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ABSTRACT
We propose two simple regression models of Pearson correlation coefficient of two normal
responses or binary responses to assess the effect of covariates of interest. Likelihood-based
inference is established to estimate the regression coefficients, upon which bootstrap-based
method is used to test the significance of covariates of interest. Simulation studies show the
effectiveness of the method in terms of type-I error control, power performance in moderate
sample size and robustnesswith respect tomodelmis-specification.We illustrate the application
of the proposed method to some real data concerning health measurements.
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1. Introduction

Most regressionmodels have been developed to describe the relationship between the expected value of response(s)
and a number of covariates (predictors). In some situations, it is desired to understand the influence of covariates
on the strength of Pearson correlation between two responses. For example, in some psychological study, it is of
interest to understand the impact of age and/or sex on the association between physical functionality and mental
functionality of the elder (Thomas et al., 2016).

One traditional measure for such association is the partial correlation coefficient, i.e., the correlation coefficient
of two responses after removing the covariate effect (Anderson, 2003). However, its inference depends on the nor-
mality assumption and it misses the connection to the actual values of the covariates which is supposed to have
different effects on the association. In terms of the rank-based counterpart, Liu et al. (2018) proposed covariate-
adjusted partial Spearman’s rank correlation using probability scale residuals, which is particularly useful for ordinal
responses.

Another method is to use a conditional approach to assess the correlation at different levels of the covariates.
Bartlett (1993) proposed to model the Fish z-transformed correlation by a polynomial regression of a single covari-
ate z. His model builds a linear regression up on paired observations of (zk, r(zk)), k = 1, . . . ,K, where r(zk) is
the sample correlation coefficient of two responses at zk over K distinct levels of z. One clear drawback of this
method is that it requires repeated measures of responses at zk, which would lead to the demand of a large total
sample size and even larger when multiple covariates are included. Other studies along this direction include Yu
and Dunn (1982) and Paul (1989). Wilding et al. (2011) proposed a model to relate a transformed correlation
coefficient of two normal responses (y1 and y2) with a linear combination of covariates (z1, . . . , zp) through the
probit link, i.e., (1 + ρ)/2 = �(γ0 + γ1z1 + · · · + γpzp), where ρ = corr(y1, y2) and � is the distribution func-
tion of the standard normal variable. (Restrictedmaximum likelihood corrected LRT is used to test the significance
of covariates.) We point out that the linear transformed correlation (1 + ρ)/2 guarantees the range for a distribu-
tion function. However, it can lose efficiency when ρ is known positive (since it can be modelled directly without
transformation).

All the aforementioned methods consider the continuous responses. In many situations, there are only binary
responses available, e.g., after dichotomization. In this paper, we propose two simple regression models of Pearson
correlation coefficient of two normal responses and two binary responses (Section 2). Specifically, when the correla-
tion coefficient is known positive, the logistic link function is used and when the correlation coefficient is arbitrary
in (−1, 1), the hyperbolic tangent (or Fisher z-transformation) link function is used. Likelihood-based inference
is developed to estimate the regression coefficients (Section 3). We demonstrate the performance of the proposed

CONTACT Jin Xu jxu@stat.ecnu.edu.cn School of Statistics, East China Normal University, Shanghai 200062, People’s Republic of China; Key
Laboratory of Advanced Theory and Application in Statistics and Data Science – MOE, East China Normal University, Shanghai 200062, People’s Republic of
China
∗These authors contributed equally.

© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2023.2164970&domain=pdf&date_stamp=2023-05-31
http://orcid.org/0000-0003-2434-7183
mailto:jxu@stat.ecnu.edu.cn
http://creativecommons.org/licenses/by/4.0/


98 A. G. DUFERA ET AL.

method by simulation in Section 4 and illustrate the applications in great detail to a real data concerning physical
functionality and mental functionality of the elder (Section 5). We defer the technical details in Appendix.

2. Model

Let (y1, y2) be a pair of responses of a subject with correlation coefficient ρ = corr(y1, y2). Let x1, . . . , xp denote p
associated covariates of the paired responses, which follow a joint distribution f (x1, . . . , xp). Consider modelling ρ
as a monotonic function of the linear combination of these covariates through

ρ = h(x�β), (1)

where x = (1, x1, . . . , xp)� and β = (β0,β1, . . . ,βp)�. When ρ > 0, we use the logistic function h(x) =
(1 + e−x)−1, referred by link 1. When −1 < ρ < 1, we use the hyperbolic tangent function h(x) = tanh(x) =
(e2x − 1)/(e2x + 1), referred by link 2. We adopt these two commonly used link functions to map the real line to
intervals (0, 1) and (−1, 1), respectively, as they are analytically simple. Other links can also be used, e.g., the probit
link for ρ > 0. When the correlation is known positive, the logistic function is preferred as it is more efficient for
estimation and easy for interpretation. Let h′ and h′′ denote the first and second derivatives of h, respectively. Our
goal is to assess model (1).

2.1. Bivariate normal responses

Assume that y1 and y2 follow a bivariate normal distribution with marginal distributionsN(μ1, σ 2
1 ) andN(μ2, σ 2

2 ),
respectively. For j = 1, 2, we furthermodel the expected value of yj by a linear regression, i.e., E(yj | x) = μj = x�γ j
where γ j = (γ0, γ1, . . . , γp)�. Denote η = (γ �

1 , γ
�
2 , σ

2
1 , σ

2
2 )

� as the collection of all nuisance parameters.
The log-likelihood function is

�(β , η) = − log(2π)− T1

2(1 − ρ2)
+ ρT2

1 − ρ2
− log(1 − ρ2)

2
, (2)

where

T1 =
(
y1 − μ1

σ1

)2
+

(
y2 − μ2

σ2

)2
, T2 = (y1 − μ1)(y2 − μ2)

σ1σ2
, (3)

ρ = h(x�β), and μj = x�γ j. The first and second derivatives of � with respect to β are, respectively

s(β , η) = {a(ρ)T1 + b(ρ)T2 + c(ρ)} x, H(β , η) = {u(ρ)T1 + v(ρ)T2 + w(ρ)} xx�, (4)

where a, b, c, u, v and w are given in Table 1. By the fact that E(T1 | x) = 2 and E(T2 | x) = ρ, we have E(s) = 0,
where 0 is the zero vector.

Table 1. Some functions under two link functions.

Link 1 Link 2

h(x) (1 + e−x)−1 tanh(x)

h′(x) h(x){1 − h(x)} {1 + h(x)}{1 − h(x)}
h′′(x) h(x){1 − h(x)}{1 − 2h(x)} −2h(x){1 + h(x)}{1 − h(x)}

a − ρ2

(1 − ρ)(1 + ρ)2

−ρ
(1 − ρ)(1 + ρ)

b
(1 + ρ2)ρ

(1 − ρ)(1 + ρ)2

(1 + ρ2)

(1 − ρ)(1 + ρ)

c
ρ2

1 + ρ
ρ

u
−ρ2(2 − ρ + ρ2)

(1 − ρ)(1 + ρ)3

−(1 + ρ2)

(1 − ρ)(1 + ρ)

v −ρ(−1 + ρ − 5ρ2 + ρ3)

(1 − ρ)(1 + ρ)3

4ρ

(1 − ρ)(1 + ρ)

w
ρ2(1 − ρ)(2 + ρ)

(1 + ρ)2
(1 + ρ)(1 − ρ)
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2.2. Bivariate binary responses

Assume that both y1 and y2 are binary responses. Let E(y1) = p1 and E(y2) = p2. For a, b = 0, 1, let Iab = I(y1 =
a, y2 = b), where I(·) is the indicator function, and pab = E(Iab) = P(y1 = a, y2 = b). Clearly, p00 + p01 + p10 +
p11 = 1. By definition, we have

p1 = p11 + p10, p2 = p11 + p01, ρ = p11 − p1p2√
p1(1 − p1)p2(1 − p2)

.

Inversely, given p1, p2 and ρ, we can obtain

p11 = p1p2 + ρ
√
p1(1 − p1)p2(1 − p2), p10 = p1 − p11, p01 = p2 − p11. (5)

For j = 1, 2, we further model the expected value of yj by a logistic regression through pj = {1 + exp(−x�γ j)}−1,
where γ j is as defined in Section 2.1. Denote η = (γ �

1 , γ
�
2 )

�. (Through (1) and (5), pab is a function of (β , η).)
By (5), the log-likelihood is

�(β , η) =
∑

a,b=0,1

Iab log pab =
∑

a,b=0,1

Iab log(cab + dabρ),

where

c11 = p1p2, d11 = √
p1(1 − p1)p2(1 − p2),

c10 = p1(1 − p2), d10 = −d11,

c01 = p2(1 − p1), d01 = −d11,

c00 = (1 − p1)(1 − p2), d00 = d11.

Then, the first and second derivatives of � with respect to β are, respectively

s(β , η) =
∑

a,b=0,1

Iabeab(ρ)x, H(β , η) =
∑

a,b=0,1

Iabfab(ρ)xx�, (6)

where

eab(ρ) = dabh′(x�β)

cab + dabρ
, fab(ρ) = −d2abh

′2(x�β)+ dab(cab + dabρ)h′′(x�β)

(cab + dabρ)2
.

The detailed expressions of eab and fab under the two models of h are given in Appendix. When E(Iab | x) = pab,
we have E(s) = 0.

3. Inference

Let {(y1, y2, x1, . . . , xp) : i = 1, . . . , n} denote independent samples of (y1, y2, x1, . . . , xp) of size n. For i = 1, . . . , n
and j = 1, 2, denote xi = (1, xi1, . . . , xip)�, yj = (y1j, . . . , ynj)�, x = n−1 ∑n

i=1 xi and Xn×p = (x1, . . . , xn)�.
The gradient (first derivative) and the Hessian matrix (second derivative) of the log-likelihood over n inde-

pendent samples with respect to β are s(β , η) = ∑n
i=1 si(β , η) and H(β , η) = ∑n

i=1Hi(β , η), respectively, where
si(β , η) and Hi(β , η) are obtained by replacing (y1, y2, x) in (4) or (6) by (yi1, yi2, xi) for the ith subject.

In addition, let Gi(β , η) = ∂2�i/∂β∂η
�. Denote	 = E(Hi) and J = E(Gi), where the expectation is taken with

respect to the joint distribution of (yi1, yi2, xi). Let I = E{si(β , η)s�i (β , η)} denote the Fisher information matrix
with respect to β . It is noted that unlike the usual regression of the mean value of response, the regularity condition
does not hold for the model (1) (Tsiatis, 2006, Theorem 3.2). (It can be easily verified that I �= −	.)

Let η̂ be the maximum likelihood estimate (MLE) of η obtained from the marginal models. For instance, the
marginalMLEs of the nuisance parameters under the bivariate normal response case are γ̂ j = (X�X)−1X�yj, σ̂ 2

j =
n−1 ∑n

i=1(yji − μ̂ji)
2, where μ̂ji = x�

i γ̂ j. By large sample theory, we have η̂
p→ η and

√
n(̂η − η)

d→ N(0,
η),
where
η is the covariance matrix.

Next, we estimate β by using the Newton–Raphson method through iterating

β(r+1) = β(r) − H−1(β(r), η̂)s(β(r), η̂), (7)

where β(r) is the estimate of β at the rth iteration. The convergence of Newton–Raphson method depends on the
initial point and the negative definitiveness of the Hessian matrix, which guarantees the (unique) global maximizer
of the log-likelihood function. The initial estimate β(1) can be chosen such that h(x�β(1)) is in the range of ρ.
However, the Hessian matrix involves the plug-in estimators of the nuisance parameters. It is not trivial to show its
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negative definitiveness theoretically. Nevertheless, numerical study shows the condition holds with all eigenvalues
being negative. Denote the root of the Newton–Raphson method by β̂ .

Theorem3.1: Suppose that the conditions of LemmaA.1 for the bivariate normal responses or those of LemmaA.2 for
the bivariate binary responses hold. (LemmasA.1 andA.2 are given in Appendix.) Suppose the iteration (7) converges.

(i) β̂ is a consistent estimator of β, i.e., β̂
p→ β, and (ii)

√
n(β̂ − β)

d→ N(0,
), where 
 is the covariance matrix
given in the proof.

The significance of the overall model is assessed by testing the hypothesis H0 : β1 = · · · = βp = 0. Denote the
Wald statistic W = β̂

�
−0ĉov−1(β̂−0)β̂−0, where β̂−0 = (β̂1, . . . , β̂p)� and ĉov(β̂−0) is the estimate of the covari-

ance of β̂−0. By Theorem 3.1, under the null hypothesis,W follows a chi-square distribution of degrees of freedom
p asymptotically. The significance of individual covariate xj (j = 1, . . . , p) is assessed by testing the hypothesis
H0j : βj = 0 using the statistic wj = β̂j/ŝe(β̂j), where ŝe(β̂j) is the estimate of the standard deviation of β̂j, which is
the square root of the (j, j)th element of ĉov(β̂−0). The null distribution of wj is asymptotically standard normal.
Since the exact expression of
 is rather complicated, we use bootstrap to estimate it in practice.

4. Simulation study

We conduct simulations to examine the performance of the proposed model for making inference in estimation
and testing.

4.1. Setup

Unlike possible large numbers of covariates for the mean model, a small number of relevant covariates are usu-
ally adequate for modelling the correlation coefficient. Consider the number of covariates p to be two and three,
respectively. Set the sample size n to be 100, 200, 400 and 1000, respectively.

For bivariate normal responses, set the marginal variances σ 2
1 = σ 2

2 = 1. For both bivariate normal responses
and bivariate binary responses, we set both γ 1 and γ 2 to be a vector of p+ 1 zeros for the marginal meanmodels. It
simplifies the data generation without simplifying the estimation procedure. Let x1, . . . , xp be independent uniform
random variables in (0,1).

For the correlation coefficient model, set β0 = 0.25. Under the nonnull model, set β1,. . . ,βp under two link func-
tions as in Table 2, where only the first covariate is significant. Under the null model, simply set all β1, . . . ,βp to be
zeros. We set (0.25, 0, . . . , 0) as the initial values for β under both link functions.

Throughout, we set the significant level to be 0.05 for both the global test and individual test, and set the number
of replications, B, to be 1000.

4.2. Results

First, denote the empirical root of mean square error of β̂ by ERMSE = B−1 ∑B
b=1{

∑p
j=0(β̂

(b)
j − βj)

2}1/2, where
β̂
(b) is the estimate of β in the bth replication. It measures the performance of the estimation in terms of magni-

tude. Second, denote the directional consistency rate (CR) by CR = B−1 ∑B
b=1{n−1 ∑n

i=1 I(ρ̂
(b)
i ρ

(b)
i > 0)}, where

ρ
(b)
i is the true correlation coefficient in the bth replication and ρ̂(b)i = h(x�

i β̂
(b)
). It measures the performance of

estimation in terms of sign direction.
Table 3 presents the type-I error of the global test and individual tests under the null model. It is seen that the

proposed resampling test controls the type-I error well at the nominal level.
Columns 4–5 and 9–10 of Table 4 present the ERMSE andCRunder the nonnullmodel considered in Section 4.1.

It is seen that as the sample size increases the ERMSE decreases while the CR increases as expected. The CR ranges
from 85% to 100% indicating that the proposed model yields a good fit in the sign direction of the correlation
coefficient. Columns 7–9 and 12–15 of Table 4 present the powers of the global test and individual tests of the
covariates. It is seen that both the global test and the individual test for the significant covariate (i.e., x1) gain power

Table 2. Specifications of β1, . . . ,βp
under p = 2, 3 and two link functions.

(β1,β2) (β1,β2,β3)

Link 1 (1, 0) (1, 0, 0)
Link 2 (−1, 0) (−1, 0, 0)
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Table 3. Type-I errors (in %) of the global test (for the model significance)
and individual test (for the significance of the covariates) under two types of
responses, two link functions and various sample sizes.

p = 2 p = 3

Response Link n Global β1 β2 Global β1 β2 β3

Normal 1 100 2.5 2.6 2.3 1.6 2.6 2.1 2.4
200 4.5 5.1 3.9 3.7 4.2 3.0 3.9
400 5.5 4.3 5.0 4.1 3.8 3.8 5.8
1000 6.0 4.4 5.4 5.8 5.1 5.3 5.3

2 100 5.6 4.3 5.2 6.6 5.2 5.3 4.7
200 5.7 3.9 6.3 7.5 6.0 6.3 5.3
400 6.1 6.1 5.5 5.5 5.1 3.7 5.1
1000 5.7 4.6 4.6 4.5 4.0 5.0 4.7

Binary 1 100 2.6 2.5 2.5 4.6 3.5 3.5 4.4
200 0.1 0.8 1.0 0.1 0.5 0.6 0.4
400 1.1 2.2 2.1 0.3 1.8 2.9 1.4
1000 5.5 5.2 6.1 4.4 3.7 5.8 4.7

2 100 0.6 1.1 1.2 0.5 0.9 0.8 0.7
200 3.7 3.3 3.9 3.3 4.1 5.0 3.7
400 4.9 5.1 4.0 4.9 4.8 5.1 6.3
1000 5.1 4.6 4.6 5.6 5.5 4.7 6.1

Table 4. ERMSE, CR and testing power of β ’s of models considered in Table 1 with various sample sizes.

p = 2 p = 3

Power Power

Model Link n RMSE CR(%) Global β1 β2 RMSE CR(%) Global β1 β2 β3

Normal 1 100 1.149 100 15.0 18.7 7.8 1.296 100 14.5 18.6 13.5 13.2
200 0.848 100 36.2 43.5 6.0 1.039 100 29.6 40.8 7.9 8.0
400 0.619 100 69.4 75.8 6.3 0.737 100 63.2 77.1 5.4 5.8
1000 0.373 100 98.6 99.3 4.8 0.447 100 97.4 99.0 4.3 5.1

2 100 0.583 87.1 69.0 77.4 4.7 0.74 85.1 60.0 68.4 4.6 3.3
200 0.401 90.5 95.5 97.5 5.4 0.493 89.1 94.0 97.3 4.6 4.8
400 0.274 93.5 100 100 5.3 0.336 92.3 100 100 5.7 5.1
1000 0.165 96.0 100 100 5.9 0.207 95.3 100 100 5.1 4.6

Binary 1 100 2.924 100 6.0 7.0 4.7 3.529 100 10.5 10.1 8.7 8.8
200 1.766 100 2.9 5.7 1.8 2.319 100 2.8 6.3 2.0 1.3
400 1.066 100 7.0 16.5 1.5 1.337 100 3.1 13.8 1.2 1.2
1000 0.620 100 52.5 68.8 3.8 0.772 100 38.9 69.3 3.3 2.9

2 100 0.696 86.2 20.8 40.7 1.6 0.871 83.9 4.7 26.1 0.7 0.6
200 0.443 89.8 90.4 94.8 3.8 0.556 88.4 80.5 94.4 4.8 4.7
400 0.308 93 99.7 99.7 4.7 0.367 91.7 99.6 100 4.4 4.6
1000 0.196 95.5 99.9 99.9 5.1 0.235 94.8 100 100 5.0 5.0

as the sample size increases as desired. The rejection rates for the insignificant covariates (i.e., x2 and x3) are close
to the nominal level as desired. We note that the power performance depends on the actual model. In general, we
see the proposed method works well under moderate sample size.

4.3. Sensitivity analysis

We adopt the simulation model from Wilding et al. (2011) for bivariate normal responses, where y1 ∼ N(1 +
2x1, 1), y2 ∼ N(1.5 + 1.2x1, 1) and their correlation coefficient is given by ρ(y1, y2) = 2�(0.5 + β1x1)− 1 with
x1 being a uniform random variable in (0, 1). Consider β1 to be 0, 0.5 and 1, respectively, to represent the null case
and two nonnull cases. Set n to be 30, 60 and 150, respectively.

We compute the rejection rate for testing the significance of x1 using the proposed method with link 2 in com-
parison with Wilding et al. (2011)’s method by which the model is correctly specified. This serves as a sensitivity
analysis under model mis-specification. Table 5 reports the rejection rates under the considered cases. It is seen
that under the null case when β1 = 0 the proposed method controls the type-I error well. Under the nonnull cases
when β1 = 0.5 and 1 the proposed method is less powerful thanWilding et al.’s method when the sample size is 30
and becomes comparable in power when the sample size gets larger (� 60).

5. Real data application

Our data are taken from the survey ofNational HealthMeasurement Study in 2005–2006 (Fryback, 2009). It collects
responses to health-related quality of life questionnaires and health status questions through Short Form SF-36
questionnaires from 3844 older adults in the continental United States (1641 males and 2203 females).
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Table 5. Rejection rates (in %) of Wilding et al. (2011)’s
method and the proposed method for testing the sig-
nificance of the covariate.

n β1 Wilding et al. Proposed

30 0 6.1 4.4
0.5 10.6 7.2
1 31.5 13.6

60 0 5.2 4.8
0.5 17.2 17.1
1 56.2 53.6

150 0 5.3 6.1
0.5 43.2 41.8
1 95.3 95.5

5.1. Bivariate normal responses

First, we illustrate the application of the proposed model to the bivariate normal responses case. The SF-36 items
were aggregated into eight health concepts, which were further summarized into the physical component summary
(PCS) and the mental component summary (MCS), both in the range of (0, 100) with higher scores indicating
better physical andmental health functions, respectively [28]. Several medical studies showed that the PCS declined
significantly with age, but that theMCS did not change with age (Kim, 2016;Ware Jr et al., 1994). To continue along
these lines, we applied the proposed method to further investigate the effect of gender and marital status. We used
the Fisher z-transformation (i.e., tanh link) to accommodate negative value of correlation. The estimate model for
the correlation between PCS and age is found to be

tanh(ρ(PCS, age)) = −0.203 − 0.145 × MARRIED + 0.018 × SEX,

where MARRIED is 1 if married or living with a partner and 0 otherwise, and SEX is 1 if female and 0 if male.
The corresponding p-values for marital status and gender are < 0.001 and 0.592, respectively, indicating strong
significance of marriage and insignificance of gender. The negative coefficient of MARRIED implies that the status
of being married or living with a partner aggravates the declination of PCS with age (−0.283 for people married or
living with a partner and −0.209 for people living by themselves). In other words, the people who are married or
living with a partner have relatively lower physical functionality than the people who live by themselves when they
age in general. On the other hand, our model concurred with the conclusion of insignificant correlation between
MCS and age. In addition, neither gender nor marital status has significant effect on this correlation. (The details
are omitted.)

Moreover, we applied the proposed model to study the age effect on the correlation of PCS andMCS. (Through-
out this section the observations of age are standardized, denoted by AGE∗, before fitting the model as covariate.)
Insignificant result is found and supported by the visual inspection of the correlations over 20 age intervals deter-
mined by the percentiles (Figure 1(a)). This result is different from the finding ofWilding et al. (2011), who showed
a nonlinear downward trend of the correlation coefficient over age based on the 2003–2004 Health Outcome Sur-
vey data. When we further include gender and marital status as covariates, there is no significant gender effect

Figure 1. (a) Correlation of PCS and MCS over 20 age groups, (b) correlation of PCS and MCS over 20 age groups with different
genders, (c) correlation of PCS and MCS over 20 age groups with different marital status.
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Figure 2. (a) Correlation of STROKE and DIABETES over 10 age groups, (b) correlation of STROKE and DIABETES over 10 age groups
with different genders, (c) correlation of STROKE and DIABETES over 10 age groups with different marital status.

either (p-value 0.312) as also seen in Figure 1(b). However, there appears a very mild effect of marital status (p-
value 0.236) in the way that the status of being married or living with a partner slightly reduces the correlation
from otherwise slight positive to the level of near zero (Figure 1(c)). (The fitted model is tanh(ρ(PCS,MCS)) =
0.148 − 0.016 × AGE∗ − 0.063 × MARRIED − 0.052 × SEX.)

5.2. Bivariate binary responses

Second, we applied the proposed method to model the correlation of two binary indicators of stroke (STR) and
diabetes (DIA) using the covariates of age, gender and marital status. Since the correlation is known positive, the
logistic link is used. The estimated model which includes the second-order age effect is

logistic(ρ(STR,DIA)) = − 2.050 − 1.352 × AGE∗ − 0.090 × AGE∗2

+ 0.938 × MARRIED + 0.270 × SEX

with strong significance of the linear age effect (p-value< 0.001) and marriage effect (p-value 0.028) and insignifi-
cance of the second-order term of age (p-value 0.786) and gender effect (p-value 0.675). It is seen from Figure 2(a)
that the correlation exhibits a parabola shape in age where the largest value (about 0.25) occurs around age 55 and
then starts to decline afterwards. This indicates that the association of stroke and diabetes is strongly age depen-
dent. The diabetes becomes a less significant risk factor to stroke after a certain age, e.g., 70 (Kim, 2016). The status
of married or living with a partner contributes significantly to the positive correlation (0.145 for married vs 0.106
for otherwise) especially for people who are more than 50 years old (Figure 2(c)), which could be explained by the
evidence of low physical functionality found before.

6. Concluding remarks

We propose two simple regression models of Pearson correlation coefficient of two continuous responses or two
binary responses. Likelihood-based inference is developed to estimate themodel and test the significance of covari-
ates. Ourmethod for the binary response case is new to the literature and is useful for analysing data when outcomes
are observed in binary form (such as yes or no) as seen in many psychological and sociological studies. The pro-
posed method is easy to implement and computationally affordable. (The Newton–Raphson iteration converges in
a few steps.) We have made R package available upon request.

It is noted that for the binary response case, the correlation ρ actually has a restricted range given
by max{−ψ1ψ2,−(ψ1ψ2)

−1} � ρ � min{ψ1ψ
−1
2 ,ψ2ψ

−1
1 }, where ψ1 = √

p1/(1 − p1) and ψ2 = √
p2/(1 − p2)

(Qaqish, 2003). A more precise model than the Fisher z-transformation is warranted to further improve the
efficiency.

The limitation of the present paper is that the proposed method does not handle the case of mixed responses,
i.e., one continuous response and one binary response, or more generally an ordinal response categorized from a
latent variable, such as ‘mild’, ‘moderate’, ‘severe’. Regression model of correlation involving latent variable(s) is
worth investigation. We will report the result in a separate work.
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Appendix. Technical details

A.1 Details of eab and fab
The expressions of eab and fab under two link functions of h are, respectively

eab(ρ) =

⎧⎪⎪⎨⎪⎪⎩
dabρ(1 − ρ)

cab + dabρ
, link 1,

dab(1 + ρ)(1 − ρ)

cab + dabρ
, link 2,

and

fab(ρ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{−d2ab + dab(cab + dabρ)(1 − 2ρ)}ρ2(1 − ρ)2

(cab + dabρ)2
, link 1,

{−d2ab − dab(cab + dabρ)2ρ}(1 + ρ)2(1 − ρ)2

(cab + dabρ)2
, link 2.

A.2 Lemmas

Lemma A.1: Assume that under the bivariate normal response model in Section 2.1, there exist constants c1, c2, c3, and c4
such that 0 < c1 � |ρ| � c2 < 1, 0 � |μ̂j| < c3, |̂σj| � c4 > 0 for j = 1, 2. Then, (i) n−1 ∑n

i=1Hi(β
∗, η̂)

p−→ 	, and (ii)

n−1 ∑n
i=1 Gi(β , η∗)

p−→ J.

Proof: Note that we cannot apply the weak law of large number as �i(β∗, η̂)s and �i(β , η∗)s are neither independent nor
identically distributed.
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(i) Let T̂1i = (
y1i−μ̂1i
σ̂1

)2 + (
y2i−μ̂2i
σ̂2

)2 and T̂2i = (y1i−μ̂1i)(y2i−μ̂2i)
σ̂1σ̂2

. First, by the assumptions of 0 � |μ̂j| < c3 and |̂σj| � c4 > 0
for j = 1, 2, we have

∣∣T̂1i
∣∣ =

∣∣∣∣∣
(
y1i − μ̂1

σ̂1

)2
+

(
y2i − μ̂2

σ̂2

)2
∣∣∣∣∣ � y21i + c23 + 2c3|y1i|

c24
+ y22i + c23 + 2c3|y2i|

c24
;

∣∣T̂2i
∣∣ =

∣∣∣∣ (y1i − μ̂1)(y2i − μ̂2)

σ̂1σ̂2

∣∣∣∣ � (|y1i| + c3)(|y2i| + c3)
c24

.

Second, by the assumption of 0 < c1 � |ρ| � c2 < 1, there exists a positive constant M1 such that |u(ρ)|, |v(ρ)|, and |w(ρ)|
are all bounded by M1. Since Hi(β , η̂) = {u(ρi)T̂1i + v(ρi)T̂2i + w(ρi)}xix�

i , then, there exists a function g(x, y) such that
‖ Hi(β , η̂) ‖� g(xi, yi) and E{g(xi, yi)} � ∞, where ‖ · ‖ is the Euclidean norm (i.e., ‖ A ‖= {tr(AA�)}1/2). Clearly, Hi(β , η)
is continuous in (β�, η�)�.

By Lemma 2.4 of Newey andMcFadden (1994), we have supβ ,η ‖n−1 ∑n
i=1Hi(β , η)−	‖ p−→ 0. Since β∗ p−→ β (because

β̂
p−→ β and β∗ is between β and β̂), η̂

p−→ η and 	 is continuous in (β�, η�)�, by Tsiatis (2006, Section 3.2), the result of
(i) follows.

(ii) By (2) and (3), we have

∂T1i

∂γ �
1

= −2(y1i − μ1)

σ 2
1

x�
i ,

∂T2i

∂γ �
1

= −y2i − μ2

σ1σ2
x�
i ,

∂T1i

∂γ �
2

= −2(y2i − μ2)

σ 2
2

x�
i ,

∂T2i

∂γ �
2

= −y1i − μ1

σ1σ2
x�
i ,

∂T1i

∂σ 2
1

= − (y1i − μ1)
2

σ 4
1

,
∂T2i

∂σ 2
1

= − (y1i − μ1)(y2i − μ2)

2σ 3
1 σ2

,

∂T1i

∂σ 2
2

= − (y2i − μ2)
2

σ 4
2

,
∂T2i

∂σ 2
2

= − (y1i − μ1)(y2i − μ2)

2σ1σ 3
2

,

and

∂2�i(β , η)
∂β∂γ �

1
=

{
−a(ρ)

2(y1i − μ1)

σ 2
1

− b(ρ)
y2i − μ2

σ1σ2

}
xix�

i ,

∂2�i(β , η)
∂β∂γ �

2
=

{
a(ρ)

2(y2i − μ2)

σ 2
2

− b(ρ)
y1i − μ1

σ1σ2

}
xix�

i ,

∂2�i(β , η)
∂β∂σ 2

1
=

{
a(ρ)

(y1i − μ1)
2

σ 4
1

− b(ρ)
(y1i − μ1)(y2i − μ2)

2σ 3
1 σ2

}
xi,

∂2�i(β , η)
∂β∂σ 2

2
=

{
−a(ρ)

(y2i − μ2)
2

σ 4
2

− b(ρ)
(y1i − μ1)(y2i − μ2)

2σ1σ 3
2

}
xi.

By the assumptions, we can find a function k(x, y) such that ‖Di(β , η)‖ � k(xi, yi) and E{|k(xi, yi)|} < ∞. And Di(β , η) is
continuous in (β�, η�)�. Using the similar argument as in the proof for (i), by Lemma 2.4 of Newey and McFadden (1994)
supβ ,η ‖n−1 ∑n

i=1 Gi(β , η)− J‖ p−→ 0. Since η∗ p−→ η and J is continuous in (β�, η�)�, the result of (ii) follows. �

Lemma A.2: Assume that under the bivariate Bernoulli response model in Section 2.2 there exist constants d1, . . . , d6
such that |h′(x�β)| � d1, |h′′(x�β)| � d2 for all x, 0 < d3 < pj < d4 < 1, for j = 1, 2, 0 < d5 < |ρ| < d6 < 1. Then, (i)

n−1 ∑n
i=1Hi(β

∗, η̂)
p−→ 	, and (ii) n−1 ∑n

i=1 Gi(β , η∗)
p−→ J.

Proof: (i) By the assumptions, there existsM2 such that |fiab(β , η)| � M2 for all a, b = 0, 1 and i = 1, . . . , n. Then, there exists
a function g(x, y) such that ‖Hi(β , η̂)‖ � g1(xi, yi) and E{g1(xi, yi)} � ∞. Clearly, Hi(β , η) is continuous in (β�, η�)�. By
Lemma 2.4 of Newey and McFadden (1994), supβ ,η ‖n−1 ∑n

i=1Hi(β , η)−	‖ p−→ 0.

Since β∗ p−→ β , η̂
p−→ η and	 is continuous in (β�, η�)�, by Tsiatis (2006) Section 3.2, the result of (i) follows.

(ii) Observe that

Gi(β , η) =
∑

a,b=0,1

Iiab
∂eiab(β , η)
∂η� xi

=
∑

a,b=0,1

Iiab

∂diab
∂η� (ciab + diabρi)−

(
∂ciab
∂η� − ∂diab

∂η� ρi
)
diab

(ciab + diabρi)2
h′(x�

i β)xi.
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By the logistic model defined in Section 2.2, ∂pji/∂η�
j = pj(1 − pj)x�

i . The expressions of ∂diab/∂η� and ∂ciab/∂η� are
obtained as follows.

∂di11
∂η�

j
= {

p1i(1 − p1i)p2i(1 − p2i)
}1/2 (

1
2

− pji
)
x�
i , j = 1, 2;

∂di10
∂η�

j
= ∂di01
∂η�

j
= −∂di11

∂η�
j
,

∂di00
∂η�

j
= ∂di11
∂η�

j
, j = 1, 2;

∂ci11
∂η�

j
= p1ip2i(1 − pji)x�

i , j = 1, 2;

∂ci10
∂η�

1
= ∂p1i
∂η�

1
− p2i

∂p1i
∂η�

1
= p1i(1 − p1i)(1 − p2i)x�

i ;

∂ci10
∂η�

2
= −p1i

∂p2i
∂η�

2
= −p1ip2i(1 − p2i)x�

i ;

∂ci01
∂η�

1
= −p2i

∂p1i
∂η�

1
= −p2ip1i(1 − p1i)x�

i ;

∂ci01
∂η�

2
= ∂p2i
∂η�

2
− p1i

∂p2i
∂η�

2
= p2i(1 − p2i)(1 − p1i)x�

i ;

∂ci00
∂η�

j
= −pji(1 − p1i)(1 − p2i)x�

i , j = 1, 2.

By the assumptions, we can find a function ω(x, y) such that ‖Gi(β , η)‖ � ω(xi, yi) and E{ω(xi, yi)} < ∞. And, Gi(β , η) is
continuous in (β�, η�)�. Using the similar argument as in the proof for (i), by Lemma 2.4 of Newey and McFadden (1994)
supβ ,η ‖n−1 ∑n

i=1 Gi(β , η)− J‖ p−→ 0. Since η∗ p→ η in probability and J is continuous in (β�, η�)�, the result of (ii) follows.
�

A.3 Proof of Theorem 3.1

By the standard theory of regression, we have
√
n(̂η − η) → N(0,
η).

By the fact that β̂ solves s(β , η̂) = 0, expand s(β̂ , η̂) (with respect to β) around β as

0 = s(β̂ , η̂) = s(β , η̂)+
n∑

i=1
Hi(β

∗, η̂)(β̂ − β), (A1)

where β∗ is between β̂ and β component-wise.
Second, expand s(β , η̂) (with respect to η) around η as

s(β , η̂) =
n∑
i=1

si(β , η̂) =
n∑
i=1

si(β , η)+
n∑

i=1
Gi(β , η∗)(̂η − η), (A2)

where η∗ is between η̂ and η component-wise.
Combining (A1) and (A2),

√
n(β̂ − β) is expressed as

− √
n

{
1
n

n∑
i=1

Hi(β
∗, η̂)

}−1 [
1
n

n∑
i=1

si(β , η)+
{
1
n

n∑
i=1

Gi(β , η∗)

}
(̂η − η)

]
. (A3)

By Lemma A.1 for the bivariate normal response case or Lemma A.2 for the bivariate Bernoulli response case,

1
n

n∑
i=1

Hi(β
∗, η̂)

p−→ 	 and
1
n

n∑
i=1

Gi(β , η∗)
p−→ J. (A4)

And by the central limit theorem, n−1/2 ∑n
i=1 si(β , η)

d−→ N(0, I). Then, by Slusky theorem,

−
{
1
n

n∑
i=1

Hi(β
∗, η̂)

}−1
1√
n

n∑
i=1

si(β , η)
d−→ N(0,	−1I	−1), (A5)

and

−
{
1
n

n∑
i=1

Hi(β
∗, η̂)

}−1 {
1
n

n∑
i=1

Gi(β , η∗)

}
√
n(̂η − η)

d−→ N(0,	−1J
ηJ�	−1). (A6)

Combining (A3), (A5), and (A6),
√
n(β̂ − β) is asymptotically normal with zero mean vector and covariance matrix given by


 = 	−1I	−1 +	−1J
ηJ�	−1 + cov{LHS of (A5), LHS of (A6)}.
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