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ABSTRACT ARTICLE HISTORY

In this paper, we consider parameter estimation, kink points testing and statistical inference Received 16 July 2023

for a longitudinal multi-kink expectile regression model with nonignorable dropout. In order to Revised 29 December 2023
accommodate both within-subject correlations and nonignorable dropout, the bias-corrected Accepted 3 January 2024
generalized estimating equations are constructed by combining the inverse probability weight- KEYWORDS

ing and quadratic inference function approaches. The estimators for the kink locations and Dropout propensity; inverse
regression coefficients are obtained by using the generalized method of moments. A selection probability weighting;
procedure based on a modified BIC is applied to estimate the number of kink points. We theoreti- missing not at random;
cally demonstrate the number selection consistency of kink points and the asymptotic normality nonresponse instrument;
of all estimators. A weighted cumulative sum type statistic is proposed to test the existence of quadratic inference function
kink effects at a given expectile, and its limiting distributions are derived under both the null and

the local alternative hypotheses. Simulation studies show that the proposed estimators and test

have desirable finite sample performance in both homoscedastic and heteroscedastic errors. An

application to the Nation Growth, Lung and Health Study dataset is also presented.

1. Introduction

Longitudinal data frequently arise in many fields where repeated measurements within the same subject are corre-
lated, such as epidemiology, medical science and socioeconomic panel studies. In most longitudinal regression
models, the impacts of covariates on responses are often assumed to be constant on the whole domain of the
covariates, which may not be valid in some applications. For example, before and during puberty, a child’s height
would increase rapidly but stop increasing in the late teens, which shows there exists one change point. D. Li
et al. (2022) investigated the relationship between the bike rental count and the time of the day using Capital
Bike sharing data set in Washington D.C. and found that there are four kink points splitting the domain of the
24 hours into five periods: before sunrise, morning, early afternoon, late afternoon and evening. In these exam-
ples, the traditional linear regression may not fit well. Compared with the traditional regression models, the kink
or change point regression models (B. Hansen, 2017) can achieve better performance and provide complementary
information.

1.1. Related work

There exists a vast amount of literature related to kink regression models. For example, Lee et al. (2011), Lee
et al. (2016), Fong (2019) and many others investigated a single unknown kink or change point estimation and
inference problems. Bai and Perron (2003), Perron and Qu (2006) and Matteo et al. (2018) proposed the testing and
estimation methods for multiple kink regression models. Alternatively, quantile regression (QR; Koenker & Bas-
sett, 1978) and expectile regression (ER; Aigner et al., 1976; Newey & Powell, 1987) models are useful statistical
tools for modelling and inferring the relationship between the response and covariates in some studies about the
weights in child growth, high expenses in medical cost and so on. Compared with the traditional regression meth-
ods, both QR and ER can capture a complete picture of the relationship between the response and predictors. C.
Lietal. (2011), Oka and Qu (2011) and L. Zhang et al. (2014) considered the estimation and testing problems for
the single kink QR models while Zhong et al. (2022) investigated the multi-kink QR models and Wan et al. (2023)
investigated it for the longitudinal data. Unlike QR, ER enjoys the computation efficiency, not only because of its
differentiable L, loss, but also because the asymptotic covariance matrix of its estimator does not involve the density
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function of the errors. Because of these advantages, F. Zhang and Li (2017) studied the single threshold ER models,
and D. Li et al. (2022) considered the multi-kink ER models for the longitudinal data. However, it should be pointed
out that all these existing methods are based on fully observed data and little knowledge is available on analysing
multi-kink regression models in the presence of missing data.

Our study is motivated by the longitudinal body mass index (BMI) and blood pressure (BP) data on the Nation
Growth, Lung and Health Study (NGHS) website. However, due to adverse events, the desire to seek other therapies
and some other reasons, patients often drop out prior to the end of the study and the dropout rates of the follow-up
times are 91.5%, 84.1%, 73.7%, 64.9%, 58.9%, 52.6%, 45.6%, 39.3%, 37.0% and 33.0%, respectively. In addition, pre-
vious experiences from doctors found that a steep rise in the BP indicates the disease progression, and patients with
high BP values are more likely to drop out from the scheduled study visits as compared to patients with normal BP
values, i.e., the nonresponse of the BP is likely related to itself and is nonignorable (Shao & Wang, 2016). Moreover,
it can be checked that the distribution of BP is skewed such that mean regression may not appropriately assess the
longitudinal change in BP data. Therefore, the existing methods may produce misleading results when applied to
this NGHS data.

1.2. Our contributions

In this paper, we consider the situation where the covariates are always observed, but subjects may drop out before
the end of the longitudinal study, which results in incomplete data. Dropout is ignorable if the dropout propensity
depends on the observed values. Zhou and Liang (2021) investigated one change point estimation in the regression
model when the response is missing at random. However, in practice the missing not at random (MNAR; L. Wang
et al., 2019) or nonignorable dropout is more common; see L. Wang et al. (2019). It is well known that complete
case (CC) analysis can not be trusted under nonignorable missing responses. Furthermore, L. Wang et al. (2019)
and many others showed that developing valid methodologies for statistical analysis with nonignorable dropout
is challenging, because the population parameters are not identifiable (Shao & Wang, 2016) if there is no assump-
tion imposed, and the existing methods based on the assumption of ignorable dropouts may have large biases. To
address the identifiability issue, S. Wang et al. (2014), Shao and Wang (2016), Miao and Tchetgen Tchetgn (2018),
L. Wang et al. (2019) and many others proposed an instrumental variable approach for the parameter estimation
with nonignorable nonresponse. Chen et al. (2022) studied Bayesian change-point joint models for multivariate
longitudinal and time-to-event data, and discussed its application to nonignorable missing data.

The existence of nonignorable dropout and multiple kinks, and their impacts on the estimation and inference
motivate us to search for an efficient and unified approach. To the best of our knowledge, the longitudinal multiple
kink expectile regression (MKER) model with nonignorable dropout has not been investigated when the number
of kink points and their locations are both unknown.

(1) In order to account for nonignorable dropout, we impose a parametric model on the dropout propensity and
use a nonresponse instrument for the identifiability to consistently estimate the dropout propensity (L. Wang
et al,, 2019). The bias-corrected generalized estimating equations (GEEs; Liang & Zeger, 1986) by the inverse
propensity weighting (IPW) are used to incorporate the within-subject correlations through a working cor-
relation matrix. However, it should be pointed out that it is difficult to describe and specify the underlying
within-subject covariance matrix. Motivated by the matrix expansion idea, the quadratic inference function
(QIF; Qu et al,, 2000) is applied to estimate parameters, which neither assumes the exact knowledge of the
within-subject correlation matrix nor estimates the parameters of the within-subject correlation matrix. We
estimate the number of kink points based on a modified BIC information criterion. The selection consistency
of the number of kink points and the asymptotic normality of parameters are derived.

(2) A two-stage testing procedure for the existence of kink points at a given expectile level for longitudinal data with
nonignorable dropout based on a weighted CUSUM type statistic is developed. The limiting distribution of the
test statistic is also established. This two-stage testing procedure only requires fitting the ordinary ER model
under the null hypothesis in the absence of kink points, avoids the estimation of the dropout propensity based
on resampled data and is computationally much more efficient. Moreover, we propose a modified blockwise
wild bootstrap to approximate the P-value.

(3) It is worthwhile to point out that the proposed estimation and testing methods can be used in bal-
anced/imbalanced longitudinal data. Simulation results show that the proposed estimators of the regression
coeflicients and kink locations have good finite sample performance. In addition, compared with the CC test,
our proposed test has better control of Type I error and higher powers in a wide range of scenarios. We also
apply the proposed method to the longitudinal NGHS data. All the estimation and testing procedures are
implemented in R codes, which are available when requested by readers.
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1.3. Organization

The remainder of the article is organized as follows. In Section 2, we describe the longitudinal MKER model
with nonignorable dropout, develop a parameter estimation procedure and study their asymptotic properties. In
Section 3, we propose a testing procedure at a given expectile level and derive the limiting distribution of the statis-
tic. In Section 4, we conduct simulation studies. A real data analysis is shown in Section 5. Section 6 concludes the
remarks. The technique proofs are presented in the Appendix.

2. Methodology
2.1. Model and parameter estimation

LetY, = (Yi,..., Yimi)T € R™i denote the ith subject’s response and D = (Xij,Z;J-r)T € RP*! denote the corre-
sponding covariance vector associated with Y;, where Xj; € A is a bounded scalar covariate with multiple kink
effects and Z;; is a p-dimensional additional covariate for j = 1,...,m;and i =1,...,n.

Given 7 € (0,1), define the tth expectile of Y as Ey(t) = argming E{p- (Y — &)} with pr (1) = v?|t — I(u <
0)|]. In this paper, we consider a longitudinal MKER model with an undetermined number of kink points,

K

Evy(1:01Dy) = aor + a1 X+ Y e Xy — Sk ) (X > Sko) + v Zij (1)
k=1

where Syij (7;0|Dj) is the tth conditional expectile of Yj; given covariates Djj, Bi. # 0 implies the exis-
tence of a kink effect at Xijj = 8k and 81,r < 82r < -+ < 8k,r are K unknown kink points. Denote v; =
(oo,0,1,0> Br,s - - -» BR,1> yT)T as the vector of the corresponding regression coefficients, §: = (81,7, - - -> 51<,,)T
as the vector of klnk points and @, = (v],8])T. We omit the subscript 7 for ease of notations.

In this paper, we consider the situation where Dj; is always observed, but subjects may drop out prior to the end
of the study, which results in incomplete Y; data. Let r;; be the response indicator, i.e., rjj = 1 if Y}; is observed or
rij = 0 otherwise, and define 7;; = Pr(r;j = 1|D;, Y;) with D; = (Dj1, . .. ,Dimi)T. In the presence of missing data,
we consider the following bias-corrected objective function to estimate 6, i.e.,

$u(6) = Z Z —pf{Yij — Ey,;(01Dy)}. ©)

ll]l

Denote W; = diag(ri1 /i1, - - > Tim; /Tim,)» ¥ (Yi — Ey,(0)) = diag(Vr (Yir — Ey,, 0)), ..., Ve (Yim; — Ey,,, 6)))
with W (u) = |t — I(u < 0)| and Ey,;(0) = (Ey,,(0), .. "gYim,' (0))T. Motivated by Liang and Zeger (1986), the
bias-corrected generalized estimating equations (GEEs) can be written as

D XO) VWL (Y — Ey,(0)(Yi — Ey,(8) =0, (3)

i=1

where X,(0) = (Xz'l (0), ey Ximi(O))T with X,](O) = (I,X,'j, (Xl] — 51)+, e (X,] — 3K)+,Z;J|-—, —,311(le > 81),
o —BrI(Xij > 8x)) | and Vi, is the true covariance matrix of W, (Y; — Ey,(00)(Y; — Ey,(09)) with the true
vector 0. It should be pointed out that the following decomposition holds, i.e., Vi_t1 = Ai_rl/ zRi_rlAi_fl/ *, with
Ajr and R;; being the true marginal variance matrix and correlation matrix of ¥, (Y; — Ey,(00))(Y; — Ey,(00))
respectively.
To estimate the unknown parameter 6, a consistent estimator of 7;; should be obtained firstly. Using the

instrumental estimating equations proposed by Shao and Wang (2016) and L. Wang et al. (2019), assume Dj;
—

can be decomposed as two parts Uj; and UIJ’ ie, Dj = ! (U?)T)T. Denote Tj')ij = (UI,. ces U;)T, Y=

(Yit, .. Y,]) and further assume that

ij >

Pr(rij = 1|ri(j—1) = 1>Dl’ ) - Pr(rlj — ]-lrl(] 1) = 1; ij> Z]) - 1[1(0 ¢]
Pr(r,-j:1|r,-(]~_1):0,D,-,Y,-):0, j:l,...,mi, iZl,...,}’l, (4)
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R —
where O0;; = (1, U;]'-—, Y ;J'-—)T, ¢j is an unknown parameter vector with the true value ¢j0’ Y defined on [0, 1] is a
known monotone function and rjp = 1. Under the model (4),

i = ]_[Pr(rzt— 1ri—1) = 1,D;, Y7) —Hwo :0)-

t=1 t=1

We then define the instrumental estimating equations

—

—
8ij(Yi, Di,ris ;) = rij—1) {Vf( ¢’1 1} S(Dj, Y i-1)) (5)

where r; = (11, . . .,rimi) and S(B,], 7,-0 1)) is a known vector-valued function (L. Wang et al., 2019). The
consistent estimator ¢ = (d)1 yeo ¢;ax m; )T of the true parameter vector ¢o = (¢, . . ¢max,m-O)T can be
obtained by two-step generalized method of moments (GMM; L. Hansen, 1982) in Shao and Wang (2016), L.

Wang et al (2019) and D. Li and Wang (2022). Once the estimator ¢ is obtained, 7r;; and W; can be estimated by

n,] l//(O (b ) and W; (¢) diag(ri1 /i1 - - - » Tim;/ Tim;)> respectively. Subsequently, a consistent estimator
A (0, ¢) of Ajr (0) can be obtained by computing the marginal sample variance based on the IPW approach.

In practice, R,T is always unknown and we borrow the matrix expansion idea of the quadratic inference func-
tions (QIF) method (Qu et al., 2000) to approximate Rl._r1 = ZlL:1 bj: Mj;, where Mj;’s are some given symmetric
basic matrices and bj;’s are unknown coefficients. Thereafter, the Equation (3) can be approximated by a linear
combination offS\l-(O), fori=1,...,n,as follows,

X0)TA,20,9)MuA, >0, $)Wi@) W (Yi — Ey,(0)(Y; — Ey,(0))

$i(0) = : . (6)
X0)TA 20, 9)MyA 0, ) WiV (Yi — Ey,(0)(Y; — Ey.(0))

Since the number of estimation equations is greater than the number of parameters, we estimate @ as follows:

A

f = arg rrgnﬁ(o)Tﬁ‘l(o)E(o), @)

where §(0) =n"! Z?:lgi(O) and §(0) =n"! Z?:llgi(a))s\j (0) ". The estimation procedure for (7) can be sum-
marized as the following Algorithm 1.

Algorithm 1 Parameter estimation procedure
(1) Obtain @, 7 = [T, ¥(O} ¢,) and A;2 (8, $).
(2) Given 9(r_1) from the r — 1 step, update

A(r—1) ~ . 1 rt1 1 Ttm; A 242
l‘[(a ) = dlag e Z A r(gtl) 8t1:-~:T_ Z ~ \pf(etm,-) Em; | >

T ) )
| |te|T| t1 | m,| € T Ttm;

A(r=1)

) 3 TA2 L ow@w.@nx@" ),

i@ =-x@" )4 A.'"%@

¢)M11A

- A(r=1) A . ,
with & = Yy — Ey, (@ "|Dy), & = @irs....80m) " and Tj = {tlmt > j}.

(3) Obtain$i@" ") = G @ )T, 8@ )T and$@") = a1 T, 80 ). Update 8 by

A(1) A(r—1) A(r—1) A(r—1) A=l A(r—1)

0" =" 30" "o @ s @ s Y

1,4(r=1) 5 A(r—1)

'@ Hse ).

(4) Repeat Steps (2)—(3) until convergence.

2.2. Number selection of kink points

It should be pointed out that the true number of kink points Kj is always unknown in practice. In order to implement
the estimation Algorithm 1, we need to identify the number of kink points K first. Following Zhong et al. (2022) and
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D. Li et al. (2022), we propose to choose K by minimizing the following modified Bayesian information criterion:

mi

n
.
BIC(K) = log ZZ f’_ pelYij = Ex;(OxIDy) ¢ + Nk
i=1 j=1

log(n)

Chns (8)

where @ is the estimator computed by the algorithm above with K kink points, N is the number of parameters,
and C, is a positive constant. Thus, given the maximum number of kink points K, the estimator for Kj is

K= arg min BIC(k).
k=0,1,...,K,

According to Zhong et al. (2022) and D. Li et al. (2022), the selection results are not very sensitive to the choice of
the C, value satisfying C, logn/n = 0(1) and they recommended to use C, = log(n) to estimate K based on the
BIC in the simulations.

2.3. Asymptotic properties

Next, we investigate the theoretical properties of the proposed estimator and the number selection consistency of
the kink points. Let

W = Elg;;(Y;, Di, 11, $)g;(Yi, Disris§) ', wi(¢ho) = diag(wan, - . ., Tim,),

= E[-Xi(00) " A MyA W (Y, — £v,00)Xi(00)],  Tj = Elg; (Y5, Divris )],
oW (Y — Ey,(00))diag(Y; — Ey,(00)7; " (o) 1(o)],
Wido) ¥ (Y; — Ey,00)(Y; — Ey,00)), S0 = (S ,....89) .

H; = E[-X;(00)" A;,'*MA
) = Xi(00) T A P MyA

We then make the following assumptions.

(A1) {D;,Y;}iL, are independent and identically distributed (i.i.d.) random vectors. The response probability
function 7;;(¢) for all j satisfies: (a) it is strictly monotone and twice differentiable with respect to ¢; (b) 0 <
co < mij(¢) < 1 for a positive constant ¢y and 7 ;;(¢) is uniformly bounded for any ¢ in a neighbourhood
of ¢,.

(A2) E[||Di||*] < oo and there exists a neighbourhood./\/j of¢j such that E[r;; supy € ./\/;-{(1 + ||Di||2)7Tij('7)2 +
ISM: Y i) I ISMDs ¥ ) l1158)] + ISy ¥ )ll2lit(@)1}] < oo, where || - | is the Ly-norm and
j=1,..., max; m;.

(A3) The true parameter 6 is in a compact subset ® of R2+p+2Ko

(A4) The true number of kink points Ko and the dimension p of Z;; are fixed; T; goes to infinity as n goes to
infinity for j = 1,. .., max; m; with max; m; < oo.

(A5) The bounded scalar variable X;j; has a continuous distribution with density function fx, which is strictly
positive, bounded and continuous for any § in a neighbourhood of 8¢, E[| Z;; I1* < oo, max;; || Z]| = op(nl/z)
and E|Y,7|4 < 00

(A6) T =diag(T'y,..., T max;m,) is of full rank.

(A7) There exist two positive constants ¢; and ¢, such that ¢; < Amin(% Yo Xi(00) " X;(0y)) < )\max(% Yo
X;i(00) " Xi(00)) < ¢z, where Amin(+) and Amax(-) denote the smallest and largest eigenvalues of a matrix.

(A8) The eigenvalues for each M) for I = 1, ..., L are bounded away from 0 and co.

(A9) H=(H/,... ,HZ—)T is of full rank.

(A10) There exists a positive definite matrix S, = E[Zj It — (Y < aTAj)|A1jAl ]

Assumptions (A1)-(A2) and (A6) are common assumptions and restrictions on the propensity function, which
also can be found in missing data literature (L. Wang et al., 2019; S. Wang et al., 2014). Assumption (A4) is a
condition for the longitudinal data and implies that the dimension of the unknown parameter we are interested in
is finite. Assumptions (A3) and (A5) are some common conditions for studying asymptotic properties of ER models,
which also can be found in E Zhang and Li (2017), and Assumption (A5) is a condition on threshold variable X;;
and covariates Z;;. Assumptions (A7)-(A10) are imposed for some invertible matrices to illustrate the consistency
and asymptotic normality property.

Theorem 2.1: Under (A1)-(A5), C,logn/n = o(1) and K= argming_q g BIC(k), we have P(ﬁ =Ky) = las
n— oo.
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Theorem 2.1 shows that the modified BIC can consistently select the true number of kink points, which plays
a fundamental role in statistical inference. Our simulation results in Section 4 show that the correct selection rate
is close to one when a proper C,, is given. The following theorem studies the limiting distribution of the proposed
estimator  obtained by (7) given the true number of kink points.

Theorem 2.2: Under (A1)-(A9), as n — oo, we have
V@ —89) -5 N, (TTE'D) ),

where T=(T],...,T))T, E=B+HEZH', B=E[S’?T], T=@"W™'I)"! and W = diagWi,...,
Wmax,'m,')-

By the plug-in method, we obtain the estimators E and T of E and T as follows:

n

_ ]. -~ N A ~ _—~ —~ -~
 B==) Si@8®), W =diagWi,..., Wanaxim),
i=1

E =B+HZH

= e = S STooo1m —
T =diagT1,....Traxym), ;= Zg,]m,ul,r,,qs] T=T W'D,

|T| zET]
J = |T | Zgl](Yza D;,r;, ¢])g1](Y,,DZ’ rl’(b])T ? _ (’T\T’ N ,,T\z-)_l_’
1ET]
Ti=—- Z X:0) A7 0, MAL 0,5 Wi (@)W (Y — Ev,0) Xi(h),
i=1
H=-- ZX(O)TA—l/z(() ¢)M11A—1/2(0,$)W,~($)\1,r(Yl, _ 5Y,-(9))

i=1

x diag(Y; — &y, 0)n; ' @ni@). H=H,....H) .

= - . ~Ta—-1mn1 . . . . — _
Once E and T are obtained, (T E  T)~! is used to estimate the variance matrix (T & ! T)~!. Hence, one can
build a normal approximation based confidence region from Theorem 2.2.

Remark 2.1: When missing is not at random, it should be pointed out that the estimator based on the CC

method is not consistent. On the other hand, it can be verified that n! Z?:l:9\,-(00)/8\1-(00)—r LN B while

-~ d . . . .
n-1/2 ©1Si(0p) — N(0, E) as n — oco. Due to additional estimation of the nuisance parameter vector ¢,

E > B such that the CC estimator may generally have a smaller variance compared with our proposed estima-
tors, which can be seen in our simulation results. When there is no missing data, i.e., 7;j = 1 for j = 1,...,m; and
i=1,...,n,it can be verified that H = 0, 2 = B with

(B)ir = E[Xi(00) T A, *MyA W (Y, — Ey,(00))(Yi — Ey,(B0))
x (Y; — Ey,(00)) W, (Y; — Ey,(00)A, > My A > Xi(80)],

being the (I,I')th block of Bwith! =1,...,Land!' = 1,..., L.

3. Statistical inference for kink effects and location parameters

In this section, we are interested in testing whether there exist kink points in the presence of nonignorable dropout,
rather than the specific number of kink points. Consider the following null (Hp) and alternative (H;) hypotheses,

Hy:Br=0forallk=1,...,K, v.s.H;:Br#0forsomek=1,...,K.
Let A,-j = (1, Xj, Z;]'-—)T and & = (ag, a1,y ') ". We define the following statistic

Ri(®) = —= ZZ i~ 107y < @ ApI(Yy — & A Xy — I < 8),

11]1Z
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where & = argmin ) _; i Tii /ﬁijpf (Y — aT.Aﬁ) is the IPW estimator under the null hypothesis Hy. The proposed
test statistic is

Ty = sup [Ru(8)l;
SEA

where A is the compact set of §. Intuitively, when there is no kink point, the statistic T}, will be very small since the
estimated residuals show a random pattern against the variable Xjj, and when there exists at least one kink point, the
estimated residuals fail to be consistent with the real residuals such that T}, is large. However, it can be verified that
the CC estimator @ = argmin ) _; ji TP (Yij — a " Ajj) is not consistent with e in the presence of the nonignorable
dropout. Hence, we directly use the test of D. Li et al. (2022), we will obtain a much larger test statistic even under the
null hypothesis. Then, to derive the limiting distribution of T}, we consider the following local alternative model,

Yi=a0+aXj+n By — 8+ v Zij+ e 9)

where the tth expectile of ¢;; is zero, and introduce some notations:

S1n(8) = —ZZ Ll — 1Yy < & Ay Ay (X5 — HICX < 9),

i=1 j=1 7'[1]
mi
$10) =E | Y It —I(Yy < a" Ay Ay(X; — HI(X5 < 8) |,
j=1

$3n(8) = —ZZ Ll —1(vy < & A AB %G — K = 8),

11]11

$(8) = E Z T — I(Yy < o A AiB(Xy — HIX; = 8) |,

Spn = — ZZ |1' —I(Y; < &T Ay AGAL

11]1

Sy=E|Y |t IV <o ApIAGA] |, q(6) =S1(8)TS,"$:(8).

Theorem 3.1: Under (A1)-(A6) and (A10), for the local alternative model (9), Ry, (8) has the asymptotic representa-
tion

R,(8) = IZZ J Leglt — 1(Yy < a T A [ — HIX; < 8) — $18) " S, Ay

i=1 j=1
—q(8) + 0p(1) := R(8) — q(8) + 0p(1).

Furthermore, T, converges weakly to the process sups |R(8) — q(6)|, where R(8) is the Gaussian process with mean
zero and covariance function

e
E Z %Sijh —I¥j<a T—I(Yy < aTAq-j,)|{(Xij —SDI(Xy < 81)
i

W

= $168D) 'S,V AGHXG — 8DIXip < 82) — $1(82) TS, Ay} | + HEDZHG) T,

o
with H(8) = E [_ Y n” eilt — 1(Y; < a7 A {(X; — HIX; < 8) — S (5)Tsv—1A,-j}}.

According to Theorem 3.1, when 8 = 0, i.e., under the null hypothesis, () = 0 and R, (§) would converge to
a Gaussian process R(8) with mean zero. However, under the alternative hypotheses, i.e., B # 0, it can be seen that
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q(8) # 0 and T,(8) would be significantly larger than zero, which provides evidence to reject the null hypothesis.
When there is no missing data, i.e., 7;; = 1forj = 1,...,m;andi = 1,..., n, we have H(8) = 0and the covariance
function of R(§) is same as that of D. Li et al. (2022). Hence, the additional part H(S)XH(S,) T reflects the cost
of the estimation for the nuisance parameter vector ¢ in the nonignorable propensity, which is different from R(§)
of D. Li et al. (2022) when there is no missing data. Because the limiting null distribution of T}, is nonstandard,
we propose to approximate the P-values using a two-stage modified blockwise wild bootstrap and the procedure is
described in Algorithm 2.

Algorithm 2 Modified blockwise wild bootstrap method

(1) Generate i.i.d. standard normal samples {vi,v,...,v,} and Ag ~ N(0, f)).
(2) Compute the test statistic Tj; = supsc o |R};(8)| with residuals &;; under null hypothesis, where

R:(8) = ZV,Z sy|r—1<e,]<0)|[<xy—6)1<xysa)—slnw) S, Ayl

1 i r,]Jt A¢
— ;ZZTW—I@U < O)|[(Xj — HIKG < 8) — $14(8) S} Ayl

(3) Repeat Steps (1)-(2) B times and calculate the P-values

B
Pa=B"") KT} = Tp).

t=1

Note that this modified bootstrap procedure avoids the estimation of 7;; based on the resampled data and only
requires the estimators under the null hypothesis. Hence, this procedure is computationally efficient and can be
directly applied to test the existence of multiple kink points as well. When there is no missing data, R};(8) is the same
as that of D. Li et al. (2022). The following theorem shows the validity of the proposed blockwise wild bootstrap
scheme.

Theorem 3.2: Under the assumptions in Theorem 3.1, R}(8) defined in Algorithm 2 converges to the Gaussian process
R(8) as n — oo under both the null and the local alternative hypotheses.

4, Simulation studies

In this section, we conduct simulation studies to assess the finite-sample performance of the following estimators
based on the Equation (6):

(i) the complete case (CC) estimator using the compound symmetry (CS) structure, i.e., M;; is an identity matrix
and M, is a symmetric matrix with 0 on the diagonal and 1 elsewhere, with W~($) = diag(r,l, v o> Timy)s
(ii) the Eroposed MNAR estimator (MNAR[,q) using the independent (Ind) structure, i.e., A ~1/2 (0,$)Mi12;1/ 2
0,9) = Ln;
(iii) the proposed MNAR estimator (MNARcs) using the CS structure;
(iv) the proposed MNAR estimator (MNARyR;) using the first-order autoregressive (AR1) structure, i.e., Mj; is
an identity matrix, Mj; has 1 on the two mapin subdiagonals and 0 elsewhere, and M;3 has 1 on (1,1) and
(m;, m;) components and 0 elsewhere;
(v) the full sample (Full) estimator using the CS structure with W; ($) = Iy,.

In estimators (i) and (v), the true structure of R; is used to obtain their best results. In particular, we evaluate the
accuracy of estimation, the converge probabilities, the Type I error and the power of the proposed test. We generate

K
Yi=a0+o1Xj+ > Xy — 8§+ + vZij + (1 + L1 Zey,
k=1
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where m; = 4, X;; ~ U(=5,5), Zjj ~ N(1,0.52), Xij and Z;; are independent. We set (g, 1, ) = (1,1,1) and
consider three different numbers of kink points:

(i) K=1,8; = —3andé; = 0.5;
(i) K =2,(B1,B2) =(—3,4) and (61,82) = (—1,2);
(iii) K =3, (B1,P2 B3) = (—3,4,4) and (61, 62,683) = (=2,1,3).

The random errors &; = (&i1, €i2, €13, €ia) | are generated from four different distributions: (a) Homoscedastic
normal errors: £ = 0 and &; ~ N(0, X), where Xjy = pforj # j,and Xj; = 1 forj = 1,...,4; (b) Homoscedastic t
errors: £ = 0 and &; ~ t10(0, X); (c) Heteroscedastic normal errors: £ = 0.1 and &; ~ N(0, X); (d) Heteroscedastic
terrors: £ = 0.1 and &; ~ t10(0, ¥). We generate these errors with p = 0.5 such that elements of &; are correlated.

The missing indicators (i1, 712, 7i3, 7ia) are generated from the following propensity model:

= =
Pr(ry = 1lrig-1) = 1, Dj, ¥ y) = 1/(1 + exp(h; $j0)), (10)

where h;j = (1, Xjj, Y,'j)T and @;, isa part of ¢. It can be seen that Uj; = Xj; and the instrumental variable Uﬁ = Zj.
Two different choices of ¢, = (¢1r0, qﬁ), ¢;r0, ¢I0)T are considered.

(M1) ¢jp = (—1.5,-0.5,0.5)T for K = 1,2and ¢, = (=2.0,-0.5,0.5) " for K = 3.
(M2) ForK = 1,2, ¢j0 = (—3.0,0.1,1.0)T forj = 1,2and¢jo = (—3.0,—0.1,1.0)T forj =3,4.ForK = 3>¢jo =
(=7.0,0.1,—1.0)" forj = 1,2 and ¢y = (—7.0,—0.1,—1.0) " forj = 3, 4.

Forj=1,...,4, the approximately unconditional probabilities 7z;; for four time points are about 75.3%, 56.7%,
42.6% and 32.2% for K = 1, 80.6%, 65.0%, 52.4% and 42.2% for K = 2, 85.1%, 72.3%, 61.4% and 52.2% for K = 3
under (M1); 90.8%, 82.4%, 74.5% and 67.4% for K = 1, 95.7%, 91.6%, 87.7% and 84.0% for K = 2, 95.0%, 90.3%,
86.1%, 82.1% for K = 3 under (M2). It should be pointed out that (M2) generates missing data mainly around one
change point while (M1) generates relatively balanced missing data. For example, when the missing indicators are
generated from (M2) under K = 1, it can be seen that the responses mainly have missing data around §; such that
the CC estimator may have a large bias for the estimation of g, a7 and B, which is consistent with our simula-
tion results in Table S7 in the Supplementary Material. Hence, even the unconditional dropout percentages of the
four time points in (M2) are much smaller than those of (M1), and the CC estimator still has much larger biases.
Moreover, when the third element of ¢j0’ i.e., the coeflicient of Yi;, is positive, the parameter estimation results may
become better if T becomes smaller, since the larger Yj; is more likely to be missing. When K = 3 and the missing
indicators are generated from (M2), it can be seen that the coeflicient of Yjj is negative, and then the parameter
estimation results may become better when 7 becomes larger.

4.1. Number selection consistency of K

Two different scenarios are considered in the following simulations. Under Scenario 1, we consider two dropout
settings (M1) and (M2) with four different errors, the true numbers K = 1, 2, 3 and show the rates of correct
number selecting of kink points in Table 1 for n = 200 based on 1000 Monte Carlo replications. It can be seen that
the CC method has comparable or better performance with our proposed three methods. The possible reason is
that the complete case data have significant turning points in these cases and the CC estimator has smaller variances
(see Tables 3 and S4 in the Supplementary Material). Hence CC method has better performance. Under Scenario
2, we consider K = 3 with ¢;) = (-1.5,0.1, 1.0)T for j=1, 2 and $jp = (—=1.5,—0.1, 1.0) T for j = 3, 4, where
the missing rates are extremely high when Xj; > 3. The percentages of correctly selecting kink points based on
n = 200, 300 and 500 are reported in Table 2. As shown in the table, the rates of the CC method are lower than the
rates of our proposed three methods, especially when n = 200. In summary, our proposed methods work reasonably
well in all the simulation studies.

4.2. Parameter estimation and coverage probability

After the selection of the number K, we evaluate the finite sample performance of parameter estimators to check
the validity of Theorem 2.2. For r = 0.25, 0.5, 0.75 and n = 500, 1000, 8y = (2o, o1, P15 - - BK> V>615 - - - )T €
R3+2K0 and we compute (1) the simulated absolute bias, i.e., AB = 7! ZtT 1 ||§ ¢t — 0¢]l1, and standard deviation,
i.e., SD = ZHZKO SD({ Gt] _1s (2) the simulated mean square error, i.e., MSE = T~! Zt ) 16, — 0ol|3, and the
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Table 1. The percentages of correctly seIecting? = K under Scenario 1.

K=1 K=2 K=3

MNAR MNAR MNAR

b4 T cC Ind cs AR Full cC Ind cs AR Full CC Ind cs AR Full

Homoscedastic normal errors
1 0.99  0.997  0.999
0.999 0995 0999 0.998
1 0.997 0.999 0.999

M1 025 0998 0995 0995 0.997
050 0999 0989 09%  0.999
075 0999 0985 099  0.993

0.999 1 1 1
1 0.999 1 1
0998 0.999  0.999 1
1 1 1 1

1

9

N
R N
NN

M2 025 1 0.997 1 1 1 1 1 1
0.50 1 0.998 1 1 1 1 1 1 1 1 1
0.75 1 0.998 0997  0.998 1 0.999 1 1 1 1 0.999  0.997

Homoscedastic t errors

M1 025 0997 0985 0980 0.987 1 0.995 0990 0992 0.994 1 0.997 0998 0998 0.996 0.999
0.50 1 0.994 0.997 0.996 1 1 0.995 0.999 0.998 1 0.999 1 1 0.999 1
0.75 0.997 0.972 0.992 0.994 1 0.998 0.986 0.996 0.998 1 0.999 0.992 0.999 0.998 0.999

M2 0.25 1 0.999 0.998 0.998 1 0.999 0.999 0.999 0.999 0.999 1 1 1 0.999 0.999
0.50 1 0.998  0.999  0.999 1 1 0.999  0.999 0.999 1 1 0.999 1 1 1
0.75 0.998 0.991 0.996 0.997 1 1 0.997 0.998 0.999 1 1 1 1 1 1

Heteroscedastic normal errors

M1 025 0998 0996 0.993 0.992 1 1 0.998 1 0.999 1 0.999 1 1 1 1
0.50 1 0.990 0.994 0.997 1 1 0.993 1 0.999 1 1 0.999 0.998 1 1
0.75 0.997 0.974 0.986 0.994 1 1 0.986 0.998 0.998 1 1 0.998 0.999 1 0.999

M2 0.25 1 0.998 1 1 1 1 1 1 0.999 1 1 0.999 1 1 1
0.50 1 0.996 0.998  0.999 1 1 1 1 1 1 1 0.999 1 1 1
0.75 1 0.998 1 1 1 1 0.999 1 0.999 1 1 1 1 1 1

Heteroscedastic t errors
M1 025 0998 098 0989 0986 0998 0999 0990 0996 0.996 0999 0997 0995 0998 0.995 0.998
050 0.999 0981 0992 0.995 1 1 0.996 1 1 1 1 0.998  0.999 1 0.998
075 0997 0961 0.991 0.990 1 0.979 0994 0.99% 0999 0995 0999 0.999 0.999
M2 025 1 0.999 1 0.999 0999 0.996 0999 0.998 1 0996 0.998 0.999 0.999

_—_

050 0.999 0995 0999 0.997 1 0.998 0998  0.997 1 1 1 1 0.999
0.75 1 0988 0999  0.998 1 0.998 1 1 1 1 1 1 1
Table 2. The percentages of correctly selecting? = K under Scenario 2.
n = 200 n = 300 n = 400
MNAR MNAR MNAR
Error T CC Ind CS AR Full CC Ind cS AR Full CC Ind CS AR Full

(@) 025 0.88 0961 0936 0918 1 0.983 0981 0985 0.980 1 0.993 0976 0993  0.990 1
050 0.898 0954 0954 0944 1 0.982 0989 0991  0.990 1 0.996 0984 0997  0.995 1
075 0.879 0947 0942 0.929 1 0.971 0981 0989  0.995 1 0.99 0975 0995 0.996 1

(b) 025 0678 0879 0820 0.783 1 0.896 0963 0945 0.929 1 0.951 0975 0975 0.968 1
050 0750 0913 0867 0.842 1 0.938 0978 0974 0972 1 0.990 0977 0989  0.990 1
075 0784 0915 0871 0855 0998 0925 0968 0.967 0.972 1 0.985 0972 0986  0.988 1

(c) 025 0770 0915 0871 0.833 1 0.942 0969 0984  0.968 1 0.993 0978 0995  0.992 1
050 0.821 0922 0892 0.865 1 0952 0977 0980 0977 1 0988 0.982 0995 0.993 1
075 0.808 0914 0868 0.865 1 0948 0978 0969  0.969 1 0985 0969 0987 0987 1

(d) 025 0541 0810 0703  0.657 1 0755 0926 0.881 0.848 1 0.896 0952 0962 0.954 1
050 0.621 0855 0780 0.740 1 0.834 0946 0930 0914 0999 0950 0954 0972 0971 1
075 0.638 0815 0764 0.735 1 0.852 0932 0924 0914 0999 0959 0966 0.970 0.970 1

estimated standard error (SE) of each component of # based on the plug-in estimator of (TTEIT)~L; (3) the
averaged 95% coverage probability, i.e., CP = (3 + 2K,) ! 213: 12 ke P({étj}thl), based on 1000 replications, where
CP({étj}Ll) is the coverage probability of éj To save space, Table 3 only reports the results under K = 2 and
n = 1000 and other simulation results are given in Tables S1-S5 in the Supplementary Material.

There are some conclusions that can be drawn from these simulation results. (i) AB. For both dropout settings
(M1) and (M2), our proposed MNAR estimators have negligible biases, while the CC estimator has large ABs espe-
cially under (M2). Further, it can be seen that our proposed estimators are robust since they are less sensitive to the
four different error distributions. In addition, in Tables 3 and S4, the ABs become larger when 7 increases, while in
Table S5 in the Supplementary Material, the ABs under (M2) are larger when v = 0.25, which is consistent with our
discussion above. (ii) SD and SE. The SDs of the MNARaRr; and MNAR(s estimators are smaller than the values of
the MNARy,q estimator. This finding shows that the estimation efficiency can be improved when the informative
working correlation structures are considered, compared with using the independent structure. On the other hand,
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Table 3. The simulated AB, SD, SE, MSE and CP under K = 2 and n = 1000.

T =025 =05 T =075

b4 method AB SD SE MSE CcP AB SD SE MSE CcP AB SD SE MSE CcP

Homoscedastic normal errors
M1 cC 0.273 0314 0320 0.046 0882 0298 0.307 0303 0.053 0855 0336 0349 0327 0.068 0.832
MNARj 0.009 0415 0419 0032 0949 0010 0428 0439 0.034 0955 0.016 0503 0.500 0.047 0.948
MNARcs 0.013 0348 0353 0.022 0948 0.020 0357 0362 0.024 0949 0055 0435 0406 0.037 0.931
MNARAR 0.022 0345 0349 0.022 0948 0.037 0357 0354 0.024 0.941 0.084 0.421 0.390 0.036 0.926
Full 0.012 0226 0226 0.009 0946 0.009 0.215 0210 0.009 0946 0.009 0228 0.226 0.009 0.947

M2 CC 0.240 0244 0241 0026 0.837 0268 0227 0225 0.029 0785 0329 0249 0242 0.041 0.742
MNARjhg 0012 0298 0309 0016 0954 0006 0299 0309 0016 0955 0.014 0336 0348 0.021 0.953
MNARcs  0.018 0248 0.251 0.011 0949 0.018 0239 0247 0010 0956 0.043 0272 0279 0014 0.948
MNARar 0023 0259 0260 0.012 0950 0.031 0250 0254 0012 0946 0065 0284 0281 0016 0.936
Full 0.009 0232 0226 0.010 0943 0013 0211 0210 0.008 0944 0.007 0229 0.226 0.009 0.947

Homoscedastic t errors
M1 CC 0330 0365 0367 0066 0875 0356 0339 0337 0.072 0843 0415 0392 0364 0.099 0.813
MNAR,g 0012 0494 0493 0.046 0958 0.006 0.510 0509 0.049 0955 0.008 0679 0.623 0.089 0.951
MNARcs 0.012 0401 0403 0.030 0951 0032 0407 0408 0.031 0950 0.076 0494 0468 0.049 0.931
MNARar  0.024 0390 0396 0.028 0956 0.058 0400 0395 0.031 0942 0.119 0489 0442 0.051 0917
Full 0.016 0.261 0257 0.012 0.945 0.005 0.234 0234 0.010 0951 0.011 0261 0258 0.012 0.946

M2 CC 0.292 0282 0276 0037 0815 0354 0250 0250 0.046 0724 0443 0282 0271 0.068 0.663
MNARjhg 0019 0368 0368 0024 0954 0024 0363 0378 0.024 0958 0.027 0455 0452 0.037 0.955
MNARcs 0026 0289 0293 0015 0948 0053 0275 0287 0015 0954 0.093 0329 0335 0.022 0.941
MNARsr 0036 0302 0300 0.017 0941 0070 0282 029 0016 0948 0.124 0338 0330 0.025 0.924
Full 0.014 0264 0258 0.013 0941 0004 0232 0234 0.010 0949 0.010 0265 0258 0.013 0.945

Heteroscedastic normal errors
M1 CC 0331 0347 0350 0059 0.859 0364 0334 0332 0.066 0828 0395 0374 0358 0.082 0.817
MNAR,4 0006 0460 0466 0.039 0952 0.014 0494 0493 0.046 0956 0.009 0573 0.574 0.061 0.957
MNARcs 0.015 0384 0392 0.027 0952 0034 0399 0403 0.030 0949 0.055 0477 0457 0.043 0935
MNARag  0.028 0389 0387 0.028 0942 0.061 0392 0393 0.030 0943 0.088 0470 0437 0.044 0.926
Full 0.012 0247 0248 0.011 0953 0005 0230 0231 0.009 0950 0.011 0248 0.249 0.011 0.947

M2 CC 0298 0272 0265 0035 0799 0354 0250 0247 0.042 0724 0433 0274 0265 0061 0.654
MNARjhg 0019 0336 0346 0020 0954 0018 0337 0354 0.021 0961 0.023 0394 0405 0.029 0.956
MNARcs  0.024 0282 0.280 0.014 0944 0036 0267 0280 0.013 0957 0.074 0313 0319 0019 0.946
MNARpr ~ 0.030 0293 0.289 0.016 0.941 0053 0280 028 0.015 0949 0.100 0321 0319 0.021 0.935
Full 0.009 0262 0249 0012 0937 0006 0230 0231 0.009 0946 0.010 0255 0248 0012 0.944

Heteroscedastic t errors
M1 CC 0405 0400 0402 008 0.845 0439 0374 0369 0.093 0810 0.503 0431 0398 0.124 0.775
MNAR,4 0.014 0567 0553 0.060 0954 0.028 0.624 0602 0.074 0957 0.033 0780 0.713 0.113 0.944
MNARcs 0.025 0444 0451 0.037 0948 0061 0458 0460 0.040 0947 0.110 0567 0.527 0.064 0.922
MNARag  0.039 0440 0441 0.036 0948 0.085 0447 0442 0.039 0938 0.156 0545 0493 0.063 0.909
Full 0.022 0284 0283 0.015 0944 0003 0.265 0258 0.013 0941 0.013 0287 0.283 0.015 0.946

M2 CC 0359 0306 0303 0049 0.785 0443 0274 0275 0.063 0660 0559 0305 029 0.09 0.575
MNARjhg 0016 0393 0417 0028 0961 0030 0422 0437 0.032 0958 0.065 0511 0517 0.049 0.954
MNARcs 0029 0319 0330 0019 0954 0069 0311 0327 0018 0950 0.132 0371 0379 0.029 0.933
MNARsr  0.042 0328 0335 0020 0.950 0.091 0319 0327 0.020 0944 0.166 0375 0369 0.032 0916
Full 0.018 0287 0.283 0.015 0947 0008 0257 0258 0.012 0948 0.008 0288 0.283 0.015 0.944

it can be seen that the SDs of the CC estimator are smaller than the proposed estimators since the CC method does
not need to estimate ¢,. In addition, all SEs are quite close to the SDs, which shows our plug-in estimator works
well. (iii) MSE. The MSEs of the proposed MNARaRr; and MNARcg are always smaller than the MSEs of the CC and
MNARyyg estimators. Although the CS structure is the true structure, our proposed MNAR,R; estimator still has
comparable performance. This indicates that we can obtain a more efficient estimator by assuming an informative
working correlation structure that may not be correct, rather than ignoring the unknown correlation structure. (iv)
CP. The coverage rates of 95% Wald confidence intervals of our proposed three MNAR estimators are close to the
nominal level 95%, while the CPs are slightly low when v = 0.75. Moreover, it can be seen that our CPs increase
slightly when n increases. However, for the CC estimator, it can be seen that its CPs decrease when n increases, since
some components of the CC estimator have large biases and thus do not obey the asymptotic distribution in D. Li
etal. (2022). Moreover, the CC estimator always has smaller CPs compared with the proposed estimators, especially
under (M2).

4.3. Power analysis

We compare the performance of our proposed testing procedure in Algorithm 2 with the CC testing proce-
dure for the existence of the kink points based on 600 repetitions. To be specific, we consider one single kink
point K =1, T = 0.25, 0.5 and 0.75, n = 500 and 1000, B = 200; the missing indicators r;; are generated by
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T =025 T =05 T =075
MNAR MNAR MNAR
b4 CC Ind CS AR Full de Ind cS AR Full CC Ind CS AR Full
Homoscedastic normal errors

M1 oo 0.657 0.954 0.954 0.959 0.958 0.548 0.964 0.947 0.936 0.943 0.497 0.955 0.925 0.910 0.950
y 0.919 0.949 0.941 0.934 0.933 0.919 0.939 0.947 0.948 0.949 0911 0.952 0.923 0.916 0.948
o 0.968 0.946 0.957 0.953 0.958 0.946 0.964 0.941 0.944 0.942 0.935 0.955 0.934 0.931 0.952
B 0886 0955 0944 0954 0949 0846 0962 0950 0939 0944 0.831 0948 0939 0936 0.945
B 0.864 0.943 0.952 0.947 0.936 0.846 0.953 0.958 0.941 0.944 0.824 0.938 0.926 0.924 0.944
81 0.924 0.947 0.943 0.945 0.953 0.925 0.949 0.947 0.929 0.950 0.902 0.943 0.930 0.925 0.949
8 0.953 0.949 0.943 0.944 0.934 0.953 0.957 0.955 0.952 0.947 0.922 0.946 0.941 0.937 0.939

M2 oo 0.735 0.960 0.960 0.951 0.945 0.624 0.962 0.965 0.947 0.954 0.534 0.954 0.932 0.921 0.941
y 0.903 0.941 0.954 0.945 0.956 0.868 0.958 0.953 0.941 0.946 0.852 0.940 0.950 0.935 0.935
o 0.810 0.954 0.943 0.939 0.933 0.742 0.960 0.967 0.956 0.954 0.714 0.953 0.949 0.934 0.947
B 0756 0962 0953 0959 0938 0666 0953 0955 0956 0938 059 0973 0958 0.954 0.958
B 0.773 0.968 0.946 0.945 0.946 0.719 0.957 0.954 0.943 0.945 0.634 0.954 0.951 0.939 0.952
81 0.932 0.953 0.945 0.956 0.938 0.933 0.947 0.953 0.942 0.946 0.921 0.948 0.952 0.941 0.954
8 0947 0943 0944 0956 0945 0943 0945 0945 0938 0925 0944 0949 0944 0929 0.945

Homoscedastic t errors

M1 7 0.630 0.964 0.954 0.963 0.947 0.507 0.959 0.955 0.946 0.957 0.432 0.951 0.909 0.868 0.941
y 0910 0961 0.953 0.949 0942 0924 0949 0951 0.944 0960 0904 0955 0940 0925 0.966
2 0.957 0964 0954 0963 0949 0950 0949 0944 0942 0947 0919 0951 0926 0915 0.932
B 0.886 0.962 0.955 0.959 0.948 0.836 0.962 0.947 0.932 0.945 0.807 0.949 0.929 0.916 0.944
B 0.876 0.948 0.939 0.948 0.947 0.838 0.966 0.962 0.945 0.944 0.803 0.951 0.937 0.931 0.962
81 0930 0956 0952 0955 0939 0905 0952 0942 0941 0955 0.901 0958 0934 0927 0942
82 0.939 0.951 0.951 0.956 0.940 0.939 0.947 0.949 0.947 0.949 0.928 0.943 0.945 0.935 0.933

M2 oo 0.684 0.951 0.955 0.948 0.944 0.463 0.962 0.947 0.942 0.952 0.356 0.945 0.919 0.886 0.945
y 0.881 0950 0947 0939 0948 0885 0953 0952 0934 0934 0.844 0958 0948 0950 0.953
o 0.783 0.963 0.946 0.950 0.931 0.657 0.963 0.961 0.956 0.955 0.587 0.957 0.946 0.922 0.934
B 0.707 0.955 0.950 0.943 0.936 0.579 0.957 0.957 0.948 0.957 0.458 0.960 0.943 0.919 0.945
B 0.770 0.965 0.957 0.936 0.948 0.603 0.960 0.949 0.940 0.955 0.534 0.959 0.942 0.920 0.959
81 0.928 0944 0932 0931 0934 0927 0964 0961 0.954 0937 0921 0953 0937 0936 0.935
) 0.955 0.951 0.952 0.941 0.945 0.953 0.950 0.949 0.964 0.950 0.939 0.950 0.949 0.936 0.941

Heteroscedastic normal errors

M1 oo 0.638 0.966 0.957 0.942 0.953 0.519 0.953 0.950 0.941 0.961 0.487 0.955 0.924 0.903 0.951
y 0845 0959 0953 0936 0968 0.830 0.952 0.931 0.931 0935 0808 0952 0925 0906 0.955
o 0.946 0.947 0.951 0.948 0.957 0.950 0.956 0.948 0.951 0.948 0.938 0.957 0.941 0.938 0.943
B 0.867 0.950 0.957 0.951 0.947 0.826 0.969 0.959 0.950 0.956 0.832 0.962 0.937 0.935 0.943
B 0860 0951 0.946 0947 0948 0810 0959 0.961 0.932 0944 0815 0948 0933 0932 0949
81 0915 0949 0950 0935 0947 0917 0946 0946 0943 0953 0903 0966 0936 0.930 0.943
) 0.945 0.941 0.947 0.935 0.948 0.942 0.955 0.951 0.952 0.951 0.937 0.959 0.946 0.941 0.943

M2  ap 0685 0952 0943 0937 0933 0540 0966 0958 0948 0945 0413 0950 0934 0926 0.944
y 0.826 0954 0942 0937 0929 0751 0962 0948 0943 0946 0709 0.959 0941 0923 0.941
o 0.762 0.951 0.938 0.939 0.928 0.665 0.960 0.959 0.943 0.937 0.587 0.955 0.943 0.940 0.945
B 0.717 0.963 0.947 0.945 0.943 0.575 0.970 0.962 0.959 0.950 0.460 0.961 0.962 0.947 0.957
B, 0723 0959 0950 0.948  0.951 0.641 0957 0954 0949 0942 0526 0951 0943 0929 0935
81 0.938 0.954 0.951 0.939 0.936 0.940 0.958 0.960 0.943 0.944 0.929 0.955 0.944 0.939 0.941
8 0.945 0.945 0.939 0.945 0.939 0.955 0.957 0.959 0.957 0.960 0.952 0.961 0.954 0.943 0.947

Heteroscedastic t errors

M1 oo 0.584 0.954 0.951 0.942 0.940 0.465 0.963 0.942 0.926 0.940 0.396 0.939 0.913 0.880 0.942
y 0.842 0.952 0.946 0.945 0.942 0.804 0.948 0.936 0.930 0.949 0.774 0.950 0.914 0.897 0.954
o 0.951 0.949 0.945 0.947 0.940 0.949 0.962 0.950 0.947 0.943 0.922 0.941 0.914 0.905 0.939
B 0837 0960 0954 0959 0946 0786 0960 0946 0938 0940 0.759 0947 0931 0923 0.945
B 0.852 0.961 0.951 0.946 0.944 0.804 0.956 0.951 0.938 0.940 0.750 0.945 0.913 0911 0.948
81 0.910 0.943 0.946 0.947 0.943 0.929 0.962 0.955 0.944 0.937 0.892 0.941 0.924 0.907 0.953
8 0.937 0.957 0.945 0.947 0.950 0.933 0.950 0.949 0.944 0.938 0.930 0.946 0.948 0.939 0.942

M2 oo 0.648 0.967 0.954 0.955 0.947 0.410 0.951 0.956 0.941 0.948 0.279 0.950 0.911 0.896 0.945
y 0.826 0.953 0.949 0.952 0.944 0.712 0.962 0.952 0.948 0.954 0.604 0.957 0.926 0.910 0.944
a 0744 0966 0960 0956 0949 0.599 0954 0.961 0.947 0948 0509 0953 0937 0916 0946
B1 0682 0957 0954 0939 0946 0486 0955 0945 0941 0947 0363 0949 0939 0912 0953
B 0.701 0.965 0.951 0.954 0.949 0.522 0.969 0.944 0.940 0.938 0.420 0.958 0.933 0914 0.943
81 0.942 0.966 0.963 0.945 0.954 0.941 0.953 0.945 0.945 0.953 0.921 0.955 0.944 0.936 0.938
8, 0952 0951 0.950 0948 0942 0952 0959 0948 0948 0946 0929 0958 0940 0925 0.942

b0 = (—8.0,0.1, 1.0)" forj=1,2, ¢jo = (—8.0,—0.1, 1.0)T for j = 3,4; B; = 0, 0.1 and 0.15. The Type I error
and local power results under K = 2 and n = 1000 are shown in Tables 4 and 5 and other simulation results are
given in Tables S6-S10 in the Supplementary Material.

We have the following findings. (i) When 8; = 0, i.e., under the null hypothesis, our proposed MNAR test has

satisfactory Type I errors close to the nominal significance level 5%; the CC test has much larger errors, especially
when n = 1000. Moreover, when 7 increases, it can be seen that the Type I errors of the CC test become larger while
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Table 5. Power results with vary 81 under four different errors with n = 500, 1000 and T = 0.25, 0.5, 0.75.

n = 500 n = 1000
T =025 T =05 T =075 T =025 =05 =075

Errors B1 CC MNAR CC MNAR CC MNAR cC MNAR CC MNAR CC MNAR
() 0 0.207 0.040 0.255 0.048 0.292 0.030 0.330 0.033 0.442 0.027 0.560 0.037
0.1 0.242 0.478 0.245 0.413 0.168 0.300 0.532 0.860 0.450 0.835 0.317 0.693

0.15 0.698 0.788 0.698 0.778 0.567 0.628 0.938 0.967 0.923 0.955 0.868 0.910

(b) 0 0.188 0.028 0.312 0.053 0.352 0.050 0.345 0.030 0.562 0.030 0.577 0.030
0.1 0.175 0.313 0.150 0.242 0.098 0.168 0.283 0.688 0.225 0.602 0.165 0.417

0.15 0.497 0.633 0.520 0.583 0.388 0.432 0.795 0.902 0.773 0.835 0.625 0.747

() 0 0.207 0.027 0.300 0.037 0.328 0.050 0.418 0.027 0.547 0.032 0.623 0.025
0.1 0.162 0.343 0.135 0.273 0.090 0.190 0.327 0.730 0.218 0.665 0.153 0.503

0.15 0.548 0.682 0.528 0.653 0.402 0.465 0.842 0.923 0.815 0.910 0.608 0.818

(d) 0 0.205 0.027 0.332 0.038 0.385 0.052 0.405 0.030 0.610 0.025 0.640 0.043
0.1 0.080 0.222 0.078 0.198 0.057 0.100 0.133 0.540 0.122 0.457 0.073 0.248

0.15 0.363 0.542 0.318 0.460 0.225 0.303 0.608 0.860 0.562 0.778 0.378 0.620

Table 6. Parameter estimates and test results for the NGHS data.

Method T =025 =05 T =075
CcC P—vgjues 0.000 0.000 0.000
K 1 1 1
o) 68.665(2.910) 79.884(1.976) 84.452(2.105)
y 0.214(0.091) 0.266(0.093) 0.230(0.101)
a 1.464(0.173) 0.975(0.116) 0.924(0.118)
ﬁ1 —1.176(0.183) —0.850(0.143) —0.842(0.148)
5 20.938(0.516) 24.966(0.879) 25.782(1.081)
Wald [—19.927,21.949] [23.243,26.689] [23.663,27.901]
MNAR P-values 0.000 0.000 0.000
K 1 1 1
o 73.977(2.203) 78.968(2.525) 83.979(3.367)
y 0.443(0.111) 0.415(0.125) 0.302(0.156)
& 1.039(0.124) 0.974(0.134) 0.971(0.158)
B —1.004(0.168) —0.999(0.176) —1.040(0.209)
31 24.968(0.878) 26.199(1.070) 26.636(1.193)
Wald [23.247,26.689] [24.102,28.300] [24.298,28.974]

the proposed test has stable results. The main reason is that the CC estimator of & is not consistent, which has been
shown in D. Li and Wang (2022), such that the CC test would have big T, and tend to reject the null hypothesis.
(ii) As B increases, i.e., under the local hypothesis, the proposed MNAR test has higher powers than those of the
CC test. When 7 increases, all powers become larger. When 7 increases, all powers decrease, since the larger Y; is
more likely to be missing.

5. Analysis of blood pressure and body mass index

In this section, we analyse the longitudinal NGHS data from the website https://biolincc.nhlbi.nih.gov/ to evaluate
our proposed method. The covariates Xj; and Z;; are the BMI and age respectively, and the response Yj; is the blood
pressure (BP). The data were collected from 400 subjects whose ages range from 9 to 19 and max; m; = 10 for
i=1,...,400. As we mentioned in Section 1, the nonignorable dropout rates of the follow-up times are 91.5%,
84.1%, 73.7%, 64.9%, 58.9%, 52.6%, 45.6%, 39.3%, 37.0% and 33.0%, respectively.

We compute the CC estimator and the proposed MNAR estimators using the CS structure for t = 0.25,0.5,0.75.
The results of P-values for the kink points detection, the estimated number of kink points, the coefficients estimates,
their standard errors and the confidence intervals for kink locations are summarized in Table 6. It can be seen that
the CC estimator has smaller variances compared with the proposed MNAR estimator in general, which is in accord
with simulation results. However, §; obtained by the CC method is far from that of the proposed MNAR method
when t = 0.25. Moreover, it can be seen that the proposed MNAR estimator under 7 = 0.75 does not perform
well, compared with the MNAR estimator under t = 0.25 and 0.5, due to the missing mechanism. In addition,
Figures 1-2 show scatter plots between the BP and BMI with the fitted curves at different levels r based on the CC
and MNAR methods, respectively.
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Figure 1. The fitted expectile curves using CC method at T = 0.25, 0.5 and 0.75 for BMI against systolic BP.
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Figure 2. The fitted expectile curves using MNAR method at = 0.25, 0.5 and 0.75 for BMI against systolic BP.

6. Conclusion

In this article, we develop a longitudinal multiple kink expectile regression model with the unknown number of kink
points and nonignorable dropout. The selection consistency and the asymptotic properties of regression coeflicients
and kink points are derived. In order to test the existence of kink effects at a given expectile with nonignorable
dropout, a weighted cumulative sum type statistic is proposed and we obtain its limiting distributions. Simulation
studies and real data analysis show that our proposed estimators and proposed test have good performance.

There are some interesting topics to further study. First, we only consider the expectile regression model and
this can be extended to other models, such as censored models, generalized linear models and so on. Second, in
this article, we establish the theoretical properties when the number of kink points is true. Hence, extending the
theoretical properties of estimators with the misspecified number of kink points is relegated to the further study.
Third, it is interesting to study how to test if kink locations depend on the expectile levels. Fourth, the computation
time of Algorithm 2 is long due to the bootstrap procedure and it is our further work to reduce the computational
complexity of our proposed method.
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