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ABSTRACT
To improve the precision of estimation and power of testing hypothesis for an unconditional
treatment effect in randomized clinical trials with binary outcomes, researchers and regulatory
agencies recommend using g-computation as a reliable method of covariate adjustment. How-
ever, the practical application of g-computation is hindered by the lack of an explicit robust
variance formula that can be used for different unconditional treatment effects of interest. To fill
this gap, we provide explicit and robust variance estimators for g-computation estimators and
demonstrate through simulations that the variance estimators canbe reliably applied in practice.
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1. Introduction

In randomized clinical trials, adjusting for baseline covariates has been advocated as a way to improve the pre-
cision of estimating and power of testing treatment effects (Freedman, 2008; Lin, 2013; Tsiatis et al., 2008; Yang
& Tsiatis, 2001; Ye et al., 2023, 2022). We focus on binary outcomes in this article. When a logistic model is
used as a working model for baseline covariate adjustment, the g-computation (Freedman, 2008; Moore & van
der Laan, 2009) provides asymptotically normal estimators of unconditional treatment effects such as the risk dif-
ference, relative risk and odds ratio, regardless of whether the logistic model is correct or not. In May 2021, the
US Food and Drug Administration released a draft guidance (FDA, 2021) for the use of covariates in the analysis
of randomized clinical trials, and recommended the g-computation as a ‘statistically reliable method of covariate
adjustment for an unconditional treatment effect with binary outcomes ’.

However, to the best of our knowledge, no explicit robust variance estimation formula for g-computation is
currently available that can be used for inference on different unconditional treatment effects of interest. Moreover,
some existing variance estimation formulas in the literature, such as the formula inGe et al. (2011) for risk difference
and two treatment arms, are model-based and do not fit the model-robust inference paradigm. Additionally, the
formula in Ge et al. (2011) does not take into account a source of variability due to covariates and nonlinearity of
logistic model, which can lead to confidence intervals with insufficient coverage probabilities.

The purpose of this article is to fill this gap by providing explicit and robust variance estimators for g-computation
estimators. Our simulations demonstrate that the provided variance estimators can be reliably applied in practice.

2. Robust variance estimation

Consider a k-arm trial with n subjects. For each subject i, let Ai be the k-dimensional treatment indicator vector
that equals at if patient i receives treatment t for t = 1, . . . , k, where at denotes the k-dimensional vector whose
tth component is 1 and other components are 0, Y(t)

i be the binary potential outcome under treatment t, and Xi

be the baseline covariate vector for adjustment. The observed outcome is Yi = Y(t)
i if and only if Ai = at . We con-

sider simple randomizationwhereAi is completely randomwith knownπt = P(Ai = at),πt > 0 and
∑k

t=1 πt = 1.
We assume that (Y(1)

i , . . . ,Y(k)
i ,Ai,Xi), i = 1, . . . , n, are independent and identically distributed with finite second

order moments. To simplify the notation, we drop the subscript i when referring to a generic subject from the pop-
ulation. Write the unconditional response means as θt = E(Y(t)) and θ = (θ1, . . . , θk)�, where the superscript �
denotes the transpose of a vector throughout. The target parameter is a given contrast of the unconditional response
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mean vector θ denoted as f (θ), such as the risk difference θt − θs, risk ratio θt/θs, and odds ratio θt/(1−θt)
θs/(1−θs)

between
two treatment arms t and s.

Throughout this article, we consider the g-computation procedure that fits a working logistic model E(Y |
A,X) = expit(β�

AA + β�
XX), where expit(x) = exp(x)/{1 + exp(x)}, and βA and βX are unknown parameter vec-

tors (FDA, 2021). The logistic model does not need to be correct and is only used as an intermediate step to obtain
g-computation estimators. Let β̂A and β̂X be the maximum likelihood estimators of βA and βX , respectively, under
the working logistic model. Then, μ̂t(Xi) = expit(β̂

�
Aat + β̂

�
XXi) is the predicted probability of response under

treatment t. The g-computation estimator of θ is θ̂ = (θ̂1, . . . , θ̂k)� with θ̂t = n−1 ∑n
i=1 μ̂t(Xi), and of a given

contrast f (θ) is f (θ̂). Hence, the g-computation takes a summary-then-contrast approach ((2019), R1).
Next, we derive the asymptotic distribution of the g-computation estimator θ̂ and apply the delta method to

obtain the asymptotic distribution of the g-computation estimator f (θ̂). As the logistic regression uses a canonical
link, the first-order conditions of the maximum likelihood estimation ensure that, for t = 1, . . . , k,

n∑
i=1

I(Ai = at){Y(t)
i − μ̂t(Xi)} = 0,

where I(Ai = at) is the indicator of Ai = at . Hence, the g-computation estimator is equal to

θ̂t = 1
n

n∑
i=1

μ̂t(Xi) = 1
n

n∑
i=1

[
I(Ai = at)

π̂t

{
Y(t)
i − μ̂t(Xi)

}
+ μ̂t(Xi)

]
,

where π̂t = nt/n and nt is the number of subjects assigned to treatment t. Since Ai’s are assigned completely at
random, π̂t and μ̂t(x) can converge toπt andμt(x)with n−1/2 rate, respectively, where x is a fixed point andμt(x) is
a function not necessarily equal to E(Y(t) | X = x) undermodel misspecification but satisfies E{Y(t)

i − μt(Xi)} = 0
due to the above first-order conditions, t = 1, . . . , k. Then, by Kennedy (2016) and Chernozhukov et al. (2017),

θ̂t = 1
n

n∑
i=1

[
I(Ai = at)

πt

{
Y(t)
i − μt(Xi)

}
+ μt(Xi)

]
+ op(n−1/2),

where op(n−1/2) denotes the remaining term multiplied by n1/2 converges to 0 in probability. Therefore, an
application of the central limit theorem shows that, regardless of whether the working model is correct or not,

√
n(θ̂ − θ)

d−→ N (0, V) , V =

⎛
⎜⎝
v11 v12 . . . v1k
...

...
. . .

...
v1k v2k . . . vkk

⎞
⎟⎠ ,

where d−→ denotes convergence in distribution, 0 is the k-dimensional vector of zeros, and

vtt = π−1
t var{Y(t) − μt(X)} + 2cov{Y(t),μt(X)} − var{μt(X)}, t = 1, . . . , k,

vts = cov{Y(t),μs(X)} + cov{Y(s),μt(X)} − cov{μt(X),μs(X)}, 1 ≤ t < s ≤ k.

By the delta method, when f (θ) is differentiable at θ with partial derivative vector ∇f (θ), we have

√
n{f (θ̂) − f (θ)} d−→ N

(
0, {∇f (θ)}�V{∇f (θ)}

)
.

Some examples are:

{∇f (θ)}�V{∇f (θ)} =

⎧⎪⎨
⎪⎩

vtt − 2vts + vss, f (θ) = θt − θs,
vtt
θ2t

− 2vts
θtθs

+ vss
θ2s
, f (θ) = log θt

θs
,

vtt
θ2t (1−θt)2

− 2vts
θt(1−θt)θs(1−θs)

+ vss
θ2s (1−θs)2

f (θ) = log θt/(1−θt)
θs/(1−θs)

.

Note that we apply normal approximation for the log transformed risk ratio and odds ratio because the log
transformation typically can improve the performance of normal approximation (Haldane, 1956; Woolf, 1955).
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For robust inference, we propose the following variance estimator for f (θ̂) that is always consistent regardless of
model misspecification:

n−1{∇f (θ̂)}�V̂{∇f (θ̂)}, V̂ =

⎛
⎜⎝
v̂11 v̂12 . . . v̂1k
...

...
. . .

...
v̂1k v̂2k . . . v̂kk

⎞
⎟⎠ , (1)

where

v̂tt = π−1
t S2rt + 2Qytt − S2μt , t = 1, . . . , k,

v̂ts = Qyts + Qyst − Qμts, 1 ≤ t < s ≤ k,

S2rt is the sample variance of Yi − μ̂t(Xi) for subjects with Ai = at , Qytt is the sample covariance of Yi and μ̂t(Xi)

for subjects with Ai = at , S2μt is the sample variance of μ̂t(Xi) for all subjects, Qyts is the sample covariance of Yi
and μ̂s(Xi) for subjects with Ai = at , andQμts is the sample covariance of μ̂t(Xi) and μ̂s(Xi) for all subjects. These
robust variance estimators can be directly calculated using our R package RobinCar that is publicly available at
https://github.com/tye27/RobinCar.

To end this section, we describe the variance estimator in Ge et al. (2011) for the g-computation estimator of risk
difference θ̂2 − θ̂1 in a two-arm trial and discuss why it can be inconsistent and underestimate the true variance. In
our notation, Ge et al. (2011) wrote the g-computation estimator θ̂2 − θ̂1 as gn(β̂), where

gn(β̂) = 1
n

n∑
i=1

expit(β̂
�
Aa2 + β̂

�
XXi) − 1

n

n∑
i=1

expit(β̂
�
Aa1 + β̂

�
XXi)

and β̂ = (β̂
�
A , β̂

�
X )�. Then they applied the Taylor expansion

gn(β̂) − gn(β) = {∇gn(β)}�(β̂ − β) + op(n−1/2),

where β is the probability limit of β̂ , and proposed n−1{∇gn(β̂)}�V̂M{∇gn(β̂)} as a variance estimator for θ̂2 − θ̂1,
where V̂M is themodel-based variance estimator for

√
n(β̂ − β) from the standardmaximum likelihood approach.

This approach has two problems. First, it uses the model-based variance estimator V̂M, which may be inconsistent
to the true variance of β̂ under model misspecification. Second, from

(θ̂2 − θ̂1) − (θ2 − θ1) = {gn(β̂) − gn(β)} + {gn(β) − (θ2 − θ1)},

the variance estimator proposed by Ge et al. (2011) only accounts for the variance of the first term gn(β̂) − gn(β)

but misses the variability from gn(β) − (θ2 − θ1) that is not 0 as the function expit(·) is nonlinear. This second
problem can lead to a confidence interval with too low coverage probability, which can be seen from the simulation
results in the following section.

3. Simulations

We conduct simulations to evaluate the finite-sample performance of our robust variance estimator in (1). We
consider two arms or three arms, simple randomization for treatment assignments with equal allocation (i.e., π1 =
π2 = 1/2 for two arms and π1 = π2 = π3 = 1/3 for three arms), a one-dimensional covariate X ∼ N(0, 32), and
n = 200 or 500.

We consider the following three outcome data generating processes.

Case I: P(Y = 1 | A,X) = expit{−2 + 5 I(A = a2) + X}.
Case II: P(Y = 1 | A = a1,X) = expit(−2 + X) and P(Y = 1 | A = a2,X) = expit(3 + 1.5X − 0.01X2).
Case III: P(Y = 1 | A,X) = expit(−2 + 2 I(A = a2) + 4 I(A = a3) + X).

In order to determine the true values of the unconditional response means, we simulate a large dataset of sample
size 107 for each case and obtain that (θ1, θ2) = (0.2830, 0.8057) for Case I, (θ1, θ2) = (0.2830, 0.7297) for Case II,
and (θ1, θ2, θ3) = (0.2827, 0.5004, 0.7172) for Case III. In each case, the g-computation estimator is based on fitting
a working logisticmodel P(Y = 1 | A,X) = expit(β�

AA + βXX), which is correctly specified under Case I and Case
III, but is misspecified under Case II.

https://github.com/tye27/RobinCar
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Table 1. Simulationmean and standard deviation (SD) of θ̂2 − θ̂1, average standard error (SE), and coverage probability (CP) of 95%
asymptotic confidence interval for θ2 − θ1 under Cases I–II and simple randomization.

θ̂2 − θ̂1 Robust SE in (1) SE in Ge et al. (2011)

Case θ2 − θ1 n Mean SD SE CP (%) SE CP (%)

I 0.5227 200 0.5228 0.0464 0.0464 94.44 0.0415 91.27
500 0.5227 0.0295 0.0294 94.70 0.0264 91.94

II 0.4467 200 0.4469 0.0457 0.0458 94.56 0.0404 91.08
500 0.4463 0.0289 0.0290 94.90 0.0257 91.77

Table 2. Simulation mean and standard deviation (SD) of g-computation estimators, average standard error (SE), and coverage
probability (CP) of 95% asymptotic confidence interval based on robust SE (1) under Case III and simple randomization.

n = 200 n = 500

Parameter Truth Mean SD SE CP Mean SD SE CP

θ2 − θ1 0.2177 0.2176 0.0578 0.0573 94.34 0.2170 0.0366 0.0363 94.82
log(θ2/θ1) 0.5711 0.5798 0.1701 0.1664 94.50 0.5726 0.1053 0.1042 94.59
log θ2/(1−θ2)

θ1/(1−θ1)
0.9328 0.9440 0.2620 0.2586 94.63 0.9341 0.1637 0.1624 94.79

θ3 − θ1 0.4346 0.4348 0.0581 0.0568 94.15 0.4347 0.0360 0.0360 94.84
log(θ3/θ1) 0.9311 0.9432 0.1653 0.1611 94.43 0.9353 0.1018 0.1009 94.92
log θ3/(1−θ3)

θ1/(1−θ1)
1.8621 1.8852 0.2920 0.2851 94.57 1.8712 0.1791 0.1788 95.01

ForCases I–II, which have two arms,we focus on estimating θ2 − θ1 and also include the variance estimator inGe
et al. (2011). For Case III, which has three arms, we evaluate our robust variance estimators for three common
unconditional treatment effects for binary outcomes. The results for Cases I–II are in Table 1 and for Case III
are in Table 2, which include (i) the true parameter value, (ii) Monte Carlo mean and standard deviation (SD)
of g-computation point estimators, (iii) average of standard error (SE), and (iv) coverage probability (CP) of 95%
confidence intervals. We use sample size n = 200 or 500, and 10000 simulation runs.

From Tables 1–2, we see that the g-computation estimators have negligible biases compared to the standard
deviations. Our robust standard error, which is the squared root of variance estimator in (1), is always very close
to the actual standard deviation, and the related confidence interval has nominal coverage across all settings. In
contrast, the standard error in Ge et al. (2011) underestimates the actual standard deviation under Case I when
there is no model misspecification, as well as under Case II when there is model misspecification, and the related
confidence intervals have too low coverage probabilities in both cases.

4. Summary and discussion

In this article, we provide an explicit robust variance estimator formula for g-computation estimators, which can
be used for different unconditional treatment effects of interest and clinical trials with two or more arms. Our
simulations demonstrate that the variance estimator can be reliably used in practice.

In this article, for the purpose of being specific, we focus on the logistic model that regresses the outcome on the
treatment indicators and covariates, which is arguably the most widely used model for binary outcomes. However,
our robust variance estimation formula in (1) is not limited to this model and can be used with different specifica-
tions of the working model (e.g., fitting a separate logistic model for each treatment arm) or with other generalized
linear models using a canonical link for non-binary outcomes (e.g., Poisson regression for count outcomes). Addi-
tionally, although our article considers simple randomization, our robust variance formula in (1) can also be used
for a complete randomization schemewhere the sample size in every group t is fixed to be nπt , because this random-
ization scheme leads to the same asymptotic distribution as the simple randomization (Ye et al., 2023). Simulation
results under this randomization scheme are similar to those under simple randomization; see Tables 3-4 in the
Appendix.

We implement an R package called RobinCar to conveniently compute the g-computation estimator and our
robust variance estimators, which is publicly available at https://github.com/tye27/RobinCar.
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Appendix

In Tables 1–2, we include simulation results under a complete randomization scheme where the sample size in every group t is
fixed to be nπt .

Table 1. Simulation mean and standard deviation (SD) of θ̂2 − θ̂1, average standard error (SE) and coverage probability (CP) of 95%
asymptotic confidence interval for θ2 − θ1 under Cases I–II and complete randomization that fixes nt = nπt .

θ̂2 − θ̂1 Robust SE in (1) SE in Ge et al. (2011)

Case θ2 − θ1 n Mean SD SE CP (%) SE CP (%)

I 0.5227 200 0.5231 0.0464 0.0462 94.62 0.0414 91.54
500 0.5230 0.0298 0.0294 94.67 0.0264 91.70

II 0.4467 200 0.4469 0.0457 0.0456 94.68 0.0403 91.29
500 0.4471 0.0290 0.0290 94.74 0.0257 91.45

Table 2. Simulation mean and standard deviation (SD) of g-computation estimators, average standard error (SE), and coverage
probability (CP) of 95% asymptotic confidence interval based on robust SE (1) under Case III and complete randomization that fixes
nt = nπt .

n = 200 n = 500

Parameter Truth Mean SD SE CP Mean SD SE CP

θ2 − θ1 0.2177 0.2177 0.0580 0.0570 94.25 0.2182 0.0364 0.0362 94.61
log(θ2/θ1) 0.5711 0.5790 0.1687 0.1652 94.60 0.5755 0.1046 0.1040 95.02
log θ2/(1−θ2)

θ1/(1−θ1)
0.9328 0.9437 0.2616 0.2567 94.78 0.9391 0.1627 0.1621 94.73

θ3 − θ1 0.4346 0.4349 0.0579 0.0567 93.96 0.4354 0.0364 0.0360 94.23
log(θ3/θ1) 0.9311 0.9424 0.1640 0.1602 94.02 0.9371 0.1017 0.1008 94.99
log θ3/(1−θ3)

θ1/(1−θ1)
1.8621 1.8853 0.2910 0.2844 94.31 1.8751 0.1811 0.1788 94.48
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