Statistical Theory and Related Fields

On some aspects of a bivariate alternative zeroinflated logarithmic series distribution

C. Satheesh Kumar \& A. Riyaz

To cite this article: C. Satheesh Kumar \& A. Riyaz (2023) On some aspects of a bivariate alternative zero-inflated logarithmic series distribution, Statistical Theory and Related Fields, 7:2, 130-143, DOI: 10.1080/24754269.2023.2179324

To link to this article: https://doi.org/10.1080/24754269.2023.2179324

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor \& Francis
Group
囲
Published online: 04 Mar 2023.

Submit your article to this journal

Article views: 205

View related articles

View Crossmark data $\sqrt{\top}$

On some aspects of a bivariate alternative zero-inflated logarithmic series distribution

C. Satheesh Kumar (1) and A. Riyaz
Department of Statistics, University of Kerala, Trivandrum, Kerala, India

Abstract

In this paper, we discuss some important aspects of the bivariate alternative zero-inflated logarithmic series distribution (BAZILSD) of which the marginals are the alternative zero-inflated logarithmic series distributions of Kumar and Riyaz (2015. An alternative version of zero-inflated logarithmic series distribution and some of its applications. Journal of Statistical Computation and Simulation, 85(6), 1117-1127). We study some important properties of the distribution by deriving expressions for its probability mass function, factorial moments, conditional probability generating functions, and recursion formulae for its probabilities, raw moments and factorial moments. The parameters of the BAZILSD are estimated by the method of maximum likelihood and certain test procedures are also considered. Further certain real-life data applications are cited for illustrating the usefulness of the model. A simulation study is conducted for assessing the performance of the maximum likelihood estimators of the parameters of the BAZILSD.

ARTICLE HISTORY

Received 10 February 2022
Revised 7 February 2023
Accepted 7 February 2023

KEYWORDS

Factorial moments; generalized likelihood ratio test; probability generating function; Rao's score test; zero-inflated distributions

1. Introduction

Bivariate discrete distributions have received much attention in the literature. For example, see Ghosh and Balakrishnan (2015), Hassan and El-Bassiouni (2013), Kemp (2013), Kumar (2008), Kocherlakota and Kocherlakota (1992) and references therein. Due to the extensive applications of logarithmic series distribution in various areas of scientific research especially in biology, ecology, meteorology, etc., the bivariate logarithmic series distribution (BLSD) is of particular interest. Chapter 7 of Kocherlakota and Kocherlakota (1992) is fully devoted to the BLSD. Subrahmaniam (1966) defined the BLSD through the following probability generating function (pgf)

$$
\begin{equation*}
A\left(t_{1}, t_{2}\right)=\frac{-\log \left(1-\theta_{1} t_{1}-\theta_{2} t_{2}-\theta_{3} t_{1} t_{2}\right)}{-\log \left(1-\theta_{1}-\theta_{2}-\theta_{3}\right)} \tag{1.1}
\end{equation*}
$$

in which $\theta_{1}>0, \theta_{2}>0$ and $\theta_{3} \geq 0$ such that $\theta_{1}+\theta_{2}+\theta_{3}<1$. An important drawback of the BLSD in practical point of view is that it excludes the $(0,0)$-th observation from its support. To overcome this difficulty, Kumar and Riyaz (2014) considered a class of bivariate distribution namely the 'bivariate zero-inflated logarithmic series distribution (BZILSD)' through the following probability mass function (pmf), for any non-negative integers m and $n, \theta_{1}>0, \theta_{2}>0$ and $\theta_{3} \geq 0$ such that $\theta_{1}+\theta_{2}+\theta_{3} \leq 1$.

$$
\begin{equation*}
f(m, n)=\delta \theta_{1}^{m} \theta_{2}^{n} \sum_{r=0}^{\min (m, n)} \frac{D_{r}^{*}}{r!(m-r)!(n-r)!}\left(\frac{\theta_{3}}{\theta_{1} \theta_{2}}\right)^{r} \tag{1.2}
\end{equation*}
$$

where $D_{r}^{*}=\prod_{j=0}^{m+n-r-1} \frac{(j+1)^{2}}{(j+2)}$ and $\delta=\left[F_{2,1}\left(1,1 ; 2 ; \theta_{1}+\theta_{2}+\theta_{3}\right)\right]^{-1}$ in which $F_{2,1}(a, b ; c ; z)$ is the Gauss hypergeometric function (cf. Mathai \& Haubold, 2008).

Kumar and Riyaz (2013) considered the zero-inflated logarithmic series distribution (ZILSD) through the following pgf, in which $A=\theta[-\ln (1-\theta)]^{-1}$ with $\theta \in(0,1)$.

$$
\begin{equation*}
G_{1}(t)=A F_{2,1}(1,1 ; 2 ; \theta t), \tag{1.3}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
G_{1}(t)=-A t^{-1} \ln (1-\theta t) \tag{1.4}
\end{equation*}
$$

CONTACT C. Satheesh Kumar drcsatheeshkumar@gmail.com Department of Statistics, University of Kerala, Trivandrum, Kerala 695 581, India

Kumar and Riyaz (2015) considered another zero-inflated logarithmic series distribution, which they termed as 'the alternative zero-inflated logarithmic series distribution (AZILSD)', through the following pmf, for $x=0,1,2, \ldots$,

$$
\begin{equation*}
g(x)=B \frac{F_{2,1}(1+x, 1+x ; 2+x ; \alpha) \theta^{x}}{1+x} \tag{1.5}
\end{equation*}
$$

in which $B=[-\ln (1-\theta-\alpha)]^{-1}(\theta+\alpha), \theta>0, \alpha \geq-1$ and $|\theta+\alpha|<1$ such that $\theta \neq-\alpha$. The pgf of the AZILSD with pmf (1.5) is

$$
\begin{equation*}
G_{2}(t)=B F_{2,1}(1,1 ; 2 ; \theta t+\alpha) \tag{1.6}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
G_{2}(t)=B \frac{-\ln (1-\theta t-\alpha)}{(\theta t+\alpha)} \tag{1.7}
\end{equation*}
$$

Kumar and Riyaz (2017) studied an extended version of AZILSD and its important properties. Kumar and Riyaz (2016) considered an order k version of AZILSD and studied its important applications.

Through this paper, we consider a bivariate version of the AZILSD through the name 'the bivariate alternative zero-inflated logarithmic series distribution' or, in short 'the BAZILSD', and discuss some of its important aspects. In Section 2, we derive the BAZILSD as a bivariate random sum distribution of independent and identically distributed bivariate Bernoulli random variables and show that the marginal distributions of the BAZILSD are AZILSD. We obtain expressions for its pmf, mean, covariance, factorial moments and conditional pgfs which are included in Section 2. In Section 3, we derive certain recursion formulae for probabilities, raw moments and factorial moments of the BAZILSD. In Section 4, we describe the estimation of the parameters of the BAZILSD by method of maximum likelihood and certain test procedures are suggested. And in Section 5, we illustrate the usefulness of the BAZILSD through fitting the distribution to certain real-life data sets. In Section 6, a brief simulation study is conducted for examining the performance of the maximum likelihood estimators of the parameters of the BAZILSD.

It is important to note that the BAZILSD possesses a bivariate random sum structure as shown in Section 2. Certain bivariate random sum distributions are studied in the literature. For example, see Kumar (2007, 2013). The random sum structure arises in several areas of scientific research particularly in actuarial science, agricultural science, biological science and physical science. Chapter 9 of Johnson et al. (2005) fully devoted to univariate random sum distributions.

For simplicity in the notations, we adopt the following notations throughout in the manuscript.

$$
\begin{align*}
R_{j}(\theta) & =F_{2,1}(1+j, 1+j ; 2+j ; \theta+\alpha) \tag{1.8}\\
\Lambda & =R_{0}^{-1}(\theta), \tag{1.9}\\
h_{j} & =R_{j}\left(\theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right), \tag{1.10}\\
\psi_{j} & =R_{j}(\theta) \tag{1.11}\\
\beta_{j} & =R_{j}(0), \tag{1.12}\\
\text { and } H\left(t_{1}, t_{2}\right) & =\Lambda R_{0}\left(\theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right) . \tag{1.13}
\end{align*}
$$

2. A genesis and some properties of the BAZILSD

First, we derive the BAZILSD in the following and discuss some of its properties.
Consider the sequence $\left\{Y_{n}=\left(Y_{1 n}, Y_{2 n}\right) ; n \geq 1\right\}$ of independent and identically distributed bivariate Bernoulli random vectors, each with pgf

$$
P\left(t_{1}, t_{2}\right)=\lambda_{1} t_{1}+\lambda_{2} t_{2}+\lambda_{3} t_{1} t_{2}
$$

in which $\lambda_{j}=\frac{\theta_{j}}{\theta}, j=1,2,3$ with $\theta=\theta_{1}+\theta_{2}+\theta_{3}$ such that $\theta_{1}>0, \theta_{2}>0$ and $\theta_{3} \geq 0$. Let X be a non-negative integer valued random variable having AZILSD with $\operatorname{pgf}(1.6)$, in which $\theta=\theta_{1}+\theta_{2}+\theta_{3}$. Assume that $\left\{Y_{n}: n \geq 1\right\}$ and X 's are independent. Define $S_{n}=\left(S_{1 n}, S_{2 n}\right)$, for each $n \geq 0$ in which $\left(S_{10}, S_{20}\right)=(0,0)$ and $S_{r m}=\sum_{j=1}^{m} Y_{r j}$, for $r=1,2$ and $m \geq 1$. Set $S_{X}=\sum_{n=0}^{\infty} S_{n} I_{[X=n]}$ where $I_{[X=n]}$ denotes the indicator function of an event $[X=n]$. Then
the pgf of S_{X} is

$$
\begin{align*}
H\left(t_{1}, t_{2}\right) & =G_{2}\left\{P\left(t_{1}, t_{2}\right)\right\} \\
& =\Lambda F_{2,1}\left(1,1 ; 2 ; \theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right), \tag{2.1}
\end{align*}
$$

where Λ is defined in (1.9).
We call a distribution with $\operatorname{pgf}(2.1)$ 'the bivariate alternative zero-inflated logarithmic series distribution' or, in short 'the BAZILSD'. Clearly when $\alpha=0$, the pgf given in (2.1) reduces to the following pgf of the BZILSD with pmf (1.2).

$$
\begin{equation*}
B\left(t_{1}, t_{2}\right)=\frac{F_{2,1}\left(1,1 ; 2 ; \theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}\right)}{F_{2,1}\left(1,1 ; 2 ; \theta_{1}+\theta_{2}+\theta_{3}\right)} \tag{2.2}
\end{equation*}
$$

which shows that the proposed bivariate model of the AZILSD can be considered as a more flexible model in practical point of view compared to the BZILSD. Further, it can be noted that the marginals of the BAZILSD are AZILSD whereas the marginals of the BZILSD are not ZILSD.

Proposition 2.1: If $V=\left(V_{1}, V_{2}\right)$ follows the BAZILSD, then the marginal distribution of V_{j} for $j=1,2$ is AZILSD with pgf given below.

$$
H_{V_{1}}(t)=\Lambda F_{2,1}\left[1,1 ; 2 ;\left(\theta_{1}+\theta_{3}\right) t+\theta_{2}+\alpha\right]
$$

and

$$
H_{V_{2}}(t)=\Lambda F_{2,1}\left[1,1 ; 2 ;\left(\theta_{2}+\theta_{3}\right) t+\theta_{1}+\alpha\right] .
$$

The proof follows from the fact that $H_{V_{1}}(t)=H(t, 1)$ and $H_{V_{2}}(t)=H(1, t)$.
Proposition 2.2: The pgf of the conditional distribution of V_{1} given $V_{2}=v$ is the following: for any non-negative integer v,

$$
\begin{equation*}
H_{V_{1} \mid V_{2}}(t)=\left(\frac{\theta_{2}+\theta_{3} t}{\theta_{2}+\theta_{3}}\right)^{v} \frac{F_{2,1}\left(1+v, 1+v ; 2+v ; \theta_{1} t+\alpha\right)}{F_{2,1}\left(1+v, 1+v ; 2+v ; \theta_{1}+\alpha\right)} . \tag{2.3}
\end{equation*}
$$

Proof: For any non-negative integer v, assume that $P\left(V_{2}=v\right)>0$. Now, we have the following partial derivatives of order $(0, v)$ of $H\left(t_{1}, t_{2}\right)$ with respect to t_{2} evaluated at $\left(t_{1}, t_{2}\right)=(t, 0)$.

$$
\begin{equation*}
H^{(0, v)}(t, 0)=\Lambda\left(\theta_{2}+\theta_{3} t\right)^{v}\left(\prod_{j=0}^{v-1} D_{j}\right) R_{v}\left(\theta_{1} t\right) \tag{2.4}
\end{equation*}
$$

where for $j=0,1,2, \ldots$,

$$
\begin{equation*}
D_{j}=\frac{(j+1)^{2}}{(j+2)} \tag{2.5}
\end{equation*}
$$

and $R_{j}(t)$ is defined in (1.8).
Now, applying the formula for the conditional pgf in terms of partial derivatives of the joint pgf developed by Subrahmaniam (1966), we obtain the conditional pgf of V_{1} given $V_{2}=v$ as

$$
\begin{aligned}
H_{V_{1} \mid V_{2}=v}(t) & =\frac{H^{(0, v)}(t, 0)}{H^{(0, v)}(1,0)} \\
& =\frac{\left(\theta_{2}+\theta_{3} t\right)^{v}}{\left(\theta_{2}+\theta_{3}\right)^{v}} \frac{R_{v}\left(\theta_{1} t\right)}{R_{v}\left(\theta_{1}\right)}
\end{aligned}
$$

which implies (2.3) in the light of (1.8).
Remark 2.1: The conditional distribution of V_{1} given $V_{2}=v$ as given in (2.3) can be written as $H_{V_{1} \mid V_{2}}(t)=$ $H_{Z_{1}}(t) H_{Z_{2}}(t)$ where $H_{Z_{1}}(t)$ is the pgf of a binomial random variable with parameters z_{1} and $p=\frac{\theta_{3}}{\theta_{2}+\theta_{3}}$ and $H_{Z_{2}}(t)$ is the pgf of a random variable following the AZILSD with parameters v, θ_{1} and α. Thus clearly, the conditional distribution V_{1} given $V_{2}=v$ is the distribution of the sum of two independent random variables Z_{1} and Z_{2}.

By using Remark 2.1, we obtain the following proposition.

Proposition 2.3: Let $V=\left(V_{1}, V_{2}\right)$ follow the BAZILSD with pgf (2.1). Then

$$
\begin{align*}
\mathrm{E}\left(V_{1} \mid V_{2}=v\right)= & \frac{v \theta_{3}}{\left(\theta_{2}+\theta_{3}\right)}+\frac{\theta_{1} D_{v} R_{v+1}\left(\theta_{1}+\alpha\right)}{R_{v}\left(\theta_{1}+\alpha\right)} \tag{2.6}\\
\operatorname{Var}\left(V_{1} \mid V_{2}=v\right)= & \frac{v \theta_{2} \theta_{3}}{\left(\theta_{2}+\theta_{3}\right)^{2}}+\frac{\theta_{1} D_{v}}{R_{v}^{2}\left(\theta_{1}+\alpha\right)}\left[D_{v+1} R_{v}\left(\theta_{1}+\alpha\right) R_{v+2}\left(\theta_{1}+\alpha\right) \theta_{1}\right. \\
& \left.+R_{v}\left(\theta_{1}+\alpha\right) R_{v+1}\left(\theta_{1}+\alpha\right)-D_{v} R_{v+1}^{2}\left(\theta_{1}+\alpha\right) \theta_{1}\right] \tag{2.7}
\end{align*}
$$

Remark 2.2: By a similar approach, for any non-negative integer v with $P\left(V_{1}=v\right)>0$, we can obtain the conditional pgf of V_{2} given $V_{1}=v$ by interchanging θ_{1} and θ_{2} in (2.3). Therefore, it is evident that comments similar to those in Remark 2.1 are valid regarding conditional distribution of V_{2} given $V_{1}=v$ and the explicit expression for $\mathrm{E}\left(V_{2} \mid V_{1}=v\right)$ and $\operatorname{Var}\left(V_{2} \mid V_{1}=v\right)$ can be obtained by interchanging θ_{1} and θ_{2} in the right hand side expressions of (2.6) and (2.7) respectively.

Proposition 2.4: Let $V=\left(V_{1}, V_{2}\right)$ follow the BAZILSD with $p g f(2.1)$ and let m, n be any non-negative integers. The $p m f f(m, n)$ and the (m, n)-th factorial moment $\mu_{[m, n]}$ of the BAZILSD are

$$
\begin{align*}
f(m, n) & =\Lambda \theta_{1}^{m} \theta_{2}^{n} \sum_{r=0}^{\min (m, n)} \frac{\beta_{m+n-r}(\alpha) D_{r}^{*}}{r!(m-r)!(n-r)!}\left(\frac{\theta_{3}}{\theta_{1} \theta_{2}}\right)^{r} \tag{2.8}\\
\mu_{[m, n]} & =\Lambda m!n!\left(\theta_{1}+\theta_{3}\right)^{m}\left(\theta_{2}+\theta_{3}\right)^{n} \sum_{r=0}^{\min (m, n)} \frac{D_{r}^{*} \psi_{m+n-r}}{r!(m-r)!(n-r)!} \xi^{r} \tag{2.9}
\end{align*}
$$

where D_{r}^{*} is defined in (1.2), for $j=1,2, \ldots, \psi_{j}, \beta_{j}(\alpha)$'s are defined in (1.11) and (1.12) and $\xi=\frac{\theta_{3}}{\left(\theta_{1}+\theta_{3}\right)\left(\theta_{2}+\theta_{3}\right)}$.
Proof: In order to obtain the probability mass function of the BAZILSD, we need the following derivatives of $H\left(t_{1}, t_{2}\right)$, in which m is a non-negative integer.

$$
\begin{equation*}
H^{(m, 0)}\left(t_{1}, t_{2}\right)=\left(\prod_{i=0}^{m-1} D_{i}\right)\left(\theta_{1}+\theta_{3} t_{2}\right)^{m} \Lambda h_{m}\left(t_{1}, t_{2}\right) \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
h_{j}\left(t_{1}, t_{2}\right)=F_{2,1}\left(1+j, 1+j ; 2+j ; \theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right), j=0,1,2, \ldots \tag{2.11}
\end{equation*}
$$

The following derivatives are needed in the sequel, in which $0 \leq i \leq r$ and $j \geq 1$.

$$
\begin{align*}
\frac{\partial^{i}\left(\theta_{1}+\theta_{3} t_{2}\right)^{m}}{\partial t_{2}^{i}} & =\frac{m!}{(m-i)!} \theta_{3}^{i}\left(\theta_{1}+\theta_{3} t_{2}\right)^{m-i} \tag{2.12}\\
\frac{\partial^{j} h_{m}\left(t_{1}, t_{2}\right)}{\partial t_{2}^{j}} & =\left(\prod_{i=m}^{m+j-1} D_{i}\right)\left(\theta_{2}+\theta_{3} t_{1}\right)^{j} h_{m+j}\left(t_{1}, t_{2}\right) \tag{2.13}
\end{align*}
$$

Differentiating both sides of (2.10) n times with respect to t_{2} and applying (2.12) and (2.13), we get the following.

$$
\begin{align*}
H^{(m, n)}\left(t_{1}, t_{2}\right)= & \left(\prod_{i=0}^{m-1} D_{i}\right) \Lambda \sum_{r=0}^{n}\binom{n}{r} \frac{\partial^{r}\left(\theta_{1}+\theta_{3} t_{2}\right)^{m}}{\partial t_{2}^{r}} \frac{\partial^{n-r} h_{m}\left(t_{1}, t_{2}\right)}{\partial t_{2}^{n-r}} \\
= & \left(\prod_{i=0}^{m-1} D_{i}\right) \Lambda \sum_{r=0}^{\min (m, n)}\binom{n}{r} \frac{m!}{(m-r)!} \theta_{3}^{r}\left(\theta_{1}+\theta_{3} t_{2}\right)^{m-r} \\
& \times\left(\prod_{i=m}^{m+n-r-1} D_{i}\right)\left(\theta_{2}+\theta_{3} t_{1}\right)^{n-r} h_{m+n-r}\left(t_{1}, t_{2}\right) \tag{2.14}
\end{align*}
$$

By putting $\left(t_{1}, t_{2}\right)=(0,0)$ in (2.14) and by dividing $m!n!$, we get (2.8). By putting $\left(t_{1}, t_{2}\right)=(1,1)$ in (2.14), we get (2.9).

Proposition 2.5: Let $V=\left(V_{1}, V_{2}\right)$ follow the BAZILSD with $\operatorname{pgf}(2.1)$. Then we have the following, in which $\delta_{j}=\frac{\psi_{j}}{\psi_{0}}$,

$$
\begin{align*}
& \mathrm{E}\left(V_{1}\right)=D_{0} \delta_{1}\left(\theta_{1}+\theta_{3}\right) \tag{2.15}\\
& \mathrm{E}\left(V_{2}\right)=D_{0} \delta_{1}\left(\theta_{2}+\theta_{3}\right) \tag{2.16}
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Cov}\left(V_{1}, V_{2}\right)=D_{0}\left(D_{1} \delta_{2}-D_{0} \delta_{1}^{2}\right)\left(\theta_{1}+\theta_{3}\right)\left(\theta_{2}+\theta_{3}\right)+D_{0} \delta_{1} \theta_{3} \tag{2.17}
\end{equation*}
$$

where D_{0} and D_{1} are given in (2.5).
The proof follows from (2.9) in the light of the relations:

$$
\mathrm{E}\left(V_{1}\right)=\mu_{[1,0]}, \mathrm{E}\left(V_{2}\right)=\mu_{[0,1]} \text { and } \operatorname{Cov}\left(V_{1}, V_{2}\right)=\mu_{[1,1]}-\mu_{[1,0]} \mu_{[0,1]}
$$

Proposition 2.6: Let $V=\left(V_{1}, V_{2}\right)$ follow the BAZILSD with pgf (2.1). Then $U=V_{1}+V_{2}$ follows the modified AZILSD studied by Kumar and Riyaz (2013).

The proof follows from the fact that the pgf of $V_{1}+V_{2}$ is

$$
H_{U}(t)=H(t, t)=\Lambda F_{2,1}\left[1,1 ; 2 ;\left(\theta_{1}+\theta_{2}\right) t+\theta_{3} t^{2}+\alpha\right] .
$$

3. Recursion formulae

In this section, we develop certain recursion formulae for probabilities, raw moments and factorial moments. Let $V=\left(V_{1}, V_{2}\right)$ be a random vector with pgf (2.1). For the sake of computational simplicity, we define $\underline{u}+i=(1+$ $i, 1+i ; 2+i)$, for $i=0,1,2, \ldots$ Now we have the following from (2.1) in which $f(m, n ; \underline{u})=P\left(V_{1}=m, V_{2}=\right.$ n), for $m, n \geq 0$,

$$
\begin{align*}
H\left(t_{1}, t_{2}\right) & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n ; \underline{u}) t_{1}^{m} t_{2}^{n} \\
& =\Lambda F_{2,1}\left(1,1 ; 2 ; \theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right) \tag{3.1}
\end{align*}
$$

Now we obtain the following propositions.
Proposition 3.1: The probability mass function $f(m, n ; \underline{u})$ of the BAZILSD satisfies the following recurrence formulae, in which δ_{j} is defined in Proposition 2.5.

$$
\begin{align*}
(m+1) f(m+1,0 ; \underline{u}) & =D_{0} \delta_{1} \theta_{1} f(m, 0 ; \underline{u}+1), m \geq 0 \tag{3.2}\\
(m+1) f(m+1, n ; \underline{u}) & =D_{0} \delta_{1}\left[\theta_{1} f(m, n ; \underline{u}+1)+\theta_{3} f(m, n-1 ; \underline{u}+1)\right], m \geq 0, n \geq 1 \tag{3.3}\\
(n+1) f(0, n+1 ; \underline{u}) & =D_{0} \delta_{1} \theta_{2} f(0, n ; \underline{u}+1), n \geq 0 \tag{3.4}\\
(n+1) f(m, n+1 ; \underline{u}) & =D_{0} \delta_{1}\left[\theta_{2} f(m, n ; \underline{u}+1)+\theta_{3} f(m-1, n ; \underline{u}+1)\right], m \geq 1, n \geq 0 \tag{3.5}
\end{align*}
$$

Proof: From (2.10) with $m=1$, we have the following.

$$
\begin{equation*}
H^{(1,0)}\left(t_{1}, t_{2}\right)=\Lambda D_{0}\left(\theta_{1}+\theta_{3} t_{2}\right) h_{1}\left(t_{1}, t_{2}\right) \tag{3.6}
\end{equation*}
$$

On differentiating both sides of (3.1) with respect to t_{1}, we have

$$
\begin{align*}
H^{(1,0)}\left(t_{1}, t_{2}\right) & =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} m f(m, n ; \underline{u}) t_{1}^{m-1} t_{2}^{n} \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m+1) f(m+1, n ; \underline{u}) t_{1}^{m} t_{2}^{n} \tag{3.7}
\end{align*}
$$

From (3.1), we also have the following.

$$
\begin{equation*}
F_{2,1}\left(2,2 ; 3 ; \theta_{1} t_{1}+\theta_{2} t_{2}+\theta_{3} t_{1} t_{2}+\alpha\right)=\psi_{1} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n ; \underline{u}+1) t_{1}^{m} t_{2}^{n} \tag{3.8}
\end{equation*}
$$

Now by using (3.7) and (3.8) in (3.6) we get

$$
\begin{align*}
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}(m+1) f(m+1, n ; \underline{u}) t_{1}^{m} t_{2}^{n} \\
& \quad=D_{0} \delta_{1}\left[\theta_{1} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n ; \underline{u}+1) t_{1}^{m} t_{2}^{n}+\theta_{3} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} f(m, n ; \underline{u}+1) t_{1}^{m} t_{2}^{n+1}\right] \tag{3.9}
\end{align*}
$$

On equating the coefficient of $t_{1}^{m} t_{2}^{0}$ on both sides of (3.9), we get (3.2). By equating the coefficient of $t_{1}^{m} t_{2}^{n}$ on both sides of (3.9), we get the relation (3.3). We omit the proof of relations (3.4) and (3.5) as it is similar to that of relations (3.2) and (3.3).

Proposition 3.2: Two recurrence formulae for the (m,n)-th raw moment $\mu_{m, n}(\underline{u})$ of the BAZILSD are the following, for $m, n \geq 0$.

$$
\begin{align*}
\mu_{m+1, n}(\underline{u}) & \left.=D_{0} \delta_{1} \theta_{1} \sum_{j=0}^{m}\binom{m}{j} \mu_{m-j, n} \underline{(\underline{u}}+1\right)+D_{0} \delta_{1} \theta_{3} \sum_{j=0}^{m} \sum_{k=0}^{n}\binom{m}{j}\binom{n}{k} \mu_{m-j, n-k}(\underline{u}+1), \tag{3.10}\\
\mu_{m+1, n+1}(\underline{u}) & =D_{0} \delta_{1} \theta_{2} \sum_{k=0}^{n}\binom{n}{j} \mu_{m, n-k}(\underline{u}+1)+D_{0} \delta_{1} \theta_{3} \sum_{j=0}^{m} \sum_{k=0}^{n}\binom{m}{j}\binom{n}{k} \mu_{m-j, n-k}(\underline{u}+1) . \tag{3.11}
\end{align*}
$$

Proof: The characteristic function $\varphi\left(t_{1}, t_{2}\right)$ of the BAZILSD with $\operatorname{pgf}(2.1)$ is the following. For $\left(t_{1}, t_{2}\right)$ in \mathbb{R}^{2} and $i=\sqrt{-1}$,

$$
\begin{align*}
\varphi\left(t_{1}, t_{2}\right) & =H\left(\mathrm{e}^{\mathrm{i} t_{1}}, \mathrm{e}^{\mathrm{i} t_{2}}\right) \\
& =\Lambda F_{2,1}[1 ; 1 ; 2 ; \gamma(\underline{t} ; \underline{\theta})] \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{m, n}(\underline{u}) \frac{\left(\mathrm{i} t_{1}\right)^{m}\left(\mathrm{i} t_{2}\right)^{n}}{m!n!} \tag{3.12}
\end{align*}
$$

where $\gamma(\underline{t} ; \underline{\theta})=\gamma\left(t_{1}, t_{2} ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)=\theta_{1} \mathrm{e}^{\mathrm{i} t_{1}}+\theta_{2} \mathrm{e}^{\mathrm{i} t_{2}}+\theta_{3} \mathrm{e}^{\mathrm{i}\left(t_{1}+t_{2}\right)}+\alpha$.
On differentiating (3.12) with respect to t_{1} we get,

$$
\begin{equation*}
D_{0} \Lambda F_{2,1}[2 ; 2 ; 3 ; \gamma(\underline{t} ; \underline{\theta})]\left\{\mathrm{i}\left(\theta_{1}+\theta_{3} \mathrm{e}^{\mathrm{i} t_{2}}\right) \mathrm{e}^{\mathrm{i} t_{1}}\right\}=\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \mathrm{i} \mu_{m, n}(\underline{u}) \frac{\left(\mathrm{i} t_{1}\right)^{m-1}\left(\mathrm{i} t_{2}\right)^{n}}{(m-1)!n!} \tag{3.13}
\end{equation*}
$$

In the light of (3.12), we have the following from (3.13).

$$
D_{0} \delta_{1} \theta_{1} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(\mathrm{i} t_{1}\right)^{m}\left(\mathrm{i} t_{2}\right)^{n}}{m!n!} \mathrm{e}^{\mathrm{i} t_{1}}+D_{0} \delta_{1} \theta_{3} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(\mathrm{i} t_{1}\right)^{m}\left(\mathrm{i} t_{2}\right)^{n}}{m!n!} \mathrm{e}^{\mathrm{i} t_{1}} \mathrm{e}^{\mathrm{i} t_{2}}=\sum_{m=1}^{\infty} \sum_{n=0}^{\infty} \mu_{m, n}(\underline{u}) \frac{\left(\mathrm{i} t_{1}\right)^{m-1}\left(\mathrm{i} t_{2}\right)^{n}}{(m-1)!n!}
$$

Now, on expanding exponential functions, rearranging the term and by using standard properties of double sum we obtain the following.

$$
\begin{align*}
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{m+1, n}(\underline{u}) \frac{\left(\mathrm{i} t_{1}\right)^{m}\left(\mathrm{i} t_{2}\right)^{n}}{m!n!} \\
& \quad=D_{0} \delta_{1} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \frac{\left(\mathrm{i} t_{1}\right)^{m}\left(\mathrm{i} t_{2}\right)^{n}}{m!n!}\left[\theta_{1} \sum_{j=0}^{m}\binom{m}{j} \mu_{m-j, n}(\underline{u}+1)+\theta_{3} \sum_{j=0}^{m} \sum_{k=0}^{n}\binom{m}{j}\binom{n}{k} \mu_{m-j, n-k}(\underline{u}+1)\right] \tag{3.14}
\end{align*}
$$

On equating coefficients of $\frac{\left(\mathrm{i} t_{1}\right)^{m}(\mathrm{it})^{n}}{m!n!}$ on both sides of (3.14), we get the relation (3.10). A similar procedure will give (3.11).

Proposition 3.3: : The (m, n)-th order factorial moment $\mu_{[m, n]}(\underline{u})$ of the BAZILSD satisfies the following recurrence formulae, for $m, n \geq 0$, in which $\mu_{[0,0]}(\underline{u})=1$.

$$
\begin{align*}
& \mu_{[m+1, n]}(\underline{u})=D_{0} \delta_{1}\left(\theta_{1}+\theta_{3}\right) \mu_{[m, n]}(\underline{u}+1)+D_{0} \delta_{1} \theta_{3} n \mu_{[m, n-1]}(\underline{u}+1) \tag{3.15}\\
& \left.\mu_{[m, n+1]} \underline{(\underline{u})}=D_{0} \delta_{1}\left(\theta_{2}+\theta_{3}\right) \mu_{[m, n]} \underline{u}+1\right)+D_{0} \delta_{1} \theta_{3} m \mu_{[m-1, n]}(\underline{u}+1) \tag{3.16}
\end{align*}
$$

Proof: Let $V=\left(V_{1}, V_{2}\right)$ be a random vector having the BAZILSD with pgf $H\left(t_{1}, t_{2}\right)$ as given in (3.1). Then the factorial moment generating function $F\left(t_{1}, t_{2}\right)$ of the BAZILSD is

$$
\begin{align*}
F\left(t_{1}, t_{2}\right) & =H\left(1+t_{1}, 1+t_{2}\right) \\
& =\Lambda F_{2,1}[1,1 ; 2 ; \eta(\underline{t} ; \underline{\theta})] \\
& =\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{[m, n]}(\underline{u}) \frac{t_{1}^{m} t_{2}^{n}}{m!n!}, \tag{3.17}
\end{align*}
$$

where $\eta(\underline{t} ; \underline{\theta})=\eta\left(t_{1}, t_{2} ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)=\theta_{1}+\theta_{2}+\theta_{3}+\left(\theta_{1}+\theta_{3}\right) t_{1}+\left(\theta_{2}+\theta_{3}\right) t_{2}+\theta_{3} t_{1} t_{3}+\alpha$.
On differentiating (3.16) with respect to t_{1}, we get

$$
\frac{\partial F\left(t_{1}, t_{2}\right)}{\partial t_{1}}=\left[\left(\theta_{1}+\theta_{3}\right)+\theta_{3} t_{2}\right] D_{0} F_{2,1}[2,2 ; 3 ; \eta(\underline{t} ; \underline{\theta})] .
$$

In the light of (3.17), we can write this as

$$
\begin{align*}
& \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{[m+1, n]}(\underline{u}) \frac{t_{1}^{m} t_{2}^{n}}{m!n!} \\
& \quad=D_{0} \delta_{1}\left[\left(\theta_{1}+\theta_{3}\right) \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{[m, n]}(\underline{u}+1) \frac{t_{1}^{m} t_{2}^{n}}{m!n!}+\theta_{3} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \mu_{[m, n]}(\underline{u}+1) \frac{t_{1}^{m} t_{2}^{n+1}}{m!n!}\right] \tag{3.18}
\end{align*}
$$

Equating the coefficient of $\frac{t_{1}^{m} t_{2}^{n}}{m!n!}$ on both sides of (3.18), we get (3.15). Similar procedures will lead to (3.16).

4. Estimation and testing

In this section, we discuss the estimation of the parameters $\theta_{1}, \theta_{2}, \theta_{3}$ and α of the BAZILSD by the method of method maximum likelihood and construct certain test procedures for testing the significance of the additional parameter α of the BAZILSD.

4.1. Maximum likelihood estimation

Let $a(m, n)$ be the frequency of the (m, n)-th cell of a bivariate data. Let y be the highest value of m observed and z be the highest value of n observed. Then the likelihood function of the sample is

$$
\begin{equation*}
L=\prod_{m=0}^{y} \prod_{n=0}^{z}[f(m, n)]^{a(m, n)} \tag{4.1}
\end{equation*}
$$

where $f(m, n)$ is the pmf of the BAZILSD as given in (2.8). Taking logarithm on both sides of (4.1), we get

$$
\begin{equation*}
\log L=\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n)\left[\log \Lambda+\log \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right] \tag{4.2}
\end{equation*}
$$

where Λ is given in (1.9),

$$
\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)=\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!},
$$

and D_{r}^{*} is defined in Proposition 2.4.
Let $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}$ and $\hat{\alpha}$ denote the maximum likelihood estimators of the parameters $\theta_{1}, \theta_{2}, \theta_{3}$ and α of the BAZILSD. On differentiating (4.2), partially with respect to the parameters $\theta_{1}, \theta_{2}, \theta_{3}$ and α, respectively, and equating to zero,
we get the following likelihood equations, in which

$$
\begin{aligned}
\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right) & =\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \nabla \log \Lambda \\
& =\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \nabla \log R_{0}^{-1}(\theta) \\
& =\sum_{m=0}^{y} \sum_{n=0}^{z}-a(m, n) R_{0}^{-2}(\theta) \nabla R_{0}(\theta) \\
& =\sum_{m=0}^{y} \sum_{n=0}^{z}-a(m, n) R_{0}^{-2}(\theta) D_{0} R_{1}(\theta)
\end{aligned}
$$

in the light of $\nabla R_{j}(\theta)=D_{j} R_{j+1}(\theta)$, where D_{j} and $R_{j}(\theta)$ are defined in (2.5) and (1.8), respectively.

$$
\begin{align*}
& \Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}{ }^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}=0, \tag{4.3}\\
& \Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}=0, \tag{4.4}\\
& \Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}{ }^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}=0, \tag{4.5}
\end{align*}
$$

and

$$
\begin{equation*}
\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}=0 . \tag{4.6}
\end{equation*}
$$

Now on solving these likelihood equations (4.3)-(4.6) by using some mathematical software such as MATHLAB, MATHCAD, MATHEMATICA, etc., one can obtain the maximum likelihood estimators of the parameters θ_{1}, θ_{2}, θ_{3} and α.

4.2. Testing of the hypothesis

For testing the hypothesis $H_{0}: \alpha=0$ against the alternative hypothesis $H_{1}: \alpha \neq 0$, we construct the generalized likelihood ratio test (GLRT) and Rao's efficient score test (REST) as follows.

In case of (GLRT), the test statistic is

$$
\begin{equation*}
-2 \log \lambda=2\left[\log L(\underline{\hat{\Omega}} ; x)-\log L\left(\underline{\hat{\Omega}^{*}} ; x\right)\right], \tag{4.7}
\end{equation*}
$$

where $\underline{\hat{\Omega}}$ is the maximum likelihood estimator of $\underline{\Omega}=\left(\theta_{1}, \theta_{2}, \alpha\right)$ with no restrictions, and $\hat{\Omega}^{*}$ is the maximum likelihood estimator of $\underline{\Omega}$ when $\alpha=0$. The test statistic $-2 \log \lambda$ given in (4.7) is asymptotically distributed as Chi-square with one degree of freedom. For details, see Rao (1973).

In case of (REST), the following test statistic can be used.

$$
\begin{equation*}
S=T^{\prime} \phi^{-1} T \tag{4.8}
\end{equation*}
$$

where $T^{\prime}=\left(T_{1}, T_{2}, T_{3}, T_{4}\right)$ and $\phi=\left(I_{r s}\right)_{4 \times 4}$ are the Fisher information matrices in which T_{i} and $I_{r s}$ for $i=$ $1,2,3,4$ and $r, s=1,2,3,4$ are as given in the Appendix. The test statistic given in (4.8) follows Chi-square distribution with one degree of freedom (see Rao, 1973).

Table 1. Observed frequencies and computed values of expected frequencies of the BZILSD, the BAZILSD and the BPD by method of maximum likelihood for the first data set.

	0	1	2	3	4	\sum
0	34	20	4	6	4	68
	34.99	12.03	7.15	4.66	3.38	65.21
	36.58	18.01	5.01	4.13	3.49	67.22
	34.51	16.22	3.81	0.59	0.07	55.20
1	17	7	0	0	0	24
	12.29	10.16	1.56	0.51	0.21	24.73
	16.53	6.01	1.23	0.12	0.03	23.92
	23.12	11.21	2.72	0.44	0.05	37.54
2	6	4	1	0	0	11
	7.56	2.17	1.01	0.25	0.01	11
	5.56	3.38	1.89	0.14	0.01	10.98
	7.75	3.87	0.97	0.16	0.02	12.77
3	0	4	2	0	0	4
	3.15	1.12	0.91	0.21	0.01	5.4
	3.11	1.70	0.56	0.09	0.01	5.53
	1.73	0.89	0.23	0.04	0.005	2.89
4	0	0	0	1	0	0
	1.40	0.71	0.11	0.09	0.01	2.32
	1.03	0.05	0.03	0.02	0.01	1.14
	0.29	0.15	0.04	0.007	0.0009	0.50
5	2	0	0	0	0	2
	0.15	0.08	0.07	0.03	0.01	0.34
	0.09	0.05	0.04	0.02	0.01	0.21
	0.04	0.02	0.005	0.001	0.04	0.11
	59	35	6	4	109	
	62.54	26.27	10.81	5.75	3.63	109
	62.90	29.60	8.76	3.52	3.56	109
	67.44	32.36	7.78	1.24	0.18	109

5. Applications

For numerical applications, we consider two real-life data sets of which the first data set is from MitchelL and Paulson (1981), which consists of the number of aborts by 109 aircrafts in two consecutive six months of one year period and the second data set, taken from Partrat (1993), is the yearly frequency of hurricanes affecting tropical cyclones in two zones belonging to the North Atlantic coastal states in the USA. We have fitted the BZILSD, the BAZILSD and the bivariate Poisson distribution (BPD) to these data sets by the method of the maximum likelihood estimates of the parameter of the models. For the first data set, the maximum likelihood estimates (MLE ${ }_{S}$) of the parameters in case of the BZILSD are $\hat{\theta}_{1}=0.75, \hat{\theta}_{2}=0.17$ and $\hat{\theta}_{3}=0.01$, those in case of the BAZILSD are $\hat{\theta}_{1}=$ $0.65, \hat{\theta}_{2}=0.23, \hat{\theta}_{3}=0.04$ and $\hat{\alpha}=0.02$, and those in case of the BPD are $\hat{\lambda}_{1}=0.67 \hat{\lambda}_{2}=0.47$ and $\hat{\lambda}_{3}=0.01$. For the second data set, the MLES of the parameters in case of the BZILSD are $\hat{\theta}_{1}=0.55, \hat{\theta}_{2}=0.36$ and $\hat{\theta}_{3}=0.02$, those in case of the BAZILSD are $\hat{\theta}_{1}=0.35, \hat{\theta}_{2}=0.31, \hat{\theta}_{3}=0.04$ and $\hat{\alpha}=0.01$, and those in case of the BPD are $\hat{\lambda}_{1}=0.62, \hat{\lambda}_{2}=0.61$ and $\hat{\lambda}_{3}=0.01$. The computed values of the expected frequencies of the BZILSD, the BAZILSD and the BPD are all presented in the Tables 1 and 2.
(In each cell, the first row represents the observed frequency, the second row represents theoretical frequency of the BZILSD, the third row represents theoretical frequency of BAZILSD and the last row represents theoretical frequency of BPD).
(In each cell, the first row represents the observed frequency, the second row represents theoretical frequency of the BZILSD, the third row represents theoretical frequency of BAZILSD and the last row represents theoretical frequency of BPD).

The goodness of fit is applied to the first data set in case of the BAZILSD in nine categories [such as $(0,0),(0,1)$, $(0,2),(0,3$ and above); $(1,0),(1,1$ and above $) ;(2,0),(2,1$ and above) and (3,0 and above)], that in case of the BZILSD in eight categories [such as $(0,0),(0,1),(0,2),(0,3$ and above); $(1,0),(1,1$ and above); (2,0 and above) and (3,0 and above)] and that in case of the BPD in seven categories [such as (0,0), $(0,1$ and above); $(1,0),(1,1$ and above); (2,0), (2,1 and above); (3,0 and above)]. In the second data set, in case of the BAZILSD the goodness of fit is applied in seven categories [such as (0,0), (0,1), (0,2 and above); $(1,0),(1,1$ and above); (2,0 and above) and (3,0 and above)], that in case of the BZILSD there are seven categories [such as (0,0), (0,1), (0,2 and above); (1,0), (1,1 and above) and $(2,0),(2,1$ and above)] and that in case of the BPD in seven categories [such as $(0,0),(0,1),(0,2$ and above); $(1,0),(1,1$ and above); $(2,0),(2,1$ and above $)]$. The computed values of the Chi-square statistic and P in case of both the models - BZILSD, BAZILSD and BPD for data set 1 and data set 2 are all presented in Table 3. Based on the values of Chi-square statistic and P, it can be observed that BAZILSD gives a better fit to both data sets compared to the existing models - the BZILSD and the BPD.

Table 2. Observed frequencies and computed values of expected frequencies of the BZILSD, the BAZILSD and the BPD by method of maximum likelihood for the second data set.

	0	1	2	3	\sum
0	27	9	3	2	41
	35.52	8.01	4.61	2.52	50.06
	28.01	7.98	3.93	1.23	41.15
	26.91	16.42	5.01	1.02	49.36
1	24	13	1	0	38
	16.01	11.21	0.91	0.11	28.24
	23.12	14.21	1.23	0.16	38.72
	16.69	10.45	3.27	0.68	31.09
2	8	2	1	0	11
	5.61	4.31	1.76	0.51	12.19
	7.62	3.02	0.76	0.28	11.68
	5.17	3.32	1.07	0.23	9.79
	1	0	2	0	4
	1.04	1.12	0.91	0.21	5.4
	1.28	1.7	0.56	0.09	5.53
	1.07	0.7	0.23	0.76	2.76
	60	24	7	2	93
	58.42	24.04	7.39	3.15	93
	59.99	25.52	6.01	1.68	93
	49.84	30.89	9.58	2.69	93

Table 3. The computed Chi-square value and P value while fitting the models - BZILSD, BAZILSD and BPD for the Data set 1 and Data set 2.

Data set/models	Chi-square value	Degrees of freedom	P-value
Data set 1			
BZILSD	12.28	4	.02
BAZILSD	1.56	4	.82
BPD	17.96	3	$<.0001$
Data set 2			
BZILSD	8.16	3	.04
BAZILSD	0.43	2	0.81
BPD	8.55	3	0.04

Table 4. The computed the values of $\log L(\underline{\hat{\Omega}} ; x), \log L\left(\underline{\hat{\Omega}^{*}} ; x\right)$ and the generalized likelihood ratio test statistic under H_{0}.

	$\log L\left(\underline{\hat{\Omega}^{*} ;} ; x\right)$	$\log L(\underline{\hat{\Omega}} ; x)$	Test statistic
Data set 1	-154.03	-146.16	15.74
Data set 2	-98.42	-95.49	5.86

Table 4 contains the computed values of $\log L(\underline{\hat{\Omega}} ; x), \log L\left(\underline{\hat{\Omega}^{*}} ; x\right)$ and the GLRT statistic for the BAZILSD in case of for both the data sets. We have also computed the values of S based on (4.8) for the BAZILSD in the case of first data set as S_{1} and for the BAZILSD in the case of second data set S_{2} as given below.

$$
\left.\begin{array}{rl}
S_{1} & =\left(\begin{array}{llll}
-1.58 & 3.28 & 7.82 & 12.57
\end{array}\right)\left[\begin{array}{ccc}
0.08 & -0.04 & -0.05
\end{array}\right] 0.01 \\
-0.04 & 0.06 \\
-0.05 & 0.01 \\
0.06 & -0.04 \\
0.01 & -0.04 \\
-0.02 & 0.04
\end{array}\right]\left(\begin{array}{c}
-1.58 \\
3.28 \\
7.82 \\
12.57
\end{array}\right)
$$

Since the critical value for the test at 5% level of significance and one degree of freedom is 3.84 , the null hypothesis that $H_{0}: \alpha=0$ is rejected in both the above cases in respect of GLRT and REST.

Table 5. Bias and standard errors (within parenthesis) of the estimators of the parameters $\theta_{1}, \theta_{2}, \theta_{3}$ and α of the BAZILSD for the simulated data sets.

Parameters set	Sample size	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$	$\hat{\theta}_{3}$	$\hat{\alpha}$
Set (i) $\theta_{1}=0.4361$,	150	$0.0889(0.1446)$	$0.0744(0.1533)$	$0.0613(0.1308)$	$0.0503(0.1153)$
$\theta_{2}=0.2679$,	300	$0.0598(0.1281)$	$0.0506(0.1273)$	$0.0432(0.1005)$	$0.0297(0.0927)$
$\theta_{3}=0.1905$,	600	$0.0288(0.1049)$	$0.0118(0.0949)$	$0.0232(0.0917)$	$0.0074(0.0693)$
$\alpha=0.0110$					
Set (ii) $\theta_{1}=0.0847$,	150	$0.0466(0.1456)$	$0.0263(0.1122)$	$0.0113(0.1204)$	$0.0121(0.0917)$
$\theta_{2}=0.0439$,	300	$0.0284(0.1136)$	$0.0176(0.0927)$	$0.0099(0.0866)$	$0.0071(0.0721)$
$\theta_{3}=0.0216$,	600	$0.0084(0.1030)$	$0.0097(0.0843)$	$0.0044(0.0748)$	$0.0026(0.0583)$
$\alpha=0.0112$					

6. Simulation

It is quite difficult to examine the theoretical performance of the estimators of different parameters of the BAZILSD obtained by the method of maximum likelihood. So we have attempted a simulation study for assessing the performance of the estimators. We have simulated three data sets of sample size 150, 300 and 600 in both the positively correlated and negatively correlated situations of the BAZILSD by using Markov chain Monte Carlo (MCMC) procedure, and considered 200 replications in each case. We have considered the following two sets of parameters: (i) $\theta_{1}=0.4361, \theta_{2}=0.2679, \theta_{3}=0.1905, \alpha=0.0110$ (positively correlated) and (ii) $\theta_{1}=0.0847, \theta_{2}=0.0439$, $\theta_{3}=0.0216, \alpha=0.0112$ (negatively correlated) as initial values of the parameters while simulating the data sets. The computed values of the bias and standard errors in case of each of the estimators are given Table 5. From Table 5 , it can be observed that both the bias and standard errors of the estimators of the parameters are in decreasing order as the sample size increases.

Acknowledgements

The authors are grateful to the Editor-in-Chief and the anonymous Referees for their valuable comments on an earlier version which helped to improve the quality of this article.

ORCID

C. Satheesh Kumar (1) http://orcid.org/0000-0002-9813-9064

References

Ghosh, I., \& Balakrishnan, N. (2015). Study of incompatibility or near compatibility of bivariate discrete conditional probability distributions through divergence measures. Journal of Statistical Computation and Simulation, 85(1), 117-130. https://doi.org/10.1080/00949655.2013.806509
Hassan, M. Y., \& El-Bassiouni, M. Y. (2013). Modelling Poisson marked point processes using bivariate mixture transition distributions. Journal of Statistical Computation and Simulation, 83(8), 1440-1452. https://doi.org/10.1080/00949655.2012.662683
Johnson, N. L., Kemp, A. W., \& Kotz, S. (2005). Univariate discrete distributions. 3rd ed. Wiley.
Kemp, A. W. (2013). New discrete Appell and Humbert distributions with relevance to bivariate accident data. Journal of Multivariate Analysis, 113, 2-6. https://doi.org/10.1016/j.jmva.2011.08.011
Kocherlakota, S., \& Kocherlakota, K. (1992). Bivariate discrete distributions. Marcel Dekker.
Kumar, C. S. (2007). Some properties of bivariate generalized hypergeometric probability distribution. Journal of the Korean Statistical Society, 36, 349-355. http://koreascience.or.kr/article/JAKO200734515966569.page? \&lang = ko.
Kumar, C. S. (2008). A unified approach to bivariate discrete distributions. Metrika, 67(1), 113-121. https://doi.org/10.1007/ s00184-007-0125-8
Kumar, C. S. (2013). The bivariate confluent hypergeometric series distribution. Economic Quality Control, 28(2), 23-30. https://doi.org/10.1515/eqc-2013-0009
Kumar, C. S., \& Riyaz, A. (2013). On the zero-inflated logarithmic series distribution and its modification. Statistica, 73(4), 477-492. https://doi.org/10.6092/issn.1973-2201/4498
Kumar, C. S., \& Riyaz, A. (2014). On a bivariate version of zero-inflated logarithmic series distribution and its applications. Journal of Combinatorics, Information and System Science, 39(4), 249-262.
Kumar, C. S., \& Riyaz, A. (2015). An alternative version of zero-inflated logarithmic series distribution and some of its applications. Journal of Statistical Computation and Simulation, 85(6), 1117-1127. https://doi.org/10.1080/00949655.2013.867347
Kumar, C. S., \& Riyaz, A. (2016). An order k version of the alternative zero-inflated logarithmic series distribution and its applications. Journal of Applied Statistics, 43(14), 2681-2695. https://doi.org/10.1080/02664763.2016.1142949
Kumar, C. S., \& Riyaz, A. (2017). On some aspects of a generalized alternative zero-inflated logarithmic series distribution. Communications in Statistics - Simulation and Computations, 46(4), 2689-2700. https://doi.org/10.1080/03610918.2015.1057287
Mathai, A. M., \& Haubold, H. J. (2008). Special functions for applied scientists. Springer.
MitchelL, C. R., \& Paulson, A. S. (1981). A new bivariate negative binomial distribution. Naval Research Logistics Quarterly, 28(3), 359-374. https://doi.org/10.1002/nav. 3800280302
Partrat, C. (1993). Compound model for two dependent kinds of clam. XXIVe ASTIN Colloquium.

Rao, C. R. (1973). Linear statistical inference and its applications. John Wiley.
Subrahmaniam, K. (1966). A test for intrinsic correlation in the theory of accident proneness. Journal of the Royal Statistical Society B, 35(1), 131-146. https://doi.org/10.1111/j.2517-6161.1966.tb00631.

Appendix

The entries of T^{\prime} for the computations of the test statistic in case of REST are as given below.

$$
\left.\begin{array}{rl}
T_{1} & =\frac{1}{\sqrt{n}} \frac{\partial \log L}{\partial \theta_{1}} \\
& =\frac{1}{\sqrt{n}}\left(\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{m i n}(m, n)}{} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}\right. \\
T_{2} & \left.=\frac{1}{\sqrt{n}} \frac{\partial\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}{\partial \theta_{2}}\right), \\
& =\frac{1}{\sqrt{n}}\left(\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{m i n}(m, n)}{} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1} \frac{\theta_{2}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}\right), \\
T_{3} & =\frac{1}{\sqrt{n}} \frac{\partial \log L}{\partial \theta_{2}} \\
& =\frac{1}{\sqrt{n}}\left(\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}(m-r)!}{} \frac{\theta_{2}^{n-r}(n-r)!}{} \frac{\theta_{3}^{r-1}}{(r-1)!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}\right)
\end{array}\right)
$$

and

$$
\begin{aligned}
T_{4}= & \frac{1}{\sqrt{n}} \frac{\partial \log L}{\partial \theta_{4}} \\
= & \frac{1}{\sqrt{n}}\left[\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right] \\
& +\frac{1}{\sqrt{n}}\left(\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}(m-r)!}{} \frac{\theta_{2}^{n-r}(n-r)!}{\left(\frac{\theta_{3}^{r}}{r!}\right.}}{(m+n-r+2) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)}\right)
\end{aligned}
$$

in which $\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)$ and $\Phi\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)$ are defined in Equations (4.2) and (4.3).
The entries of $I_{r s}$ for the computations of the test statistic in case of REST are as given below. For $r, s=1,2,3$ and $4, I_{r s}$'s are given below in which

$$
\begin{aligned}
\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)= & \sum_{m=0}^{y} \sum_{n=0}^{z}-a(m, n)\left[D_{0} D_{2} R_{0}^{-1}(\theta) R_{2}(\theta)-D_{0}^{2}\left[R_{0}^{-1}(\theta)\right]^{2}\left[R_{1}(\theta)\right]^{2} .\right. \\
I_{11}= & \frac{\partial \log ^{2} L}{\partial \theta_{1}^{2}} \\
= & \eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-2}(m-r-2)!}{\left(\theta_{2}^{n-r}\right.}(n-r)!\frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\left[\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}(m-r-1)!}{\left(\theta_{2}^{n-r} \frac{\theta_{2}^{r}}{(n-r)!} \frac{\theta_{3}^{r}!}{r!}\right]^{2}}\right.}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}}, \\
I_{12}= & I_{21}=\frac{\partial \log ^{2} L}{\partial \theta_{1} \partial \theta_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} \\
& \times \sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}, \\
& I_{13}=I_{31}=\frac{\partial \log ^{2} L}{\partial \theta_{1} \partial \theta_{3}} \\
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} \\
& \times \sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}, \\
& I_{14}=I_{41}=\frac{\partial \log ^{2} L}{\partial \theta_{1} \partial \alpha} \\
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r-1}}{(m-r-1)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} \\
& \times \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2)}, \\
& I_{22}=\frac{\partial \log ^{2} L}{\partial \theta_{2}^{2}} \\
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-2}}{(n-r-2)!} \frac{\theta_{3}^{r}}{r!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\left[\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}\right]^{2}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}}, \\
& I_{23}=I_{32}=\frac{\partial \log ^{2} L}{\partial \theta_{2} \partial \theta_{3}}=\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right) \\
& +\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r} * \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r-1}}{(r-1)!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}, \\
& I_{24}=I_{42}=\frac{\partial \log ^{2} L}{\partial \theta_{2} \partial \alpha}=\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right) \\
& +\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r-1}}{(n-r-1)!} \frac{\theta_{3}^{r}}{r!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} \\
& \times \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r} * \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2)}, \\
& I_{33}=\frac{\partial \log ^{2} L}{\partial \theta_{3}^{2}} \\
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)+\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-2}}{(r-2)!}}{\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\left[\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}\right]^{2}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}}, \\
& I_{34}=I_{43}=\frac{\partial \log ^{2} L}{\partial \theta_{3} \partial \alpha}=\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right) \\
& +\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}{ }^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}}{(m+n-r+2) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)} \beta_{m+n-r}(\alpha) D^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r-1}}{(r-1)!}}{\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} \\
& \times \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+1}(\alpha) D_{r}{ }^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}(n-r)!}{} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2)}
\end{aligned}
$$

and

$$
\begin{aligned}
& I_{44}=\frac{\partial \log ^{2} L}{\partial \theta_{3}^{2}} \\
& =\eta\left(\theta_{1}, \theta_{2}, \theta_{3}, \alpha\right) \\
& +\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2}(m+n-r+2)^{2} \beta_{m+n-r+2}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}}{(m-r)!} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}}{(m+n-r+2)(m+n-r+3) \Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)} \\
& -\sum_{m=0}^{y} \sum_{n=0}^{z} a(m, n) \frac{\left(\sum_{r=0}^{\min (m, n)}(m+n-r+1)^{2} \beta_{m+n-r+2}(\alpha) D_{r}^{*} \frac{\theta_{1}^{m-r}(m-r)!}{} \frac{\theta_{2}^{n-r}}{(n-r)!} \frac{\theta_{3}^{r}}{r!}\right)^{2}}{(m+n-r+2)^{2}\left[\Omega\left(m, n ; \theta_{1}, \theta_{2}, \theta_{3}, \alpha\right)\right]^{2}} .
\end{aligned}
$$

