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ABSTRACT
In this paper, we discuss some important aspects of the bivariate alternative zero-inflated log-
arithmic series distribution (BAZILSD) of which the marginals are the alternative zero-inflated
logarithmic series distributions of Kumar and Riyaz (2015. An alternative version of zero-inflated
logarithmic series distribution and some of its applications. Journal of Statistical Computation
and Simulation, 85(6), 1117–1127). We study some important properties of the distribution by
deriving expressions for its probability mass function, factorial moments, conditional probabil-
ity generating functions, and recursion formulae for its probabilities, rawmoments and factorial
moments. The parameters of the BAZILSD are estimated by the method of maximum likelihood
and certain test procedures are also considered. Further certain real-life data applications are
cited for illustrating the usefulness of the model. A simulation study is conducted for assessing
the performance of the maximum likelihood estimators of the parameters of the BAZILSD.
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1. Introduction

Bivariate discrete distributions have received much attention in the literature. For example, see Ghosh and Bal-
akrishnan (2015), Hassan and El-Bassiouni (2013), Kemp (2013), Kumar (2008), Kocherlakota and Kocherlakota
(1992) and references therein. Due to the extensive applications of logarithmic series distribution in various areas
of scientific research especially in biology, ecology, meteorology, etc., the bivariate logarithmic series distribution
(BLSD) is of particular interest. Chapter 7 of Kocherlakota and Kocherlakota (1992) is fully devoted to the BLSD.
Subrahmaniam (1966) defined the BLSD through the following probability generating function (pgf)

A(t1, t2) = − log(1 − θ1t1 − θ2t2 − θ3t1t2)
− log(1 − θ1 − θ2 − θ3)

, (1.1)

in which θ1 > 0, θ2 > 0 and θ3 ≥ 0 such that θ1 + θ2 + θ3 < 1. An important drawback of the BLSD in practical
point of view is that it excludes the (0, 0)-th observation from its support. To overcome this difficulty, Kumar and
Riyaz (2014) considered a class of bivariate distribution namely the ‘bivariate zero-inflated logarithmic series dis-
tribution (BZILSD)’ through the following probability mass function (pmf), for any non-negative integers m and
n, θ1 > 0, θ2 > 0 and θ3 ≥ 0 such that θ1 + θ2 + θ3 ≤ 1.

f (m, n) = δ θm1 θ
n
2

min(m,n)∑
r=0

D∗
r

r!(m − r)!(n − r)!

(
θ3

θ1θ2

)r
, (1.2)

where D∗
r = m+n−r−1

�
j=0

(j+1)2
(j+2) and δ = [F2, 1(1, 1; 2; θ1 + θ2 + θ3)]−1 in which F2, 1(a, b; c; z) is the Gauss hypergeo-

metric function (cf. Mathai & Haubold, 2008).
Kumar and Riyaz (2013) considered the zero-inflated logarithmic series distribution (ZILSD) through the

following pgf, in which A = θ [− ln(1 − θ)]−1 with θ ∈ (0, 1).

G1(t) = AF2, 1 (1 , 1; 2; θ t), (1.3)

or equivalently,

G1(t) = −A t−1 ln(1 − θ t). (1.4)
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Kumar and Riyaz (2015) considered another zero-inflated logarithmic series distribution, which they termed as ‘the
alternative zero-inflated logarithmic series distribution (AZILSD)’, through the following pmf, for x = 0, 1, 2, . . .,

g(x) = B
F2, 1(1 + x, 1 + x; 2 + x;α) θx

1 + x
, (1.5)

in which B = [− ln(1 − θ − α)]−1(θ + α), θ > 0, α ≥ −1 and |θ+α| < 1 such that θ �= −α. The pgf of the
AZILSD with pmf (1.5) is

G2(t) = BF2, 1(1 , 1; 2; θ t + α) (1.6)

or equivalently,

G2(t) = B
− ln(1 − θ t − α)

(θ t + α)
. (1.7)

Kumar and Riyaz (2017) studied an extended version of AZILSD and its important properties. Kumar and Riyaz
(2016) considered an order k version of AZILSD and studied its important applications.

Through this paper, we consider a bivariate version of the AZILSD through the name ‘the bivariate alternative
zero-inflated logarithmic series distribution’ or, in short ‘the BAZILSD’, and discuss some of its important aspects.
In Section 2, we derive the BAZILSD as a bivariate random sum distribution of independent and identically dis-
tributed bivariate Bernoulli randomvariables and show that themarginal distributions of the BAZILSDareAZILSD.
We obtain expressions for its pmf, mean, covariance, factorial moments and conditional pgfs which are included in
Section 2. In Section 3, we derive certain recursion formulae for probabilities, rawmoments and factorial moments
of the BAZILSD. In Section 4, we describe the estimation of the parameters of the BAZILSDbymethod ofmaximum
likelihood and certain test procedures are suggested. And in Section 5, we illustrate the usefulness of the BAZILSD
through fitting the distribution to certain real-life data sets. In Section 6, a brief simulation study is conducted for
examining the performance of the maximum likelihood estimators of the parameters of the BAZILSD.

It is important to note that the BAZILSD possesses a bivariate random sum structure as shown in Section 2.
Certain bivariate random sum distributions are studied in the literature. For example, see Kumar (2007, 2013). The
random sum structure arises in several areas of scientific research particularly in actuarial science, agricultural sci-
ence, biological science and physical science. Chapter 9 of Johnson et al. (2005) fully devoted to univariate random
sum distributions.

For simplicity in the notations, we adopt the following notations throughout in the manuscript.

Rj(θ) = F2, 1(1 + j, 1 + j; 2 + j; θ + α), (1.8)

� = R−1
0 (θ), (1.9)

hj = Rj (θ1t1 + θ2t2 + θ3t1t2 + α), (1.10)

ψj = Rj(θ), (1.11)

βj = Rj(0), (1.12)

and H(t1, t2) = �R0 (θ1t1 + θ2t2 + θ3t1t2 + α). (1.13)

2. A genesis and some properties of the BAZILSD

First, we derive the BAZILSD in the following and discuss some of its properties.
Consider the sequence {Yn = (Y1n,Y2n); n ≥ 1} of independent and identically distributed bivariate Bernoulli

random vectors, each with pgf

P(t1, t2) = λ1t1 + λ2t2 + λ3t1t2,

in which λj = θj
θ
, j = 1, 2, 3 with θ = θ1 + θ2 + θ3 such that θ1 > 0, θ2 > 0 and θ3 ≥ 0. Let X be a non-negative

integer valued randomvariable havingAZILSDwith pgf (1.6), inwhich θ = θ1 + θ2 + θ3. Assume that {Yn : n ≥ 1}
and X’s are independent. Define Sn = (S1n, S2n), for each n ≥ 0 in which (S10, S20) = (0, 0) and Srm =

m∑
j=1

Yrj, for

r = 1, 2 and m ≥ 1. Set SX =
∞∑
n=0

SnI[X=n] where I[X=n] denotes the indicator function of an event [X = n]. Then
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the pgf of SX is

H(t1, t2) = G2{P(t1, t2)}
= � F2, 1(1, 1; 2; θ1t1 + θ2t2 + θ3t1t2 + α), (2.1)

where� is defined in (1.9).
We call a distribution with pgf (2.1) ‘the bivariate alternative zero-inflated logarithmic series distribution’ or, in

short ‘the BAZILSD’. Clearly when α = 0, the pgf given in (2.1) reduces to the following pgf of the BZILSD with
pmf (1.2).

B(t1, t2) = F2, 1(1, 1; 2; θ1t1 + θ2t2 + θ3t1t2)
F2, 1(1, 1; 2; θ1 + θ2 + θ3)

, (2.2)

which shows that the proposed bivariate model of the AZILSD can be considered as amore flexible model in practi-
cal point of view compared to the BZILSD. Further, it can be noted that the marginals of the BAZILSD are AZILSD
whereas the marginals of the BZILSD are not ZILSD.

Proposition 2.1: If V = (V1,V2) follows the BAZILSD, then the marginal distribution of Vj for j = 1, 2 is AZILSD
with pgf given below.

HV1(t) = � F2, 1[1, 1; 2; (θ1 + θ3) t + θ2 + α]

and

HV2(t) = � F2, 1[1, 1; 2; (θ2 + θ3) t + θ1 + α].

The proof follows from the fact that HV1(t) = H(t, 1) and HV2(t) = H(1, t).

Proposition 2.2: The pgf of the conditional distribution of V1 given V2 = v is the following: for any non-negative
integer v,

HV1|V2(t) =
(
θ2 + θ3 t
θ2 + θ3

)v F2, 1(1 + v, 1 + v ; 2 + v; θ1 t + α)

F2, 1(1 + v, 1 + v ; 2 + v; θ1 + α)
. (2.3)

Proof: For any non-negative integer v, assume that P (V2 = v) > 0. Now, we have the following partial derivatives
of order (0, v) of H(t1, t2) with respect to t2 evaluated at (t1, t2) = (t, 0).

H(0,v)(t, 0) = �(θ2 + θ3 t)v
⎛
⎝v−1∏

j=0
Dj

⎞
⎠ Rv(θ1t), (2.4)

where for j = 0, 1, 2, . . . ,

Dj = (j + 1)2

(j + 2)
(2.5)

and Rj(t) is defined in (1.8).
Now, applying the formula for the conditional pgf in terms of partial derivatives of the joint pgf developed by

Subrahmaniam (1966), we obtain the conditional pgf of V1 given V2 = v as

HV1|V2=v(t) = H(0, v)(t, 0)
H(0, v)(1, 0)

= (θ2 + θ3t)v

(θ2 + θ3)
v
Rv(θ1t)
Rv(θ1)

,

which implies (2.3) in the light of (1.8). �

Remark 2.1: The conditional distribution of V1 given V2 = v as given in (2.3) can be written as HV1|V2(t) =
HZ1(t)HZ2(t) whereHZ1(t) is the pgf of a binomial random variable with parameters z1 and p = θ3

θ2+θ3 andHZ2(t)
is the pgf of a random variable following the AZILSD with parameters v, θ1 and α. Thus clearly, the conditional
distribution V1 given V2 = v is the distribution of the sum of two independent random variables Z1 and Z2.

By using Remark 2.1, we obtain the following proposition.
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Proposition 2.3: Let V = (V1,V2) follow the BAZILSD with pgf (2.1). Then

E(V1|V2 = v) = vθ3
(θ2 + θ3)

+ θ1Dv Rv+1(θ1 + α)

Rv(θ1 + α)
, (2.6)

Var(V1|V2 = v) = vθ2θ3
(θ2 + θ3)

2 + θ1Dv

R2v(θ1 + α)
[Dv+1Rv(θ1 + α)Rv+2(θ1 + α)θ1

+ Rv(θ1 + α)Rv+1(θ1 + α)− DvR2v+1(θ1 + α)θ1]. (2.7)

Remark 2.2: By a similar approach, for any non-negative integer v with P(V1 = v) > 0, we can obtain the condi-
tional pgf of V2 given V1 = v by interchanging θ1 and θ2 in (2.3). Therefore, it is evident that comments similar to
those in Remark 2.1 are valid regarding conditional distribution of V2 given V1 = v and the explicit expression for
E(V2|V1 = v) and Var(V2|V1 = v) can be obtained by interchanging θ1 and θ2 in the right hand side expressions
of (2.6) and (2.7) respectively.

Proposition 2.4: Let V = (V1,V2) follow the BAZILSDwith pgf (2.1) and let m, n be any non-negative integers. The
pmf f (m, n) and the (m, n)-th factorial moment μ[m, n] of the BAZILSD are

f (m, n) = �θm1 θ
n
2

min(m,n)∑
r=0

βm+n−r(α)D∗
r

r!(m − r)!(n − r)!

(
θ3

θ1θ2

)r
, (2.8)

μ[m,n] = �m! n!(θ1 + θ3)
m(θ2 + θ3)

n
min(m,n)∑

r=0

Dr
∗ψm+n−r

r!(m − r)!(n − r)!
ξ r, (2.9)

where D∗
r is defined in (1.2), for j = 1, 2, . . . , ψj, βj(α) ’s are defined in (1.11) and (1.12) and ξ = θ3

(θ1+θ3)(θ2+θ3) .

Proof: In order to obtain the probability mass function of the BAZILSD, we need the following derivatives of
H(t1, t2), in whichm is a non-negative integer.

H(m,0)(t1, t2) =
(m−1∏

i=0
Di

)
(θ1 + θ3t2)m� hm(t1, t2), (2.10)

where

hj(t1, t2) = F2, 1(1 + j, 1 + j ; 2 + j; θ1t1 + θ2t2 + θ3t1t2 + α), j = 0, 1, 2, . . . . (2.11)

The following derivatives are needed in the sequel, in which 0 ≤ i ≤ r and j ≥ 1.

∂ i(θ1 + θ3t2)m

∂ti2
= m!
(m − i)!

θ i3(θ1 + θ3t2)m−i, (2.12)

∂ jhm(t1, t2)

∂tj2
=
⎛
⎝m+j−1∏

i=m
Di

⎞
⎠ (θ2 + θ3t1)j hm+j(t1, t2). (2.13)

Differentiating both sides of (2.10) n times with respect to t2 and applying (2.12) and (2.13), we get the following.

H(m,n)(t1, t2) =
(m−1∏

i=0
Di

)
�

n∑
r=0

(
n
r

)
∂r(θ1 + θ3t2)m

∂tr2

∂n−rhm(t1, t2)
∂tn−r

2

=
(m−1∏

i=0
Di

)
�

min(m,n)∑
r=0

(
n
r

)
m!

(m − r)!
θ r3(θ1 + θ3t2)m−r

×
(m+n−r−1∏

i=m
Di

)
(θ2 + θ3t1)n−rhm+n−r(t1, t2). (2.14)

By putting (t1, t2) = (0, 0) in (2.14) and by dividingm!n!, we get (2.8). By putting (t1, t2) = (1, 1) in (2.14), we get
(2.9). �
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Proposition 2.5: Let V = (V1,V2) follow the BAZILSDwith pgf (2.1). Then we have the following, in which δj = ψj
ψ0
,

E(V1) = D0δ1(θ1 + θ3), (2.15)

E(V2) = D0δ1(θ2 + θ3), (2.16)

and

Cov(V1,V2) = D0(D1δ2 − D0δ
2
1)(θ1 + θ3)(θ2 + θ3)+ D0 δ1θ3, (2.17)

where D0 and D1 are given in (2.5).

The proof follows from (2.9) in the light of the relations:

E(V1) = μ[1,0], E(V2) = μ[0,1] andCov(V1,V2) = μ[1,1] − μ[1,0]μ[0,1].

Proposition 2.6: Let V = (V1,V2) follow the BAZILSD with pgf (2.1). Then U = V1 + V2 follows the modified
AZILSD studied by Kumar and Riyaz (2013).

The proof follows from the fact that the pgf of V1 + V2 is

HU(t) = H(t, t) = � F2, 1[1, 1 ; 2; (θ1 + θ2)t + θ3t2 + α].

3. Recursion formulae

In this section, we develop certain recursion formulae for probabilities, raw moments and factorial moments. Let
V = (V1,V2) be a random vector with pgf (2.1). For the sake of computational simplicity, we define u + i = (1 +
i, 1 + i; 2 + i), for i = 0, 1, 2, . . .. Now we have the following from (2.1) in which f (m, n ; u) = P(V1 = m,V2 =
n), form, n ≥ 0,

H(t1, t2) =
∞∑

m=0

∞∑
n=0

f (m, n ; u) tm1 t
n
2

= �F2, 1(1, 1 ; 2; θ1t1 + θ2t2 + θ3t1t2 + α). (3.1)

Now we obtain the following propositions.

Proposition 3.1: The probability mass function f (m, n; u) of the BAZILSD satisfies the following recurrence formulae,
in which δj is defined in Proposition 2.5.

(m + 1)f (m + 1 , 0; u) = D0δ1θ1f (m , 0; u + 1), m ≥ 0, (3.2)

(m + 1)f (m + 1 , n ; u) = D0δ1[θ1f (m , n ; u + 1)+ θ3f (m , n − 1; u + 1)], m ≥ 0, n ≥ 1, (3.3)

(n + 1)f (0, n + 1; u) = D0δ1θ2f (0, n; u + 1), n ≥ 0, (3.4)

(n + 1)f (m, n + 1 ; u) = D0δ1[θ2f (m, n; u + 1)+ θ3f (m − 1, n ; u + 1)], m ≥ 1, n ≥ 0. (3.5)

Proof: From (2.10) withm = 1, we have the following.

H(1,0)(t1, t2) = �D0(θ1 + θ3t2) h1(t1, t2). (3.6)

On differentiating both sides of (3.1) with respect to t1, we have

H(1,0)(t1, t2) =
∞∑

m=0

∞∑
n=0

m f (m, n ; u) tm−1
1 tn2

=
∞∑

m=0

∞∑
n=0

(m + 1)f (m + 1, n ; u) tm1 t
n
2 . (3.7)

From (3.1), we also have the following.

F2, 1(2, 2 ; 3 ; θ1t1 + θ2t2 + θ3t1t2 + α) = ψ1

∞∑
m=0

∞∑
n=0

f (m, n ; u + 1) tm1 t
n
2 . (3.8)
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Now by using (3.7) and (3.8) in (3.6) we get
∞∑

m=0

∞∑
n=0

(m + 1)f (m + 1, n ; u) tm1 t
n
2

= D0δ1

[
θ1

∞∑
m=0

∞∑
n=0

f (m, n; u + 1) tm1 t
n
2 + θ3

∞∑
m=0

∞∑
n=0

f (m, n; u + 1) tm1 t
n+1
2

]
. (3.9)

On equating the coefficient of tm1 t
0
2 on both sides of (3.9), we get (3.2). By equating the coefficient of tm1 t

n
2 on both

sides of (3.9), we get the relation (3.3).We omit the proof of relations (3.4) and (3.5) as it is similar to that of relations
(3.2) and (3.3). �

Proposition 3.2: Two recurrence formulae for the (m, n)-th raw moment μm,n(u) of the BAZILSD are the following,
for m, n ≥ 0.

μm+1,n(u) = D0δ1θ1

m∑
j=0

(
m
j

)
μm−j,n(u + 1)+ D0δ1θ3

m∑
j=0

n∑
k=0

(
m
j

)(
n
k

)
μm−j,n−k(u + 1), (3.10)

μm+1,n+1(u) = D0δ1θ2

n∑
k=0

(
n
j

)
μm,n−k(u + 1)+ D0δ1θ3

m∑
j=0

n∑
k=0

(
m
j

)(
n
k

)
μm−j,n−k(u + 1). (3.11)

Proof: The characteristic function ϕ(t1, t2) of the BAZILSD with pgf (2.1) is the following. For (t1, t2) in R2 and
i = √−1,

ϕ(t1, t2) = H(eit1 , eit2)

= � F2, 1[1; 1; 2; γ (t; θ)]

=
∞∑

m=0

∞∑
n=0

μm,n (u)
(it1)m(it2)n

m!n!
, (3.12)

where γ (t; θ) = γ (t1, t2; θ1, θ2, θ3,α)= θ1eit1 + θ2eit2 + θ3ei(t1+t2) + α.
On differentiating (3.12) with respect to t1 we get,

D0� F2, 1[2 ; 2; 3 ; γ (t; θ)]{i(θ1 + θ3eit2)eit1} =
∞∑

m=1

∞∑
n=0

iμm,n (u)
(it1)m−1(it2)n

(m − 1)! n !
. (3.13)

In the light of (3.12), we have the following from (3.13).

D0δ1θ1

∞∑
m=0

∞∑
n=0

(it1)m(it2)n

m!n!
eit1 + D0δ1θ3

∞∑
m=0

∞∑
n=0

(it1)m(it2)n

m!n!
eit1eit2 =

∞∑
m=1

∞∑
n=0

μm,n (u)
(it1)m−1(it2)n

(m − 1)!n !
.

Now, on expanding exponential functions, rearranging the term and by using standard properties of double sum
we obtain the following.

∞∑
m=0

∞∑
n=0

μm+1,n (u)
(it1)m(it2)n

m!n!

= D0δ1

∞∑
m=0

∞∑
n=0

(it1)m(it2)n

m!n!

⎡
⎣θ1 m∑

j=0

(
m
j

)
μm−j,n (u + 1)+ θ3

m∑
j=0

n∑
k=0

(
m
j

)(
n
k

)
μm−j, n−k (u + 1)

⎤
⎦ .

(3.14)

On equating coefficients of (it1)
m(it2)n
m!n! on both sides of (3.14), we get the relation (3.10). A similar procedure will

give (3.11). �

Proposition 3.3: : The (m, n)-th order factorial moment μ[m,n](u) of the BAZILSD satisfies the following recurrence
formulae, for m, n ≥ 0, in which μ[0, 0](u) = 1.

μ[m+1, n](u) = D0δ1(θ1 + θ3) μ[m, n](u + 1)+ D0δ1θ3nμ[m, n−1](u + 1), (3.15)

μ[m, n+1](u) = D0δ1(θ2 + θ3)μ[m, n](u + 1)+ D0δ1θ3mμ[m−1, n](u + 1). (3.16)
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Proof: Let V = (V1,V2) be a random vector having the BAZILSD with pgf H(t1, t2) as given in (3.1). Then the
factorial moment generating function F(t1, t2) of the BAZILSD is

F(t1, t2) = H(1 + t1, 1 + t2)

= � F2, 1[1, 1; 2; η(t; θ)]

=
∞∑

m=0

∞∑
n=0

μ[m,n] (u)
tm1 t

n
2

m!n!
, (3.17)

where η(t; θ) = η(t1, t2; θ1, θ2, θ3,α)= θ1 + θ2 + θ3 + (θ1 + θ3)t1 + (θ2 + θ3)t2 + θ3t1t3 + α.
On differentiating (3.16) with respect to t1, we get

∂F(t1, t2)
∂t1

= [(θ1 + θ3)+ θ3t2] D0 F2, 1[2, 2; 3; η(t; θ)].

In the light of (3.17), we can write this as

∞∑
m=0

∞∑
n=0

μ[m+1,n] (u)
tm1 t

n
2

m!n!

= D0δ1

[
(θ1 + θ3)

∞∑
m=0

∞∑
n=0

μ[m,n] (u + 1)
tm1 t

n
2

m ! n !
+ θ3

∞∑
m=0

∞∑
n=0

μ[m,n] (u + 1)
tm1 t

n+1
2

m! n !

]
. (3.18)

Equating the coefficient of tm1 t
n
2

m!n! on both sides of (3.18), we get (3.15). Similar procedures will lead to (3.16). �

4. Estimation and testing

In this section, we discuss the estimation of the parameters θ1, θ2, θ3 and α of the BAZILSD by the method of
method maximum likelihood and construct certain test procedures for testing the significance of the additional
parameter α of the BAZILSD.

4.1. Maximum likelihood estimation

Let a(m, n) be the frequency of the (m, n)-th cell of a bivariate data. Let y be the highest value ofm observed and z
be the highest value of n observed. Then the likelihood function of the sample is

L =
y∏

m=0

z∏
n=0

[f (m, n)]a(m,n), (4.1)

where f (m, n) is the pmf of the BAZILSD as given in (2.8). Taking logarithm on both sides of (4.1), we get

log L =
y∑

m=0

z∑
n=0

a(m, n)[log�+ log�(m, n; θ1, θ2, θ3, α)], (4.2)

where� is given in (1.9),

�(m, n; θ1, θ2, θ3,α) =
min(m,n)∑

r=0
βm+n−r(α)D

∗
r
θm−r
1

(m − r)!
θn−r
2

(n − r)!
θ r3
r!
,

and D∗
r is defined in Proposition 2.4.

Let θ̂1, θ̂2, θ̂3 and α̂ denote themaximum likelihood estimators of the parameters θ1, θ2, θ3 and α of the BAZILSD.
On differentiating (4.2), partially with respect to the parameters θ1, θ2, θ3 and α, respectively, and equating to zero,



STATISTICAL THEORY AND RELATED FIELDS 137

we get the following likelihood equations, in which

�(θ1, θ2, θ3,α) =
y∑

m=0

z∑
n=0

a (m, n)∇ log�

=
y∑

m=0

z∑
n=0

a (m, n)∇ logR−1
0 (θ)

=
y∑

m=0

z∑
n=0

−a (m, n)R−2
0 (θ)∇R0(θ)

=
y∑

m=0

z∑
n=0

−a (m, n)R−2
0 (θ)D0R1(θ),

in the light of ∇Rj(θ) = DjRj+1(θ), where Dj and Rj(θ) are defined in (2.5) and (1.8), respectively.

�(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)Dr
∗ θm−r−1

1
(m−r−1)!

θn−r
2

(n−r)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)
= 0, (4.3)

�(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗ θm−r
1

(m−r)!
θn−r−1
2

(n−r−1)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)
= 0, (4.4)

�(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)Dr
∗ θm−r

1
(m−r)!

θn−r
2

(n−r)!
θ r−1
3

(r−1)!

�(m, n; θ1, θ2, θ3,α)
= 0, (4.5)

and

�(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)Dr
∗ θm−r

1
(m−r)!

θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)�(m, n; θ1, θ2, θ3,α)
= 0. (4.6)

Now on solving these likelihood equations (4.3)–(4.6) by using some mathematical software such as MATHLAB,
MATHCAD, MATHEMATICA, etc., one can obtain the maximum likelihood estimators of the parameters θ1, θ2,
θ3 and α.

4.2. Testing of the hypothesis

For testing the hypothesis H0 : α = 0 against the alternative hypothesis H1 : α �= 0, we construct the generalized
likelihood ratio test (GLRT) and Rao’s efficient score test (REST) as follows.

In case of (GLRT), the test statistic is

− 2 log λ = 2[log L(�̂; x)− log L(�̂∗; x)], (4.7)

where �̂ is the maximum likelihood estimator of � = (θ1, θ2,α) with no restrictions, and �̂∗ is the maximum
likelihood estimator of � when α = 0. The test statistic −2 log λ given in (4.7) is asymptotically distributed as
Chi-square with one degree of freedom. For details, see Rao (1973).

In case of (REST), the following test statistic can be used.

S = T′φ−1T, (4.8)

where T′ = (T1, T2, T3, T4 ) and φ = (Irs)4×4 are the Fisher information matrices in which Ti and Irs for i =
1, 2, 3, 4 and r, s = 1, 2, 3, 4 are as given in the Appendix. The test statistic given in (4.8) follows Chi-square
distribution with one degree of freedom (see Rao, 1973).
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Table 1. Observed frequencies and computed values of expected frequencies of the BZILSD,
the BAZILSD and the BPD by method of maximum likelihood for the first data set.

0 1 2 3 4
∑

0 34 20 4 6 4 68
34.99 12.03 7.15 4.66 3.38 65.21
36.58 18.01 5.01 4.13 3.49 67.22
34.51 16.22 3.81 0.59 0.07 55.20

1 17 7 0 0 0 24
12.29 10.16 1.56 0.51 0.21 24.73
16.53 6.01 1.23 0.12 0.03 23.92
23.12 11.21 2.72 0.44 0.05 37.54

2 6 4 1 0 0 11
7.56 2.17 1.01 0.25 0.01 11
5.56 3.38 1.89 0.14 0.01 10.98
7.75 3.87 0.97 0.16 0.02 12.77

3 0 4 2 2 0 4
3.15 1.12 0.91 0.21 0.01 5.4
3.11 1.70 0.56 0.09 0.01 5.53
1.73 0.89 0.23 0.04 0.005 2.89

4 0 0 0 1 0 0
1.40 0.71 0.11 0.09 0.01 2.32
1.03 0.05 0.03 0.02 0.01 1.14
0.29 0.15 0.04 0.007 0.0009 0.50

5 2 0 0 0 0 2
0.15 0.08 0.07 0.03 0.01 0.34
0.09 0.05 0.04 0.02 0.01 0.21
0.04 0.02 0.005 0.001 0.04 0.11∑
59 35 5 6 4 109

62.54 26.27 10.81 5.75 3.63 109
62.90 29.60 8.76 4.52 3.56 109
67.44 32.36 7.78 1.24 0.18 109

5. Applications

For numerical applications, we consider two real-life data sets of which the first data set is from MitchelL and
Paulson (1981), which consists of the number of aborts by 109 aircrafts in two consecutive six months of one year
period and the second data set, taken from Partrat (1993), is the yearly frequency of hurricanes affecting tropical
cyclones in two zones belonging to the North Atlantic coastal states in the USA. We have fitted the BZILSD, the
BAZILSD and the bivariate Poisson distribution (BPD) to these data sets by themethod of themaximum likelihood
estimates of the parameter of the models. For the first data set, the maximum likelihood estimates (MLES) of the
parameters in case of the BZILSD are θ̂1 = 0.75, θ̂2 = 0.17 and θ̂3 = 0.01, those in case of the BAZILSD are θ̂1 =
0.65, θ̂2 = 0.23, θ̂3 = 0.04 and α̂ = 0.02, and those in case of the BPD are λ̂1 = 0.67 λ̂2 = 0.47and λ̂3 = 0.01. For
the second data set, the MLES of the parameters in case of the BZILSD are θ̂1 = 0.55, θ̂2 = 0.36 and θ̂3 = 0.02,
those in case of the BAZILSD are θ̂1 = 0.35, θ̂2 = 0.31, θ̂3 = 0.04 and α̂ = 0.01, and those in case of the BPD are
λ̂1 = 0.62, λ̂2 = 0.61 and λ̂3 = 0.01. The computed values of the expected frequencies of the BZILSD, the BAZILSD
and the BPD are all presented in the Tables 1 and 2.

(In each cell, the first row represents the observed frequency, the second row represents theoretical frequency
of the BZILSD, the third row represents theoretical frequency of BAZILSD and the last row represents theoretical
frequency of BPD).

(In each cell, the first row represents the observed frequency, the second row represents theoretical frequency
of the BZILSD, the third row represents theoretical frequency of BAZILSD and the last row represents theoretical
frequency of BPD).

The goodness of fit is applied to the first data set in case of the BAZILSD in nine categories [such as (0,0), (0,1),
(0,2), (0, 3 and above); (1,0), (1, 1 and above); (2,0), (2, 1 and above) and (3,0 and above)], that in case of the BZILSD
in eight categories [such as (0,0), (0,1), (0,2), (0, 3 and above); (1,0), (1, 1 and above); (2, 0 and above) and (3,0 and
above)] and that in case of the BPD in seven categories [such as (0,0), (0,1 and above); (1,0), (1, 1 and above); (2, 0),
(2, 1 and above); (3,0 and above)]. In the second data set, in case of the BAZILSD the goodness of fit is applied in
seven categories [such as (0,0), (0,1), (0, 2 and above); (1,0), (1, 1 and above); (2, 0 and above) and (3,0 and above)],
that in case of the BZILSD there are seven categories [such as (0,0), (0,1), (0, 2 and above); (1,0), (1, 1 and above)
and (2, 0), (2,1 and above)] and that in case of the BPD in seven categories [such as (0,0), (0,1), (0, 2 and above);
(1,0), (1, 1 and above); (2, 0), (2, 1 and above)]. The computed values of the Chi-square statistic and P in case of
both themodels – BZILSD, BAZILSD and BPD for data set 1 and data set 2 are all presented in Table 3. Based on the
values of Chi-square statistic and P, it can be observed that BAZILSD gives a better fit to both data sets compared
to the existing models – the BZILSD and the BPD.
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Table 2. Observed frequencies and computed values of expected fre-
quencies of the BZILSD, the BAZILSD and the BPDbymethod ofmaximum
likelihood for the second data set.

0 1 2 3
∑

0 27 9 3 2 41
35.52 8.01 4.61 2.52 50.06
28.01 7.98 3.93 1.23 41.15
26.91 16.42 5.01 1.02 49.36

1 24 13 1 0 38
16.01 11.21 0.91 0.11 28.24
23.12 14.21 1.23 0.16 38.72
16.69 10.45 3.27 0.68 31.09

2 8 2 1 0 11
5.61 4.31 1.76 0.51 12.19
7.62 3.02 0.76 0.28 11.68
5.17 3.32 1.07 0.23 9.79

3 1 0 2 0 4
1.04 1.12 0.91 0.21 5.4
1.28 1.7 0.56 0.09 5.53
1.07 0.7 0.23 0.76 2.76∑
60 24 7 2 93

58.42 24.04 7.39 3.15 93
59.79 25.52 6.01 1.68 93
49.84 30.89 9.58 2.69 93

Table 3. The computed Chi-square value and P value while fitting the models – BZILSD,
BAZILSD and BPD for the Data set 1 and Data set 2.

Data set/models Chi-square value Degrees of freedom P-value

Data set 1
BZILSD 12.28 4 .02
BAZILSD 1.56 4 .82
BPD 17.96 3 < .0001

Data set 2
BZILSD 8.16 3 .04
BAZILSD 0.43 2 0.81
BPD 8.55 3 0.04

Table 4. The computed the values of log L(�̂ ; x), log L(�̂∗ ; x) and the gener-
alized likelihood ratio test statistic under H0.

log L(�̂∗; x) log L(�̂; x) Test statistic

Data set 1 −154.03 −146.16 15.74
Data set 2 −98.42 −95.49 5.86

Table 4 contains the computed values of log L(�̂ ; x), log L(�̂∗ ; x) and the GLRT statistic for the BAZILSD in
case of for both the data sets. We have also computed the values of S based on (4.8) for the BAZILSD in the case of
first data set as S1 and for the BAZILSD in the case of second data set S2 as given below.

S1 = (−1.58 3.28 7.82 12.57)

⎡
⎢⎢⎣

0.08 −0.04 −0.05 0.01
−0.04 0.06 0.01 −0.04
−0.05 0.01 0.06 −0.02
0.01 −0.04 −0.02 0.04

⎤
⎥⎥⎦
⎛
⎜⎜⎝

−1.58
3.28
7.82
12.57

⎞
⎟⎟⎠

= 6.26,

S2 = (0.13 1.29 5.59 7.96)

⎡
⎢⎢⎣

0.40 −0.26 −0.14 −0.03
−0.26 0.18 0.08 0.02
−0.05 0.08 0.06 0.008
0.01 0.02 0.008 0.02

⎤
⎥⎥⎦
⎛
⎜⎜⎝
0.13
1.29
5.59
7.96

⎞
⎟⎟⎠

= 4.98.

Since the critical value for the test at 5% level of significance and one degree of freedom is 3.84, the null hypothesis
that H0 : α = 0 is rejected in both the above cases in respect of GLRT and REST.
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Table 5. Bias and standard errors (within parenthesis) of the estimators of the parameters θ1,θ2, θ3 and
α of the BAZILSD for the simulated data sets.

Parameters set Sample size θ̂1 θ̂2 θ̂3 α̂

Set (i) θ1 = 0.4361,
θ2 = 0.2679,
θ3 = 0.1905,
α = 0.0110

150 0.0889 (0.1446) 0.0744 (0.1533) 0.0613 (0.1308) 0.0503 (0.1153)
300 0.0598 (0.1281) 0.0506 (0.1273) 0.0432 (0.1005) 0.0297 (0.0927)
600 0.0288 (0.1049) 0.0118 (0.0949) 0.0232 (0.0917) 0.0074 (0.0693)

Set (ii) θ1 = 0.0847,
θ2 = 0.0439,
θ3 = 0.0216,
α = 0.0112

150 0.0466 (0.1456) 0.0263 (0.1122) 0.0113 (0.1204) 0.0121 (0.0917)
300 0.0284 (0.1136) 0.0176 (0.0927) 0.0099 (0.0866) 0.0071 (0.0721)
600 0.0084 (0.1030) 0.0097 (0.0843) 0.0044 (0.0748) 0.0026 (0.0583)

6. Simulation

It is quite difficult to examine the theoretical performance of the estimators of different parameters of the BAZILSD
obtained by the method of maximum likelihood. So we have attempted a simulation study for assessing the perfor-
mance of the estimators. We have simulated three data sets of sample size 150, 300 and 600 in both the positively
correlated and negatively correlated situations of the BAZILSD by using Markov chain Monte Carlo (MCMC) pro-
cedure, and considered 200 replications in each case. We have considered the following two sets of parameters:
(i) θ1 = 0.4361, θ2 = 0.2679, θ3 = 0.1905, α = 0.0110 (positively correlated) and (ii) θ1 = 0.0847, θ2 = 0.0439,
θ3 = 0.0216, α = 0.0112 (negatively correlated) as initial values of the parameters while simulating the data sets.
The computed values of the bias and standard errors in case of each of the estimators are given Table 5. From Table
5, it can be observed that both the bias and standard errors of the estimators of the parameters are in decreasing
order as the sample size increases.
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Appendix

The entries of T′ for the computations of the test statistic in case of REST are as given below.

T1 = 1√
n
∂ log L
∂θ1

= 1√
n

⎛
⎜⎜⎜⎝�(θ1, θ2, θ3,α)+

y∑
m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)

⎞
⎟⎟⎟⎠ ,

T2 = 1√
n
∂ log L
∂θ2

= 1√
n

⎛
⎜⎜⎜⎝�(θ1, θ2, θ3,α)+

y∑
m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r
1

(m−r)!
θn−r−1
2

(n−r−1)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)

⎞
⎟⎟⎟⎠ ,

T3 = 1√
n
∂ log L
∂θ2

= 1√
n

⎛
⎜⎜⎜⎝�(θ1, θ2, θ3,α)+

y∑
m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r−1
3

(r−1)!

�(m, n; θ1, θ2, θ3,α)

⎞
⎟⎟⎟⎠

and

T4 = 1√
n
∂ log L
∂θ4

= 1√
n
[�(θ1, θ2, θ3,α)]

+ 1√
n

⎛
⎜⎜⎜⎝

y∑
m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)D∗
r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)�(m, n; θ1, θ2, θ3,α)

⎞
⎟⎟⎟⎠

in which�(m, n; θ1, θ2, θ3,α) and�(θ1, θ2, θ3,α)are defined in Equations (4.2) and (4.3).
The entries of Irs for the computations of the test statistic in case of REST are as given below. For r, s = 1, 2, 3 and 4, Irs’s are

given below in which

η(θ1, θ2, θ3,α) =
y∑

m=0

z∑
n=0

−a (m, n)[D0D2R−1
0 (θ)R2(θ)− D2

0[R
−1
0 (θ)]2[R1(θ)]2.

I11 = ∂ log2L
∂θ21

= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−2
1

(m−r−2)!
θn−r
2

(n−r)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

[
min(m,n)∑

r=0
βm+n−r(α)D∗

r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r!

]2

[�(m, n; θ1, θ2, θ3,α)]2
,

I12 = I21 = ∂ log2L
∂θ1∂θ2
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= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r−1
2

(n−r−1)!
θ r3
r !

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r !

[�(m, n; θ1, θ2, θ3,α)]2

×
min(m,n)∑

r=0
βm+n−r(α)D∗

r
θm−r
1

(m − r)!
θn−r−1
2

(n − r − 1)!
θ r3
r !
,

I13 = I31 = ∂ log2L
∂θ1∂θ3

= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r−1
3

(r−1)!

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r!

[�(m, n; θ1, θ2, θ3,α)]2

×
min(m,n)∑

r=0
βm+n−r(α)D∗

r
θm−r
1

(m − r)!
θn−r
2

(n − r)!
θ r−1
3

(r − 1)!
,

I14 = I41 = ∂ log2L
∂θ1∂α

= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2) �(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r−1
1

(m−r−1)!
θn−r
2

(n−r)!
θ r3
r!

[�(m, n; θ1, θ2, θ3,α)]2

×

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)D∗
r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)
,

I22 = ∂ log2L
∂θ22

= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r
1

(m−r)!
θn−r−2
2

(n−r−2)!
θ r3
r!

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

[
min(m,n)∑

r=0
βm+n−r(α)D∗

r
θm−r
1

(m−r)!
θn−r−1
2

(n−r−1)!
θ r3
r!

]2

[�(m, n; θ1, θ2, θ3,α)]2
,

I23 = I32 = ∂ log2L
∂θ2∂θ3

= η(θ1, θ2, θ3,α)

+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)Dr
∗ θm−r

1
(m−r)!

θn−r−1
2

(n−r−1)!
θ r−1
3

(r−1)!

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)Dr
∗ θm−r

1
(m−r)!

θn−r−1
2

(n−r−1)!
θ r3
r!

[�(m, n; θ1, θ2, θ3,α)]2
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×
min(m,n)∑

r=0
βm+n−r(α)Dr

∗ θm−r
1

(m − r)!
θn−r
2

(n − r)!
θ r−1
3

(r − 1)!
,

I24 = I42 = ∂ log2L
∂θ2∂α

= η(θ1, θ2, θ3,α)

+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)D∗
r
θm−r
1

(m−r)!
θn−r−1
2

(n−r−1)!
θ r3
r!

(m + n − r + 2)�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)Dr
∗ θm−r

1
(m−r)!

θn−r−1
2

(n−r−1)!
θ r3
r!

[�(m, n; θ1, θ2, θ3,α)]2

×

min(m,n)∑
r=0

(m + n − r + 1)2 βm+n−r+1(α)Dr
∗ θm−r

1
(m−r)!

θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)
,

I33 = ∂ log2L
∂θ23

= η(θ1, θ2, θ3,α)+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗
r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r−2
3

(r−2)!

�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

[
min(m,n)∑

r=0
βm+n−r(α)D∗

r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r−1
3

(r−1)!

]2

[�(m, n; θ1, θ2, θ3,α)]2
,

I34 = I43 = ∂ log2L
∂θ3∂α

= η(θ1, θ2, θ3,α)

+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)Dr
∗ θm−r

1
(m−r)!

θn−r
2

(n−r)!
θ r−1
3

(r−1)!

(m + n − r + 2)�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

βm+n−r(α)D∗ θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r−1
3

(r−1)!

[�(m, n; θ1, θ2, θ3,α)]2

×

min(m,n)∑
r=0

(m + n − r + 1)2βm+n−r+1(α)Dr
∗ θm−r

1
(m−r)!

θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)

and

I44 = ∂ log2L
∂θ23

= η(θ1, θ2, θ3,α)

+
y∑

m=0

z∑
n=0

a (m, n)

min(m,n)∑
r=0

(m + n − r + 1)2(m + n − r + 2)2βm+n−r+2(α)D∗
r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r3
r!

(m + n − r + 2)(m + n − r + 3)�(m, n; θ1, θ2, θ3,α)

−
y∑

m=0

z∑
n=0

a (m, n)

(
min(m,n)∑

r=0
(m + n − r + 1)2βm+n−r+2(α)D∗

r
θm−r
1

(m−r)!
θn−r
2

(n−r)!
θ r3
r!

)2

(m + n − r + 2)2[�(m, n; θ1, θ2, θ3,α)]2
.
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