple regression models with information driven by the
linear predictor defined on a given design region X , and consider the approximate designs ξ of the form

ξ =
{

x1 x2 · · · xm
ω1 ω2 · · · ωm

}
, xi ∈ X , 0 � ωi � 1,

m∑
i=1

ωi = 1

or simply ξ = {xi;ωi}mi=1 (see Silvey, 1980, p. 15). The Fisher informationmatrix of ξ with independent observations
is assumed to be

M(ξ ,β) =
∫
X
Q(f (x)�β)f (x)f (x)�dξ(x) =

m∑
i=1

ωiQ(f (xi)�β)f (xi)f (xi)�, (1)

where Q �≡ 0 is the intensity/efficiency function (see Fedorov, 1972, p. 39) which only depends on the value of the
linear predictor, f is a p × 1 vector of known regression functions, and β ∈ R

p denotes the vector of p unknown
parameters.

This kind of information matrix is common in the widely used generalized linear models, while it may also arise
in other models such as the exponential regression models in proportional hazards parametrization with various
censoring, including type I and random censoring (see Konstantinou et al., 2014) as well as other censoring distri-
butions (see Schmidt & Schwabe, 2017). Following Konstantinou et al. (2014), we further assume that the intensity
function Q satisfies the following conditions.

(A1) Q(θ) is positive for all θ ∈ R and twice continuously differentiable.
(A2) The derivative Q′(θ) is positive for all θ ∈ R.
(A3) The second derivative g′′(θ) of the function g(θ) = 1/Q(θ) is injective.
(A4) The function Q(θ)/Q′(θ) is an increasing function.

It is clear that the intensity functions induced by Poisson regression models, negative binomial regression models
and proportional hazards regression models with type I and random censoring abide by all the conditions above.

In what follows, we concentrate on the R-optimality of designs which minimizes the product of the diagonal
entries of the inverse of the Fisher information matrix. A design ξ∗ ∈ � is called R-optimal if it minimizes

ψ(ξ ,β) =
p∏

j=1

(
M(ξ ,β)−1)

jj =
p∏

j=1
e�j,pM(ξ ,β)

−1ej,p (2)

over �, where � is the set of all designs with a non-singular information matrix on X , and ej,p denotes the jth
unit vector in R

p. An important tool in optimal design theory is equivalence theorems that not only provide a
characterization of the optimal design but also are the basis of many algorithms for their numerical construction
(see, e.g., Yang et al., 2013; Freise et al., 2021). The following result gives the equivalence theorem for R-optimality.

Theorem 2.1: A design ξ∗ ∈ � is R-optimal if and only if

φ(x,β) = Q(f (x)�β)f (x)�M(ξ∗,β)−1

⎛
⎝ p∑

j=1

ej,pe�j,p
e�j,pM(ξ∗,β)−1ej,p

⎞
⎠M(ξ∗,β)−1f (x) � p (3)

holds for all x ∈ X . Moreover, it is equal at the support points of the design ξ∗.
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In Sections 3 and 4 the minimally supported designs (i.e., the so-called saturated designs) will appear as
candidates for determining R-optimal designs. A design ξ = {xi;ωi}mi=1 has minimal support if the number of sup-
port points is equal to the number of parameters, i.e., m = p. Let Dω =diag(ω1, . . . ,ωm), X̃=Q1/2X with X =
(f (x1), . . . , f (xm))� andQ1/2 =diag(

√
Q(f (x1)�β), · · · ,

√
Q(f (xm)�β)). Accordingly, the informationmatrix (1)

for the design ξ can be decomposed asM(ξ ,β)= X̃�DωX̃. Furthermore, if the design ξ is saturated and the regres-
sion vectors located at the rows of X are linearly independent, the following result exhibits the optimal weights of a
design with minimal support for the R-optimality criterion.

Lemma 2.1 (Pukelsheim & Torsney, 1993): The R-optimal weights for a saturated design ξ are given by

ω∗
j =

√ sjj
p
, j = 1, . . . , p, (4)

where s11, . . . , spp are the diagonal entries of the matrix

S =
(
X̃−1

)�
⎛
⎝ p∑

j=1

ej,pe�j,p
e�j,pM(ξ ,β)−1ej,p

⎞
⎠ X̃−1. (5)

Remark 2.1: Since the diagonal entries sjj of the matrix S depend on the weights, a fixed point iteration pro-
cedure is available to determine a solution of optimal weights. In step r+ 1, the weight ω(r+1)

j is equivalent to√
sjj(ω

(r)
1 , . . . ,ω(r)p )/p under a given initial weight vector (ω(0)1 , . . . ,ω(0)p )�.

3. R-optimal designs for models with intercept

In this section, wewill describe how to constructR-optimal designs formultiple regressionmodels with information
matrices of the form (1) and satisfying the assumptions (A1)–(A4).More precisely,multiple regressionwith additive
linear effects of the covariates in the linear predictor that contains an intercept term will be considered.

We consider the multi-linear case which has f = (1, x�)� with x = (x1, . . . , xp−1)
� ∈ X ⊂ R

p−1 and denote
the parameter vector β = (β0,β1, . . . ,βp−1)

� for convenience. Suppose that the design region X is a multi-
dimensional polyhedron. By applying the complete class results described in Theorem 2 and Lemma 1
of Schmidt (2019), R-optimal designs can be found from the complete subclass, which has at most two support
points on each edge ofX when the hyperplanesHη = {x ∈ R

p−1 : f (x)�β = η} are assumed to be bounded onX
for all η ∈ R,

The following theorem provides an approach to generate R-optimal designs on the rectangular design region
for the model under consideration, the proof of which can be established by using the similar arguments as in
Theorem9 in Schmidt (2019) via the fact (

∑p
j=1

√sjj)2 = √p. It should be pointed out that using the same reasoning
as in the proof of Theorems 8 and 9 in Schmidt (2019) the uniqueness of the solution of the common system of
equations described in Theorem 3.1 follows. Here the case p = 2 with one covariate is also satisfied, so p � 2.

Theorem 3.1: Let X = [u1, v1] × · · · × [up−1, vp−1] and let the assumptions (A1)–(A4) be satisfied for a model
with information matrices of the form (1). Let βi �= 0 for i = 1, . . . , p − 1. Define ai = vi if βi > 0, and ai = ui if
βi < 0. Let sij (i, j = 1, . . . , p) denote the elements of the matrix S in (5) evaluated at a design with support points
a − (x1/β1)e1,p−1, . . . , a − (xp−1/βp−1)ep−1,p−1 and a = (a1, . . . , ap−1)

�. If a solution exists, let x∗
i ∈ (0,∞) and

the weights ω∗
i for i = 1, . . . , p − 1 be the unique solutions of the common system of Equations (4) and (6) given by

xi − 2
Q(f (a)�β − xi)
Q′(f (a)�β − xi)

⎡
⎣1 −

√
Q(f (a)�β − xi)
Q(f (a)�β)

s1,i+1√s11si+1,i+1

⎤
⎦ = 0. (6)

If x∗
i � |βi|(vi − ui) holds for i = 1, . . . , p − 1, then the design

ξ∗ =
{
a − (x∗

1/β1)e1,p−1 · · · a − (x∗
p−1/βp−1)ep−1,p−1 a

ω∗
1 · · · ω∗

p−1 ω∗
p

}

is a unique R-optimal design.

Remark 3.1: Let X = [u1, v1] × · · · × [up−1, vp−1], when some of the parameters β1, . . . ,βp−1 are equal to zero.
It follows from Lemma 1 of Schmidt (2019) that the two endpoints of the corresponding edges must be the support
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points of optimal design, and the number of support points is possibly over p. This means that we need to use some
numerical algorithms to generate the R-optimal design, such as the commonly used particle swarm optimization
(PSO) method, see Section 4.2 for details.

The following two examples illustrate the results in Theorem 3.1 and Remark 3.1, and exhibit the performance
of different designs in terms of the Bonferroni confidence intervals and the relative efficiencies of designs. In Exam-
ple 3.1 the first-order Poisson regressionmodel with intercept will be considered, and the difference of the averaged
Bonferroni confidence intervals derived by R- and D-optimal designs as well as the balanced design ξb will be
investigated by a numerical simulation. Example 3.2 considers the Poisson regression model with two covariants
which was discussed in Schmidt (2019), and the relative efficiency ofR-optimal designs will be comparedwith other
designs. In both of the examples, the intensity function Q is given by Q(θ) = exp(θ) for θ ∈ R.

Example 3.1: Consider the first-order Poisson regression model with intercept and let X = [0, 5]. If we set
β = (6,−1)� and β = (1, 1)�, the R- and D-optimal designs can be calculated numerically by Theorem 3.1 and
Theorem 2 of Konstantinou et al. (2014). For example, under the R-optimality criterion with β = (6,−1)� we
obtain x∗

1 = 2.1886 andω∗
2 = 0.5431 by solving the Equations (4) and (6). In Table 1, the results on optimal designs

for both cases are reported. Furthermore, we carry out a simulation study in order to assess the difference of the
Bonferroni confidence intervals derived by different designs. The averaged Bonferroni confidence intervals under
different sample sizes are calculated by 10,000 simulation runs, which are shown in Table 1. We find from Table 1
that for both cases the coverage probabilities perform in a similar manner and much close to 0.95 as the sample
size increases, and the width of the averaged Bonferroni confidence intervals obtained from R-optimal designs
is narrower comparing with D-optimal designs and the balanced design ξb when there exists a serious loss of
R-efficiency.

Example 3.2: Assume that the linear predictor in the considered Poisson regression model includes an intercept
term. LetX = [0, 5]2 and β = (0,−1,−1)�. A numerical calculation yields immediately x∗

1 = x∗
2 = 2.1785, ω∗

1 =
ω∗
2 = 0.3060 and ω∗

3 = 0.3880 by the Equations (4) and (6). The R-optimal design is given in Table 2. The PSO
method was used to find the corresponding D-, R-, and A-optimal designs when β = (0,−1, 0)�. The resulting
designs are listed in Table 2. In this case, we find that the endpoints (0, 0) and (0, 5)must be the support points of
optimal designs. Figure 1 displays the plot of the function φ(x,β) defined in (3) for the cases β = (0,−1,−1)� and
β = (0,−1, 0)�, which indicates that the function φ attains its maximum 3 at each support point.

To compare the performance of different designs, such as the common D- and A-optimality, we may calculate
the related efficiency that usually defines the value of the criterion function for the optimal design relative to the
value of the criterion function of a design and can thus take values between 0 and 1. For instance, the R-efficiency is
defined as EffR(ξ) = ψ(ξ∗,β)/ψ(ξ ,β). The results are summarized in Table 2. For the case β = (0,−1,−1)�, all
the designs have relatively high efficiencies regarding the other optimality criteria. This occurs primarily because
the designs have a similar structure. For the case β = (0,−1, 0)�, we observe that the R-optimal design still has
relatively high D- and A-efficiencies, but the A-optimal design has a large loss of R-efficiency.

Theorem 3.2: LetX = [0,∞)p−1 and let the assumptions (A1)–(A4) be satisfied for models with informationmatri-
ces of the form (1). If βi < 0 for all i = 1, . . . , p − 1, then the solutions x∗

i and ω∗
i from the system of Equations (4)

and (6) do not depend on the parameter vector (β1, . . . ,βp−1)
�, that is, the R-optimal weights are unchanged for

different (β1, . . . ,βp−1)
� when β0 is fixed.

Remark 3.2: The optimal weights of saturated designs for L- and �k-optimality criteria, except for D-optimality,
depend on the parameters (β1, . . . ,βp−1)

� in the same settings of Theorem 3.2.

To further illustrate Theorem 3.2, we consider the proportional hazards regression models with two types of
censoring. Under type I censoring with a fixed censoring time c the intensity function Q is given by Q(θ) = 1 −
exp(−c exp(θ)). For random censoring the intensity function Q(θ) equals to 1 − [1 − exp(−c exp(θ))]/[c exp(θ)]
if the censoring times are assumed to follow a uniform distributionU(0, c) (see Konstantinou et al., 2014). For both
the above-mentioned intensity functions the variable θ belongs to R.

Example 3.3: For the proportional hazards regression models with type I and random censoring Schmidt (2019)
discussed the behaviour of c- and �k-optimal designs for different parameter values. Their results are consistent
with Remark 3.2. Analogous to Schmidt (2019), we investigate the performance of R-optimal designs on the design
regionX = [0, 3]p−1 by comparing with a balanced design, say ξb, which is supported at all vertices ofX with equal
weights. First, the censoring time c as an unknown parameter should be determined previously, which is closely
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Table 1. The simulation results obtained from the locally R-, D-optimal designs and the balanced design
onX = [0, 5] for the first-order Poisson regression model with intercept.

Sample size Design R-efficiency BCI† CP‡

Case A: β0 = 6, β1 = −1

ξ∗
R =

{
0 2.1886

0.5431 0.4569

}
1 [5.9506, 6.0491] 0.9709

[−1.0209,−0.9792] 0.9821

10 ξ∗
D =

{
0 2
0.5 0.5

}
0.9792 [5.9485, 6.0512] 0.9803

[−1.0756,−0.9266] 0.9783

ξb =
{
0 5
0.5 0.5

}
0.3436 [5.9482, 6.0509] 0.9790

[−1.1357,−0.8776] 0.9821

ξ∗
R =

{
0 2.1886

0.5431 0.4569

}
1 [5.9866, 6.0134] 0.9510

[−1.0209,−0.9792] 0.9536

100 ξ∗
D =

{
0 2
0.5 0.5

}
0.9792 [5.9860, 6.0139] 0.9538

[−1.0203,−0.9799] 0.9523

ξb =
{
0 5
0.5 0.5

}
0.3436 [5.9860, 6.0140] 0.9540

[−1.0351,−0.9665] 0.9561

Case B: β0 = 1,β1 = 1

ξ∗
R =

{
2.4678 5
0.8234 0.1766

}
1 [0.7045, 1.2904] 0.9765

[0.9346, 1.0660] 0.9792

10 ξ∗
D =

{
3 5
0.5 0.5

}
0.5221 [0.6404, 1.3557] 0.9800

[0.9258, 1.0747] 0.9792

ξb =
{
0 5
0.5 0.5

}
0.0598 [0.3139, 1.6046] 0.9853

[0.8785, 1.1375] 0.9813

ξ∗
R =

{
2.4678 5
0.8234 0.1766

}
1 [0.9205, 1.0797] 0.9532

[0.9821, 1.0178] 0.9547

100 ξ∗
D =

{
3 5
0.5 0.5

}
0.5221 [0.9031, 1.0976] 0.9523

[0.9796, 1.0202] 0.9531

ξb =
{
0 5
0.5 0.5

}
0.0598 [0.8258, 1.1671] 0.9621

[0.9664, 1.0349] 0.9603

† The abbreviation ‘BCI’ represents the Bonferroni confidence intervals of the parameters β0 and β1, where the first row under
each design is the simulation results of β0, and the second row is β1.
‡ The abbreviation ‘CP’ represents the coverage probabilities of 95% confidence intervals for the parameters β0 and β1.

Table 2. Comparison of R-optimal design with D- and A-optimal designs onX = [0, 5]2 for the Poisson regressionmodel discussed
in Example 3.2.

Efficiencies

β Criterion Optimal design EffD(ξ)† EffR(ξ) EffA(ξ)†

D ξ∗
D =

{
(2, 0) (0, 2) (0, 0)
1/3 1/3 1/3

}
1 0.9526 0.9856

(0,−1,−1) R ξ∗
R =

{
(2.1785, 0) (0, 2.1785) (0, 0)
0.3060 0.3060 0.3880

}
0.9886 1 0.9704

A ξ∗
A =

{
(2.2453, 0) (0, 2.2453) (0, 0)
0.3492 0.3492 0.3016

}
0.9884 0.9409 1

D ξ∗
D =

{
(1.8493, 5) (1.8493, 0) (0, 5) (0, 0)
0.3197 0.3197 0.1802 0.1802

}
1 0.8454 0.7905

(0,−1, 0) R ξ∗
R =

{
(1.9449, 5) (1.9449, 0) (0, 5) (0, 0)
0.1476 0.1951 0.2185 0.4388

}
0.9622 1 0.8435

A ξ∗
A =

{
(2.1798, 5) (2.1798, 0) (0, 5) (0, 0)
0.1198 0.4054 0.0757 0.3991

}
0.7717 0.6183 1

†The D- and A-efficiencies are defined as EffD(ξ) = {det(M(ξ ,β))/det(M(ξ∗,β))}1/p and EffA(ξ) = tr(M−1(ξ∗ ,β))/tr(M−1(ξ ,β)), respectively, where
det(·) and tr(·) are the matrix determinant and trace functions.

related to the amount of censoring q. Here q is also called the overall probability of censoring and given by q =
1 −∑ωiP(Yj < C), in which Yi is the survival time and C is the censoring distribution (see Kalish & Harrington,
1988). For the two-covariate case, we choose c = 32 for type I censoring and c = 69 for random censoring such that
q is, respectively, equal to 60% for β = (3,−2.5,−2.5)�, 71% for β = (3,−3,−3)� and 75% for β = (3,−4,−4)�
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Figure 1. Plot of the function φ in (3) for the R-optimal design on X = [0, 5]2 for the Poisson regression model discussed in
Example 3.2: (a) for β = (0,−1,−1)� and (b) for β = (0,−1, 0)�.

Table 3. R-optimal designs on X = [0, 3]2 for proportional hazards
regression models for different β and R-efficiencies of the balanced
design ξb.

β R-optimal design for type I censoring EffR(ξb)

(3,−2.5,−2.5)
{
(2.4406, 0) (0, 2.4406) (0, 0)
0.2443 0.2443 0.5114

}
0.1986

(3,−3,−3)
{
(2.0338, 0) (0, 2.0338) (0, 0)
0.2443 0.2443 0.5114

}
0.0389

(3,−4,−4)
{
(1.5254, 0) (0, 1.5254) (0, 0)
0.2443 0.2443 0.5114

}
0.0004

R-optimal design for random censoring

(3,−2.5,−2.5)
{
(2.4972, 0) (0, 2.4972) (0, 0)
0.2508 0.2508 0.4984

}
0.2307

(3,−3,−3)
{
(2.0810, 0) (0, 2.0810) (0, 0)
0.2508 0.2508 0.4984

}
0.0497

(3,−4,−4)
{
(1.5607, 0) (0, 1.5607) (0, 0)
0.2508 0.2508 0.4984

}
0.0005

when the balanced design ξb onX = [0, 3]2 had beenused. TheR-optimal designs onX = [0, 3]2 andR-efficiencies
of ξb are summarized in Table 3.We observe from Table 3 that the R-optimal designs shift the support points on the
edges towards the vertex (0, 0)� and theR-efficiencies of the balanced design ξb decreasewith increasing amounts of
censoring. Note also that the R-efficiency of ξb is quite low for these censoring scenarios. In addition, the R-optimal
weights are the same for each model by Theorem 3.2.

4. R-optimal designs for models without intercept

In the present section we turn to discuss the multi-linear case without intercept, where the vector of the regressor
functions is specified as f = (x1, . . . , xp)� ∈ X , p � 2, and the parameter vector is denoted by β = (β1, . . . ,βp)�.
The regression model without an intercept is common and it usually arises from the physical characteristics of
the variables measured. The design issue for this model has attracted considerable attention in the literature (see,
e.g., Idais & Schwabe, 2021; Li et al., 2005 and the references cited there).

Let X = [u1, v1] × · · · × [up, vp]. Then the support points of R-optimal designs are also at the edges of X by
Theorem 2 in Schmidt (2019). Moreover, from the proof of Theorem 8 in Schmidt (2019) the support points of an
R-optimal design ξ∗ must be given by a − (x1/β1)e1,p−1, . . . , a − (xp/βp)ep,p and a = (a1, . . . , ap)� with ai = vi
if βi > 0 and ai = ui if βi < 0 for i = 1, . . . , p. As a result, the optimality condition for approximate designs in
Theorem 2.1 can be simplified to verify whether it is satisfied at the boundary of the design region, i.e., the design
ξ∗ is R-optimal if and only if

hi(xi, ξ∗) = �i(xi, ξ∗)− p
Q(a�β + βi(xi − ai))

� 0 (7)
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holds for all xi, i = 1, . . . , p, where the function �i(xi, ξ∗) is given by

�i(xi, ξ∗) = (a + (xi − ai)ei,p)�M(ξ∗,β)−1

⎛
⎝ p∑

j=1

ej,pe�j,p
e�j,pM(ξ∗,β)−1ej,p

⎞
⎠M(ξ∗,β)−1(a + (xi − ai)ei,p).

4.1. Some theoretical results on saturated designs

In this subsection, we will provide two types of saturated R-optimal designs for the model considered by distin-
guishing whether the vertex a is a support point. The first result reveals designs which include the support point
a, where the condition aτ �= 0, τ ∈ {1, . . . , p}, described in Theorem 4.1 is to guarantee the design ξ∗

τ in (9) with a
non-singular information matrix.

Theorem 4.1: Let the assumptions (A1)–(A4) be satisfied for models with information matrices of the form (1) and
without intercept. Let sij (i, j = 1, . . . , p) be the elements of the matrix S in (5) evaluated at a design of the form
{a − (xi/βi)ei,p;ωi}pi=1. For a given index τ (τ ∈ {1, . . . , p}) with aτ �= 0, if a solution exists, let x∗

i ∈ (0,∞) and the
weights ω∗

i be the unique solutions of the common system of Equations (4) and (8) given by

xi − 2
Q(a�β − xi)
Q′(a�β − xi)

⎡
⎣1 −

√
Q(a�β − xi)
Q(a�β)

sτ i√
sττ sii

⎤
⎦ = 0 (8)

for all i (�= τ). If 0 < x∗
i � |βi|(vi − ui) holds, then the design

ξ∗
τ =

{
a − (x∗

1/β1)e1,p · · · a − (x∗
τ /βτ )eτ ,p · · · a − (x∗

p/βp)ep,p
ω∗
1 · · · ω∗

τ · · · ω∗
p

}
(9)

with x∗
τ = 0 will be R-optimal onX provided that the condition hτ (xτ , ξ∗

τ ) < 0 (or φ(a + (xτ − aτ )eτ ,p,β) < p) for
xτ ∈ [uτ , vτ ]\{aτ } is satisfied, where hτ (·, ·) is defined as in (7) and φ(·, ·) as in (3).

Example 4.1: Consider the Poisson regression model with two covariates and without intercept, where the design
region isX = [0, 5]2. To find the R-optimal design we first fix β = (−0.5, 0.5)�. According to Theorem 4.1 we can
only specify τ = 2, i.e., x∗

2 = 0. By solving the common system of Equations (4) and (10) we obtain x∗
1 = 2.1886

and the design ξ∗
2 is of the form

ξ∗
2 =

{
(4.3772, 5) (0, 5)
0.4569 0.5431

}
.

It is easily verified that the condition h2(x2, ξ∗
2 ) < 0 is satisfied for x2 ∈ [0, 5) and the design ξ∗

2 is then R-optimal
(see also Figure 2(a)). If we choose β = (1, 1)�, however, it follows from Theorem 4.1 that the designs ξ∗

1 and ξ∗
2

are given by

ξ∗
1 =

{
(2.4678, 5) (5, 5)
0.8234 0.1766

}
, ξ∗

2 =
{
(5, 2.4678) (0, 5)
0.8234 0.1766

}
,

respectively. In this case, the conditions hi(xi, ξ∗
i ) < 0, i = 1, 2, are not satisfied, which means that both designs are

not R-optimal. Accordingly, finding a saturated R-optimal design for this model that does not contain the support
point amay be an alternative scheme. This type of R-optimal design will be elaborated in Theorem 4.2.

Theorem 4.2: Let the assumptions (A1)–(A4) be satisfied for models with information matrices of the form (1) and
without intercept. Let sij (i, j = 1, . . . , p) be the elements of the matrix S in (5) evaluated at a design of the form
{a − (xi/βi)ei,p;ωi}pi=1. If a solution exists, let x

∗
i ∈ (0,∞) and the weights ω∗

i be the unique solutions of the common
system of Equations (4) and (10) given by

xi − 2
Q(a�β − xi)
Q′(a�β − xi)

⎡
⎣ 1
1 − z�1p

p∑
j=1

zj
√
Q(a�β − xi)√
Q(a�β − xj)

sji√siisjj
+ 1

⎤
⎦ = 0 (10)

for all i, where z = (z1, . . . , zp)� with zj = ajβj/xj, 1p = (1, . . . , 1)� ∈ R
p. If 0 < x∗

i � |βi|(vi − ui) holds, then the
design

ξ∗ =
{
a − (x∗

1/β1)e1,p · · · a − (x∗
p/βp)ep,p

ω∗
1 · · · ω∗

p

}
(11)

will be R-optimal on X provided that the condition hi(ai, ξ∗) < 0 (or φ(a,β) < p) is satisfied.
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Figure 2. Plots of the functions φ in (3) for the R-optimal designs on X = [0, 5]2 for the Poisson regression models discussed in
Examples 4.1 and 4.2: (a) for β = (−0.5, 0.5)� and (b) for β = (1, 1)�.

Example 4.2: Consider the samemodel given in Example 4.1. Here we consider β = (1, 1)�. The common system
of Equations (4) and (10) has the solutions x∗

1 = x∗
2 = 1.8755 and ω∗

1 = ω∗
2 = 0.5. Then the design

ξ∗ =
{
(3.1245, 5) (5, 3.1245)

0.5 0.5

}

is R-optimal due to φ(a,β) < 2 (see also Figure 2(b)).

Corollary 4.1: LetX = [0,∞)p and let the assumptions (A1)–(A4) be satisfied for models with informationmatrices
of the form (1) and without intercept. Then the following design ξ∗ is R-optimal for each βi < 0, i = 1, . . . , p,

ξ∗ =
{−(ψ−1(0)/β1)e1,p · · · −(ψ−1(0)/βp)ep,p

1/p · · · 1/p

}
, (12)

where the function ψ(·) is defined as ψ(x) = x − 2Q(−x)/Q′(−x) for x>0.

Remark 4.1: It is worthwhile mentioning that the design (12) shown in Corollary 4.1 is also D- and A-optimal.

Remark 4.2: For the case of p = 1, the one point design ξ∗ = {a; 1} that simultaneously satisfies the additional
conditions in Theorem 4.1 is saturatedR-optimal. However, if the design ξ∗ = {a; 1} is not R-optimal, the proposed
method in Theorem 4.2 can be used to search for a saturated R-optimal design.

4.2. PSO-generated R-optimal designs

Only finding saturated designs may not be enough for determining the R-optimality of a design in the design class
�, since the optimal designs depend on the unknown parameters. For example, let β = (0.5, 0.5)� for the Poisson
regression model discussed in Example 4.1. The R-optimal design (see Figure 3) is then given by

ξ∗ =
{
(1.4321, 5) (5, 1.4321) (5, 5)
0.4666 0.4666 0.0668

}
.

This means that the number of support points of R-optimal designs for models without intercept may exceed the
number of regression parameters. Thereby, the aforementionedmethod by solving equations is unable to determine
anR-optimal design in� andwe require an effective algorithm to generate anR-optimal design.Herewe employ the
PSO algorithm to find optimal designs for the models under consideration and a pseudo code of PSO is described
as below.

In Section 4.2, the support points of each position ξi must be given by a − (x1/β1)e1,p−1, . . . , a − (xp/βp)ep,p
and a.

The index t is equal to 0, 1, . . ., and two criteria can be used to end iteration, achieving a maximum number of
iterations or verifying whether the equivalence condition attains a pre-specified threshold.

The notations v(t)i and ξ (t)i are, respectively, the current velocity and position for the ith particle. θt is the inertia
weight that modulates the influence of the former velocity, which can be a constant or a decreasing function with
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Figure 3. Plot of the function φ in (3) for the R-optimal design onX = [0, 5]2 for β = (0.5, 0.5)� in the Poisson regression model
without intercept.

Algorithm 1 The pseudo code for PSO

Randomly generate n initial positions (designs), ξ (0)1 , . . . , ξ (0)n , and initial velocities, v(0)1 , . . . , v(0)n , for n particles.
Determine personal and global best positions, say ξpbesti (i = 1, . . . , n) and ξ gbest, by comparing the criterion
function values for n particles.
while not stopping criteria do

Update each particle velocity using v(t+1)
i = θtv

(t)
i + γ1α1(ξ

pbest
i − ξ

(t)
i )+ γ2α2(ξ

gbest − ξ
(t)
i ).

Update each particle position using ξ (t+1)
i = ξ

(t)
i + v(t+1)

i .
Update ξpbesti (i = 1, . . . , n) and personal best criterion values as well as ξ gbest and global best criterion value.

return ξ gbest and global best criterion value.

values between 0 and 1. α1 and α2 are both random variables from U(0, 1). γ1 and γ2 are two constants reflecting
the cognitive learning level and social learning level, respectively.

Example 4.3: Consider the proportional hazards regression models with three covariates, in which the linear pre-
dictor does not include an intercept term. LetX = [0, 3]3 and β = (−2.5, 0.5, 0.5)�. In order to assess the effect of
the amount of censoring q on R-optimal designs, we adjust the censoring time c to achieve overall censoring prob-
abilities of 20%, 40%, 60% and 80% for the balanced design ξb. For instance, we choose c = 60 for type I censoring
and c = 133 for random censoring when q = 0.4. In this example, the PSO algorithm with 150 particles and 100
iterations is able to find the R-optimal design with the required accuracy, which can be implemented by R software
in less than 20 seconds on a standard PC. Table 4 summarizes the numerical results, including R-efficiencies of the
balanced design ξb and the amount of censoring q∗ under the corresponding R-optimal design. Some of the points
are clear from the numerical results.

• For the three-covariate case, the support points of R-optimal designs for type I censoring and random censoring
exceed the number of parameters.

• With increasing amounts of censoring, the R-optimal designs shift the support point on the edge (x1, 3, 3)�
towards the vertex a = (0, 3, 3)�, and the R-efficiency of the balanced design ξb is reduced gradually.

• The overall probability of censoring q∗ under the R-optimal design is less than for the balanced design ξb.

5. Discussion

The present paper investigates the construction of locally R-optimal designs for a large class of nonlinear multiple
regression models. For the case of models with intercept, the R-optimal designs on a rectangular design region can
be determined by utilizing the similar arguments in Schmidt (2019) but finding its optimal weight is different. We
notice that the structure of theR-optimal designs is similar to those criteria reported in Schmidt (2019), especially in
terms of the location of support points. For the case ofmodels without intercept, however, with the samemethodwe
can determine the saturated R-optimal designs only from two design subclasses addressed in Section 4.1. Moreover,
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Table 4. The locally R-optimal designs on X = [0, 3]3 for
β = (−2.5, 0.5, 0.5)� in the proportional hazards regression models,
the R-efficiencies of the balanced design ξb and the overall probability of
censoring under the R-optimal design.

q R-optimal design for type I censoring EffR(ξb) q∗

0.2
{
(3, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)
0.2071 0.3053 0.3053 0.1823

}
0.6286 0.0029

0.4
{
(2.6970, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2200 0.3032 0.3032 0.1736

}
0.2170 0.0525

0.6
{
(1.2854, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2564 0.2943 0.2943 0.1550

}
0.0193 0.2309

0.8
{
(1.0354, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2762 0.2887 0.2887 0.1464

}
0.0122 0.6477

R-optimal design for random censoring

0.2
{
(3, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)
0.2112 0.3046 0.3046 0.1796

}
0.6941 0.0192

0.4
{
(2.7596, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2274 0.3019 0.3019 0.1688

}
0.2367 0.0796

0.6
{
(1.4216, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2538 0.2946 0.2946 0.1570

}
0.0244 0.2541

0.8
{
(1.0763, 3, 3) (0, 0, 3) (0, 3, 0) (0, 3, 3)

0.2735 0.2882 0.2882 0.1501

}
0.0132 0.6387

Table 5. The R-efficiencies of the locally R-optimal designs on X = [0, 5]p−1 for various
misspecified β for the first-order Poisson regression models with intercept.

p = 2 p = 3 p = 4

β EffR(ξ) β EffR(ξ) β EffR(ξ)

(0,−0.5) 0.6376 (0,−0.5,−0.5) 0.4091 (0,−0.5,−0.5,−0.5) 0.2649
(0,−0.8) 0.9467 (0,−0.8,−0.8) 0.8970 (0,−0.8,−0.8,−0.8) 0.8519
(0,−1.0) 1 (0,−1.0,−1.0) 1 (0,−1.0,−1.0,−1.0) 1
(0,−1.2) 0.9588 (0,−1.2,−1.2) 0.9200 (0,−1.2,−1.2,−1.2) 0.8816
(0,−1.5) 0.7990 (0,−1.5,−1.5) 0.6409 (0,−1.5,−1.5,−1.5) 0.5132
(0,−2.0) 0.4854 (0,−2.0,−2.0) 0.2384 (0,−2.0,−2.0,−2.0) 0.1171

the PSO algorithm has been used to generate non-saturated R-optimal designs for both cases. Some conditions in
Theorems 3.1, 4.1 and 4.2 are required, which ensure that the support points are located within the design region. If
these conditions are not satisfied, optimal designsmay then be havingmore support points. In addition, a nonlinear
system of equations must be solved numerically in order to search for the saturated R-optimal designs. Although
the existence of the solution to these equations is not proved theoretically, the numerical exploration shows that the
solution in all considered examples always exists.

It is worthwhile mentioning that the locally optimal designs discussed so far are derived for a given value of the
model parameter vector β . One might choose such a value of β from an initial guess or estimation when some
historical observations can be obtained. It might be of interest to study how the design will be affected by wrongly
specified parameters. For illustration, we consider the locally R-optimal designs for the first-order Poisson regres-
sionmodels with an intercept on the design regionX = [0, 5]p−1 for p = 2, 3, 4, respectively. In specific, we assume
that the true parameter vector is β = (0,−1)� for p = 2, β = (0,−1,−1)� for p = 3, and β = (0,−1,−1,−1)�
for p = 4. We generate the locally R-optimal designs for various misspecified values of β , and calculate their R-
efficiencies with respect to the locally R-optimal design for the true parameter vector for each p = 2, 3, 4, which are
shown in Table 5. It is observed from Table 5 that the efficiency of the locally R-optimal design for the misspecified
value of β decreases as the value of β diverges from its true value, and the loss of R-efficiency is disastrous when the
difference between the true value and the misspecified value of β is relatively serious. Numerical results with other
examples yield similar conclusions, which are not reported here for the sake of saving space.

To overcome the parameter dependence of the locally optimal design, a commonly used approach to the com-
putation of locally optimal designs is weighted designs (see, e.g., Atkinson et al., 2007, Chap. 18), where a prior
distribution for β , which may be either discrete or continuous, is assumed in advance. Another method is the
computation of maximin efficient designs, i.e., maximizing the minimal efficiency with respect to the parameters
(see Dette, 1997; Konstantinou et al., 2014).
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For any designs ξ , ξ̄ ∈ � and α ∈ (0, 1), define ξα = (1 − α)ξ + αξ̄ . We haveM(ξα ,β) = (1 − α)M(ξ ,β)+ αM(ξ̄ ,β) and

∂ψ(ξα ,β)
∂α

= ∂

∂α

⎡
⎣ p∏

j=1
e�j,pM

−1(ξα ,β)ej,p

⎤
⎦

=
p∑

j=1

⎛
⎜⎜⎝

p∏
i=1
i�=j

e�i,pM
−1(ξα ,β)ei,p

⎞
⎟⎟⎠ ∂

∂α

(
e�j,pM

−1(ξα ,β)ej,p
)
,

where
∂

∂α

(
e�j,pM

−1(ξα ,β)ej,p
)

= e�j,p
[
M−1(ξα ,β)

(
M(ξ ,β)− M(ξ̄ ,β)

)
M−1(ξα ,β)

]
ej,p.

The directional derivative of ψ at ξ in the direction of ξ̄ , denoted by ∇ψ(ξ , ξ̄ ), is then given by

∇ψ(ξ , ξ̄ ) = lim
α→0+

∂ψ(ξα ,β)
∂α

=
p∑

j=1

ψ(ξ)

e�j,pM−1(ξ ,β)ej,p
e�j,p
[
M−1(ξ ,β)

(
M(ξ ,β)− M(ξ̄ ,β)

)
M−1(ξ ,β)

]
ej,p

= ψ(ξ)

p∑
j=1

(
1 −

e�j,pM−1(ξ ,β)M(ξ̄ ,β)M−1(ξ ,β)ej,p
e�j,pM−1(ξ ,β)ej,p

)

= ψ(ξ)

⎛
⎝p − tr

⎧⎨
⎩M−1(ξ ,β)M(ξ̄ ,β)M−1(ξ ,β)

q∑
j=1

ej,pe�j,p
e�j,pM−1(ξ ,β)ej,p

⎫⎬
⎭
⎞
⎠ .

Note that the directional derivative ∇ψ(ξ , ξ̄ ) is linear in ξ̄ for any fixed ξ ∈ �, i.e.,

∇ψ(ξ , ξ̄ ) =
∫
X

∇ψ(ξ , δx) dξ̄ (x),

where δx is theDiracmeasure at x. FollowingWhittle (1973), the design ξ∗ ∈ � isR-optimal if and only if infx∈X ∇ψ(ξ , δx) = 0.
As a consequence the assertion of Theorem 2.1 follows. �

Proof of Theorem 3.2: From Theorem 3.1, R-optimal design onX = [0,∞)p−1 for βi < 0, i = 1, . . . , p − 1, has the following
form

ξ =
{−(x1/β1)e1,p−1 · · · −(xp−1/βp−1)ep−1,p−1 0p−1

ω1 · · · ωp−1 ωp

}
, (A1)

where 0p−1 is a vector of (p − 1) 0’s, xi and ωi, i = 1, . . . , p − 1, can be determined by the common system of Equations (4)
and (6) for convenience. We denote Qi = Q(β0 − xi) for i = 1, . . . , p − 1 and Qp = Q(β0) according to the support points of
the design (A1). Employing the previously mentioned decomposition approach and letting y = (β1/x1, . . . ,βp−1/xp−1)

� and
� = diag((Qpωp)

−1, (Q1ω1)
−1, . . . , (Qp−1ωp−1)

−1), we can obtain that the inverse of the information matrix of ξ is given by

M(ξ ,β)−1 = X−1Q−1/2D−1
ω Q−1/2(X�)−1

=
(
1 0�

p−1
y −diag(y)

)
�

(
1 y�

0p−1 −diag(y)

)
=

⎛
⎜⎜⎝

1
Qpωp

1
Qpωp

y�

1
Qpωp

y −diag(ỹ)

⎞
⎟⎟⎠ ,

where ỹ = (β21 λ̃1p/x
2
1, . . . ,β

2
p−1λ̃p−1,p/x2p−1)

� with λ̃ip = (Qiωi)
−1 + (Qpωp)

−1, i = 1, . . . , p − 1. Then the matrix S defined
in (5) is given by

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ωp + 1
Qp

p−1∑
i=1

1
λ̃ip

− 1√
Q1Qpλ̃1p

· · · − 1√
Qp−1Qpλ̃p−1,p

− 1√
Q1Qpλ̃1p

1
Q1λ̃1p

· · · 0

...
...

. . .
...

− 1√
Qp−1Qpλ̃p−1,p

0 · · · 1
Qp−1λ̃p−1,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which is entirely unrelated to the parameters (β1, . . . ,βp−1)
�. Hence, the solutions of xi and ωi for i = 1, . . . , p − 1 do not

depend on the parameters (β1, . . . ,βp−1)
�. �

In order to prove the following Theorems 4.1 and 4.2, the extended design region with xi ∈ (−∞, vi] for βi > 0 and xi ∈
[ui,∞) for βi < 0 will be considered.
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Proof of Theorem 4.1: We will only prove the case τ = 1, and the others can be treated similarly. With the previous decompo-
sition strategy the information matrix of ξ∗

1 can be written as

M(ξ∗
1 ,β) = X̃�DωX̃ = X�Q1/2DωQ1/2X,

where

X =
(

a1 a�
−1

a11p−1 1p−1a�
−1 − diag(x∗

−1)

)
,

with a−1 = (a2, . . . , ap)�, 1p−1 = (1, . . . , 1)� and x∗
−1 = (x∗

2/β2, . . . , x
∗
p/βp)

�. Denote y∗
−1 = (β2/x∗

2 , . . . ,βp/x
∗
p)

� and z∗
−1 =

(a2β2/x∗
2 , . . . , apβp/x

∗
p)

�, and then we have

X−1 =
⎛
⎝1 − z∗�

−11p−1

a1
1
a1

z∗�
−1

y∗
−1 −diag(y∗

−1)

⎞
⎠ .

It follows that (X�)−1a = e1,p and (X�)−1(a − (x∗
i /βi)ei,p) = ei,p, i = 2, . . . , p.

Now letting �i(xi) = �i(xi, ξ∗) and hi(xi) = hi(xi, ξ∗)which are defined in (7) to simplify writing, and using the formulas (4)
and (5) we obtain

�i(ai) = e�1,pQ
−1/2D−1

ω SD−1
ω Q−1/2e1,p = s11

(ω∗
1)

2Q(a�β)
= p

Q(a�β)
= p1(a1),

and �i(ai − x∗
i /βi) = p/Q(a�β − x∗

i ) for i = 2, . . . , p. Thus we have h1(a1) = hi(ai) = hi(ai − x∗
i /βi) = 0 for i = 2, . . . , p. As

in the proof of Theorem 9 in Schmidt (2019), it is easily shown that h′
i(xi) has at most two roots, limxi→±∞ hi(xi) = ±∞ for

βi > 0 and limxi→±∞ hi(xi) = ∓∞ for βi < 0. To prove the R-optimality of ξ∗, it suffices here to show that h′
i(ai − x∗

i /βi) = 0
holds since h1(x1) < 0 for x1 ∈ [u1, v1]\{a1} and hi(ai) = 0 for all i = 2, . . . , p. We have

�′i(x) = 2e�i,pM(ξ
∗,β)−1

⎛
⎝ p∑

j=1

ej,pe�j,p
e�j,pM(ξ∗,β)−1ej,p

⎞
⎠M(ξ∗,β)−1(a + (x − ai)ei,p).

For i = 2, . . . , p, utilizing e�i,pX−1 = (βi/x∗
i )(1,−e�i,p−1) we obtain

�′i

(
ai − x∗

i
βi

)
= 2βi

x∗
i
(1,−e�i,p−1)Q

−1/2D−1
ω SD−1

ω Q−1/2ei,p

= 2(βi/x∗
i )s1i

ω∗
1ω

∗
i
√
Q(a�β)

√
Q(a�β − x∗

i )
− 2(βi/x∗

i )sii
ω∗2
i Q(a�β − x∗

i )
.

Hence

h′
i

(
ai − x∗

i
βi

)
= p

⎡
⎣ 2(βi/x∗

i )√
Q(a�β)

√
Q(a�β − x∗

i )

s1i√
s11sii

− 2(βi/x∗
i )

Q(a�β − x∗
i )

+ βiQ′(a�β − x∗
i )

(Q(a�β − x∗
i ))

2

⎤
⎦ .

The equations h′
i(ai − x∗

i /βi) = 0 are equivalent to the equations

x∗
i − 2

Q(a�β − x∗
i )

Q′(a�β − x∗
i )

⎡
⎣1 −

√
Q(a�β − x∗

i )

Q(a�β)

s1i√
s11sii

⎤
⎦ = 0

for i = 2, . . . , p. If the x∗
i and ω

∗
i are the solutions of this system of equations combined with Equation (4), then the design ξ∗

1
is R-optimal. �

Proof of Theorem 4.2: With the same decomposition method we have

M(ξ∗,β) = X̃�DωX̃ = X�Q1/2DωQ1/2X,

where X = 1pa� − diag(x∗) and x∗ = (x∗
1/β1, . . . , x

∗
p/βp)

�. Let y∗ = (β1/x∗
1 , . . . ,βp/x

∗
p)

� and z∗ = (a1β1/x∗
1 , . . . , apβp/x

∗
p)

�,
and then we get

X−1 = −diag(y∗)− y∗z∗�

1 − z∗�1p
and (X�)−1(a − (x∗

i /βi)ei,p) = ei,p. We still let �i(xi) = �i(xi, ξ∗) and hi(xi) = hi(xi, ξ∗) to simplify writing. It follows from
the formulas (4) and (5) that

�i(ai − x∗
i /βi) = e�i,pQ

−1/2D−1
ω SD−1

ω Q−1/2ei,p = si,i
(ω∗

i )
2Q(a�β − x∗

i )
= p

Q(a�β − x∗
i )
.

Thus we have hi(ai − x∗
i /βi) = 0 for i = 1, . . . , p. Due to the fact that h′

i(xi) has at most two roots, limxi→±∞ hi(xi) = ±∞ for
βi > 0 and limxi→±∞ hi(xi) = ∓∞ for βi < 0. To prove the R-optimality of ξ∗, it suffices here to show that h′

i(ai − x∗
i /βi) = 0
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holds since hi(ai) < 0 for all i = 1, . . . , p. We have

�′i(x) = 2ei,pM(ξ∗,β)−1

⎛
⎝ p∑

j=1

ej,pe�j,p
e�j,pM(ξ∗,β)−1ej,p

⎞
⎠M(ξ∗,β)−1(a + (x − ai)ei,p).

With e�i,pX−1 = −(βi/x∗
i )(e

�
i,p + z∗�/(1 − z∗�1p)) we have

�′i

(
ai − x∗

i
βi

)
= −2βi

x∗
i

(
e�i,p + z∗�

1 − z∗�1p

)
Q−1/2D−1

ω SD−1
ω Q−1/2ei,p

= − 2(βi/x∗
i )sii

ω∗2
i Q(a�β − x∗

i )
− 2(βi/x∗

i )

(1 − z∗T1p)
√
Q(a�β − x∗

i )

p∑
j=1

zjsij

ω∗
i ω

∗
j

√
Q(a�β − x∗

j )
.

Hence

h′
i

(
ai − x∗

i
βi

)
= p

⎡
⎣− 2(βi/x∗

i )

Q(a�β − x∗
i )

− 2(βi/x∗
i )

(1 − z∗T1p)
√
Q(a�β − x∗

i )

p∑
j=1

zjsij/
√siisjj√

Q(a�β − x∗
j )

+βiQ
′(a�β − x∗

i )

(Q(a�β − x∗
i ))

2

]
.

The equations h′
i(ai − x∗

i /βi) = 0 (i = 1, . . . , p) are equivalent to

x∗
i − 2

Q(a�β − x∗
i )

Q′(a�β − x∗
i )

⎡
⎣ 1
1 − z∗�1p

p∑
j=1

zj
√
Q(a�β − x∗

i )√
Q(a�β − x∗

j )

sij√siisjj
+ 1

⎤
⎦ = 0, i = 1, . . . , p.

If the x∗
i and ω

∗
i are the solutions of this system of equations combined with Equation (4), then the design ξ∗ is R-optimal. �


	1. Introduction
	2. Model specification and R-optimality criterion
	3. R-optimal designs for models with intercept
	4. R-optimal designs for models without intercept
	4.1. Some theoretical results on saturated designs
	4.2. PSO-generated R-optimal designs

	5. Discussion
	Disclosure statement
	Funding
	ORCID
	References
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


