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ABSTRACT ARTICLE HISTORY

The two-parameter Waring is an important heavy-tailed discrete distribution, which extends Received 17 September 2022
the famous Yule-Simon distribution and provides more flexibility when modelling the data. The ~ Revised 24 January 2023
commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied Accepted 27 January 2023
when the first moment exists, and it only uses the information of the expectation and the first KEYWORDS

frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the Maximum likelihood

MLE may not exist for some sample data. We apply the profile method to the log-likelihood estimator; heavy-tailed
function and derive the necessary and sufficient conditions for the existence of the MLE of the discrete distribution; Waring
Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods, distribution

and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring

distribution to fit an insurance data.

1. Introduction

The power-law distributions are a class of heavy-tailed univariate distributions that describe a quantity whose prob-
ability decreases as a power of its magnitude, which is widely used in social science, network science and so on. Two
commonly used discrete examples are Zipf distribution and Yule-Simon distribution (or Yule distribution). Zipflaw
is found by the linguist Zipf when studying the words in a linguistic corpus, in which the frequency of a certain word
is proportional to r~%, where r is the corresponding rank and d is some positive value. The Yule-Simon distribution
is a highly skewed discrete probability distribution with very long upper tails, named after Udny Yule and Herbert
Simon-winner of the 1978 Nobel Prize in economics, with distribution function

al(K)T (¢ + 1)
Ta+k+1)’

where I'(-) is the Gamma function, and « is the parameter. Yule (1925) proposed the distribution first, apply-
ing it to model the number of species in the biological genera. Simon (1955) rediscovered the “Yule’ distribution
later, using it to examine city populations, income distributions, and word frequency in publications (Mills, 2017).
In Price (1965, 1976), Price, a famous American scientist, found that the number of citations of the literature follows
the Yule distribution, when linking the published literature with his cited literature to form a directed network of
scientific and technological literature. It is a cumulative advantage distribution based on the mechanism of ‘success
breeds success’.

The two-parameter Waring distribution is a generalization of the Yule-Simon distribution, which provides more
flexibility than the commonly used one-parameter Zipf distribution, Yule-Simon distribution, negative binomial
distribution, etc. The Waring distribution can describe a wide variety of phenomena in actuarial science, network
science, library and information science, such as number of shares purchased by each customer, number of traffic
accidents, number of nodes in the internet connections, and frequency of authors who publish a certain number
of paper (Huete-Morales & Marmolejo-Martin, 2020; Panaretos & Xekalaki, 1986; Seal, 1952; Xekalaki, 1983). The
distribution function of X ~ W(«, B) is given by

rg+k—-1 TI'(e+p)
T'(B) C@+p+k’
where «, B are the parameters of the Waring distribution. It is easy to prove that the Waring distribution is a heavy-
tailed distribution, with a polynomial tail of order o + 1. We can also derive that E(X) =1 + % ifo > 1, and

var(X) = % ifa > 2. The Yule-Simon distribution is a special case of the Waring distribution with 8 = 1.

PX =k = >0, k=1,2,3,...,

PX=k =« a>0, >0, k=1,2,3,..., (1)
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The parameter estimation is extremely important to make a statistical inference. Garcia (2011) provided a fixed-
point algorithm to estimate the Yule-Simon distribution parameter. For the Waring distribution, a commonly used
method is the EFF (Expectation-First Frequency), which is essentially the method of moments. More specifically,
the EFF method uses the sample mean X to estimate E(X) = 1 + aﬂ%l and the empirical first frequency P(X = 1)
to estimate P(X = 1) = #, leading to

PX=1)-F-1

1-PX=1}-X—-1)
PX=1)-X-1" '

= Fx=D.x-1

a=

The EFF method has two drawbacks: first, it restricts that @ > 1, which can not be used when the first moment
does not exist; second, it only uses the information of P(X = 1) and E(X), which loses information of the
data. Xekalaki (1985) proposed a factorial moment estimation for the bivariate generalized Waring distribution,
which also suffers from these drawbacks.

In the current literature, researchers also considered the maximum likelihood estimator (MLE) of the Waring
parameters. However, they usually directly applied the optimization algorithm to the log-likelihood function, with-
out verifying the existence of the MLE (Rivas & Campos, 2021). As we all know, MLE does not exist in all cases. In
fact, for some sample data, the MLE of Waring parameters exists, while for some sample data, it does not exist. For
example, in the insurance share data analysed in Section 4, the MLE of the Waring parameters does not exist for
the groups with central ages 17.5, 22.5 and 67.5; for each group, the age length equals 5. If we do not know whether
MLE exists and we calculate it, then it is questionable to show the credibility of MLE. Based on this consideration,
the existence of MLE will be investigated in this paper. More specifically, we apply the profile method to the log-
likelihood function, deriving the necessary and sufficient conditions for the existence of the MLE of the Waring
parameters. When the largest value in the observed sample is small, we also verify our theory by exactly solving the
estimating equation system. Furthermore, we get two byproducts during the proof of the main result. The first one
is our Lemma 2.3, which provides an alternative way to prove the existence of MLE for two parameters, while the
conventional proof includes a complicated calculation of the Hessian matrix. The second one is our Lemma 2.4,
which provides a comparison method for two increasing and concave functions. These results may play a role in
other applications.

Through extensive simulation studies, we find that when the sample size is as small as n = 100, both MLE and
EFF yield relatively poor estimates. When n > 200, MLE always results in much smaller biases than EFF; the relative
bias of MLE decreases from 6%-7% when n = 200 to around 1% when n = 1000, while that of EFF is still around
10% even when n = 1000 for @ < 1.2. The relative standard errors from MLE are comparable with those from EFF
for medium-sized samples (n = 200 and 400), but smaller for n = 1000. Overall, the MLE method results better
performance than the EFF method when «/f is not large or the sample size is large enough. The performance of
EFF is relatively better when «/8 is large, say &/ > 2. Our explanation is that, since P(X = 1) = ﬁ = %,
if /B is large, then P(X = 1) is close to 1, and thus EFF includes relatively more information than the case with
small o/ 8. We also compare the Waring distribution and Yule-Simon distribution in terms of goodness-of-fit to
the data, and we find that the Waring distribution fits the data similar to the Yule-Simon distribution when 8 = 1,
and much better when § departs from 1.

The rest of the paper is organized as follows. Section 2 presents the main result based on the profile method.
Section 3 gives some numerical studies to show the advantage of MLE over the EFF method, and that of War-
ing distribution over the Yule-Simon distribution. The real insurance data analysis is presented in Section 4. All
technical details are deferred to the Appendix.

2. Maximum likelihood estimator of the Waring parameters

For the two-parameter Waring distribution, we have

rg) Ta+p  «

‘TB) T@+B+1) a+p
TB+k—1) Ta+p)

()  Ta+B8+k

. PBFDE+D - (BtEk—2)
(a@+B)a+B+1)---(a+B+k—-1)

PX=1)=«

PX=k =«

=23,....

Suppose that xi, . . ., x, is a random sample from the Waring distribution W(«, 8), and let m = max{x;,...,x,} be
the largest observe value, nj be the number of observations equal to k, k = 1,...,m, and ) ;.| nx = n. Based on
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the data {x1, ..., x4}, we can easily derive the likelihood function as
Ly(a, B)
( > ﬁ{ ap(B+1)---(B+k=2) }"k
S \e+p) Sle@+tp@+p+D @+ B+k-1)

() o) )T ()
\a+8 a+ﬂ+1 a+p+2 a+p+m—1) °

Then the log-likelihood is
En(a, B)
= log L,(a, B)

= n{loga — log(e + B)} + Z ns{log B — log(a + B + 1)}

s=2
+ Z ns{log(B + 1) —log(e + B + 2)} +
s=3

+ nflog(B +m —2) —log(a + B+ m — 1)}. 2)

Taking partial derivatives with respect to « and 8 leads to the following maximum likelihood equations

1 3ly(a, B)
n oo
1 1 > s Ps > 3 Ps Pm )
_1 ey P Ny 3
o <oz+,8 oz+,3—|—1+oz+,3+2+ +o¢+,3+m—1 3)
1 9ln(a, B)
n ap
. 1 D ema Ps D e3P Pm )
(a+ﬂ c+B+1 Tatprz T e Brm—1
Zgnzzps D e Ps Pm )
—fm__) =y, 4
+( 5 T+l Tt Erm—2 )

where pyx = ng/n with p,,, > 0.

We first consider Equation (3), which can be treated as the conditional maximum likelihood equation of & given
a positive 8. When m = 1, that is, all the observed values equal to 1, since % . W = é — a_ilr—ﬂ aﬁ 7
thus there is no solution to the likelihood equation. We focus on the situation where m > 2.

In the following, we first consider the conditional maximum likelihood Equation (3) given any positive 8, which
can be regarded as a generalization of the Yule-Simon distribution, and we prove that those results for Yule-Simon
distribution (8 = 1) also hold for any § > 0. More specifically, given a positive 8, we denote the conditional MLE

of o as (B). According to (3), a(B) satisfies

> 0,

1

o = o o 5
() 1 + D =2 Ps + D =3P 4o Pm )
a(B)+B T a(B)+B+L T a(B)+B+2 a(B)+p+m—1
For notational ease, we define
m m m
—D(t+2)
TE53) MR SEIEES 3 3 R S
t=2 s=t =2
m m m )
(t— 1)(2t + 5t+6)
m=323p=3 . ©
t=2  s=t t=2

and present the properties of () in the following Proposition 2.1.

Proposition 2.1: Let o:(B) be defined as in (5). We have the following properties.
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Property 1. If B — 0, we have a(B) — 0.
Property 2. If B — oo, we have

1 n2—m m—mm—m+2n—n 1 ( )
a(f)=—- B+ + —+0(=).
mn m1 +n1) 1+m)? B

Property 3. a(B) is an increasing and concave function of .

Property 4. The first derivative o' (B) — oo if B — 0, and o’ (B) — % if B — oo.

Property 5. When B > 0, the number of solutions to «(8) = Z(B) is finite, where Z(B) is any polynomial or
fractional function of B.

Next we discuss the existence of MLE of («, 8). By (3), we have

1 ey Ds D ems Ps DPm 1
aB)+p aB)+B+1 aB)+B+2 aB)+B+m—1 () @)
By (4), we have
1 D ems Ps > em3 Ps o Pm
BB TaBrprl ap sz TaBrpim_1
L Xials | Xisbs Pm
R I T R S
Let
h(p) = ! (®)
Zszzps n Zéflps +ot g fﬂ_z

If the curves y = h(B) and y = «(B) intersect at some 8 > 0, we have solution to the equation system (3)-(4). Later
we prove that the intersection is unique and is the MLE of the Waring distribution.

To discuss whether y = h(B) and y = «(B) intersect at some B > 0, we first present the properties of #(8) in
the following proposition.

Proposition 2.2: Let h(B) be defined as in (8), we have the following properties.

Property Ix. If B — 0, we have h(8) — 0.
Property 2x. If B — oo, we have

1 mo—2m  ni—mn 1 1
hB)=—- B+ + —+0(—=).
m n} N B B2

Property 3%. h(B) is an increasing and concave function of S.

Property 4x. The first derivative h' () — Zmlzps ifB — 0, and W'(B) — TILI if B — oo.

Property 5x. When 8 > 0, the number ofsgfutions to h(B) = Z(PB) is finite, where Z(B) is any polynomial or
fractional function of p.

Based on Properties 1 and 4 of Proposition 2.1 and 1x and 4x of Proposition 2.2, it is easy to derive that o(8) >
h(B) when B is small. Therefore, if we can prove that «(8) < h(B) for some large B, due to the continuity of the
two functions, there must exist solution to the equation systems (3)-(4). This is the key idea to check the existence
of the MLE.

Before presenting the main result, we first give two important lemmas.

Lemma 2.3: For the log-likelihood function £,(c, B), assume that for any B, £,(a(B), B) = maxy £y(, B), and there
exists B such that

3Ly (e, B)/0Bla=a(py).p=p1 = 0, 3n(et, B)/0Bla=a(p) > 0 for B < By and

0n(a, B)/0Bla=a(p) < 0 for B > B1. Then we have £, (a(B1), B1) = maxgy,g Lu(ct, B).

Lemma 2.3 provides an alternative to the proof of MLE based on the profile method, which is simpler than the
conventional proof that includes complicated calculation of the Hessian matrix.
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Lemma 2.4: Assume that t|(x) and t,(x) are increasing and concave functions for x > 0, the curves y = t1(x) and
y = ta(x) only intersect finite times, and the number of solutions to t;(x) = Z(x) is finite for both i = 1, 2, where Z(x)
is any polynomial or fractional function of x. Further assume that

(A) t1(a) = ta(a) for some a;
(B) there exists some §* > 0 such that t;(x) > ty(x) for x € (a,a + §*);
(C) limy o 12 L) — x5 g

(D) there exists 83 such that t(x) > ty(x) for x € (8}, 00).

= limy o0

Then, we have t1(x) > ty(x) for all x € (a, 00).

Lemma 2.4 provides a general method to compare two increasing and concave functions, without requiring the
explicit form of the functions, which not only simplifies the comparison of «(8) and h(), but also has its own value
in other applications.

Based on Propositions 2.1-2.2, Lemmas 2.3-2.4, we summarize the existence of MLE in the following
Theorem 2.5.

Theorem 2.5: Suppose that {x1,...,x,} is a random sample from the Waring distribution W («, B), and m =
max{xi,...,X,}. Let px = ng/n be the proportion of {x; = k} with p,, > 0. Let
N2 —2m

n—m h _
— T tercept =
711(1 I 771) intercep! 77%

intercept =

(D) If dintercept < Mintercept> then the MLE of (a, B) exists.
(IT)  If ctintercept > hintercept then the MLE of (., B) does not exist.

2
ny—mn3—m+2n2—n3
and dy =
(1+m)3 h

(III)  If intercept = Mintercepts O equivalently, n% +2n1 — ny = 0, we denote dy, =

2_
LB The MLE exists if dy < dj, and doesn’t exist if dy > d,.

m

To derive the necessary and sufficient conditions of MLE existence, we start form the conditional MLE of « for
a given B, because it is easier to discuss the possible solutions by intersection of two curves determined by the
estimating equations. Numerically, since we only have two parameters to estimate, thus it is quite efficient to solve
that by the ‘optim’ function in R.

Remark 2.1: Unlike the existing literature which directly applied the optimization algorithm to the log-likelihood
function, without verifying the existence of the MLE (Huete-Morales & Marmolejo-Martin, 2020; Rivas & Cam-
pos,2021), we present the necessary and sufficient conditions for the existence of the MLE of the Waring parameters,
which is the first attempt. It is easy to see that the sign of ttintercept — Pintercept is €qual to the sign of

A2, ... pm) = NF 421 — na.

For m = 2, we have A(p2,...,pm) = p% = (ny/n)? > 0, and thus the MLE of («, ) does not exist. For m > 3, it
depends, and we can check the sign of

(m — D) (m —2)
—pm}

A(PZ’---)Pm)={P2+2P3+"‘+(m_1)Pm}2_{P3+3P4+"'+ 5

for a general m. For m = 2, 3, we also carefully check the existence of real-valued solution to the equation sys-
tem (3)-(4), and find that the sign of intercept — Mintercept indeed determines the existence of MLE. The readers can
refer to the authors for checking details.

One more comment on Theorem 2.5 is as follows. If ctintercept < hintercept> OF Uintercept = Pintercept With dy < dj,
the MLE of the Waring parameters is a finite vector. Then the Waring distribution fits the data better than the Yule-
Simon distribution, if the estimated 8 departs from 1, and similarly if the estimated f is close to 1. If ctintercept >
hintercept> O Ointercept = Hintercept With dy > dj, the likelihood function will be maximized at the boundary region,
i.e., infinity. Therefore, if we directly apply the optimization algorithm to the likelihood function, the MLE may
be far from the true parameters; for example, in the real data application, we get that MLE & = 1,687, 133.2, B =
675,078.4 for the group with central age 67.5 (age from 65 to 70), where in fact that the MLE does not exist. In such
cases, we can use the EFF method if the EFF estimates are in reasonable scales, and the Waring distribution will still
fit the data better than the Yule-Simon distribution.
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Table 1. Relative biases and relative standard errors of estimated parameters, for § = 0.5and 1.

B =05 B=1
rBias (%) rStd (%) rBias (%) rStd (%)

n method o B o B o B o B
a=2 100 EFF 63.0 69.1 230.3 2713 41.9 46.9 137.3 157.6
MLE 63.0 67.1 309.8 274.9 419 48.4 180.4 194.1
200 EFF 245 25.6 69.7 85.2 15.0 15.4 343 41.8
MLE 18.2 19.5 57.7 68.2 11.6 12.7 35.8 43.7
400 EFF 9.5 9.0 25.0 29.5 6.8 6.4 19.8 24.8
MLE 6.2 5.9 243 289 44 43 19.3 243
1000 EFF 3.7 33 14.6 18.1 29 3.0 12.5 15.6
MLE 1.6 14 13.5 17.2 1.5 1.6 11.4 14.6
a=15 100 EFF 373 40.3 64.7 78.1 274 314 48.1 62.4
MLE 26.3 304 66.4 79.8 18.4 235 50.9 64.5
200 EFF 19.0 19.2 30.7 38.2 14.5 14.8 247 334
MLE 10.2 11.0 323 39.6 7.1 8.0 251 331
400 EFF 10.3 9.8 18.5 233 8.2 7.8 15.8 21.0
MLE 4.0 37 17.8 22.6 2.9 2.7 15.0 20.4
1000 EFF 5.6 55 12.2 15.2 4.5 43 10.7 131
MLE 13 1.2 10.4 13.6 0.9 0.7 8.9 11.8
a=12 100 EFF 339 36.7 41.6 54.8 274 30.9 315 45.6
MLE 16.8 204 45.0 57.0 12.4 16.8 34.8 47.1
200 EFF 21.2 21.1 22.8 30.7 18.2 18.8 19.3 27.5
MLE 6.9 7.3 244 314 55 6.5 20.2 27.6
400 EFF 14.3 13.8 15.0 20.4 12.6 12.3 13.2 18.7
MLE 29 2.6 14.7 19.7 25 24 12.8 18.2
1000 EFF 9.8 9.8 10.4 13.6 8.7 8.5 9.2 1.9
MLE 1.0 1.0 8.9 121 0.7 0.6 7.7 10.6
a=11 100 EFF 34.6 36.7 354 46.8 29.6 332 28.5 425
MLE 14.3 174 40.0 50.4 1.3 15.6 324 45.1
200 EFF 235 23.2 20.6 28.8 20.8 213 17.7 26.2
MLE 6.0 6.4 22.7 29.7 49 5.8 1941 26.5
400 EFF 17.0 16.3 13.7 19.2 15.4 15.0 1241 17.9
MLE 2.6 2.2 13.9 18.7 2.2 2.0 121 17.6
1000 EFF 12.7 12.6 9.5 12.7 11.7 11.4 8.4 1.3
MLE 1.0 0.9 8.4 11.5 0.7 0.5 7.3 10.3
o =1.05 100 EFF 35.7 37.8 333 45.1 31.0 345 27.1 1.3
MLE 13.4 16.5 376 48.5 10.5 14.6 309 43.0
200 EFF 25.0 24.6 19.3 27.7 22.5 229 16.7 254
MLE 5.7 6.0 217 28.5 46 5.4 18.3 256
400 EFF 18.8 18.1 12.9 18.4 17.3 16.9 1.5 17.6
MLE 25 2.0 133 18.1 2.1 2.0 11.8 17.3
1000 EFF 14.6 14.6 8.9 124 13.6 13.4 7.9 1.1
MLE 1.0 0.9 8.1 1.3 0.7 0.6 7.2 10.3

3. Simulation studies
3.1. Comparison of MLE and EFF

In this section, we give some numerical studies to compare the MLE and the EFF method in the Waring parameter
estimation.

The Waring distributed observations are generated by the function rWARING in the R package gamlss.dist. We
need mention that in the function rWARING, the parameters is {1, 0}, and the probability mass function is given

by
(1+ o) (k + LI (L2t

PX =k =
*=0 ol(k+ L5 + )T (4)

k=0,1,2,..., w>0, o >0.

Comparing the above probability mass function to (1), we can find that we need to add 1 to the generated
values from rWARING, and the relationship between the parametersisa =1+ 1/0 and 8 = /0. Thus rWAR-
ING automatically restricts & > 1 and the EFF estimator exists. We consider 20 combinations of («, ), where
o =2,15,12,1.1,1.05 and 8 = 0.5,1,1.5,2, with sample sizes n = 100, 200, 400 and 1000. We generate 500
replicates for each case.

Probably due to the parameter specification and restricted data-generating process of the function rWARING,
we find that @intercept < Mintercept is satisfied in all cases, except two replicates in the case o = 2, 8 = 0.5 with small
sample size n = 100. By Remark 2.1, &intercept < Mintercept is €quivalent to

n (m—1)(m-—2)

{p2+2p3+ -+ (m—Dpm)* < ps+3ps+--- 5

Pm- €)



150 Y. TANG ET AL.

Table 2. Relative biases and relative standard errors of estimated parameters, for 8 = 1.5and 2.

=15 B=2
rBias (%) rStd (%) rBias (%) rStd (%)

n method o B o B o B o B
a=2 100 EFF 353 416 96.7 119.1 42.8 51.5 2237 260.9
MLE 35.5 436 144.4 169.4 39.1 483 259.9 299.2
200 EFF 13.7 14.8 343 444 12.8 14.2 320 42.2
MLE 10.3 1.7 326 40.8 9.7 1.3 30.6 39.2
400 EFF 6.3 6.3 19.1 25.2 6.1 6.4 18.4 247
MLE 4.1 43 18.4 241 4.0 43 17.6 233
1000 EFF 25 24 11.6 14.6 25 25 1.7 15.0
MLE 13 1.2 10.5 13.5 13 13 10.3 133
a=15 100 EFF 249 294 44.2 59.7 24.7 30.5 445 64.2
MLE 16.6 22.0 47.2 61.7 15.9 21.6 43.0 57.1
200 EFF 13.2 13.9 22.7 31.1 12.8 13.9 221 313
MLE 6.5 77 23.0 30.8 6.3 7.6 225 304
400 EFF 7.8 7.8 15.1 20.7 73 73 14.3 19.6
MLE 2.9 3.1 143 19.8 2.7 2.8 134 18.7
1000 EFF 4.2 4.2 10.4 13.3 4.0 39 10.2 13.4
MLE 1.0 0.9 8.6 11.6 0.8 0.7 8.4 11.5
a=12 100 EFF 26.0 30.1 30.7 459 253 30.4 30.5 48.0
MLE 11.4 16.0 331 45.6 11.0 15.9 31.8 445
200 EFF 171 17.7 18.3 27.0 16.6 17.7 17.8 27.8
MLE 49 6.0 19.3 27.0 48 6.0 18.5 26.6
400 EFF 11.9 1.7 124 17.6 11.6 11.9 12.0 17.8
MLE 2.2 2.2 11.8 17.0 23 25 1.5 17.0
1000 EFF 8.4 83 8.9 121 83 8.3 8.6 12.0
MLE 0.7 0.6 7.5 10.7 0.7 0.7 7.2 10.6
a=11 100 EFF 28.1 323 27.3 43.4 274 32.8 26.2 433
MLE 10.2 14.7 303 42.8 10.1 15.2 29.2 424
200 EFF 19.7 20.3 16.5 25.8 19.4 20.9 16.2 26.8
MLE 4.4 53 17.9 25.7 4.5 5.9 17.4 25.6
400 EFF 14.7 14.5 1.3 16.7 14.5 14.7 11.0 171
MLE 2.0 2.0 1.1 16.4 2.1 23 10.9 16.6
1000 EFF 1.3 1.1 8.0 11.4 11.2 1.1 7.6 111
MLE 0.6 0.5 7.1 10.3 0.6 0.6 6.8 10.1
o =1.05 100 EFF 294 335 25.0 411 293 35.7 25.6 44.0
MLE 9.6 14.1 28.8 414 9.8 151 28.2 41.2
200 EFF 21.5 22.2 15.7 25.1 21.4 233 15.6 27.2
MLE 4.2 52 17.3 249 4.4 5.8 16.9 253
400 EFF 16.7 16.7 10.7 16.5 16.5 17.0 10.4 16.9
MLE 2.0 2.1 10.9 16.2 2.1 24 10.7 16.5
1000 EFF 13.4 13.3 7.5 1.1 13.3 13.2 7.0 10.7
MLE 0.7 0.6 6.9 10.2 0.6 0.6 6.6 10.0

It is easy to see that

(P2 +2p3 4+ (m—Dpm)?

ps+3pat--+

Table 3. Proportion of replicates that the Yule-Simon dis-
tribution is rejected at nominal level 0.05.

n = 100 n = 200 n = 400 n = 1000

p=1 0.066 0.042 0.056 0.054

p=15 0.214 0.348 0.582 0.944

B=2 0.528 0.804 0.986 1.000
m 2

m

(m—1)(m—2)
2

- 1)(k 2)

m =

|
i M

a%—ﬂum+

l\)l»—-

Z —Dpr = {Ea(X) — 1),

1,

where E,, means the empirical distribution. When 1 < o < 2, E(X) exists while E(X?) diverges. Thus (9) is very
likely to hold, and the MLE exists. However, in real applications, it is possible that tintercept > Hintercept (Section 4).

As mentioned immediately after Theorem 2.5, we use the ‘optim’ function to solve the MLE after verifying its
existence. We tried four methods to initialize the parameters: (i) small values, @@, 8Oy = (1.1,0.1); (ii) large
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Figure 1. Box-plots of T,, corresponding to 8 = 1 (first row), 1.5 (second row), and 2 (third row), respectively, where the dashed line
indicates the critical value 3.84, and the number at the right side of the figure is the proportion that T, > 3.84. In the last piece, all
Tp's are much larger than 3.84, and thus the dashed line and the rejection proportion are not shown in the figure.

values, (@@, B©) = (2.5, 3); (iii) true values of the parameters plus a random perturbation N(0, 0.2%), but restrict
that @ > 1.1 and B > 0.1; (iv) the EFF method. Extensive numerical studies show that these four initializing
methods yield almost the same results, which indicates that the optimization is not sensitive to the initial values.
Therefore, we use the EFF estimator for initialization if EFF produces positive estimates, otherwise, we set the initial
values as (@@, B©) = (1.1,0.1).

Among all the cases, the EFF method results in negative estimates only in one replicate in the casea = 2, 8 = 0.5
with small sample size n» = 100; in another replicate, the denominator ﬁ(X =1)-X—1is exactly 0, so the esti-
mator does not exist; these two replicates are deleted for fair comparison. Since the parameters are in different
scales, especially the parameter §, the maximal value is four times of the minimal one. Thus for fair compari-
son, we report the rBias (relative bias, defined as the bias divided by the true value of the parameter) and rStd
(relative standard errors, defined as the standard error divided by the true value of the parameter) in Tables 1
and 2. We find that, when the sample size is as small as n = 100, both MLE and EFF yield relatively poor esti-
mates, with standard errors being larger than or close to 50% of the true value of the parameter, which indicates
that it is challenging to accurately estimate the parameters with small sample sizes. Therefore, we focus on the
comparison of MLE and EFF for n > 200. First, MLE always results in much smaller biases than EFE. Though
the rBias of EFF decreases when the sample size increases, it increases when the true o decreases, and it is still
around 10% even when n = 1000 for « < 1.2; the rBias of MLE decreases from 6%-7% to around 1% when
n increases from 200 to 1000, regardless of the true . Second, MLE results in comparable rStd with EFF for
medium-sized sample (n = 200 and 400), but smaller rStd for n = 1000. Overall, the MLE method results better
performance than the EFF method when «/f is not large or the sample size is large enough. The performance of
EFF is relatively better when o/ is large, e.g., /B > 2. Our explanation is that, since P(X = 1) = ﬁ = %,
if /B is large, then P(X = 1) is close to 1. Thus EFF includes relatively more information than the case with
small /8.
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Table 4. Comparison of actual distribution (A) with discrete Pareto law fitting (P), Waring fitting with EFF (E) and MLE (M).

Central age 27.5 325 375 425 475

j P E M A P E M A P E M A P E M A P E M A
1 101.9 101 100.8 101 2427 241 2412 241 2853 283 2838 283 3052 307 306.6 307 2359 233 2336 233
2 68 85 87 8 223 246 244 26 286 309 303 35 355 338 334 31 288 319 314 35
3 1.4 12 12 2 5.5 58 58 3 7.5 8 79 4 101 10 101 12 84 92 91 4
4 0.5 0.2 0.2 0o 2 19 2 3 29 29 29 2 41 42 43 6 35 3.6 36 5
5 02 0.1 0 0 09 08 08 0 1.4 13 13 0 21 2.1 22 0 1.8 17 17 3
6 0.1 0 0 0 05 04 04 2 08 07 07 2 12 1.2 13 1 1 09 09 0
7 0.1 0 0 0 03 0.2 0.2 0 04 04 04 0 07 07 0.8 2 06 05 0.5 1
8 0 0 0 0 02 0.1 0.1 0 03 0.2 0.2 1 0.5 0.5 0.5 0 04 03 0.3 0
9 0 0 0 0 01 0.1 0.1 0 0.2 0.1 0.1 1 0.3 0.3 04 0 03 02 02 0
10 0 0 0 0 01 0 0 0 0.1 0.1 0.1 0 02 02 0.3 0 02 0.1 0.1 0
1" 0 0 0 0 01 0 0 0 0.1 0.1 0.1 0 02 02 0.2 2 02 0.1 0.1 0
12 0 0 0 0 0 0 0 0 0.1 0 0 0 01 0.1 02 0 0.1 0.1 0.1 0
13 0 0 0 0 o0 0 0 0 0.1 0 0 0 01 0.1 0.1 0 01 0.1 0.1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0 0.1 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0 01 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 01 0.1 0.1 0 0.1 0 0 0
17 0 0 0 0 o0 0 0 0 0 0 0 0 o0 0 0.1 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
Totals M 11 1109 111 2747 2749 275 275 327.8 3277 327.8 328 360.6 360.7 3609 361 2816 2817 2817 282
Central age 525 57.5 62.5 67.5 725

j P E M A P E M A P E M A P E M A P E M A
1 1993 200 200 200 1108 108 107.7 108 72 69 695 69 351 33 / 33 274 26 249 26
2 247 241 236 24 166 201 201 20 6.3 7.1 71 10 55 83 / 7 5.2 6.9 7.7 5
3 73 73 73 7 55 6.3 64 5 15 2.2 21 1 1.9 24/ 4 2 25 29 4
4 3 3.1 3.2 2 2.5 26 26 2 0.6 1 09 0 09 08 / 1 1 1.1 1.2 1
5 1.6 16 16 0 14 1.2 13 4 03 0.5 0.5 0 05 03 / 0 06 06 06 2
6 09 09 1 3 0.8 07 07 0 0.1 0.3 0.3 0 03 0.1 / 0 04 03 0.3 0
7 06 06 06 1 0.5 04 04 O 0.1 02 02 0 02 01 / 0 03 02 02 0
8 04 04 04 1 04 02 0.2 1 0 0.1 0.1 0 01 0 / 0 02 0.1 0.1 0
9 03 0.3 03 0 03 0.2 0.2 0 0 0.1 0.1 0 01 0 / 0 01 0.1 0.1 0
10 02 02 0.2 1 0.2 0.1 0.1 0 0 0.1 0.1 0 01 0 / 0 01 0 0 0
11 0.1 0.1 02 0 02 0.1 0.1 0 0 0.1 0 0 01 0 / 0 01 0 0 0
12 0.1 0.1 0.1 0 01 0.1 0.1 0 0 0 0 0 0 0 / 0 01 0 0 0
13 0.1 0.1 0.1 0 01 0 0 0 0 0 0 0 0 0 / 0 0.1 0 0 0
14 0.1 0.1 0.1 0 01 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
15 0.1 0 0.1 0 01 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
16 0 0 0 0 01 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
17 0 0 0 0o 0 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 / 0 0 0 0 0
Totals 238.8 2389 2388 239 139.7 140 1399 140 809 807 809 81 448 45 / 45 376 378 38 38

3.2. Goodness-of-fit comparison with Yule-Simon distribution

In this section, we compare the Waring distribution and the Yule-Simon distribution, in terms of goodness-of-fit
to the data.

We fix o = 1.5, and generate data from the Waring distribution with g = 1, 1.5, 2; data is generated from the
function rWARING as in Section 3.1. When 8 = 1, it is exactly the Yule-Simon distribution, and when 8 departs
from 1, the Yule-Simon assumption is violated. We consider 500 replicates with sample sizes n = 100, 200, 400,
1000. To initialize the optimization for the MLE of the Yule-Simon parameter o, we use the first frequency P(X =

1) = ;%5 thatis,a = l—fg}%. Figure 1 presents the box-plots of the likelihood ratio statistics

T, = 2{,@, B) — €5@%)),

where £,(@, B) is the log-likelihood function of the Waring fitting evaluated at the MLE («, B), and £5(@*) is the
log-likelihood function of the Yule-Simon fitting evaluated at the MLE @*. If the true B equals 1, the Yule-Simon
distribution is correct, so it is easy to prove that T, ~ x7; if the true 8 departs from 1, the Yule-Simon distribution is
not correct, so Ty, will be large. The box-plots in Figure 1 confirm that the Waring distribution fits the data similar to
the Yule-Simon distribution when 8 = 1, and much better when § departs from 1. We further report the proportion

of replicates that the Yule-Simon distribution is rejected at nominal level 0.05, in Table 3.

4. Real data application

Seal (1947, 1952) provided data on insurance shares for 12 different age periods. The original data is about male
lives assured in a British life office, maintained for administrative purposes. The analysed data is a random subset,
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and every tenth names in this list were included until the total of 2000 was reached. The lives sampled are scheduled
according to the year of birth and the number of policies in force. The group is represented by the central age.
Seal (1952) fitted the data using the discrete Pareto, with probability mass function

PX=k =k, k=1,23,..., d>1,

where ¢ (d) is a normalization constant, and the parameter d is estimated by the MLE. Here we apply the Waring
distribution to fit the data. For the age periods centred at 17.5 and 22.5, the maximal number of shares is 2. The EFF
method leads to negative parameter estimates, while the MLE is proved not to exist as in Remark 2.1. We focus on
the rest 10 groups, with central ages from 27.5 to 72.5. Among these 10 groups, for the group with central age 67.5,
we have n = 45and n; = 33,n, = 7,n3 = 4,n4 = 1, and it is easy to verify that (9) does not hold. Thus the MLE
does not exist. If we directly apply the optimization algorithm, we get @ = 1,687,133.2, ,/B\ = 675,078.4, which is
meaningless. However, if we use the EFF method, we geta = 11, B = 4,and the resulted fitting is reasonably good.
Thus, we need to be careful in using the MLE. Table 4 summarizes the comparison of the actual distribution with
discrete Pareto law fitting, Waring fitting with EFF and MLE, we find that the Waring distribution fits the data
slightly better than the discrete Pareto law.

5. Discussion

To fit a given data set by the Waring distribution, we need to verify the existence condition of the MLE of the War-
ing parameters before we use the MLE. If the existence condition is not satisfied, it means that the likelihood is
maximized at the boundary, i.e., infinity. Therefore, if we directly apply the optimization algorithm to the likeli-
hood function, the MLE may be far from the true parameters; see for example, we get MLE &@ = 1,687, 133.2, 3 =
675,078.4 for the group with central age 67.5, where in fact that the MLE does not exist. In such cases, we can use
the EFF method if the EFF estimates are in reasonable scales. Based on the simulation studies and the real data
analysis, we find that, when the sample size is small or the maximum observed value is small, the MLE is less likely
to exist, and when the sample size is big and the maximum observed value is large, the MLE is more likely to exist.
Nevertheless, we need verify the existence condition for the MLE.
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Appendices

The appendix contains some useful lemmas and technical proofs.

Appendix 1. Some useful lemmas
Lemma A.1: Define

where ay, . . ., ay are positive and by, . . ., by are nonnegative. Then g(x) is an increasing and concave function.
Proof: 1t is easy to derive that

g0 =g {(M“ﬁ Ho ot W”#k)z} >0,

g0 =26 [{ b T G B }2

( LU ) a} . a
aix + by arx + by ) | (a1x + by)3 (axx + br)?

—_ ¥y 1 ( 1 )2<0 -
a (aix + b)(ajx +bj) \aix+b; apx+ b )

1<i<j<k

Lemma A.2: When x — oo, we have
XM 4+ alxm—l + azxm—Z + ...
blxm—l + hzxm—Z + b3xm—3 4.
2 2
1 aiby — by azbl—b1h3—a1b1b2+h2.1+O<1>.

= b1x+ b% b? x

Proof: Assume that

A a4 a4 1 tetd 1 +0 1
=—x4+c - = ).
byxm=1 4 hyx™=2 £ bsxm=3 4 ... b x x2

Then

A4 apx™ T a4

1 1
:(blxmfl+b2xm72+b3xm*3+,.,),(bix+c+d.7+...)
1 X

b b
=xm+(blc+ b—z)x’"*+<b1d+bzc+ bi)xm*%---,
1 1

. .. . — .. b?—byb3—ay by by+b?
which indicates that: (i) byc + b,/b; = a1, and then ¢ = %; (ii) b1d + byc + Z—f = ay,and thend = W
1

The proof is completed. n

Appendix 2. Technical Proofs

Appendix 2.1. Proof of Lemmas 2.3-2.4

Proof of Lemma 2.3: Since for any g, £,(«(B), ) = max, £,(a, B). Thus, to prove £,(c(B1), B1) = maxg,g £,(ct, B), we only
need prove that 81 maximizes £, («(8), B). Therefore, we only need prove that 9, (c(B), B)/3B|g=p, = 0, 9L, (c(B), B)/3B >
0 for B < B1 and 3¢, (x(B),B)/3B < 0 for B > Bi.
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Consider the following decomposition,

Cn(@(B + AB), B+ AB) — Lula(B), B)

AB
Ln(a(B+ AB), B+ AB) — Lu(a(B), B+ AB)  Lu(a(B), B+ AB) — £n(a(B), B)
= +
AB AB
{ 0y, B) da(B) 9l B) }
- : + >
o 0B B a=a(f)
where W le=a(8) = 0, and thus M(“ ) le=a(p) totally determines the sign of M . The proof is completed. | |

Proof of Lemma 2.4: We use the method of contradiction. If the conclusion is not correct, then there exists x; > a such that
f1(x1) = ta(x1), i (x) > tr(x) forx < x1 and £; (x) < t2(x) forx € (x1,x1 + o) for some §p > 0. By assumption (D), the curves
y = t1(x) and y = t,(x) will intersect again after (xi, t;(x1)), i.e., there exists x > x; such that £, (x2) = £2(x2), t1(x) < t2(x)
for x € (x1,x2) and t;(x) > t2(x) for x > x, (suppose that there exists only one such x;, otherwise, we consider the largest
intersection). According to assumption (D), take one point x,. € (8§}, 00) (which is of course greater than x;), use (x2, t(x2)) as
the starting point, and then take a ray interpolating (x, 1 (xx)). Let x, diverge to infinity so that the point (xy, t1 (xx)) moves
along the curve y = t;(x). Since t; (x) is increasing and concave, the ray interpolating (x., t; (x,)) tilts down around the start
point (xz, t(x2)). By assumption (C), when x,. — 00, the slope of the ray

t1 () — t1(x2) "
—_— > C .
Xy — X2

Thus the limit of the ray is a ray with start point (xy, f; (x2)) and slope ¢*, denoted as L, and the curve y = ¢;(x) is above L.

Note that the start point of the ray L, (x2,t(x2)), is on the curve y = t;(x). By assumption (D), there exists an x*, which
satisfies that, the curve y = #,(x) intersects L at (x*, t,(x*)) and y = t,(x) lies below L for x € (x*, x* + &%) with some positive
8%. Without loss of generality, we assume that x, is such point, that is, y = £,(x) lies below L for x € (x2,x + 82).

Through the intersection (x3, f; (x2)), we make tangent line of the curve y = t,(x). If the tangent line coincides with the
ray, then take another point x** € (x3,x, + 8%), and make another tangent line of the curve y = t;(x) through the point
(2™, £2(x**)). Since y = t(x) is increasing and concave, if the tangent line (of y = #(x)) through (x3, t; (x2)) coincides with the
ray L, the tangent line through (x**, £, (x**)) does not coincide with L. Note that the curve y = t; (x) is above L, while y = #5(x)
is below the tangent line (a concave curve is always below its tangent line) which is below the ray L (the one which does not coin-
cide with L must be below L according to the above discussion). Therefore, lim,_, o tl}(cx) # limy_, o0 tz;x), which contradicts
with assumption (C).

To summary, no such x; > a exists that £; (x;) = t2(x1), t1(x) > f2(x) for x < x1 and t; (x) < t2(x) for x € (x1,x; + &) for
some §y > 0. We conclude that, t; (x) > t,(x) for x € (a, 00). The proof of Lemma 2.4 is completed. |

Appendix 2.2. Proof of Propositions 2.1-2.2
Proof of Propositions 2.1: Proof of Property 1. If § — 0, we have

1
g, B) —> o o -0,
Denbs 23 Ds Pm
b+ I T i

when o — 0. Therefore, when 8 — 0, the intersection of y = g;(«, ) and y = « converges to the origin of coordinates.
Proof of Property 2. If B — oo, then for any o > 0, we have g («, 8) — oo. Thus, if B — oo, then «(8) — oo because
(x(B), B) is the intersection. We have

1
a(f) = o
a(ﬂ1)+ﬁ + a(zﬁ:)+ﬂpj—l + a(%)sfﬁpiz +oet a(ﬂ)fén+m—1’
{aB)+ B+ a1 - {aB)+ B +ar- {a(B)+ B2+
by {a(B) + By + by - {a(B) + BY" 2 + b3 - {a(B) + BY" 3+
where
_mm—1 _ ! 1 )Bm—1), b =1
q=—" az—ﬂm(m— Ym—2)Bm—1), by =1+n,
-1
by, = %(14‘7)1) + 11— 12
mm—1D(m—2)Bm—1) m@im—1)Bm?* —7m+ 14) + 24
bs = 24 + 24 n
m(m—1)
B [ECES P

Based on Lemma A.2, tedious calculation yields

dy
{Ol(ﬁ)+/3}+ t—

@B =1 MO
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where
Jo mmm :775—771713—7714-2772—773
T @+n)r (14 m)3 )
Simple algebra yields
1 c, (1 + 771) 1+ m da 1 dot 2
a(f) = —p+ -~ + +oo=—B+c+— +0(1/8),
B =P m m a(B)+ B P ety /P
where ¢q = S = SR,
Proof of Property 3. Since
1 _ 1 Do ps Pm (A1)
aBf) aBf)+p aB)+B+1 aB)+p+m—-1
taking derivative with respect to 8 on both sides of (A1), we have
I 1 ! 1 m / 1
o (B) = o2 (B) [ o' (B) + i () + }Zszzzps N {2’(B) + 1}pm 2] .
{a(B) + B} {B)+B+1} {aB)+B+m—1}
Simple algebra leads to
2]
o (B) = —
A 1 —u(B)
where
1 Do Ps Pm
up) - BRI TR Y G »
[awHﬂ+awﬁ%4+'”+aWﬁﬁwa
Furthermore, since
{ 1 Do Ps T Pm
aB)+p aB)+B+1 af)+B+m—1

- ssz - _jps
;L(ﬁ)ﬂ?ﬂ—l []Z;a(ﬁ)ﬂ?ﬂ—lﬂ

S= zPS

- Zs sz
>Z{“(ﬂ)+ﬂ+l—la(ﬂ)+ﬁ} Z{a(ﬂ)+ﬂ+z—1}2

which indicates that u(8) < 1. Therefore, o’ (8) > 0.
Taking derivative with respect to 8 twice on both sides of (A1), we have

a"(B)
(' (B)+ 1} Y1, ps

= 2%(8) ([ o (B +1

{a(B) + B} {a(B) + B+ 1)

1 n > s > o3 Ps

{&'(B) + 1)pm ]2
@)+ B +m—1)2

aB)+B  aB)+p+1 af)+p+2
' (B) + 1 {/(B) + 1P X0, ps

X

Pm }
aB)+B+m—1

L {a(B) + B {a(B) + B +1)?
= =22 (B){(B) + 1)

Dot Ps X Ps

{'(B) + 1}*pm D
{a(B)+B+m—1)3

1
{a(B) + B + iHa(B) + B +j} {a(ﬂ) +B+i

|2

0<i<j<m-—1

< 0.

1 2
_a(ﬂ)+/3+j}

Proof of Property 4. If 8 — 0, then «(B8) — 0, and thus (A2) indicates that u(8) — 1; therefore o/(8) — 0. If B — o0,

then a(B) — o0, and thus (A2) indicates that u(8) — —
1), >, ps

; therefore o/ (8) —

1
Yt > ps”

Proof of Property 5. According to (3), the conditional maximum likelihood equation of « can be rewritten as

o aY Lops | @D aps apm _
at+p  a+Btl a+p+2 atprm—1
Let
o aY ! ad ™ o
fla) = D seaPs n D oe3Ps n Pm )
a+pf a+B+1 a+p+2 a+B+m—1

and then f (o) is an increasing function of «. Since f(«(8)) = 1, then x is less than, equal to or greater than «(8) which is

equivalent to that f(x) is less than, equal to or greater than 1. Therefore, o (8)

= Z(B) is equivalent to f(Z(B)) = 1. Since Z(B)
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is a polynomial or fractional function of 8, then

ZB)  ZB)Yabs | ZB) Y5 Z(B)pm
V4 = . =
TED =28 zprp T zprpr2t  ZB T prm
is a high-ordered polynomial equation, which has finite number of solutions. ]

Proof of Proposition 2.2: The proofs of Properties 1k and 5x are similar to the proofs of Properties 1 and 5 in Proposition 2.1,
respectively, and Property 3x follows from Lemma A.1. In the following, we present the proofs of Properties 2 and 4.
Proof of Property 2%. By Lemma A.2, it is easy to obtain

,Bm_l +a1ﬁm—2 +(12/3m_3 4+

h(B) = ,
Y T RN RN T
where
(m—1)(m—2) (m—1)(m—2)(m—3)(3m — 4)
a) = —— > = > blzm,
2 24
(m—2)(m—1)+4
by, = n — N2
2
(m —2)(m — 1)(3m?* — 13m + 36) + 96 m? — 3m + 10
bs = o n — 5 n2 + ns.

Therefore, we have

1 1
h(B) = —B + e+ dn— + O(1/8%),
n B

where
arby —by My —2m

cp =

bt nt
b? — bibs — a1b1b, + b2 2 _
d_azl 103 —a10100 + 05 13 — M3
h = [E = 3 -
1 m

Proof of Property 4x. It is easy to derive that

Zs: PS Zs: pS
W — B g T

25: Ps Zs: Ps Pm
(o b v i)

_ (Z:rlzz Z;n:tps)ﬂz(mil) +-F (Zsmzzps){(m - 2)!}2
Qo Y p)?B2m=D o (1, po)?{(m — 211

Pm
(B+m—2)?

and we have
(leﬂ:zps){(m - 2)!}2 _ 1
iy pHm =202~ 3, pe

D i Dt Ps 1

W) — = i when 8 — oo.

Qs Y ps)? a Doin D Ps - m’

when 8 — 0,

H(p) —

Appendix 2.3. Proof of Theorem 2.5

By Properties 1,4 of «(8) and 1%, 4% of h(8), when 8 — 0, h(8) — 0and «(8) — 0;however, /' (8) — Zml , whilea’(B) —
s=2 IS

00. Thus, there exists §; > 0, such that «(8) > h(B) for 8 € (0,6;).
By Property 2 of «(8) and 2x of h(8), when 8 — oo,

1 m=2m _my—mn 1 1

h(B)=— B+ + =40,
m n} n B B>
1 — 2 — 1+ 2m — 1 1

w(f) = L. MM My MmNz 3772 773.74_0(72).
m m@ +m) 1+ m) B B

We first discuss the situation % + n:’éﬁ;l) . We have, there exists 8, > 0, such that for 8 € (8, 00),

1

N —m N2 —2m
1 < 7
m+n1) ni

. Mm—m N2 —2m
a(B) > h(B), if > .
P P ni(1+n1) i

a(p) < h(B),

>

(A3)
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2_ _ _ 2_
In case of "2;722'“ = nf(z;:’i;l) , that is, 0 = n? + 21, we need compare dy = %’W and dj, = % Ifd, > d,
a(B) > h(B) and if dy < dj, a(B) < h(B).
Therefore, if
- —2 - —2
n2—m 2 M Mm—m M 771’ dy < dy, (A4)

m+n) = n o m+n) n?
there must exist an intersection for the curves y = h(f) and y = (). Part (II) of Theorem 2.5 follows directly from Lemma 2.4.
Thus we only need prove part (I). In the following, we assume that (A4) holds so that y = h(B) and y = «(B) intersect at least
once at some positive .
Suppose that y = h(B) and y = «(B) intersect firstly at (81, c1), where oy = h(B1) = «(B1), and then «(B) > h(B) for
B € (0, B1). By Property 5 of «(8) in Proposition 2.1 the curves y = h(f) and y = «(8) only intersect finite times. Therefore,
there exists 83 > B; such that y = «(8) and y = h(B) do not intersect for 8 € (B1,83). If for B € (B1,83), the curve y = a(8)
is above y = h(f). Then, due to (A4), the curve y = «(B) will finally be below the curve y = h(8). Thus the two curves will
intersect again. However, because the number of intersections is finite, it cannot be always the case that the curve y = a(8) lies
above y = h(p) after the intersection, i.e., there exists an intersection that y = «(B) lies below y = h(f) after that intersection.
Without loss of generality, we assume that

y = a(p) lies below y = h(B) after the first intersection (8, 1). (A5)

Next, we prove that («(B1), B1) is the maximizer of the log-likelihood function £, (, B). Since () is the conditional maximum
likelihood estimator of «, i.e.,
Ofrllga;)% Lu(e, B) = rélf())i Ln(a(B), B),

We only need prove that § = B; is a maximizer of £,(x(B), B).
Since (a(B1), B1) is a solution to the equation system (3)-(4), then

1 0tu@p)
n I a—a(p).p=p
_ 1 _( 1 n D oo Ps n D em3Ps L. Pm )
a(B1) aB+p aB)+Bi+1 alB)+p+2 aB)+pr+m—1
=0,
1 (@)
n B lazaip)p=pi
1 " bs o Ps m
=_05(ﬂ1) * (Zsﬂ_lzp * %1j}; e B +pm—2)
= 0.

To prove that f = §; maximizes £,(«(8), 8), by Lemma 2.3, we only need prove that
B € (0, B1) and smaller than zero if 8 € (81, 0).
We first consider 8 € (0, 81). When 8 € (0, 81), we have «(8) > h(B). Therefore,

1 3y, B) 1 o bs | Demaps Pm )
—., e — . _— 0.
n B a=a(B) a(B) * ( - " -

M”a(g’ﬂ )| u—a(p) is greater than zero for

(A6)

B B+1 R r—
We next consider 8 € (B;,00). By (A5), «(B8) < h(B) if B € (B1,83). Then, by Lemma 2.4, y = a(8) can’t be above y = h(8)
atany 8 > Bi,ie,a(B) < h(B) forall B > B;. Therefore,

Zs:3p5 . DPm ) <0.

l.w - _ 1 +<Z:n—2ps+ 4+t
n B la=ap) a(p) B B+1 B+m—2
The proof is completed. We see that the overall proof depends on the fact that
3a(a (), B)
n——m————= >
ap
dn( (), B)
—_— <
ap

(A7)

if x(B) > h(B), the 0, and thus ¢, (x(B), B) increases with ;

if a(B) < h(B), then 0, and thus £,(a(B), B) decreases with B.
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