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ABSTRACT
The two-parameter Waring is an important heavy-tailed discrete distribution, which extends
the famous Yule-Simon distribution and provides more flexibility when modelling the data. The
commonly used EFF (Expectation-First Frequency) for parameter estimation can only be applied
when the first moment exists, and it only uses the information of the expectation and the first
frequency, which is not as efficient as the maximum likelihood estimator (MLE). However, the
MLE may not exist for some sample data. We apply the profile method to the log-likelihood
function and derive the necessary and sufficient conditions for the existence of the MLE of the
Waring parameters. We use extensive simulation studies to compare the MLE and EFF methods,
and the goodness-of-fit comparison with the Yule-Simon distribution. We also apply the Waring
distribution to fit an insurance data.
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1. Introduction

The power-law distributions are a class of heavy-tailed univariate distributions that describe a quantity whose prob-
ability decreases as a power of its magnitude, which is widely used in social science, network science and so on. Two
commonly used discrete examples are Zipf distribution and Yule-Simon distribution (or Yule distribution). Zipf law
is found by the linguist Zipf when studying the words in a linguistic corpus, in which the frequency of a certain word
is proportional to r−d, where r is the corresponding rank and d is some positive value. The Yule-Simon distribution
is a highly skewed discrete probability distribution with very long upper tails, named after Udny Yule and Herbert
Simon–winner of the 1978 Nobel Prize in economics, with distribution function

P(X = k) = α�(k)�(α + 1)
�(α + k + 1)

, α > 0, k = 1, 2, 3, . . . ,

where �(·) is the Gamma function, and α is the parameter. Yule (1925) proposed the distribution first, apply-
ing it to model the number of species in the biological genera. Simon (1955) rediscovered the ‘Yule’ distribution
later, using it to examine city populations, income distributions, and word frequency in publications (Mills, 2017).
In Price (1965, 1976), Price, a famous American scientist, found that the number of citations of the literature follows
the Yule distribution, when linking the published literature with his cited literature to form a directed network of
scientific and technological literature. It is a cumulative advantage distribution based on the mechanism of ‘success
breeds success’.

The two-parameterWaring distribution is a generalization of the Yule-Simon distribution, which provides more
flexibility than the commonly used one-parameter Zipf distribution, Yule-Simon distribution, negative binomial
distribution, etc. The Waring distribution can describe a wide variety of phenomena in actuarial science, network
science, library and information science, such as number of shares purchased by each customer, number of traffic
accidents, number of nodes in the internet connections, and frequency of authors who publish a certain number
of paper (Huete-Morales &Marmolejo-Martín, 2020; Panaretos & Xekalaki, 1986; Seal, 1952; Xekalaki, 1983). The
distribution function of X ∼ W(α,β) is given by

P(X = k) = α · �(β + k − 1)
�(β)

· �(α + β)

�(α + β + k)
, α > 0, β > 0, k = 1, 2, 3, . . . , (1)

where α,β are the parameters of theWaring distribution. It is easy to prove that theWaring distribution is a heavy-
tailed distribution, with a polynomial tail of order α + 1. We can also derive that E(X) = 1 + β

α−1 if α > 1, and
var(X) = αβ(α+β−1)

(α−1)2(α−2) if α > 2. The Yule-Simon distribution is a special case of theWaring distribution with β = 1.
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The parameter estimation is extremely important to make a statistical inference. Garcia (2011) provided a fixed-
point algorithm to estimate the Yule-Simon distribution parameter. For theWaring distribution, a commonly used
method is the EFF (Expectation-First Frequency), which is essentially the method of moments. More specifically,
the EFF method uses the sample mean X to estimate E(X) = 1 + β

α−1 and the empirical first frequency P̂(X = 1)
to estimate P(X = 1) = α

α+β
, leading to

α̂ = P̂(X = 1) · (X − 1)
P̂(X = 1) · X − 1

, β̂ = {1 − P̂(X = 1)} · (X − 1)
P̂(X = 1) · X − 1

.

The EFF method has two drawbacks: first, it restricts that α > 1, which can not be used when the first moment
does not exist; second, it only uses the information of P(X = 1) and E(X), which loses information of the
data. Xekalaki (1985) proposed a factorial moment estimation for the bivariate generalized Waring distribution,
which also suffers from these drawbacks.

In the current literature, researchers also considered the maximum likelihood estimator (MLE) of the Waring
parameters. However, they usually directly applied the optimization algorithm to the log-likelihood function, with-
out verifying the existence of the MLE (Rivas & Campos, 2021). As we all know, MLE does not exist in all cases. In
fact, for some sample data, the MLE of Waring parameters exists, while for some sample data, it does not exist. For
example, in the insurance share data analysed in Section 4, the MLE of the Waring parameters does not exist for
the groups with central ages 17.5, 22.5 and 67.5; for each group, the age length equals 5. If we do not know whether
MLE exists and we calculate it, then it is questionable to show the credibility of MLE. Based on this consideration,
the existence of MLE will be investigated in this paper. More specifically, we apply the profile method to the log-
likelihood function, deriving the necessary and sufficient conditions for the existence of the MLE of the Waring
parameters. When the largest value in the observed sample is small, we also verify our theory by exactly solving the
estimating equation system. Furthermore, we get two byproducts during the proof of the main result. The first one
is our Lemma 2.3, which provides an alternative way to prove the existence of MLE for two parameters, while the
conventional proof includes a complicated calculation of the Hessian matrix. The second one is our Lemma 2.4,
which provides a comparison method for two increasing and concave functions. These results may play a role in
other applications.

Through extensive simulation studies, we find that when the sample size is as small as n = 100, both MLE and
EFF yield relatively poor estimates.When n ≥ 200,MLE always results inmuch smaller biases than EFF; the relative
bias of MLE decreases from 6%-7% when n = 200 to around 1% when n = 1000, while that of EFF is still around
10% even when n = 1000 for α ≤ 1.2. The relative standard errors fromMLE are comparable with those from EFF
for medium-sized samples (n = 200 and 400), but smaller for n = 1000. Overall, the MLE method results better
performance than the EFF method when α/β is not large or the sample size is large enough. The performance of
EFF is relatively better when α/β is large, say α/β ≥ 2. Our explanation is that, since P(X = 1) = α

α+β
= α/β

α/β+1 ,
if α/β is large, then P(X = 1) is close to 1, and thus EFF includes relatively more information than the case with
small α/β . We also compare the Waring distribution and Yule-Simon distribution in terms of goodness-of-fit to
the data, and we find that the Waring distribution fits the data similar to the Yule-Simon distribution when β = 1,
and much better when β departs from 1.

The rest of the paper is organized as follows. Section 2 presents the main result based on the profile method.
Section 3 gives some numerical studies to show the advantage of MLE over the EFF method, and that of War-
ing distribution over the Yule-Simon distribution. The real insurance data analysis is presented in Section 4. All
technical details are deferred to the Appendix.

2. Maximum likelihood estimator of theWaring parameters

For the two-parameter Waring distribution, we have

P(X = 1) = α · �(β)

�(β)
· �(α + β)

�(α + β + 1)
= α

α + β
,

P(X = k) = α · �(β + k − 1)
�(β)

· �(α + β)

�(α + β + k)

= α · β(β + 1)(β + 2) · · · (β + k − 2)
(α + β)(α + β + 1) · · · (α + β + k − 1)

, k = 2, 3, . . . .

Suppose that x1, . . . , xn is a random sample from theWaring distributionW(α,β), and letm = max{x1, . . . , xn} be
the largest observe value, nk be the number of observations equal to k, k = 1, . . . ,m, and

∑m
k=1 nk = n. Based on
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the data {x1, . . . , xn}, we can easily derive the likelihood function as

Ln(α,β)

=
(

α

α + β

)n1 m∏
k=2

{
αβ(β + 1) · · · (β + k − 2)

(α + β)(α + β + 1) · · · (α + β + k − 1)

}nk

=
(

α

α + β

)n (
β

α + β + 1

)∑m
s=2 ns ( β + 1

α + β + 2

)∑m
s=3 ns

· · ·
(

β + m − 2
α + β + m − 1

)nm
.

Then the log-likelihood is

�n(α,β)

= log Ln(α,β)

= n{logα − log(α + β)} +
m∑
s=2

ns{logβ − log(α + β + 1)}

+
m∑
s=3

ns{log(β + 1) − log(α + β + 2)} + · · ·

+ nm{log(β + m − 2) − log(α + β + m − 1)}. (2)

Taking partial derivatives with respect to α and β leads to the following maximum likelihood equations

1
n

· ∂�n(α,β)

∂α

= 1
α

−
(

1
α + β

+
∑m

s=2 ps
α + β + 1

+
∑m

s=3 ps
α + β + 2

+ · · · + pm
α + β + m − 1

)
= 0, (3)

1
n

· ∂�n(α,β)

∂β

= −
(

1
α + β

+
∑m

s=2 ps
α + β + 1

+
∑m

s=3 ps
α + β + 2

+ · · · + pm
α + β + m − 1

)
+
(∑m

s=2 ps
β

+
∑m

s=3 ps
β + 1

+ · · · + pm
β + m − 2

)
= 0, (4)

where pk = nk/n with pm > 0.
We first consider Equation (3), which can be treated as the conditional maximum likelihood equation of α given

a positive β . When m = 1, that is, all the observed values equal to 1, since 1
n · ∂�n(α,β)

∂α
= 1

α
− 1

α+β
= β

α+β
> 0,

thus there is no solution to the likelihood equation. We focus on the situation wherem ≥ 2.
In the following, we first consider the conditional maximum likelihood Equation (3) given any positive β , which

can be regarded as a generalization of the Yule-Simon distribution, and we prove that those results for Yule-Simon
distribution (β = 1) also hold for any β > 0. More specifically, given a positive β , we denote the conditional MLE
of α as α(β). According to (3), α(β) satisfies

α(β) = 1
1

α(β)+β
+

∑m
s=2 ps

α(β)+β+1 +
∑m

s=3 ps
α(β)+β+2 + · · · + pm

α(β)+β+m−1

. (5)

For notational ease, we define

η1 =
m∑
t=2

m∑
s=t

ps =
m∑
t=2

(t − 1)pt , η2 =
m∑
t=2

t
m∑
s=t

ps =
m∑
t=2

(t − 1)(t + 2)
2

pt ,

η3 =
m∑
t=2

t2
m∑
s=t

ps =
m∑
t=2

(t − 1)(2t2 + 5t + 6)
2

pt , (6)

and present the properties of α(β) in the following Proposition 2.1.

Proposition 2.1: Let α(β) be defined as in (5). We have the following properties.
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Property 1. If β → 0, we have α(β) → 0.
Property 2. If β → ∞, we have

α(β) = 1
η1

· β + η2 − η1

η1(1 + η1)
+ η22 − η1η3 − η1 + 2η2 − η3

(1 + η1)3
· 1
β

+ O
(

1
β2

)
.

Property 3. α(β) is an increasing and concave function of β.
Property 4. The first derivative α′(β) → ∞ if β → 0, and α′(β) → 1

η1
if β → ∞.

Property 5. When β > 0, the number of solutions to α(β) = Z(β) is finite, where Z(β) is any polynomial or
fractional function of β.

Next we discuss the existence of MLE of (α,β). By (3), we have

1
α(β) + β

+
∑m

s=2 ps
α(β) + β + 1

+
∑m

s=3 ps
α(β) + β + 2

+ · · · + pm
α(β) + β + m − 1

= 1
α(β)

. (7)

By (4), we have

1
α(β) + β

+
∑m

s=2 ps
α(β) + β + 1

+
∑m

s=3 ps
α(β) + β + 2

+ · · · + pm
α(β) + β + m − 1

=
∑m

s=2 ps
β

+
∑m

s=3 ps
β + 1

+ · · · + pm
β + m − 2

.

Let

h(β) = 1∑m
s=2 ps
β

+
∑m

s=3 ps
β+1 + · · · + pm

β+m−2

. (8)

If the curves y = h(β) and y = α(β) intersect at some β > 0, we have solution to the equation system (3)–(4). Later
we prove that the intersection is unique and is the MLE of the Waring distribution.

To discuss whether y = h(β) and y = α(β) intersect at some β > 0, we first present the properties of h(β) in
the following proposition.

Proposition 2.2: Let h(β) be defined as in (8), we have the following properties.

Property 1∗. If β → 0, we have h(β) → 0.
Property 2∗. If β → ∞, we have

h(β) = 1
η1

· β + η2 − 2η1
η21

+ η22 − η1η3

η31
· 1
β

+ O
(

1
β2

)
.

Property 3∗. h(β) is an increasing and concave function of β.
Property 4∗. The first derivative h′(β) → 1∑m

s=2 ps
if β → 0, and h′(β) → 1

η1
if β → ∞.

Property 5∗. When β > 0, the number of solutions to h(β) = Z(β) is finite, where Z(β) is any polynomial or
fractional function of β.

Based on Properties 1 and 4 of Proposition 2.1 and 1∗ and 4∗ of Proposition 2.2, it is easy to derive that α(β) >

h(β) when β is small. Therefore, if we can prove that α(β) < h(β) for some large β , due to the continuity of the
two functions, there must exist solution to the equation systems (3)–(4). This is the key idea to check the existence
of the MLE.

Before presenting the main result, we first give two important lemmas.

Lemma 2.3: For the log-likelihood function �n(α,β), assume that for any β, �n(α(β),β) = maxα �n(α,β), and there
exists β1 such that

∂�n(α,β)/∂β|α=α(β1),β=β1 = 0, ∂�n(α,β)/∂β|α=α(β) > 0 for β < β1 and
∂�n(α,β)/∂β|α=α(β) < 0 for β > β1. Then we have �n(α(β1),β1) = maxα,β �n(α,β).

Lemma 2.3 provides an alternative to the proof of MLE based on the profile method, which is simpler than the
conventional proof that includes complicated calculation of the Hessian matrix.
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Lemma 2.4: Assume that t1(x) and t2(x) are increasing and concave functions for x>0, the curves y = t1(x) and
y = t2(x) only intersect finite times, and the number of solutions to ti(x) = Z(x) is finite for both i = 1, 2, where Z(x)
is any polynomial or fractional function of x. Further assume that

(A) t1(a) = t2(a) for some a;
(B) there exists some δ∗ > 0 such that t1(x) > t2(x) for x ∈ (a, a + δ∗);
(C) limx→∞ t1(x)

x = limx→∞ t2(x)
x = c∗ > 0;

(D) there exists δ∗
4 such that t1(x) > t2(x) for x ∈ (δ∗

4 ,∞).

Then, we have t1(x) ≥ t2(x) for all x ∈ (a,∞).

Lemma 2.4 provides a general method to compare two increasing and concave functions, without requiring the
explicit form of the functions, which not only simplifies the comparison of α(β) and h(β), but also has its own value
in other applications.

Based on Propositions 2.1–2.2, Lemmas 2.3–2.4, we summarize the existence of MLE in the following
Theorem 2.5.

Theorem 2.5: Suppose that {x1, . . . , xn} is a random sample from the Waring distribution W(α,β), and m =
max{x1, . . . , xn}. Let pk = nk/n be the proportion of {xi = k} with pm > 0. Let

αintercept = η2 − η1

η1(1 + η1)
, hintercept = η2 − 2η1

η21
.

(I) If αintercept < hintercept, then the MLE of (α,β) exists.
(II) If αintercept > hintercept, then the MLE of (α,β) does not exist.

(III) If αintercept = hintercept, or equivalently, η21 + 2η1 − η2 = 0, we denote dα = η22−η1η3−η1+2η2−η3
(1+η1)3

and dh =
η22−η1η3

η31
. The MLE exists if dα < dh and doesn’t exist if dα > dh.

To derive the necessary and sufficient conditions of MLE existence, we start form the conditional MLE of α for
a given β , because it is easier to discuss the possible solutions by intersection of two curves determined by the
estimating equations. Numerically, since we only have two parameters to estimate, thus it is quite efficient to solve
that by the ‘optim’ function in R.

Remark 2.1: Unlike the existing literature which directly applied the optimization algorithm to the log-likelihood
function, without verifying the existence of the MLE (Huete-Morales & Marmolejo-Martín, 2020; Rivas & Cam-
pos, 2021), we present the necessary and sufficient conditions for the existence of theMLEof theWaring parameters,
which is the first attempt. It is easy to see that the sign of αintercept − hintercept is equal to the sign of

A(p2, . . . , pm) = η21 + 2η1 − η2.

For m = 2, we have A(p2, . . . , pm) = p22 = (n2/n)2 > 0, and thus the MLE of (α,β) does not exist. For m ≥ 3, it
depends, and we can check the sign of

A(p2, . . . , pm) = {p2 + 2p3 + · · · + (m − 1)pm}2 −
{
p3 + 3p4 + · · · + (m − 1)(m − 2)

2
pm

}
for a general m. For m = 2, 3, we also carefully check the existence of real-valued solution to the equation sys-
tem (3)–(4), and find that the sign of αintercept − hintercept indeed determines the existence of MLE. The readers can
refer to the authors for checking details.

One more comment on Theorem 2.5 is as follows. If αintercept < hintercept, or αintercept = hintercept with dα < dh,
the MLE of theWaring parameters is a finite vector. Then theWaring distribution fits the data better than the Yule-
Simon distribution, if the estimated β departs from 1, and similarly if the estimated β is close to 1. If αintercept >

hintercept, or αintercept = hintercept with dα > dh, the likelihood function will be maximized at the boundary region,
i.e., infinity. Therefore, if we directly apply the optimization algorithm to the likelihood function, the MLE may
be far from the true parameters; for example, in the real data application, we get that MLE α̂ = 1, 687, 133.2, β̂ =
675, 078.4 for the group with central age 67.5 (age from 65 to 70), where in fact that theMLE does not exist. In such
cases, we can use the EFFmethod if the EFF estimates are in reasonable scales, and theWaring distribution will still
fit the data better than the Yule-Simon distribution.
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Table 1. Relative biases and relative standard errors of estimated parameters, for β = 0.5 and 1.

β = 0.5 β = 1

rBias (%) rStd (%) rBias (%) rStd (%)

n method α β α β α β α β

α = 2 100 EFF 63.0 69.1 230.3 271.3 41.9 46.9 137.3 157.6
MLE 63.0 67.1 309.8 274.9 41.9 48.4 180.4 194.1

200 EFF 24.5 25.6 69.7 85.2 15.0 15.4 34.3 41.8
MLE 18.2 19.5 57.7 68.2 11.6 12.7 35.8 43.7

400 EFF 9.5 9.0 25.0 29.5 6.8 6.4 19.8 24.8
MLE 6.2 5.9 24.3 28.9 4.4 4.3 19.3 24.3

1000 EFF 3.7 3.3 14.6 18.1 2.9 3.0 12.5 15.6
MLE 1.6 1.4 13.5 17.2 1.5 1.6 11.4 14.6

α = 1.5 100 EFF 37.3 40.3 64.7 78.1 27.4 31.4 48.1 62.4
MLE 26.3 30.4 66.4 79.8 18.4 23.5 50.9 64.5

200 EFF 19.0 19.2 30.7 38.2 14.5 14.8 24.7 33.4
MLE 10.2 11.0 32.3 39.6 7.1 8.0 25.1 33.1

400 EFF 10.3 9.8 18.5 23.3 8.2 7.8 15.8 21.0
MLE 4.0 3.7 17.8 22.6 2.9 2.7 15.0 20.4

1000 EFF 5.6 5.5 12.2 15.2 4.5 4.3 10.7 13.1
MLE 1.3 1.2 10.4 13.6 0.9 0.7 8.9 11.8

α = 1.2 100 EFF 33.9 36.7 41.6 54.8 27.4 30.9 31.5 45.6
MLE 16.8 20.4 45.0 57.0 12.4 16.8 34.8 47.1

200 EFF 21.2 21.1 22.8 30.7 18.2 18.8 19.3 27.5
MLE 6.9 7.3 24.4 31.4 5.5 6.5 20.2 27.6

400 EFF 14.3 13.8 15.0 20.4 12.6 12.3 13.2 18.7
MLE 2.9 2.6 14.7 19.7 2.5 2.4 12.8 18.2

1000 EFF 9.8 9.8 10.4 13.6 8.7 8.5 9.2 11.9
MLE 1.0 1.0 8.9 12.1 0.7 0.6 7.7 10.6

α = 1.1 100 EFF 34.6 36.7 35.4 46.8 29.6 33.2 28.5 42.5
MLE 14.3 17.4 40.0 50.4 11.3 15.6 32.4 45.1

200 EFF 23.5 23.2 20.6 28.8 20.8 21.3 17.7 26.2
MLE 6.0 6.4 22.7 29.7 4.9 5.8 19.1 26.5

400 EFF 17.0 16.3 13.7 19.2 15.4 15.0 12.1 17.9
MLE 2.6 2.2 13.9 18.7 2.2 2.0 12.1 17.6

1000 EFF 12.7 12.6 9.5 12.7 11.7 11.4 8.4 11.3
MLE 1.0 0.9 8.4 11.5 0.7 0.5 7.3 10.3

α = 1.05 100 EFF 35.7 37.8 33.3 45.1 31.0 34.5 27.1 41.3
MLE 13.4 16.5 37.6 48.5 10.5 14.6 30.9 43.0

200 EFF 25.0 24.6 19.3 27.7 22.5 22.9 16.7 25.4
MLE 5.7 6.0 21.7 28.5 4.6 5.4 18.3 25.6

400 EFF 18.8 18.1 12.9 18.4 17.3 16.9 11.5 17.6
MLE 2.5 2.0 13.3 18.1 2.1 2.0 11.8 17.3

1000 EFF 14.6 14.6 8.9 12.4 13.6 13.4 7.9 11.1
MLE 1.0 0.9 8.1 11.3 0.7 0.6 7.2 10.3

3. Simulation studies

3.1. Comparison ofMLE and EFF

In this section, we give some numerical studies to compare the MLE and the EFF method in theWaring parameter
estimation.

The Waring distributed observations are generated by the function rWARING in the R package gamlss.dist. We
need mention that in the function rWARING, the parameters is {μ, σ }, and the probability mass function is given
by

P(X = k) = (1 + σ)�(k + μ
σ
)�(

μ+σ+1
σ

)

σ�(k + μ+1
σ

+ 2)�(
μ
σ
)

, k = 0, 1, 2, . . . , μ > 0, σ > 0.

Comparing the above probability mass function to (1), we can find that we need to add 1 to the generated
values from rWARING, and the relationship between the parameters is α = 1 + 1/σ and β = μ/σ . Thus rWAR-
ING automatically restricts α > 1 and the EFF estimator exists. We consider 20 combinations of (α,β), where
α = 2, 1.5, 1.2, 1.1, 1.05 and β = 0.5, 1, 1.5, 2, with sample sizes n = 100, 200, 400 and 1000. We generate 500
replicates for each case.

Probably due to the parameter specification and restricted data-generating process of the function rWARING,
we find that αintercept < hintercept is satisfied in all cases, except two replicates in the case α = 2,β = 0.5 with small
sample size n = 100. By Remark 2.1, αintercept < hintercept is equivalent to

{p2 + 2p3 + · · · + (m − 1)pm}2 < p3 + 3p4 + · · · + (m − 1)(m − 2)
2

pm. (9)
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Table 2. Relative biases and relative standard errors of estimated parameters, for β = 1.5 and 2.

β = 1.5 β = 2

rBias (%) rStd (%) rBias (%) rStd (%)

n method α β α β α β α β

α = 2 100 EFF 35.3 41.6 96.7 119.1 42.8 51.5 223.7 260.9
MLE 35.5 43.6 144.4 169.4 39.1 48.3 259.9 299.2

200 EFF 13.7 14.8 34.3 44.4 12.8 14.2 32.0 42.2
MLE 10.3 11.7 32.6 40.8 9.7 11.3 30.6 39.2

400 EFF 6.3 6.3 19.1 25.2 6.1 6.4 18.4 24.7
MLE 4.1 4.3 18.4 24.1 4.0 4.3 17.6 23.3

1000 EFF 2.5 2.4 11.6 14.6 2.5 2.5 11.7 15.0
MLE 1.3 1.2 10.5 13.5 1.3 1.3 10.3 13.3

α = 1.5 100 EFF 24.9 29.4 44.2 59.7 24.7 30.5 44.5 64.2
MLE 16.6 22.0 47.2 61.7 15.9 21.6 43.0 57.1

200 EFF 13.2 13.9 22.7 31.1 12.8 13.9 22.1 31.3
MLE 6.5 7.7 23.0 30.8 6.3 7.6 22.5 30.4

400 EFF 7.8 7.8 15.1 20.7 7.3 7.3 14.3 19.6
MLE 2.9 3.1 14.3 19.8 2.7 2.8 13.4 18.7

1000 EFF 4.2 4.2 10.4 13.3 4.0 3.9 10.2 13.4
MLE 1.0 0.9 8.6 11.6 0.8 0.7 8.4 11.5

α = 1.2 100 EFF 26.0 30.1 30.7 45.9 25.3 30.4 30.5 48.0
MLE 11.4 16.0 33.1 45.6 11.0 15.9 31.8 44.5

200 EFF 17.1 17.7 18.3 27.0 16.6 17.7 17.8 27.8
MLE 4.9 6.0 19.3 27.0 4.8 6.0 18.5 26.6

400 EFF 11.9 11.7 12.4 17.6 11.6 11.9 12.0 17.8
MLE 2.2 2.2 11.8 17.0 2.3 2.5 11.5 17.0

1000 EFF 8.4 8.3 8.9 12.1 8.3 8.3 8.6 12.0
MLE 0.7 0.6 7.5 10.7 0.7 0.7 7.2 10.6

α = 1.1 100 EFF 28.1 32.3 27.3 43.4 27.4 32.8 26.2 43.3
MLE 10.2 14.7 30.3 42.8 10.1 15.2 29.2 42.4

200 EFF 19.7 20.3 16.5 25.8 19.4 20.9 16.2 26.8
MLE 4.4 5.3 17.9 25.7 4.5 5.9 17.4 25.6

400 EFF 14.7 14.5 11.3 16.7 14.5 14.7 11.0 17.1
MLE 2.0 2.0 11.1 16.4 2.1 2.3 10.9 16.6

1000 EFF 11.3 11.1 8.0 11.4 11.2 11.1 7.6 11.1
MLE 0.6 0.5 7.1 10.3 0.6 0.6 6.8 10.1

α = 1.05 100 EFF 29.4 33.5 25.0 41.1 29.3 35.7 25.6 44.0
MLE 9.6 14.1 28.8 41.4 9.8 15.1 28.2 41.2

200 EFF 21.5 22.2 15.7 25.1 21.4 23.3 15.6 27.2
MLE 4.2 5.2 17.3 24.9 4.4 5.8 16.9 25.3

400 EFF 16.7 16.7 10.7 16.5 16.5 17.0 10.4 16.9
MLE 2.0 2.1 10.9 16.2 2.1 2.4 10.7 16.5

1000 EFF 13.4 13.3 7.5 11.1 13.3 13.2 7.0 10.7
MLE 0.7 0.6 6.9 10.2 0.6 0.6 6.6 10.0

Table 3. Proportion of replicates that the Yule-Simon dis-
tribution is rejected at nominal level 0.05.

n = 100 n = 200 n = 400 n = 1000

β = 1 0.066 0.042 0.056 0.054
β = 1.5 0.214 0.348 0.582 0.944
β = 2 0.528 0.804 0.986 1.000

It is easy to see that

{p2 + 2p3 + · · · + (m − 1)pm}2 =
{ m∑
k=1

(k − 1)pk

}2

= {En(X) − 1}2,

p3 + 3p4 + · · · + (m − 1)(m − 2)
2

pm =
m∑
k=1

(k − 1)(k − 2)
2

pk

= 1
2
En(X2) − 3

2
En(X) + 1,

where En means the empirical distribution. When 1 < α ≤ 2, E(X) exists while E(X2) diverges. Thus (9) is very
likely to hold, and the MLE exists. However, in real applications, it is possible that αintercept > hintercept (Section 4).

As mentioned immediately after Theorem 2.5, we use the ‘optim’ function to solve the MLE after verifying its
existence. We tried four methods to initialize the parameters: (i) small values, (α(0),β(0)) = (1.1, 0.1); (ii) large
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Figure 1. Box-plots of Tn corresponding to β = 1 (first row), 1.5 (second row), and 2 (third row), respectively, where the dashed line
indicates the critical value 3.84, and the number at the right side of the figure is the proportion that Tn > 3.84. In the last piece, all
Tn’s are much larger than 3.84, and thus the dashed line and the rejection proportion are not shown in the figure.

values, (α(0),β(0)) = (2.5, 3); (iii) true values of the parameters plus a random perturbation N(0, 0.22), but restrict
that α(0) ≥ 1.1 and β(0) ≥ 0.1; (iv) the EFF method. Extensive numerical studies show that these four initializing
methods yield almost the same results, which indicates that the optimization is not sensitive to the initial values.
Therefore, we use the EFF estimator for initialization if EFF produces positive estimates, otherwise, we set the initial
values as (α(0),β(0)) = (1.1, 0.1).

Among all the cases, the EFFmethod results in negative estimates only in one replicate in the case α = 2,β = 0.5
with small sample size n = 100; in another replicate, the denominator P̂(X = 1) · X − 1 is exactly 0, so the esti-
mator does not exist; these two replicates are deleted for fair comparison. Since the parameters are in different
scales, especially the parameter β , the maximal value is four times of the minimal one. Thus for fair compari-
son, we report the rBias (relative bias, defined as the bias divided by the true value of the parameter) and rStd
(relative standard errors, defined as the standard error divided by the true value of the parameter) in Tables 1
and 2. We find that, when the sample size is as small as n = 100, both MLE and EFF yield relatively poor esti-
mates, with standard errors being larger than or close to 50% of the true value of the parameter, which indicates
that it is challenging to accurately estimate the parameters with small sample sizes. Therefore, we focus on the
comparison of MLE and EFF for n ≥ 200. First, MLE always results in much smaller biases than EFF. Though
the rBias of EFF decreases when the sample size increases, it increases when the true α decreases, and it is still
around 10% even when n = 1000 for α ≤ 1.2; the rBias of MLE decreases from 6%–7% to around 1% when
n increases from 200 to 1000, regardless of the true α. Second, MLE results in comparable rStd with EFF for
medium-sized sample (n = 200 and 400), but smaller rStd for n = 1000. Overall, the MLE method results better
performance than the EFF method when α/β is not large or the sample size is large enough. The performance of
EFF is relatively better when α/β is large, e.g., α/β ≥ 2. Our explanation is that, since P(X = 1) = α

α+β
= α/β

α/β+1 ,
if α/β is large, then P(X = 1) is close to 1. Thus EFF includes relatively more information than the case with
small α/β .
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Table 4. Comparison of actual distribution (A) with discrete Pareto law fitting (P), Waring fitting with EFF (E) and MLE (M).

Central age 27.5 32.5 37.5 42.5 47.5

j P E M A P E M A P E M A P E M A P E M A

1 101.9 101 100.8 101 242.7 241 241.2 241 285.3 283 283.8 283 305.2 307 306.6 307 235.9 233 233.6 233
2 6.8 8.5 8.7 8 22.3 24.6 24.4 26 28.6 30.9 30.3 35 35.5 33.8 33.4 31 28.8 31.9 31.4 35
3 1.4 1.2 1.2 2 5.5 5.8 5.8 3 7.5 8 7.9 4 10.1 10 10.1 12 8.4 9.2 9.1 4
4 0.5 0.2 0.2 0 2 1.9 2 3 2.9 2.9 2.9 2 4.1 4.2 4.3 6 3.5 3.6 3.6 5
5 0.2 0.1 0 0 0.9 0.8 0.8 0 1.4 1.3 1.3 0 2.1 2.1 2.2 0 1.8 1.7 1.7 3
6 0.1 0 0 0 0.5 0.4 0.4 2 0.8 0.7 0.7 2 1.2 1.2 1.3 1 1 0.9 0.9 0
7 0.1 0 0 0 0.3 0.2 0.2 0 0.4 0.4 0.4 0 0.7 0.7 0.8 2 0.6 0.5 0.5 1
8 0 0 0 0 0.2 0.1 0.1 0 0.3 0.2 0.2 1 0.5 0.5 0.5 0 0.4 0.3 0.3 0
9 0 0 0 0 0.1 0.1 0.1 0 0.2 0.1 0.1 1 0.3 0.3 0.4 0 0.3 0.2 0.2 0
10 0 0 0 0 0.1 0 0 0 0.1 0.1 0.1 0 0.2 0.2 0.3 0 0.2 0.1 0.1 0
11 0 0 0 0 0.1 0 0 0 0.1 0.1 0.1 0 0.2 0.2 0.2 2 0.2 0.1 0.1 0
12 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0.2 0 0.1 0.1 0.1 0
13 0 0 0 0 0 0 0 0 0.1 0 0 0 0.1 0.1 0.1 0 0.1 0.1 0.1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0 0.1 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0 0.1 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0.1 0.1 0 0.1 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0
Totals 111 111 110.9 111 274.7 274.9 275 275 327.8 327.7 327.8 328 360.6 360.7 360.9 361 281.6 281.7 281.7 282

Central age 52.5 57.5 62.5 67.5 72.5

j P E M A P E M A P E M A P E M A P E M A

1 199.3 200 200 200 110.8 108 107.7 108 72 69 69.5 69 35.1 33 / 33 27.4 26 24.9 26
2 24.7 24.1 23.6 24 16.6 20.1 20.1 20 6.3 7.1 7.1 10 5.5 8.3 / 7 5.2 6.9 7.7 5
3 7.3 7.3 7.3 7 5.5 6.3 6.4 5 1.5 2.2 2.1 1 1.9 2.4 / 4 2 2.5 2.9 4
4 3 3.1 3.2 2 2.5 2.6 2.6 2 0.6 1 0.9 0 0.9 0.8 / 1 1 1.1 1.2 1
5 1.6 1.6 1.6 0 1.4 1.2 1.3 4 0.3 0.5 0.5 0 0.5 0.3 / 0 0.6 0.6 0.6 2
6 0.9 0.9 1 3 0.8 0.7 0.7 0 0.1 0.3 0.3 0 0.3 0.1 / 0 0.4 0.3 0.3 0
7 0.6 0.6 0.6 1 0.5 0.4 0.4 0 0.1 0.2 0.2 0 0.2 0.1 / 0 0.3 0.2 0.2 0
8 0.4 0.4 0.4 1 0.4 0.2 0.2 1 0 0.1 0.1 0 0.1 0 / 0 0.2 0.1 0.1 0
9 0.3 0.3 0.3 0 0.3 0.2 0.2 0 0 0.1 0.1 0 0.1 0 / 0 0.1 0.1 0.1 0
10 0.2 0.2 0.2 1 0.2 0.1 0.1 0 0 0.1 0.1 0 0.1 0 / 0 0.1 0 0 0
11 0.1 0.1 0.2 0 0.2 0.1 0.1 0 0 0.1 0 0 0.1 0 / 0 0.1 0 0 0
12 0.1 0.1 0.1 0 0.1 0.1 0.1 0 0 0 0 0 0 0 / 0 0.1 0 0 0
13 0.1 0.1 0.1 0 0.1 0 0 0 0 0 0 0 0 0 / 0 0.1 0 0 0
14 0.1 0.1 0.1 0 0.1 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
15 0.1 0 0.1 0 0.1 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
16 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 1 0 0 / 0 0 0 0 0
Totals 238.8 238.9 238.8 239 139.7 140 139.9 140 80.9 80.7 80.9 81 44.8 45 / 45 37.6 37.8 38 38

3.2. Goodness-of-fit comparisonwith Yule-Simon distribution

In this section, we compare the Waring distribution and the Yule-Simon distribution, in terms of goodness-of-fit
to the data.

We fix α = 1.5, and generate data from the Waring distribution with β = 1, 1.5, 2; data is generated from the
function rWARING as in Section 3.1. When β = 1, it is exactly the Yule-Simon distribution, and when β departs
from 1, the Yule-Simon assumption is violated. We consider 500 replicates with sample sizes n = 100, 200, 400,
1000. To initialize the optimization for the MLE of the Yule-Simon parameter α, we use the first frequency P(X =
1) = α

α+1 , that is, α̃ = P̂(X=1)
1−P̂(X=1) . Figure 1 presents the box-plots of the likelihood ratio statistics

Tn = 2{�n(̂α, β̂) − �∗
n(̂α

∗)},

where �n(̂α, β̂) is the log-likelihood function of the Waring fitting evaluated at the MLE (̂α, β̂), and �∗
n(̂α

∗) is the
log-likelihood function of the Yule-Simon fitting evaluated at the MLE α̂∗. If the true β equals 1, the Yule-Simon
distribution is correct, so it is easy to prove thatTn ∼ χ2

1 ; if the true β departs from 1, the Yule-Simon distribution is
not correct, soTn will be large. The box-plots in Figure 1 confirm that theWaring distribution fits the data similar to
the Yule-Simon distributionwhenβ = 1, andmuch better whenβ departs from1.We further report the proportion
of replicates that the Yule-Simon distribution is rejected at nominal level 0.05, in Table 3.

4. Real data application

Seal (1947, 1952) provided data on insurance shares for 12 different age periods. The original data is about male
lives assured in a British life office, maintained for administrative purposes. The analysed data is a random subset,
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and every tenth names in this list were included until the total of 2000 was reached. The lives sampled are scheduled
according to the year of birth and the number of policies in force. The group is represented by the central age.

Seal (1952) fitted the data using the discrete Pareto, with probability mass function

P(X = k) = k−d/ζ(d), k = 1, 2, 3, . . . , d > 1,

where ζ(d) is a normalization constant, and the parameter d is estimated by the MLE. Here we apply the Waring
distribution to fit the data. For the age periods centred at 17.5 and 22.5, the maximal number of shares is 2. The EFF
method leads to negative parameter estimates, while the MLE is proved not to exist as in Remark 2.1. We focus on
the rest 10 groups, with central ages from 27.5 to 72.5. Among these 10 groups, for the group with central age 67.5,
we have n = 45 and n1 = 33, n2 = 7, n3 = 4, n4 = 1, and it is easy to verify that (9) does not hold. Thus the MLE
does not exist. If we directly apply the optimization algorithm, we get α̂ = 1, 687, 133.2, β̂ = 675, 078.4, which is
meaningless. However, if we use the EFFmethod, we get α̂ = 11, β̂ = 4, and the resulted fitting is reasonably good.
Thus, we need to be careful in using the MLE. Table 4 summarizes the comparison of the actual distribution with
discrete Pareto law fitting, Waring fitting with EFF and MLE, we find that the Waring distribution fits the data
slightly better than the discrete Pareto law.

5. Discussion

To fit a given data set by the Waring distribution, we need to verify the existence condition of the MLE of the War-
ing parameters before we use the MLE. If the existence condition is not satisfied, it means that the likelihood is
maximized at the boundary, i.e., infinity. Therefore, if we directly apply the optimization algorithm to the likeli-
hood function, the MLE may be far from the true parameters; see for example, we get MLE α̂ = 1, 687, 133.2, β̂ =
675, 078.4 for the group with central age 67.5, where in fact that the MLE does not exist. In such cases, we can use
the EFF method if the EFF estimates are in reasonable scales. Based on the simulation studies and the real data
analysis, we find that, when the sample size is small or the maximum observed value is small, the MLE is less likely
to exist, and when the sample size is big and the maximum observed value is large, the MLE is more likely to exist.
Nevertheless, we need verify the existence condition for the MLE.
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Appendices

The appendix contains some useful lemmas and technical proofs.

Appendix 1. Some useful lemmas

Lemma A.1: Define

g(x) = 1
1

a1x+b1 + · · · + 1
akx+bk

, x > 0,

where a1, . . . , ak are positive and b1, . . . , bk are nonnegative. Then g(x) is an increasing and concave function.

Proof: It is easy to derive that

g′(x) = g2(x)
{

a1
(a1x + b1)2

+ · · · + ak
(akx + bk)2

}
> 0,

g′′(x) = 2g3(x)

[{
a1

(a1x + b1)2
+ · · · + ak

(akx + bk)2

}2

−
(

1
a1x + b1

+ · · · + 1
akx + bk

){
a21

(a1x + b1)3
+ · · · + a2k

(akx + bk)3

}]

= −
∑

1≤i<j≤k

1
(aix + bi)(ajx + bj)

(
1

aix + bi
− 1

ajx + bj

)2
< 0. �

Lemma A.2: When x → ∞, we have

xm + a1xm−1 + a2xm−2 + · · ·
b1xm−1 + b2xm−2 + b3xm−3 + · · ·

= 1
b1

x + a1b1 − b2
b21

+ a2b21 − b1b3 − a1b1b2 + b22
b31

· 1
x

+ O
(

1
x2

)
.

Proof: Assume that

xm + a1xm−1 + a2xm−2 + · · ·
b1xm−1 + b2xm−2 + b3xm−3 + · · · = 1

b1
x + c + d · 1

x
+ O

(
1
x2

)
.

Then

xm + a1xm−1 + a2xm−2 + · · ·

= (b1xm−1 + b2xm−2 + b3xm−3 + · · · ) ·
(

1
b1

x + c + d · 1
x

+ · · ·
)

= xm +
(
b1c + b2

b1

)
xm−1 +

(
b1d + b2c + b3

b1

)
xm−2 + · · · ,

which indicates that: (i) b1c + b2/b1 = a1, and then c = a1b1−b2
b21

; (ii) b1d + b2c + b3
b1 = a2, and then d = a2b21−b1b3−a1b1b2+b22

b31
.

The proof is completed. �

Appendix 2. Technical Proofs

Appendix 2.1. Proof of Lemmas 2.3–2.4

Proof of Lemma 2.3: Since for any β , �n(α(β),β) = maxα �n(α,β). Thus, to prove �n(α(β1),β1) = maxα,β �n(α,β), we only
need prove that β1 maximizes �n(α(β),β). Therefore, we only need prove that ∂�n(α(β),β)/∂β|β=β1 = 0, ∂�n(α(β),β)/∂β >

0 for β < β1 and ∂�n(α(β),β)/∂β < 0 for β > β1.

https://doi.org/10.2307/2531324
https://doi.org/10.1007/BF02932525


STATISTICAL THEORY AND RELATED FIELDS 155

Consider the following decomposition,

�n(α(β + �β),β + �β) − �n(α(β),β)

�β

= �n(α(β + �β),β + �β) − �n(α(β),β + �β)

�β
+ �n(α(β),β + �β) − �n(α(β),β)

�β

→
{

∂�n(α,β)

∂α
· ∂α(β)

∂β
+ ∂�(α,β)

∂β

}∣∣∣∣
α=α(β)

,

where ∂�n(α,β)
∂α

|α=α(β) = 0, and thus ∂�(α,β)
∂β

|α=α(β) totally determines the sign of ∂�(α(β),β)
∂β

. The proof is completed. �

Proof of Lemma 2.4: We use the method of contradiction. If the conclusion is not correct, then there exists x1 > a such that
t1(x1) = t2(x1), t1(x) > t2(x) for x < x1 and t1(x) < t2(x) for x ∈ (x1, x1 + δ0) for some δ0 > 0. By assumption (D), the curves
y = t1(x) and y = t2(x) will intersect again after (x1, t1(x1)), i.e., there exists x2 > x1 such that t1(x2) = t2(x2), t1(x) < t2(x)
for x ∈ (x1, x2) and t1(x) > t2(x) for x > x2 (suppose that there exists only one such x2, otherwise, we consider the largest
intersection). According to assumption (D), take one point x∗ ∈ (δ∗

4 ,∞) (which is of course greater than x2), use (x2, t(x2)) as
the starting point, and then take a ray interpolating (x∗, t1(x∗)). Let x∗ diverge to infinity so that the point (x∗, t1(x∗)) moves
along the curve y = t1(x). Since t1(x) is increasing and concave, the ray interpolating (x∗, t1(x∗)) tilts down around the start
point (x2, t(x2)). By assumption (C), when x∗ → ∞, the slope of the ray

t1(x∗) − t1(x2)
x∗ − x2

→ c∗.

Thus the limit of the ray is a ray with start point (x2, t1(x2)) and slope c∗, denoted as L, and the curve y = t1(x) is above L.
Note that the start point of the ray L, (x2, t(x2)), is on the curve y = t2(x). By assumption (D), there exists an x∗, which

satisfies that, the curve y = t2(x) intersects L at (x∗, t2(x∗)) and y = t2(x) lies below L for x ∈ (x∗, x∗ + δ∗
5 ) with some positive

δ∗
5 . Without loss of generality, we assume that x2 is such point, that is, y = t2(x) lies below L for x ∈ (x2, x2 + δ∗

5 ).
Through the intersection (x2, t1(x2)), we make tangent line of the curve y = t2(x). If the tangent line coincides with the

ray, then take another point x∗∗ ∈ (x2, x2 + δ∗
5 ), and make another tangent line of the curve y = t2(x) through the point

(x∗∗, t2(x∗∗)). Since y = t2(x) is increasing and concave, if the tangent line (of y = t2(x)) through (x2, t1(x2)) coincides with the
ray L, the tangent line through (x∗∗, t2(x∗∗)) does not coincide with L. Note that the curve y = t1(x) is above L, while y = t2(x)
is below the tangent line (a concave curve is always below its tangent line) which is below the ray L (the one which does not coin-
cide with L must be below L according to the above discussion). Therefore, limx→∞ t1(x)

x 
= limx→∞ t2(x)
x , which contradicts

with assumption (C).
To summary, no such x1 > a exists that t1(x1) = t2(x1), t1(x) > t2(x) for x < x1 and t1(x) < t2(x) for x ∈ (x1, x1 + δ0) for

some δ0 > 0. We conclude that, t1(x) ≥ t2(x) for x ∈ (a,∞). The proof of Lemma 2.4 is completed. �

Appendix 2.2. Proof of Propositions 2.1–2.2

Proof of Propositions 2.1: Proof of Property 1. If β → 0, we have

g1(α,β) → 1
1
α

+
∑m

s=2 ps
α+1 +

∑m
s=3 ps
α+2 + · · · + pm

α+m−1

→ 0,

when α → 0. Therefore, when β → 0, the intersection of y = g1(α,β) and y = α converges to the origin of coordinates.
Proof of Property 2. If β → ∞, then for any α > 0, we have g1(α,β) → ∞. Thus, if β → ∞, then α(β) → ∞ because

(α(β),β) is the intersection. We have

α(β) = 1
1

α(β)+β
+

∑m
s=2 ps

α(β)+β+1 +
∑m

s=3 ps
α(β)+β+2 + · · · + pm

α(β)+β+m−1

= {α(β) + β}m + a1 · {α(β) + β}m−1 + a2 · {α(β) + β}m−2 + · · ·
b1 · {α(β) + β}m−1 + b2 · {α(β) + β}m−2 + b3 · {α(β) + β}m−3 + · · · ,

where

a1 = m(m − 1)
2

, a2 = 1
24

m(m − 1)(m − 2)(3m − 1), b1 = 1 + η1,

b2 = m(m − 1)
2

(1 + η1) + η1 − η2,

b3 = m(m − 1)(m − 2)(3m − 1)
24

+ m(m − 1)(3m2 − 7m + 14) + 24
24

η1

−
{
m(m − 1)

2
+ 2

}
η2 + η3.

Based on Lemma A.2, tedious calculation yields

α(β) = 1
1 + η1

{α(β) + β} + c′α + dα

α(β) + β
+ · · · ,
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where

c′α = η2 − η1

(1 + η1)2
, dα = η22 − η1η3 − η1 + 2η2 − η3

(1 + η1)3
.

Simple algebra yields

α(β) = 1
η1

β + c′α(1 + η1)

η1
+ 1 + η1

η1

dα

α(β) + β
+ · · · = 1

η1
β + cα + dα

β
+ O(1/β2),

where cα = c′α(1+η1)
η1

= η2−η1
η1(1+η1)

.
Proof of Property 3. Since

1
α(β)

= 1
α(β) + β

+
∑m

s=2 ps
α(β) + β + 1

+ · · · + pm
α(β) + β + m − 1

, (A1)

taking derivative with respect to β on both sides of (A1), we have

α′(β) = α2(β)

[
α′(β) + 1

{α(β) + β}2 + {α′(β) + 1}∑m
s=2 ps

{α(β) + β + 1}2 + · · · + {α′(β) + 1}pm
{α(β) + β + m − 1}2

]
.

Simple algebra leads to

α′(β) = u(β)

1 − u(β)
,

where

u(β) =
1

{α(β)+β}2 +
∑m

s=2 ps
{α(β)+β+1}2 + · · · + pm

{α(β)+β+m−1}2{
1

α(β)+β
+

∑m
s=2 ps

α(β)+β+1 + · · · + pm
α(β)+β+m−1

}2 > 0. (A2)

Furthermore, since {
1

α(β) + β
+

∑m
s=2 ps

α(β) + β + 1
+ · · · + pm

α(β) + β + m − 1

}2

=
m∑
i=1

⎡⎣ ∑
s=i ps

α(β) + β + i − 1

⎧⎨⎩
m∑
j=1

∑m
s=j ps

α(β) + β + j − 1

⎫⎬⎭
⎤⎦

>

m∑
i=1

{ ∑
s=i ps

α(β) + β + i − 1
1

α(β) + β

}
>

m∑
i=1

∑
s=i ps

{α(β) + β + i − 1}2 ,

which indicates that u(β) < 1. Therefore, α′(β) > 0.
Taking derivative with respect to β twice on both sides of (A1), we have

α′′(β)

= 2α3(β)

([
α′(β) + 1

{α(β) + β}2 + {α′(β) + 1}∑m
s=2 ps

{α(β) + β + 1}2 + · · · + {α′(β) + 1}pm
{α(β) + β + m − 1}2

]2
−
{

1
α(β) + β

+
∑m

s=2 ps
α(β) + β + 1

+
∑m

s=3 ps
α(β) + β + 2

+ · · · + pm
α(β) + β + m − 1

}
×
[ {α′(β) + 1}2

{α(β) + β}3 + {α′(β) + 1}2∑m
s=2 ps

{α(β) + β + 1}3 + · · · + {α′(β) + 1}2pm
{α(β) + β + m − 1}3

])
= −2α3(β){α′(β) + 1}2

×
⎡⎣ ∑
0≤i<j≤m−1

∑m
s=i+1 ps

∑m
s=j+1 ps

{α(β) + β + i}{α(β) + β + j}
{

1
α(β) + β + i

− 1
α(β) + β + j

}2
⎤⎦

< 0.

Proof of Property 4. If β → 0, then α(β) → 0, and thus (A2) indicates that u(β) → 1; therefore α′(β) → ∞. If β → ∞,
then α(β) → ∞, and thus (A2) indicates that u(β) → 1

1+∑m
t=2

∑m
s=t ps

; therefore α′(β) → 1∑m
t=2

∑m
s=t ps

.
Proof of Property 5. According to (3), the conditional maximum likelihood equation of α can be rewritten as

α

α + β
+ α

∑m
s=2 ps

α + β + 1
+ α

∑m
s=3 ps

α + β + 2
+ · · · + αpm

α + β + m − 1
= 1.

Let

f (α) = α

α + β
+ α

∑m
s=2 ps

α + β + 1
+ α

∑m
s=3 ps

α + β + 2
+ · · · + αpm

α + β + m − 1
,

and then f (α) is an increasing function of α. Since f (α(β)) = 1, then x is less than, equal to or greater than α(β) which is
equivalent to that f (x) is less than, equal to or greater than 1. Therefore, α(β) = Z(β) is equivalent to f (Z(β)) = 1. Since Z(β)



STATISTICAL THEORY AND RELATED FIELDS 157

is a polynomial or fractional function of β , then

f (Z(β)) = Z(β)

Z(β) + β
+ Z(β)

∑m
s=2 ps

Z(β) + β + 1
+ Z(β)

∑m
s=3 ps

Z(β) + β + 2
+ · · · + Z(β)pm

Z(β) + β + m − 1
= 1

is a high-ordered polynomial equation, which has finite number of solutions. �

Proof of Proposition 2.2: The proofs of Properties 1∗ and 5∗ are similar to the proofs of Properties 1 and 5 in Proposition 2.1,
respectively, and Property 3∗ follows from Lemma A.1. In the following, we present the proofs of Properties 2∗ and 4∗.

Proof of Property 2∗. By Lemma A.2, it is easy to obtain

h(β) = βm−1 + a1βm−2 + a2βm−3 + · · ·
b1βm−2 + b2βm−3 + b3βm−4 + · · · ,

where

a1 = (m − 1)(m − 2)
2

, a2 = (m − 1)(m − 2)(m − 3)(3m − 4)
24

, b1 = η1,

b2 = (m − 2)(m − 1) + 4
2

η1 − η2,

b3 = (m − 2)(m − 1)(3m2 − 13m + 36) + 96
24

η1 − m2 − 3m + 10
2

η2 + η3.

Therefore, we have

h(β) = 1
η1

β + ch + dh
1
β

+ O(1/β2),

where

ch = a1b1 − b2
b21

= η2 − 2η1
η21

,

dh = a2b21 − b1b3 − a1b1b2 + b22
b31

= η22 − η1η3

η31
.

Proof of Property 4∗. It is easy to derive that

h′(β) =
∑

s=2 ps
β2 +

∑
s=3 ps

(β+1)2 + · · · + pm
(β+m−2)2(∑

s=2 ps
β

+
∑

s=3 ps
β+1 + · · · + pm

β+m−2

)
= (

∑m
t=2

∑m
s=t ps)β

2(m−1) + · · · + (
∑m

s=2 ps){(m − 2)!}2
(
∑m

t=2
∑m

s=t ps)2β2(m−1) + · · · + (
∑m

s=2 ps)2{(m − 2)!}2 ,

and we have

h′(β) → (
∑m

s=2 ps){(m − 2)!}2
(
∑m

s=2 ps)2{(m − 2)!}2 = 1∑m
s=2 ps

, when β → 0,

h′(β) →
∑m

t=2
∑m

s=t ps
(
∑m

t=2
∑m

s=t ps)2
= 1∑m

t=2
∑m

s=t ps
= 1

η1
, when β → ∞.

�

Appendix 2.3. Proof of Theorem 2.5

By Properties 1, 4 of α(β) and 1∗, 4∗ of h(β), when β → 0, h(β) → 0 and α(β) → 0; however, h′(β) → 1∑m
s=2 ps

whileα′(β) →
∞. Thus, there exists δ1 > 0, such that α(β) > h(β) for β ∈ (0, δ1).

By Property 2 of α(β) and 2∗ of h(β), when β → ∞,

h(β) = 1
η1

· β + η2 − 2η1
η21

+ η22 − η1η3

η31
· 1
β

+ O
(

1
β2

)
,

α(β) = 1
η1

· β + η2 − η1

η1(1 + η1)
+ η22 − η1η3 − η1 + 2η2 − η3

(1 + η1)3
· 1
β

+ O
(

1
β2

)
.

We first discuss the situation η2−2η1
η21


= η2−η1
η1(1+η1)

. We have, there exists δ2 > 0, such that for β ∈ (δ2,∞),⎧⎪⎪⎨⎪⎪⎩
α(β) < h(β), if

η2 − η1

η1(1 + η1)
<

η2 − 2η1
η21

,

α(β) > h(β), if
η2 − η1

η1(1 + η1)
>

η2 − 2η1
η21

.
(A3)
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In case of η2−2η1
η21

= η2−η1
η1(1+η1)

, that is, η2 = η21 + 2η1, we need compare dα = η22−η1η3−η1+2η2−η3
(1+η1)3

and dh = η22−η1η3
η31

. If dα > dh,
α(β) > h(β) and if dα < dh, α(β) < h(β).

Therefore, if
η2 − η1

η1(1 + η1)
<

η2 − 2η1
η21

, or
η2 − η1

η1(1 + η1)
= η2 − 2η1

η21
, dα < dh, (A4)

theremust exist an intersection for the curves y = h(β) and y = α(β). Part (II) of Theorem2.5 follows directly fromLemma 2.4.
Thus we only need prove part (I). In the following, we assume that (A4) holds so that y = h(β) and y = α(β) intersect at least
once at some positive β .

Suppose that y = h(β) and y = α(β) intersect firstly at (β1,α1), where α1 = h(β1) = α(β1), and then α(β) > h(β) for
β ∈ (0,β1). By Property 5 of α(β) in Proposition 2.1 the curves y = h(β) and y = α(β) only intersect finite times. Therefore,
there exists δ3 > β1 such that y = α(β) and y = h(β) do not intersect for β ∈ (β1, δ3). If for β ∈ (β1, δ3), the curve y = α(β)

is above y = h(β). Then, due to (A4), the curve y = α(β) will finally be below the curve y = h(β). Thus the two curves will
intersect again. However, because the number of intersections is finite, it cannot be always the case that the curve y = α(β) lies
above y = h(β) after the intersection, i.e., there exists an intersection that y = α(β) lies below y = h(β) after that intersection.
Without loss of generality, we assume that

y = α(β) lies below y = h(β) after the first intersection (β1,α1). (A5)

Next, we prove that (α(β1),β1) is themaximizer of the log-likelihood function �n(α,β). Sinceα(β) is the conditionalmaximum
likelihood estimator of α, i.e.,

max
α,β>0

�n(α,β) = max
β>0

�n(α(β),β),

We only need prove that β = β1 is a maximizer of �n(α(β),β).
Since (α(β1),β1) is a solution to the equation system (3)–(4), then

1
n

· ∂�n(α,β)

∂α

∣∣∣∣
α=α(β1),β=β1

= 1
α(β1)

−
(

1
α(β1) + β1

+
∑m

s=2 ps
α(β1) + β1 + 1

+
∑m

s=3 ps
α(β1) + β1 + 2

+ · · · + pm
α(β1) + β1 + m − 1

)
= 0,

1
n

· ∂�n(α,β)

∂β

∣∣∣∣
α=α(β1),β=β1

= − 1
α(β1)

+
(∑m

s=2 ps
β1

+
∑m

s=3 ps
β1 + 1

+ · · · + pm
β1 + m − 2

)
= 0.

To prove that β = β1 maximizes �n(α(β),β), by Lemma 2.3, we only need prove that ∂�n(α,β)
∂β

|α=α(β) is greater than zero for
β ∈ (0,β1) and smaller than zero if β ∈ (β1,∞).

We first consider β ∈ (0,β1). When β ∈ (0,β1), we have α(β) > h(β). Therefore,

1
n

· ∂�n(α,β)

∂β

∣∣∣∣
α=α(β)

= − 1
α(β)

+
(∑m

s=2 ps
β

+
∑m

s=3 ps
β + 1

+ · · · + pm
β + m − 2

)
> 0. (A6)

We next consider β ∈ (β1,∞). By (A5), α(β) < h(β) if β ∈ (β1, δ3). Then, by Lemma 2.4, y = α(β) can’t be above y = h(β)

at any β > β1, i.e., α(β) ≤ h(β) for all β > β1. Therefore,

1
n

· ∂�n(α,β)

∂β

∣∣∣∣
α=α(β)

= − 1
α(β)

+
(∑m

s=2 ps
β

+
∑m

s=3 ps
β + 1

+ · · · + pm
β + m − 2

)
< 0. (A7)

The proof is completed. We see that the overall proof depends on the fact that

if α(β) > h(β), then
∂�n(α(β),β)

∂β
> 0, and thus �n(α(β),β) increases with β ;

if α(β) < h(β), then
∂�n(α(β),β)

∂β
< 0, and thus �n(α(β),β) decreases with β .
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