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ABSTRACT
In the realm of survey data analysis, encountering substantial variance relative to bias is a
commonoccurrence. In this study, we present an innovative strategy to tackle this issue by intro-
ducing slightly biased variance estimators. These estimators incorporate a constant cwithin the
range of 0 to 1, which is determined through the minimization of Mean Squared Error (MSE) for
c × (variance estimator). This research builds upon the foundation laid by Kourouklis (2012, A
new estimator of the variance based on minimizing mean squared error. The American Statis-
tician, 66(4), 234–236) and extends their work into the domain of survey sampling. Extensive
simulation studies are conducted to illustrate the superior performance of the adjusted variance
estimators when compared to standard variance estimators, particularly in terms of MSE. These
findingsunderscore theefficacyof ourproposedapproach inenhancing theprecisionof variance
estimation within the context of survey data analysis.
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1. Introduction

Consider a random sample X1,X2, . . . ,Xn from a population with distribution function F ∈ F . Assume that
Xi has finite fourth moment. In general, the population variance σ 2 is estimated by the sample variance s2 =∑n

i=1(Xi − X)2/(n − 1). Many researchers believe that there are estimators of the form cs2 (where c is a constant
between 0 and 1) that have smallerMSE than the sample variance s2. Thesework include Stein (1964), Brown (1968),
Brewster and Zidek (1974), Strawderman (1974), Maruyama (1998), Yatracos (2005) andMaruyama and Strawder-
man (2006). Kourouklis (2012) proposed a variance estimator c1s2 and showed that this estimator has the smallest
MSE among the estimators of the form cs2.

In this research, we extend the methodology of Kourouklis (2012) to survey data. Survey data typically spans
large geographical areas, resulting in substantial inherent variability. To address this challenge, we have developed
adjusted variance estimation techniques that effectively handle the variability commonly associated with survey
data. These adjustments result in reduced variance, leading to narrower confidence intervals and enhancing the
precision of our estimates.

This research is organized as follows: Section 2 introduces notation in a general survey framewith simple random
sample without replacement (SRS) and stratified random sample design; Section 3 proposes the adjusted variance
estimator for stratified random samples; Section 4 performs simulation comparisons among the estimators; and
Section 5 gives conclusions of the research.

2. Notation

LetU = {1, 2, . . . ,N} be the index set of the finite populationwith sizeN, and y1, y2, . . . , yN be the values of the char-
acter of the sampling units in the population. Let ȳU be the population mean: ȳU = ∑N

i=1 yi/N, and S2 be the pop-
ulation variance: S2 = ∑N

i=1(yi − ȳU)2/(N − 1). Also let μ2 = ∑N
i=1(yi − ȳU)2/N and μ4 = ∑N

i=1(yi − ȳU)4/N
be the centralized second and fourth moments respectively. At the sample S level, let n be the sample size. Sample
mean ȳ and sample variance s2 are defined as ȳ = ∑

i∈S yi/n, and s2 = ∑n
i=1(yi − ȳ)2/(n − 1).

Under an SRS, E(ȳ) = ȳU , and

Var(ȳ) =
(
1 − n

N

) S2

n
, (1)

where (1 − n/N) is called the finite population correction coefficient.
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In a stratified random sample, population with sizeN is divided intoH non-overlapping strata with sizeNh, h =
1, 2, . . . ,H, such that N = ∑H

h=1 Nh. Let yhj be the value of the character for the jth sampling unit within stratum
h. Let ȳhU be the population mean of stratum h with ȳhU = ∑Nh

j=1 yhj/Nh, and S2h be the population variance with
S2h = ∑Nh

j=1(yhj − ȳhU)2/(Nh − 1). Population mean ȳU can also be written as a weighted average of the stratum
means such as ȳU = ∑H

h=1 NhȳhU/N.
Within each stratum h, an SRS with size nh is taken independently. Assume that nh ≥ 2 throughout the paper,

and
∑H

h=1 nh = n. Let Sh be the set of nh units in the SRS within stratum h. Stratum sample mean ȳh and sample
variance s2h are defined as ȳh = ∑

j∈Sh
yhj/nh and s2h = ∑

j∈Sh
(yhj − ȳh)2/(nh − 1). An unbiased estimator of the

population mean ȳU is

ȳstr =
H∑
h=1

Nhȳh
N

. (2)

By Equation (1) and independent sampling within each stratum, variance of ȳstr is

Var(ȳstr) =
H∑
h=1

(
1 − nh

Nh

)(
Nh

N

)2 S2h
nh

, (3)

and is estimated by

V̂ar(ȳstr) =
H∑
h=1

(
1 − nh

Nh

)(
Nh

N

)2 s2h
nh

. (4)

3. Proposed adjusted variance estimator in a stratified random sample

Estimating population mean and total are two main topics in survey sampling. In this section, we first propose an
adjusted variance estimator of the mean that minimizes MSE under an SRS setting. Next, we extend the estimator
to a stratified random sample. Last, we discuss how to estimate the optimal value c in practice.

3.1. Lemma and theorem

In an SRS, we adjust the sample variance s2 by cs2, 0 < c < 1, where c is determined by minimizing the MSE of cs2.
This is equivalent to minimize MSE of V̂ar(ȳ). We state the result as the following lemma and give a brief proof.

Lemma 3.1: For a size n SRS selected from a population with size N, the optimal value c that minimizesMSE(cs2) is

csrs = S4/E(s4), (5)

where

E(s4) = n2

(n − 1)2
(aNμ4 + bN2μ2

2), (6)

with

a = e1 − e2
n2

− 2(e1 − 3e2 + 2e3)
n3

+ e1 − 7e2 + 12e3 − 6e4
n4

,

b = e2
n2

− 2(e2 − e3)
n3

+ 3(e2 − 2e3 + e4)
n4

,

e1 = n/N, e2 = n(n − 1)
N(N − 1)

, e3 = n(n − 1)(n − 2)
N(N − 1)(N − 2)

, e4 = n(n − 1)(n − 2)(n − 3)
N(N − 1)(N − 2)(N − 3)

,

and μ4 and μ2 are the centralized moments defined in Section 2.

Proof:

MSE(cs2) = E(cs2 − S2)2

= E(c2s4) − 2E(cs2S2) + S4

= c2E(s4) − 2cS4 + S4.

Let g(c) = c2E(s4) − 2cS4 + S4. By setting g′(c) = 0, and using the fact that g′′(c) = 2E(s4) > 0, the optimal value
of c that minimizes MSE(cs2) is csrs = S4/E(s4).
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The remaining challenge is to calculate E(s4) under an SRS. Utilizing the formulas for E(s2) from
Sukhatme (1984, p. 28) and V(s2) from Sukhatme (1984, p. 36), we can determine E(s4) as shown in Equation (6).
The computation of the sampling variance V(s2) is intricate, primarily due to its fourth-order term. Sukhatme’s
approach benefits significantly from the use of partitional notation and monomial symmetric functions. Read-
ers interested in a comprehensive understanding of this derivation can refer to Sukhatme’s book for detailed
insights. �

We extend the adjusted variance estimator csrss2 from SRS to stratified random sampling. One direct extension
is to consider

V̂ar2(ȳstr) =
H∑
h=1

ch
(
1 − nh

Nh

)(
Nh

N

)2 s2h
nh

, (7)

where ch represents a constant optimized within stratum h under SRS calculated as

ch = S4h/E(s4h), (8)

where S2h and s2h are defined in Section 2.
Alternatively, we can consider a unified constant adjustment cstr, which aims to balance bias and variance across

all strata collectively. The derivation of cstr is presented in the following theorem.

Theorem3.1: In a stratified random sample, population is divided into H non-overlapping strata, and an SRS is taken
independently from each stratum. Let Nh and nh be the population and sample size, and S2h and s2h be the population
and sample variance within stratum h as defined in Section 2. The optimal value of c thatminimizesMSE(cV̂ar(ȳstr)) is

cstr =
(∑H

h=1 khS
2
h

)2
∑H

h=1 k
2
hE(s4h) +∑H

i=1
∑H

j=1,j�=i kikjS
2
i S

2
j
, (9)

where E(s4h) can be derived by Equation (6) by taking an SRS of size nh from stratum h, and kh = (1 −
nh/Nh)(Nh/N)2/nh.

Proof: By Equation (2), ȳstr = ∑H
h=1 Nhȳh/N. Recall Equation (4) gives estimator of Var(ȳstr) as

V̂ar(ȳstr) =
H∑
h=1

(
1 − nh

Nh

)(
Nh

N

)2 s2h
nh

,

which can be written as V̂ar(ȳstr) = ∑H
h=1 khs

2
h with expected value of

∑H
h=1 khS

2
h. Now we want to find a constant

c such that MSE of cV̂ar(ȳstr) reaches the minimum. After some algebra,

E
{
(cV̂ar(ȳstr) − Var(ȳstr))2

}
= E

⎧⎨⎩
( H∑
h=1

khcs2h −
H∑
h=1

khS2h

)2
⎫⎬⎭

=
H∑
h=1

k2h(c
2E(s4h) − 2cS4h + S4h) +

H∑
i=1

H∑
j=1,j�=i

kikj(c − 1)2S2i S
2
j

= h(c).

Setting h′(c) = 0, the local extreme value is obtained at

cstr =
(∑H

h=1 khS
2
h

)2
∑H

h=1 k
2
hE(s4h) +∑H

i=1
∑H

j=1,j�=i kikjS
2
i S

2
j
, (10)

where E(s4h) can be derived by Equation (6). Notice that h
′′(c) = ∑H

h=1 2k
2
hE(s4h) +∑H

i=1
∑H

j=1,j�=i kikjS
2
i S

2
j > 0. cstr

is the optimal value of c that minimizes MSE(cV̂ar(ȳstr)). �
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3.2. Estimating csrs, ch and cstr

In practice, the constant c needs to be estimated using a larger survey or using sample information. We can use
(n − 1)s2/n to estimate μ2. But estimating the fourth moment μ4 is challenging. Some recent estimators of the
fourth moment are not unbiased, or are based on h-statistics and U-statistics (Heffernan, 1997), which can be
computationally expensive. Espejo et al. (2013) proposed estimating the fourth population central moment under
distribution-free setting, which involves variance and covariance among the lower sample moments.

Most practitioners may not have the mathematical and statistical background to understand or use the general
estimators given in literature. Assume that an SRS or a stratified random sample is with large size, and that the
selected sample is representative of the finite population and estimation bias is small.We then use the fourth sample
moment and plugin method to estimate the optimal values of csrs and cstr as follows.

ĉsrs = s4/̂E(s4), (11)

where

Ê(s4) = n2

(n − 1)2
(aNμ̂4 + bN2μ̂2

2), (12)

where μ̂4 = ∑n
i=1(yi − ȳ)4/n, μ̂2 = ∑n

i=1(yi − ȳ)2/n, and a and b are defined as in Section 3.
Similarly, extending SRS to a stratified random sample, we have

ĉh = s4h/̂E(s4h), (13)

and

ĉstr =
(∑H

h=1 khs
2
h

)2
∑H

h=1 k
2
hÊ(s4h) +∑H

i=1
∑H

j=1,j�=i kikjs
2
i s
2
j
, (14)

where Ê(s4h) can be derived using Equation (12) when an SRS of size nh is taken from stratum h, and kh = (1 −
nh/Nh)(Nh/N)2/nh.

4. Simulation studies

In this section, we conduct a simulation study to assess the performance of the proposed adjusted variance estimator.
The constant c can be determined using population data from agpop.csv through Equations (5), (8) and (10).
Alternatively, it can be estimated from samples using Equations (11), (13) and (14). We evaluate the bias, variance
and mean squared error (MSE) of the adjusted variance estimators under two scenarios: simple random samples
(SRS) and stratified random samples. The adjusted variance estimators are as follows.

• Estimator 2: c · variance estimator (using the population constant c),
• Estimator 3: ĉ · variance estimator (using the estimated constant ĉ),
• Estimator 4: stratum-specific adjustment estimator (7), where ch is estimated as ĉh using Equation (13), i.e.,

V̂ar3(ȳstr) =
H∑
h=1

ĉh
(
1 − nh

Nh

)(
Nh

N

)2 s2h
nh

, (15)

is compared with the unadjusted variance estimator (Estimator 1) across both sampling scenarios.

4.1. Simulation set up

The population data used in our simulation study is sourced from agpop.csv, which is available in the supple-
mentary material of the textbook by Lohr (2010). The U.S. government conducts a census of agriculture every five
years, collecting data on all farms in the 50 states. The census of agriculture provides data agpop.csv on number
of farms, total acreage devoted to farms (acres92 is the total acreage devoted to farms in 1992 and is the variable
of interest in the study), farm size, yield of different crops, and a wide variety of other agriculture measures for
N = 3078 counties and county-equivalents in the United States. These 3078 counties are divided into four regions
(strata) with stratum size Nh: North Central (NC, stratum 1, N1 = 1054), North East (NE, stratum 2, N2 = 220),
South (S, stratum 3, N3 = 1382) and West (W, stratum 4, N4 = 422).
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Table 1. Simulation Results under SRS and stratified random sample settings (variable of interest is acres92).

Sampling method SRS Stratified random sampling

Estimator 1 2 3 1 2 3 4

c N/A 0.8606 N/A N/A 0.8538 N/A N/A
ĉ N/A N/A 0.9196 N/A N/A 0.9440 N/A

Bias 6.876e+03 −7.564e+07 −5.315e+07 1.1490e+06 −6.4230e+07 −3.2259e+07 −4.9763e+07
Variance 4.731e+16 3.504e+16 2.874e+16 3.4425e+16 2.5098e+16 2.2128e+16 1.9392e+16
MSE 4.731e+16 4.076e+16 3.156e+16 3.4426e+16 2.9224e+16 2.3169e+16 2.1868e+16

Note: Estimators 1, 2 and 3 are variance estimators of mean that are unadjusted, adjusted by a constant csrs for an SRS or by cstr for a stratified sample, and
adjusted by ĉsrs and ĉstr respectively. Estimator 4 is the domain specific estimate (15) using ĉh adjustment for a stratified sample.

Simulation does L = 100000 times for each setting. Each time, we draw a sample from the population data
agpop.csv using either SRS with sample size n = 300 or stratified proportional allocated random sample with
(n1, n2, n3, n4) = (103, 21, 135, 41). In a general notation, let θ̂ be an estimator of θ . Assume θ̂ (i) represents the esti-
mator of θ from the ith sample, i = 1, . . . , L. The Monte Carlo mean EMC, Monte Carlo bias BMC, Monte Carlo
variance VMC and Monte Carlo MSE are given by the following formulas

EMC{θ̂} = L−1
L∑

i=1
θ̂ (i), (16)

BMC{θ̂} = EMC{θ̂} − θ , (17)

VMC{θ̂} = L−1
L∑

m=1
[θ̂ (i) − EMC{θ̂}]2, (18)

and the main criterion for determining efficiency: Monte Carlo MSE is defined by

MSEMC{θ̂} = L−1
L∑

i=1
{θ̂ (i) − θ}2. (19)

True mean ȳU is the average of yi’s from the population. For SRS, true variance of ȳ is calculated by Var(ȳ) = (1 −
n/N)S2/n (Equation (1)). For a stratified random sample, variance of ȳstr is Var(ȳstr) = ∑H

h=1 khS
2
h (Equation (3)).

The unadjusted variance estimators of Var(ȳ) and Var(ȳstr) from the ith sample are V̂ar(i)(ȳ) = (1 − n/N)s2/n and
V̂ar(i)(ȳstr) = ∑H

h=1 khs
2
h respectively.

Optimal values of csrs, ch and cstr are calculated by Equations (5), (8) and (10) using population data
agpop.csv. ĉsrs and ĉstr are estimated by averages of the L estimates ĉ(i)srs and ĉ(i)str from the ith sample using
Equations (11) and (14). The adjusted variance estimates of Var(ȳ) for Estimators 2 and 3 from the ith sample
are csrsV̂ar

(i)
(ȳ) and ĉ(i)srsV̂ar

(i)
(ȳ). The adjusted variance estimates of Var(ȳstr) for Estimators 2, 3 and 4 from the ith

sample are cstrV̂ar
(i)

(ȳstr), ĉ
(i)
strV̂ar

(i)
(ȳstr) and V̂ar3

(i)
(ȳstr) respectively.

4.2. Simulation results

Table 1 gives simulation results under SRS and stratified random sampling settings. Bias, variance and MSE are
calculated by Equations (16) –(19). Note that using population data, we have V(ȳ) = 542599828 and Var(ȳstr) =
446220740. Based on this large scale, bias, variance and MSE of V̂ar(ȳ) are all huge.

Table 1 shows that under SRS and stratified random samples, (1) biases of Estimators 2, 3 and 4 are all larger
than that of Estimator 1, since Estimator 1 is unbiased; (2) the trade-off of biased estimators are smaller variance
of Estimators 2, 3 and 4 compared to that of Estimator 1; (3) the overall measurement MSE of Estimators 2, 3 and
4 are both smaller than that of Estimator 1. For example, under SRS, the percentage of MSE reduction by Esti-
mator 2 (defined as [MSE of Estimator 1 − MSE of Estimator 2]/MSE of Estimator 1) is (4.731e + 16 − 4.076e +
16)/(4.731e + 16) = 13.8%, and percentage of MSE reduction by Estimator 3 (defined as [MSE of Estimator 1 −
MSE of Estimator 3]/MSE of Estimator 1) is (4.731e + 16 − 3.156e + 16)/(4.731e + 16) = 33.3%. For stratified
random sample, the percentage ofMSE reduction by Estimator 2 is 15.1%, by Estimator 3 is 32.7% and by Estimator
4 is 36.48%.

Upon closer examination of Estimators 3 and 4 for stratified samples, we note that Estimator 4 exhibits a some-
what larger bias compared to Estimator 3. However, it also displays a smaller variance and mean squared error
(MSE). While there are discernible differences between these two estimators, they are not statistically significant.
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Figure 1. Histogram plot of ĉsrs from the 100000 simulations.

Estimator 4, which addresses each stratum individually, may offer certain advantages in specific cases. Neverthe-
less, based on the results of our simulation study, it is evident that Estimator 3, utilizing a common adjustment
factor, strikes a reasonable balance between bias and variance. Therefore, for its simplicity of implementation, we
recommend adopting Estimator 3.

Now, let’s examine Estimator 3 more closely. In the case of SRS, we have c = 0.8606, while ĉsrs = 0.9196 with
a standard error of 0.0592. For stratified SRS, cstr = 0.8538, and ĉstr = 0.9440 with a standard error of 0.0588. It’s
worth noting that all bias, variance and mean squared error (MSE) values of Estimator 3 are consistently smaller
than those of Estimator 2 under the same settings.

In Figure 1, we present the histogram of ĉ derived from the results of L = 100000 simulations conducted under
the SRS setting. This bimodal histogramexhibits one peak at 0.85 and another at 0.95, ultimately yielding an estimate
of ĉsrs = 0.9196.

Figure 2 shows the sample variance s2(i) versus ĉ(i)srs from the ith simulation. Unlike Estimator 2 with a constant
adjustment c, ĉ seems like a dynamic adjustment with large ĉ associated with small s2 and small ĉ associated with
large s2. This makes ĉs2(i) tend to get closer to the true value S2 and to get closer to each other. Therefore, bias,
variance and MSE of Estimator 3 are smaller than those of Estimator 2.

5. Conclusions and future study

In this research, we extended Kourouklis (2012)’s work to encompass simple random samples (SRS) and stratified
randomsamples. Theoretically, the proposed variance Estimator 2, adjusted by csrs for SRS and cstr for stratified sam-
ples, demonstrates the smallest Mean Squared Error (MSE) among estimators of the form c × (variance estimator).
In practice, we employ sample statistics to estimate the constant c and introduce Estimator 3, which is adjusted by
ĉsrs or ĉstr. Simulation studies consistently show that both Estimators 2 and 3 yield lower overall MSE compared to
Estimator 1 (the unadjusted estimator). Notably, ĉ behaves as a dynamic adjustment factor, with larger or smaller
ĉ values corresponding to smaller or larger variance estimates. Consequently, Estimator 3 exhibits smaller bias,
variance and MSE than Estimator 2.

The unified constant adjustment cstr is designed to strike a balance between bias and variance across all strata
collectively. In contrast, Estimator 4 employs stratum-specific optimal constant ch values for each associated stratum
h under SRS, presenting another valid option. Our simulation study indicates that the stratum-specific ch method
offers certain advantages by individually handling each stratum. However, these advantages are not statistically
significant.
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Figure 2. Sample variance versus ĉsrs from the 100000 simulations.

In practical applications, we recommend using Estimator 3 to adjust variance estimators of the mean and total
in both SRS and stratified random samples, as it consistently yields narrower confidence intervals. Future research
avenues may explore the extension of adjusted variance estimators to complex survey designs, such as two-stage
stratified cluster surveys.
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