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ABSTRACT
In this paper, we consider parameter estimation, kink points testing and statistical inference
for a longitudinal multi-kink expectile regression model with nonignorable dropout. In order to
accommodate both within-subject correlations and nonignorable dropout, the bias-corrected
generalized estimating equations are constructed by combining the inverse probability weight-
ing and quadratic inference function approaches. The estimators for the kink locations and
regression coefficients are obtained by using the generalized method of moments. A selection
procedure based on amodified BIC is applied to estimate the number of kink points.We theoreti-
cally demonstrate the number selection consistency of kink points and the asymptotic normality
of all estimators. A weighted cumulative sum type statistic is proposed to test the existence of
kink effects at a given expectile, and its limiting distributions are derived under both the null and
the local alternative hypotheses. Simulation studies show that the proposed estimators and test
have desirable finite sample performance in both homoscedastic and heteroscedastic errors. An
application to the Nation Growth, Lung and Health Study dataset is also presented.
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1. Introduction

Longitudinal data frequently arise in many fields where repeated measurements within the same subject are corre-
lated, such as epidemiology, medical science and socioeconomic panel studies. In most longitudinal regression
models, the impacts of covariates on responses are often assumed to be constant on the whole domain of the
covariates, which may not be valid in some applications. For example, before and during puberty, a child’s height
would increase rapidly but stop increasing in the late teens, which shows there exists one change point. D. Li
et al. (2022) investigated the relationship between the bike rental count and the time of the day using Capital
Bike sharing data set in Washington D.C. and found that there are four kink points splitting the domain of the
24 hours into five periods: before sunrise, morning, early afternoon, late afternoon and evening. In these exam-
ples, the traditional linear regression may not fit well. Compared with the traditional regression models, the kink
or change point regression models (B. Hansen, 2017) can achieve better performance and provide complementary
information.

1.1. Relatedwork

There exists a vast amount of literature related to kink regression models. For example, Lee et al. (2011), Lee
et al. (2016), Fong (2019) and many others investigated a single unknown kink or change point estimation and
inference problems. Bai and Perron (2003), Perron andQu (2006) andMatteo et al. (2018) proposed the testing and
estimation methods for multiple kink regression models. Alternatively, quantile regression (QR; Koenker & Bas-
sett, 1978) and expectile regression (ER; Aigner et al., 1976; Newey & Powell, 1987) models are useful statistical
tools for modelling and inferring the relationship between the response and covariates in some studies about the
weights in child growth, high expenses in medical cost and so on. Compared with the traditional regression meth-
ods, both QR and ER can capture a complete picture of the relationship between the response and predictors. C.
Li et al. (2011), Oka and Qu (2011) and L. Zhang et al. (2014) considered the estimation and testing problems for
the single kink QR models while Zhong et al. (2022) investigated the multi-kink QR models and Wan et al. (2023)
investigated it for the longitudinal data. Unlike QR, ER enjoys the computation efficiency, not only because of its
differentiable L2 loss, but also because the asymptotic covariancematrix of its estimator does not involve the density
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function of the errors. Because of these advantages, F. Zhang and Li (2017) studied the single threshold ER models,
andD. Li et al. (2022) considered themulti-kink ERmodels for the longitudinal data. However, it should be pointed
out that all these existing methods are based on fully observed data and little knowledge is available on analysing
multi-kink regression models in the presence of missing data.

Our study is motivated by the longitudinal body mass index (BMI) and blood pressure (BP) data on the Nation
Growth, Lung andHealth Study (NGHS) website. However, due to adverse events, the desire to seek other therapies
and some other reasons, patients often drop out prior to the end of the study and the dropout rates of the follow-up
times are 91.5%, 84.1%, 73.7%, 64.9%, 58.9%, 52.6%, 45.6%, 39.3%, 37.0% and 33.0%, respectively. In addition, pre-
vious experiences from doctors found that a steep rise in the BP indicates the disease progression, and patients with
high BP values are more likely to drop out from the scheduled study visits as compared to patients with normal BP
values, i.e., the nonresponse of the BP is likely related to itself and is nonignorable (Shao &Wang, 2016). Moreover,
it can be checked that the distribution of BP is skewed such that mean regression may not appropriately assess the
longitudinal change in BP data. Therefore, the existing methods may produce misleading results when applied to
this NGHS data.

1.2. Our contributions

In this paper, we consider the situation where the covariates are always observed, but subjects may drop out before
the end of the longitudinal study, which results in incomplete data. Dropout is ignorable if the dropout propensity
depends on the observed values. Zhou and Liang (2021) investigated one change point estimation in the regression
model when the response is missing at random. However, in practice the missing not at random (MNAR; L. Wang
et al., 2019) or nonignorable dropout is more common; see L. Wang et al. (2019). It is well known that complete
case (CC) analysis can not be trusted under nonignorable missing responses. Furthermore, L. Wang et al. (2019)
and many others showed that developing valid methodologies for statistical analysis with nonignorable dropout
is challenging, because the population parameters are not identifiable (Shao & Wang, 2016) if there is no assump-
tion imposed, and the existing methods based on the assumption of ignorable dropouts may have large biases. To
address the identifiability issue, S. Wang et al. (2014), Shao and Wang (2016), Miao and Tchetgen Tchetgn (2018),
L. Wang et al. (2019) and many others proposed an instrumental variable approach for the parameter estimation
with nonignorable nonresponse. Chen et al. (2022) studied Bayesian change-point joint models for multivariate
longitudinal and time-to-event data, and discussed its application to nonignorable missing data.

The existence of nonignorable dropout and multiple kinks, and their impacts on the estimation and inference
motivate us to search for an efficient and unified approach. To the best of our knowledge, the longitudinal multiple
kink expectile regression (MKER) model with nonignorable dropout has not been investigated when the number
of kink points and their locations are both unknown.

(1) In order to account for nonignorable dropout, we impose a parametric model on the dropout propensity and
use a nonresponse instrument for the identifiability to consistently estimate the dropout propensity (L. Wang
et al., 2019). The bias-corrected generalized estimating equations (GEEs; Liang & Zeger, 1986) by the inverse
propensity weighting (IPW) are used to incorporate the within-subject correlations through a working cor-
relation matrix. However, it should be pointed out that it is difficult to describe and specify the underlying
within-subject covariance matrix. Motivated by the matrix expansion idea, the quadratic inference function
(QIF; Qu et al., 2000) is applied to estimate parameters, which neither assumes the exact knowledge of the
within-subject correlation matrix nor estimates the parameters of the within-subject correlation matrix. We
estimate the number of kink points based on a modified BIC information criterion. The selection consistency
of the number of kink points and the asymptotic normality of parameters are derived.

(2) A two-stage testing procedure for the existence of kink points at a given expectile level for longitudinal datawith
nonignorable dropout based on a weighted CUSUM type statistic is developed. The limiting distribution of the
test statistic is also established. This two-stage testing procedure only requires fitting the ordinary ER model
under the null hypothesis in the absence of kink points, avoids the estimation of the dropout propensity based
on resampled data and is computationally much more efficient. Moreover, we propose a modified blockwise
wild bootstrap to approximate the P-value.

(3) It is worthwhile to point out that the proposed estimation and testing methods can be used in bal-
anced/imbalanced longitudinal data. Simulation results show that the proposed estimators of the regression
coefficients and kink locations have good finite sample performance. In addition, compared with the CC test,
our proposed test has better control of Type I error and higher powers in a wide range of scenarios. We also
apply the proposed method to the longitudinal NGHS data. All the estimation and testing procedures are
implemented in R codes, which are available when requested by readers.
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1.3. Organization

The remainder of the article is organized as follows. In Section 2, we describe the longitudinal MKER model
with nonignorable dropout, develop a parameter estimation procedure and study their asymptotic properties. In
Section 3, we propose a testing procedure at a given expectile level and derive the limiting distribution of the statis-
tic. In Section 4, we conduct simulation studies. A real data analysis is shown in Section 5. Section 6 concludes the
remarks. The technique proofs are presented in the Appendix.

2. Methodology

2.1. Model and parameter estimation

Let Yi = (Yi1, . . . ,Yimi)
� ∈ Rmi denote the ith subject’s response and Dij = (Xij,Z�

ij )
� ∈ Rp+1 denote the corre-

sponding covariance vector associated with Yi, where Xij ∈ � is a bounded scalar covariate with multiple kink
effects and Zij is a p-dimensional additional covariate for j = 1, . . . ,mi and i = 1, . . . , n.

Given τ ∈ (0, 1), define the τ th expectile of Y as EY(τ ) = argminE E{ρτ (Y − E)} with ρτ (u) = u2|τ − I(u <
0)|. In this paper, we consider a longitudinal MKER model with an undetermined number of kink points,

EYij(τ ; θ |Dij) = α0,τ + α1,τXij +
K∑

k=1

βk,τ (Xij − δk,τ )I(Xij > δk,τ )+ γ �
τ Zij, (1)

where EYij(τ ; θ |Dij) is the τ th conditional expectile of Yij given covariates Dij, βk,τ �= 0 implies the exis-
tence of a kink effect at Xij = δk,τ and δ1,τ < δ2,τ < · · · < δK,τ are K unknown kink points. Denote ντ =
(α0,τ ,α1,τ ,β1,τ , . . . ,βK,τ , γ τ )� as the vector of the corresponding regression coefficients, δτ = (δ1,τ , . . . , δK,τ )�
as the vector of kink points and θ τ = (ν�

τ , δ
�
τ )

�. We omit the subscript τ for ease of notations.
In this paper, we consider the situation whereDij is always observed, but subjects may drop out prior to the end

of the study, which results in incomplete Y i data. Let rij be the response indicator, i.e., rij = 1 if Yij is observed or
rij = 0 otherwise, and define πij = Pr(rij = 1|Di,Y i) with Di = (Di1, . . . ,Dimi)

�. In the presence of missing data,
we consider the following bias-corrected objective function to estimate θ , i.e.,

Sn(θ) = 1
n

n∑
i=1

mi∑
j=1

rij
πij
ρτ {Yij − EYij(θ |Dij)}. (2)

Denote W i = diag(ri1/πi1, . . . , rimi/πimi), �τ (Y i − EY i(θ)) = diag(	τ (Yi1 − EYi1(θ)), . . . ,	τ (Yimi − EYimi
(θ)))

with 	τ(u) = |τ − I(u < 0)| and EY i(θ) = (EYi1(θ), . . . , EYimi
(θ))�. Motivated by Liang and Zeger (1986), the

bias-corrected generalized estimating equations (GEEs) can be written as

n∑
i=1

Xi(θ)
�V−1

iτ W i�τ (Y i − EY i(θ))(Y i − EY i(θ)) = 0, (3)

where Xi(θ) = (Xi1(θ), . . . ,Ximi(θ))
� with Xij(θ) = (1,Xij, (Xij − δ1)+, . . . , (Xij − δK)+,Z�

ij ,−β1I(Xij > δ1),
. . . ,−βKI(Xij > δK))

� and V iτ is the true covariance matrix of �τ (Y i − EY i(θ0))(Y i − EY i(θ0)) with the true
vector θ0. It should be pointed out that the following decomposition holds, i.e., V−1

iτ = A−1/2
iτ R−1

iτ A−1/2
iτ , with

Aiτ and Riτ being the true marginal variance matrix and correlation matrix of �τ (Y i − EY i(θ0))(Y i − EY i(θ0))

respectively.
To estimate the unknown parameter θ , a consistent estimator of πij should be obtained firstly. Using the

instrumental estimating equations proposed by Shao and Wang (2016) and L. Wang et al. (2019), assume Dij

can be decomposed as two parts U ij and U⊥
ij , i.e., Dij = (U�

ij , (U
⊥
ij )

�)�. Denote −→
U ij = (U�

i1, . . . ,U
�
ij )

�, −→
Y ij =

(Yi1, . . . ,Yij)
� and further assume that

Pr(rij = 1|ri(j−1) = 1,Di,Y i) = Pr(rij = 1|ri(j−1) = 1,
−→
U ij,

−→
Y ij) = ψ(O�

ij φj),

Pr(rij = 1|ri(j−1) = 0,Di,Y i) = 0, j = 1, . . . ,mi, i = 1, . . . , n, (4)
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where Oij = (1,
−→
U �

ij ,
−→
Y �

ij )
�, φj is an unknown parameter vector with the true value φj0, ψ defined on [0, 1] is a

known monotone function and ri0 = 1. Under the model (4),

πij =
j∏

t=1
Pr(rit = 1|ri(t−1) = 1,Di,Y i) =

j∏
t=1

ψ(O�
it φt0).

We then define the instrumental estimating equations

g ij(Y i,Di, ri,φj) = ri(j−1)

{
rij

ψ(O�
ij φj)

− 1

}
S(

−→
D ij,

−→
Y i(j−1)), (5)

where ri = (ri1, . . . , rimi)
� and S(

−→
D ij,

−→
Y i(j−1)) is a known vector-valued function (L. Wang et al., 2019). The

consistent estimator φ̂ = (φ̂
�
1 , . . . , φ̂

�
maxi mi)

� of the true parameter vector φ0 = (φ�
10, . . . ,φ

�
maxi mi0)

� can be
obtained by two-step generalized method of moments (GMM; L. Hansen, 1982) in Shao and Wang (2016), L.
Wang et al. (2019) and D. Li and Wang (2022). Once the estimator φ̂ is obtained, πij and W i can be estimated by
π̂ij = ∏j

t=1 ψ(O
�
it φ̂t) andW i(φ̂) = diag(ri1/π̂i1, . . . , rimi/π̂imi), respectively. Subsequently, a consistent estimator

Âiτ (θ , φ̂) of Aiτ (θ) can be obtained by computing the marginal sample variance based on the IPW approach.
In practice, R−1

iτ is always unknown and we borrow the matrix expansion idea of the quadratic inference func-
tions (QIF) method (Qu et al., 2000) to approximate R−1

iτ = ∑L
l=1 blτMli, where Mli’s are some given symmetric

basic matrices and blτ ’s are unknown coefficients. Thereafter, the Equation (3) can be approximated by a linear
combination of Ŝi(θ), for i = 1, . . . , n, as follows,

Ŝi(θ) =

⎛⎜⎝Xi(θ)
�Â−1/2

iτ (θ , φ̂)Mi1Â
−1/2
iτ (θ , φ̂)W i(φ̂)�τ (Y i − EY i(θ))(Y i − EY i(θ))

...
Xi(θ)

�Â−1/2
iτ (θ , φ̂)MiLÂ

−1/2
iτ (θ , φ̂)W i(φ̂)�τ (Y i − EY i(θ))(Y i − EY i(θ))

⎞⎟⎠ . (6)

Since the number of estimation equations is greater than the number of parameters, we estimate θ as follows:

θ̂ = argmin
θ

Ŝ(θ)��̂
−1
(θ )̂S(θ), (7)

where Ŝ(θ) = n−1 ∑n
i=1 Ŝi(θ) and �̂(θ) = n−1 ∑n

i=1 Ŝi(θ )̂Si(θ)
�. The estimation procedure for (7) can be sum-

marized as the following Algorithm 1.

Algorithm 1 Parameter estimation procedure

(1) Obtain φ̂, π̂ij = ∏j
t=1 ψ(O

�
it φ̂t) and Âiτ (θ , φ̂).

(2) Given θ̂
(r−1)

from the r − 1 step, update

Âiτ (θ̂
(r−1)

, φ̂) = diag

⎛⎝ 1
|T1|

∑
t∈|T1|

rt1
π̂t1
	τ (ε̂t1)

2ε̂2t1, . . . ,
1

|Tmi |
∑

t∈|Tmi |

rtmi

π̂tmi

	τ(ε̂tmi)
2ε̂2tmi

⎞⎠ ,

˙̂Sil(θ̂ (r−1)
) = −Xi(θ̂

(r−1)
)�Â−1/2

iτ (θ̂
(r−1)

, φ̂)MilÂ
−1/2
iτ (θ̂

(r−1)
, φ̂)W i(φ̂)�τ (ε̂i)Xi(θ̂

(r−1)
),

with ε̂tj = Ytj − EYtj(θ̂
(r−1)|Dtj), ε̂i = (ε̂i1, . . . , ε̂imi)

� and Tj = {t|mt ≥ j}.
(3) Obtain ˙̂Si(θ̂ (r−1)

) = ( ˙̂Si1(θ̂ (r−1)
)�, . . . , ˙̂SiL(θ̂ (r−1)

)�)� and ˙̂S(θ̂ (r−1)
) = n−1 ∑n

i=1
˙̂Si(θ̂ (r−1)

). Update θ̂
(r)

by

θ̂
(r) = θ̂

(r−1) − {˙̂S(θ̂ (r−1)
)��̂

−1
(θ̂
(r−1)

) ˙̂S−1
(θ̂
(r−1)

)}−1 ˙̂S(θ̂ (r−1)
)��̂

−1
(θ̂
(r−1)

)̂S(θ̂
(r−1)

).

(4) Repeat Steps (2)–(3) until convergence.

2.2. Number selection of kink points

It should be pointed out that the true number of kink pointsK0 is always unknown in practice. In order to implement
the estimationAlgorithm 1, we need to identify the number of kink pointsK first. Following Zhong et al. (2022) and
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D. Li et al. (2022), we propose to choose K by minimizing the following modified Bayesian information criterion:

BIC(K) = log

⎧⎨⎩1
n

n∑
i=1

mi∑
j=1

rij
π̂ij
ρτ {Yij − EYij(θ̂K |Dij)}

⎫⎬⎭ + NK
log(n)
2n

Cn, (8)

where θ̂K is the estimator computed by the algorithm above with K kink points, NK is the number of parameters,
and Cn is a positive constant. Thus, given the maximum number of kink points K∗, the estimator for K0 is

K̂ = argmin
k=0,1,...,K∗

BIC(k).

According to Zhong et al. (2022) and D. Li et al. (2022), the selection results are not very sensitive to the choice of
the Cn value satisfying Cn log n/n = o(1) and they recommended to use Cn = log(n) to estimate K based on the
BIC in the simulations.

2.3. Asymptotic properties

Next, we investigate the theoretical properties of the proposed estimator and the number selection consistency of
the kink points. Let

Wj = E[g ij(Y i,Di, ri,φj)g ij(Y i,Di, ri,φj)
�], π i(φ0) = diag(πi1, . . . ,πimi),

Tl = E[−Xi(θ0)
�A−1/2

iτ MilA
−1/2
iτ �τ (Y i − EY i(θ0))Xi(θ0)], �j = E[ġ ij(Y i,Di, ri,φj)],

Hl = E[−Xi(θ0)
�A−1/2

iτ MilA
−1/2
iτ �τ (Y i − EY i(θ0))diag(Y i − EY i(θ0))π

−1
i (φ0)π̇ i(φ0)],

S0il = Xi(θ0)
�A−1/2

iτ MilA
−1/2
iτ W i(φ0)�τ (Y i − EY i(θ0))(Y i − EY i(θ0)), S0i = (S0�i1 , . . . , S0�iL )

�.

We then make the following assumptions.

(A1) {Di,Y i}ni=1 are independent and identically distributed (i.i.d.) random vectors. The response probability
function πij(φ) for all j satisfies: (a) it is strictly monotone and twice differentiable with respect to φ; (b) 0 <
c0 < πij(φ) < 1 for a positive constant c0 and π̇ ij(φ) is uniformly bounded for any φ in a neighbourhood
of φ0.

(A2) E[‖Di‖2] < ∞ and there exists a neighbourhoodNj of φj such that E[rij supϑ ∈ Nj{(1 + ‖Di‖2)πij(ϑ)2 +
‖S(Di,

−→
Y i(j−1))‖1‖S(Di,

−→
Y ij)‖1|π̇ij(ϑ)| + ‖S(Di,

−→
Y ij)‖2|π̈ij(ϑ)|}] < ∞, where ‖ · ‖ is the L2-norm and

j = 1, . . . , maxi mi.
(A3) The true parameter θ0 is in a compact subset 
 of R2+p+2K0 .
(A4) The true number of kink points K0 and the dimension p of Zij are fixed; Tj goes to infinity as n goes to

infinity for j = 1, . . . , maxi mi with maxi mi < ∞.
(A5) The bounded scalar variable Xij has a continuous distribution with density function fX , which is strictly

positive, bounded and continuous for any δ in a neighbourhood of δ0,E‖Zij‖4 < ∞, maxi,j ‖Zij‖ = op(n1/2)
and E|Yij|4 < ∞.

(A6) � = diag(�1, . . . ,�maxi mi) is of full rank.
(A7) There exist two positive constants c1 and c2 such that c1 ≤ λmin(

1
n

∑n
i=1 Xi(θ0)

�Xi(θ0)) ≤ λmax(
1
n

∑n
i=1

Xi(θ0)
�Xi(θ0)) ≤ c2, where λmin(·) and λmax(·) denote the smallest and largest eigenvalues of a matrix.

(A8) The eigenvalues for eachMl for l = 1, . . . , L are bounded away from 0 and ∞.
(A9) H = (H�

1 , . . . ,H
�
L )

� is of full rank.
(A10) There exists a positive definite matrix Sv = E[

∑
j |τ − I(Yij ≤ α�Aij)|AijA�

ij ].

Assumptions (A1)–(A2) and (A6) are common assumptions and restrictions on the propensity function, which
also can be found in missing data literature (L. Wang et al., 2019; S. Wang et al., 2014). Assumption (A4) is a
condition for the longitudinal data and implies that the dimension of the unknown parameter we are interested in
is finite. Assumptions (A3) and (A5) are some common conditions for studying asymptotic properties of ERmodels,
which also can be found in F. Zhang and Li (2017), and Assumption (A5) is a condition on threshold variable Xij
and covariates Zij. Assumptions (A7)-(A10) are imposed for some invertible matrices to illustrate the consistency
and asymptotic normality property.

Theorem 2.1: Under (A1)–(A5), Cn log n/n = o(1) and K̂ = argmink=0,...,K∗ BIC(k), we have P(K̂ = K0) → 1 as
n → ∞.
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Theorem 2.1 shows that the modified BIC can consistently select the true number of kink points, which plays
a fundamental role in statistical inference. Our simulation results in Section 4 show that the correct selection rate
is close to one when a proper Cn is given. The following theorem studies the limiting distribution of the proposed
estimator θ̂ obtained by (7) given the true number of kink points.

Theorem 2.2: Under (A1)–(A9), as n → ∞, we have

√
n(θ̂ − θ0)

d−→ N(0, (T��−1T)−1),

where T = (T�
1 , . . . ,T

�
L )

�, � = B + H�H�, B = E[S0i S
0�
i ], � = (��W−1�)−1 and W = diag(W1, . . . ,

Wmaxi mi).

By the plug-in method, we obtain the estimators �̂ and T̂ of � and T as follows:

�̂ = B̂ + Ĥ�̂Ĥ�, B̂ = 1
n

n∑
i=1

Ŝi(θ̂ )̂Si(θ̂)�, Ŵ = diag(Ŵ1, . . . ,Ŵmaxi mi),

�̂ = diag(�̂1, . . . , �̂maxi mi), �̂j = 1
|Tj|

∑
i∈Tj

ġ ij(Y i,Di, ri, φ̂j), �̂ = (�̂
�Ŵ−1�̂)−1,

Ŵj = 1
|Tj|

∑
i∈Tj

g ij(Y i,Di, ri, φ̂j)g ij(Y i,Di, ri, φ̂j)
�, T̂ = (T̂�

1 , . . . , T̂
�
L )

�,

T̂l = −1
n

n∑
i=1

Xi(θ̂)
�Â−1/2

iτ (θ̂ , φ̂)MilÂ
−1/2
iτ (θ̂ , φ̂)W i(φ̂)�τ (Y i − EY i(θ̂))Xi(θ̂),

Ĥl = −1
n

n∑
i=1

Xi(θ̂)
�Â−1/2

iτ (θ̂ , φ̂)MilÂ
−1/2
iτ (θ̂ , φ̂)W i(φ̂)�τ (Y i − EY i(θ̂))

× diag(Y i − EY i(θ̂))π
−1
i (φ̂)π̇ i(φ̂), Ĥ = (Ĥ�

1 , . . . , Ĥ
�
L )

�.

Once �̂ and T̂ are obtained, (T̂�
�̂

−1T̂)−1 is used to estimate the variance matrix (T��−1T)−1. Hence, one can
build a normal approximation based confidence region from Theorem 2.2.

Remark 2.1: When missing is not at random, it should be pointed out that the estimator based on the CC
method is not consistent. On the other hand, it can be verified that n−1 ∑n

i=1 Ŝi(θ0)̂Si(θ0)
� p−→ B while

n−1/2 ∑n
i=1 Ŝi(θ0)

d−→ N(0,�) as n → ∞. Due to additional estimation of the nuisance parameter vector φ,
� > B such that the CC estimator may generally have a smaller variance compared with our proposed estima-
tors, which can be seen in our simulation results. When there is no missing data, i.e., πij = 1 for j = 1, . . . ,mi and
i = 1, . . . , n, it can be verified thatH = 0, � = B with

(B)ll′ = E[Xi(θ0)
�A−1/2

iτ MilA
−1/2
iτ �τ (Y i − EY i(θ0))(Y i − EY i(θ0))

× (Y i − EY i(θ0))
��τ (Y i − EY i(θ0))A

−1/2
iτ Mil′A

−1/2
iτ Xi(θ0)],

being the (l, l′)th block of B with l = 1, . . . , L and l′ = 1, . . . , L.

3. Statistical inference for kink effects and location parameters

In this section, we are interested in testing whether there exist kink points in the presence of nonignorable dropout,
rather than the specific number of kink points. Consider the following null (H0) and alternative (H1) hypotheses,

H0 : βk = 0 for all k = 1, . . . ,K, v.s. H1 : βk �= 0 for some k = 1, . . . ,K.

Let Aij = (1,Xij,Z�
ij )

� and α = (α0,α1, γ �)�. We define the following statistic

Rn(δ) = 1√
n

n∑
i=1

mi∑
j=1

rij
π̂ij

|τ − I(Yij ≤ α̂
�Aij)|(Yij − α̂

�Aij)(Xij − δ)I(Xij ≤ δ),
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where α̂ = argmin
∑

i,j rij/π̂ijρτ (Yij − α�Aij) is the IPW estimator under the null hypothesis H0. The proposed
test statistic is

Tn = sup
δ∈


|Rn(δ)|,

where
 is the compact set of δ. Intuitively, when there is no kink point, the statistic Tn will be very small since the
estimated residuals show a random pattern against the variableXij, and when there exists at least one kink point, the
estimated residuals fail to be consistent with the real residuals such that Tn is large. However, it can be verified that
the CC estimator α̂ = argmin

∑
i,j rijρτ (Yij − α�Aij) is not consistent with α in the presence of the nonignorable

dropout. Hence, we directly use the test of D. Li et al. (2022), wewill obtain amuch larger test statistic even under the
null hypothesis. Then, to derive the limiting distribution of Tn, we consider the following local alternative model,

Yij = α0 + α1Xij + n−1/2β(Xij − δ)+ + γ �Zij + εij, (9)

where the τ th expectile of εij is zero, and introduce some notations:

Ŝ1n(δ) = 1
n

n∑
i=1

mi∑
j=1

rij
π̂ij

|τ − I(Yij ≤ α̂
�Aij)|Aij(Xij − δ)I(Xij ≤ δ),

S1(δ) = E

⎡⎣ mi∑
j=1

|τ − I(Yij ≤ α�Aij)|Aij(Xij − δ)I(Xij ≤ δ)

⎤⎦ ,

Ŝ2n(δ) = 1
n

n∑
i=1

mi∑
j=1

rij
π̂ij

|τ − I(Yij ≤ α̂
�Aij)|Aijβ(Xij − δ)I(Xij ≥ δ),

S2(δ) = E

⎡⎣ mi∑
j=1

|τ − I(Yij ≤ α�Aij)|Aijβ(Xij − δ)I(Xij ≥ δ)

⎤⎦ ,

Ŝvn = 1
n

n∑
i=1

mi∑
j=1

rij
π̂ij

|τ − I(Yij ≤ α̂
�Aij)|AijA�

ij ,

Sv = E

⎡⎣ mi∑
j=1

|τ − I(Yij ≤ α�Aij)|AijA�
ij

⎤⎦ , q(δ) = S1(δ)�S−1
v S2(δ).

Theorem 3.1: Under (A1)–(A6) and (A10), for the local alternative model (9), Rn(δ) has the asymptotic representa-
tion

Rn(δ) = 1√
n

n∑
i=1

mi∑
j=1

rij
π̂ij
εij|τ − I(Yij ≤ α�Aij)|[(Xij − δ)I(Xij ≤ δ)− S1(δ)�S−1

v Aij]

− q(δ)+ op(1) := R(δ)− q(δ)+ op(1).

Furthermore, Tn converges weakly to the process supδ |R(δ)− q(δ)|, where R(δ) is the Gaussian process with mean
zero and covariance function

E

⎡⎣∑
j,j′

rij
πij
εij

∣∣τ − I(Yij ≤ α�Aij)
∣∣ rij′
πij′
εij′

∣∣τ − I(Yij′ ≤ α�Aij′)
∣∣{(Xij − δ1)I(Xij ≤ δ1)

− S1(δ1)�S−1
v Aij}{(Xij′ − δ2)I(Xij′ ≤ δ2)− S1(δ2)�S−1

v Aij′ }
⎤⎦ + H(δ1)�H(δ2)

�,

with H(δ) = E
[
−∑

j
π̇�
ij
πij
εij|τ − I(Yij ≤ α�Aij)|{(Xij − δ)I(Xij ≤ δ)− S1(δ)�S−1

v Aij}
]
.

According to Theorem 3.1, when β = 0, i.e., under the null hypothesis, q(δ) = 0 and Rn(δ) would converge to
a Gaussian process R(δ) with mean zero. However, under the alternative hypotheses, i.e., β �= 0, it can be seen that
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q(δ) �= 0 and Tn(δ) would be significantly larger than zero, which provides evidence to reject the null hypothesis.
When there is nomissing data, i.e.,πij = 1 for j = 1, . . . ,mi and i = 1, . . . , n, we haveH(δ) = 0 and the covariance
function of R(δ) is same as that of D. Li et al. (2022). Hence, the additional part H(δ1)�H(δ2)

� reflects the cost
of the estimation for the nuisance parameter vector φ in the nonignorable propensity, which is different from R(δ)
of D. Li et al. (2022) when there is no missing data. Because the limiting null distribution of Tn is nonstandard,
we propose to approximate the P-values using a two-stage modified blockwise wild bootstrap and the procedure is
described in Algorithm 2.

Algorithm 2Modified blockwise wild bootstrap method
(1) Generate i.i.d. standard normal samples {v1, v2, . . . , vn} and �φ ∼ N(0, �̂).
(2) Compute the test statistic T∗

n = supδ∈
 |R∗
n(δ)| with residuals ε̂ij under null hypothesis, where

R∗
n(δ) = 1√

n

n∑
i=1

vi
mi∑
j=1

rij
π̂ij
ε̂ij|τ − I(ε̂ij < 0)|[(Xij − δ)I(Xij ≤ δ)− Ŝ1n(δ)�̂S−1

nv Aij]

− 1
n

n∑
i=1

mi∑
j=1

rij ˙̂π�
ij �φ

π̂2
ij

ε̂ij|τ − I(ε̂ij < 0)|[(Xij − δ)I(Xij ≤ δ)− Ŝ1n(δ)�̂S−1
nv Aij].

(3) Repeat Steps (1)–(2) B times and calculate the P-values

p̂n = B−1
B∑

t=1
I(T∗(t)

n ≥ Tn).

Note that this modified bootstrap procedure avoids the estimation of πij based on the resampled data and only
requires the estimators under the null hypothesis. Hence, this procedure is computationally efficient and can be
directly applied to test the existence ofmultiple kink points as well.When there is nomissing data, R∗

n(δ) is the same
as that of D. Li et al. (2022). The following theorem shows the validity of the proposed blockwise wild bootstrap
scheme.

Theorem 3.2: Under the assumptions in Theorem 3.1, R∗
n(δ) defined in Algorithm 2 converges to the Gaussian process

R(δ) as n → ∞ under both the null and the local alternative hypotheses.

4. Simulation studies

In this section, we conduct simulation studies to assess the finite-sample performance of the following estimators
based on the Equation (6):

(i) the complete case (CC) estimator using the compound symmetry (CS) structure, i.e.,Mi1 is an identity matrix
andMi2 is a symmetric matrix with 0 on the diagonal and 1 elsewhere, withW i(φ̂) = diag(ri1, . . . , rimi);

(ii) the proposed MNAR estimator (MNARInd) using the independent (Ind) structure, i.e., Â
−1/2
iτ (θ , φ̂)MilÂ

−1/2
iτ

(θ , φ̂) = Imi ;
(iii) the proposed MNAR estimator (MNARCS) using the CS structure;
(iv) the proposed MNAR estimator (MNARAR1) using the first-order autoregressive (AR1) structure, i.e., Mi1 is

an identity matrix, Mi2 has 1 on the two mapin subdiagonals and 0 elsewhere, and Mi3 has 1 on (1, 1) and
(mi,mi) components and 0 elsewhere;

(v) the full sample (Full) estimator using the CS structure withW i(φ̂) = Imi .

In estimators (i) and (v), the true structure of Ri is used to obtain their best results. In particular, we evaluate the
accuracy of estimation, the converge probabilities, the Type I error and the power of the proposed test. We generate

Yij = α0 + α1Xij +
K∑

k=1

βk(Xij − δk)+ + γZij + (1 + �|Zij|)εij,
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where mi = 4, Xij ∼ U(−5, 5), Zij ∼ N(1, 0.52), Xij and Zij are independent. We set (α0,α1, γ ) = (1, 1, 1) and
consider three different numbers of kink points:

(i) K = 1, β1 = −3 and δ1 = 0.5;
(ii) K = 2, (β1,β2) = (−3, 4) and (δ1, δ2) = (−1, 2);
(iii) K = 3, (β1,β2,β3) = (−3, 4, 4) and (δ1, δ2, δ3) = (−2, 1, 3).

The random errors εi = (εi1, εi2, εi3, εi4)� are generated from four different distributions: (a) Homoscedastic
normal errors: � = 0 and εi ∼ N(0,�), where�jj′ = ρ for j �= j′, and�jj = 1 for j = 1, . . . , 4; (b) Homoscedastic t
errors: � = 0 and εi ∼ t10(0,�); (c) Heteroscedastic normal errors: � = 0.1 and εi ∼ N(0,�); (d) Heteroscedastic
t errors: � = 0.1 and εi ∼ t10(0,�). We generate these errors with ρ = 0.5 such that elements of εi are correlated.

The missing indicators (ri1, ri2, ri3, ri4) are generated from the following propensity model:

Pr(rij = 1|ri(j−1) = 1,
−→
D ij,

−→
Y ij) = 1/(1 + exp(h�

ij φj0)), (10)

where hij = (1,Xij,Yij)
� andφj0 is a part ofφ0. It can be seen thatU ij = Xij and the instrumental variableU⊥

ij = Zij.
Two different choices of φ0 = (φ�

10,φ
�
20,φ

�
30,φ

�
40)

� are considered.

(M1) φj0 = (−1.5,−0.5, 0.5)� for K = 1, 2 and φj0 = (−2.0,−0.5, 0.5)� for K = 3.
(M2) ForK = 1, 2,φj0 = (−3.0, 0.1, 1.0)� for j = 1, 2 andφj0 = (−3.0,−0.1, 1.0)� for j = 3, 4. ForK = 3,φj0 =

(−7.0, 0.1,−1.0)� for j = 1, 2 and φj0 = (−7.0,−0.1,−1.0)� for j = 3, 4.

For j = 1, . . . , 4, the approximately unconditional probabilities πij for four time points are about 75.3%, 56.7%,
42.6% and 32.2% for K = 1, 80.6%, 65.0%, 52.4% and 42.2% for K = 2, 85.1%, 72.3%, 61.4% and 52.2% for K = 3
under (M1); 90.8%, 82.4%, 74.5% and 67.4% for K = 1, 95.7%, 91.6%, 87.7% and 84.0% for K = 2, 95.0%, 90.3%,
86.1%, 82.1% for K = 3 under (M2). It should be pointed out that (M2) generates missing data mainly around one
change point while (M1) generates relatively balanced missing data. For example, when the missing indicators are
generated from (M2) under K = 1, it can be seen that the responses mainly have missing data around δ1 such that
the CC estimator may have a large bias for the estimation of α0, α1 and β1, which is consistent with our simula-
tion results in Table S7 in the Supplementary Material. Hence, even the unconditional dropout percentages of the
four time points in (M2) are much smaller than those of (M1), and the CC estimator still has much larger biases.
Moreover, when the third element of φj0, i.e., the coefficient of Yij, is positive, the parameter estimation results may
become better if τ becomes smaller, since the larger Yij is more likely to be missing. When K = 3 and the missing
indicators are generated from (M2), it can be seen that the coefficient of Yij is negative, and then the parameter
estimation results may become better when τ becomes larger.

4.1. Number selection consistency of K

Two different scenarios are considered in the following simulations. Under Scenario 1, we consider two dropout
settings (M1) and (M2) with four different errors, the true numbers K = 1, 2, 3 and show the rates of correct
number selecting of kink points in Table 1 for n = 200 based on 1000 Monte Carlo replications. It can be seen that
the CC method has comparable or better performance with our proposed three methods. The possible reason is
that the complete case data have significant turning points in these cases and the CC estimator has smaller variances
(see Tables 3 and S4 in the Supplementary Material). Hence CC method has better performance. Under Scenario
2, we consider K = 3 with φj0 = (−1.5, 0.1, 1.0)� for j = 1, 2 and φj0 = (−1.5,−0.1, 1.0)� for j = 3, 4, where
the missing rates are extremely high when Xij ≥ δ3. The percentages of correctly selecting kink points based on
n = 200, 300 and 500 are reported in Table 2. As shown in the table, the rates of the CCmethod are lower than the
rates of our proposed threemethods, especiallywhenn = 200. In summary, our proposedmethodswork reasonably
well in all the simulation studies.

4.2. Parameter estimation and coverage probability

After the selection of the number K, we evaluate the finite sample performance of parameter estimators to check
the validity of Theorem 2.2. For τ = 0.25, 0.5, 0.75 and n = 500, 1000, θ0 = (α0,α1,β1, . . . ,βK , γ , δ1, . . . , δK)� ∈
R3+2K0 and we compute (1) the simulated absolute bias, i.e., AB = T−1 ∑T

t=1 ‖θ̂ t − θ0‖1, and standard deviation,
i.e., SD = ∑3+2K0

j=1 SD({θ̂tj}Tt=1); (2) the simulated mean square error, i.e., MSE = T−1 ∑T
t=1 ‖θ̂ t − θ0‖22, and the
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Table 1. The percentages of correctly selecting K̂ = K under Scenario 1.

K = 1 K = 2 K = 3

MNAR MNAR MNAR

π τ CC Ind CS AR Full CC Ind CS AR Full CC Ind CS AR Full

Homoscedastic normal errors
M1 0.25 0.998 0.995 0.995 0.997 1 1 0.996 0.997 0.999 1 1 0.999 1 1 1

0.50 0.999 0.989 0.996 0.999 1 0.999 0.995 0.999 0.998 1 1 1 0.999 1 1
0.75 0.999 0.985 0.996 0.993 1 1 0.997 0.999 0.999 1 1 0.998 0.999 0.999 1

M2 0.25 1 0.997 1 1 1 1 1 1 1 1 1 1 1 1 1
0.50 1 0.998 1 1 1 1 1 1 1 1 1 1 1 1 1
0.75 1 0.998 0.997 0.998 1 1 0.999 1 1 1 1 1 1 0.999 0.997

Homoscedastic t errors
M1 0.25 0.997 0.985 0.980 0.987 1 0.995 0.990 0.992 0.994 1 0.997 0.998 0.998 0.996 0.999

0.50 1 0.994 0.997 0.996 1 1 0.995 0.999 0.998 1 0.999 1 1 0.999 1
0.75 0.997 0.972 0.992 0.994 1 0.998 0.986 0.996 0.998 1 0.999 0.992 0.999 0.998 0.999

M2 0.25 1 0.999 0.998 0.998 1 0.999 0.999 0.999 0.999 0.999 1 1 1 0.999 0.999
0.50 1 0.998 0.999 0.999 1 1 0.999 0.999 0.999 1 1 0.999 1 1 1
0.75 0.998 0.991 0.996 0.997 1 1 0.997 0.998 0.999 1 1 1 1 1 1

Heteroscedastic normal errors
M1 0.25 0.998 0.996 0.993 0.992 1 1 0.998 1 0.999 1 0.999 1 1 1 1

0.50 1 0.990 0.994 0.997 1 1 0.993 1 0.999 1 1 0.999 0.998 1 1
0.75 0.997 0.974 0.986 0.994 1 1 0.986 0.998 0.998 1 1 0.998 0.999 1 0.999

M2 0.25 1 0.998 1 1 1 1 1 1 0.999 1 1 0.999 1 1 1
0.50 1 0.996 0.998 0.999 1 1 1 1 1 1 1 0.999 1 1 1
0.75 1 0.998 1 1 1 1 0.999 1 0.999 1 1 1 1 1 1

Heteroscedastic t errors
M1 0.25 0.998 0.986 0.989 0.986 0.998 0.999 0.990 0.996 0.996 0.999 0.997 0.995 0.998 0.995 0.998

0.50 0.999 0.981 0.992 0.995 1 1 0.996 1 1 1 1 0.998 0.999 1 0.998
0.75 0.997 0.961 0.991 0.990 1 1 0.979 0.994 0.996 1 0.999 0.995 0.999 0.999 0.999

M2 0.25 1 0.999 1 0.999 1 0.999 0.996 0.999 0.998 1 1 0.996 0.998 0.999 0.999
0.50 0.999 0.995 0.999 0.997 1 1 0.998 0.998 0.997 1 1 1 1 1 0.999
0.75 1 0.988 0.999 0.998 1 1 0.998 1 1 1 1 1 1 1 1

Table 2. The percentages of correctly selecting K̂ = K under Scenario 2.

n = 200 n = 300 n = 400

MNAR MNAR MNAR

Error τ CC Ind CS AR Full CC Ind CS AR Full CC Ind CS AR Full

(a) 0.25 0.886 0.961 0.936 0.918 1 0.983 0.981 0.985 0.980 1 0.993 0.976 0.993 0.990 1
0.50 0.898 0.954 0.954 0.944 1 0.982 0.989 0.991 0.990 1 0.996 0.984 0.997 0.995 1
0.75 0.879 0.947 0.942 0.929 1 0.971 0.981 0.989 0.995 1 0.996 0.975 0.995 0.996 1

(b) 0.25 0.678 0.879 0.820 0.783 1 0.896 0.963 0.945 0.929 1 0.951 0.975 0.975 0.968 1
0.50 0.750 0.913 0.867 0.842 1 0.938 0.978 0.974 0.972 1 0.990 0.977 0.989 0.990 1
0.75 0.784 0.915 0.871 0.855 0.998 0.925 0.968 0.967 0.972 1 0.985 0.972 0.986 0.988 1

(c) 0.25 0.770 0.915 0.871 0.833 1 0.942 0.969 0.984 0.968 1 0.993 0.978 0.995 0.992 1
0.50 0.821 0.922 0.892 0.865 1 0.952 0.977 0.980 0.977 1 0.988 0.982 0.995 0.993 1
0.75 0.808 0.914 0.868 0.865 1 0.948 0.978 0.969 0.969 1 0.985 0.969 0.987 0.987 1

(d) 0.25 0.541 0.810 0.703 0.657 1 0.755 0.926 0.881 0.848 1 0.896 0.952 0.962 0.954 1
0.50 0.621 0.855 0.780 0.740 1 0.834 0.946 0.930 0.914 0.999 0.950 0.954 0.972 0.971 1
0.75 0.638 0.815 0.764 0.735 1 0.852 0.932 0.924 0.914 0.999 0.959 0.966 0.970 0.970 1

estimated standard error (SE) of each component of θ based on the plug-in estimator of (T��−1T)−1; (3) the
averaged 95% coverage probability, i.e.,CP= (3 + 2K0)

−1 ∑3+2K0
j=1 CP({θ̂tj}Tt=1), based on 1000 replications, where

CP({θ̂tj}Tt=1) is the coverage probability of θ̂j. To save space, Table 3 only reports the results under K = 2 and
n = 1000 and other simulation results are given in Tables S1–S5 in the Supplementary Material.

There are some conclusions that can be drawn from these simulation results. (i) AB. For both dropout settings
(M1) and (M2), our proposedMNAR estimators have negligible biases, while the CC estimator has large ABs espe-
cially under (M2). Further, it can be seen that our proposed estimators are robust since they are less sensitive to the
four different error distributions. In addition, in Tables 3 and S4, the ABs become larger when τ increases, while in
Table S5 in the SupplementaryMaterial, the ABs under (M2) are larger when τ = 0.25, which is consistent with our
discussion above. (ii) SD and SE. The SDs of the MNARAR1 andMNARCS estimators are smaller than the values of
the MNARInd estimator. This finding shows that the estimation efficiency can be improved when the informative
working correlation structures are considered, compared with using the independent structure. On the other hand,
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Table 3. The simulated AB, SD, SE, MSE and CP under K = 2 and n = 1000.

τ = 0.25 τ = 0.5 τ = 0.75

π method AB SD SE MSE CP AB SD SE MSE CP AB SD SE MSE CP

Homoscedastic normal errors
M1 CC 0.273 0.314 0.320 0.046 0.882 0.298 0.307 0.303 0.053 0.855 0.336 0.349 0.327 0.068 0.832

MNARInd 0.009 0.415 0.419 0.032 0.949 0.010 0.428 0.439 0.034 0.955 0.016 0.503 0.500 0.047 0.948
MNARCS 0.013 0.348 0.353 0.022 0.948 0.020 0.357 0.362 0.024 0.949 0.055 0.435 0.406 0.037 0.931
MNARAR 0.022 0.345 0.349 0.022 0.948 0.037 0.357 0.354 0.024 0.941 0.084 0.421 0.390 0.036 0.926
Full 0.012 0.226 0.226 0.009 0.946 0.009 0.215 0.210 0.009 0.946 0.009 0.228 0.226 0.009 0.947

M2 CC 0.240 0.244 0.241 0.026 0.837 0.268 0.227 0.225 0.029 0.785 0.329 0.249 0.242 0.041 0.742
MNARInd 0.012 0.298 0.309 0.016 0.954 0.006 0.299 0.309 0.016 0.955 0.014 0.336 0.348 0.021 0.953
MNARCS 0.018 0.248 0.251 0.011 0.949 0.018 0.239 0.247 0.010 0.956 0.043 0.272 0.279 0.014 0.948
MNARAR 0.023 0.259 0.260 0.012 0.950 0.031 0.250 0.254 0.012 0.946 0.065 0.284 0.281 0.016 0.936
Full 0.009 0.232 0.226 0.010 0.943 0.013 0.211 0.210 0.008 0.944 0.007 0.229 0.226 0.009 0.947

Homoscedastic t errors
M1 CC 0.330 0.365 0.367 0.066 0.875 0.356 0.339 0.337 0.072 0.843 0.415 0.392 0.364 0.099 0.813

MNARInd 0.012 0.494 0.493 0.046 0.958 0.006 0.510 0.509 0.049 0.955 0.008 0.679 0.623 0.089 0.951
MNARCS 0.012 0.401 0.403 0.030 0.951 0.032 0.407 0.408 0.031 0.950 0.076 0.494 0.468 0.049 0.931
MNARAR 0.024 0.390 0.396 0.028 0.956 0.058 0.400 0.395 0.031 0.942 0.119 0.489 0.442 0.051 0.917
Full 0.016 0.261 0.257 0.012 0.945 0.005 0.234 0.234 0.010 0.951 0.011 0.261 0.258 0.012 0.946

M2 CC 0.292 0.282 0.276 0.037 0.815 0.354 0.250 0.250 0.046 0.724 0.443 0.282 0.271 0.068 0.663
MNARInd 0.019 0.368 0.368 0.024 0.954 0.024 0.363 0.378 0.024 0.958 0.027 0.455 0.452 0.037 0.955
MNARCS 0.026 0.289 0.293 0.015 0.948 0.053 0.275 0.287 0.015 0.954 0.093 0.329 0.335 0.022 0.941
MNARAR 0.036 0.302 0.300 0.017 0.941 0.070 0.282 0.290 0.016 0.948 0.124 0.338 0.330 0.025 0.924
Full 0.014 0.264 0.258 0.013 0.941 0.004 0.232 0.234 0.010 0.949 0.010 0.265 0.258 0.013 0.945

Heteroscedastic normal errors
M1 CC 0.331 0.347 0.350 0.059 0.859 0.364 0.334 0.332 0.066 0.828 0.395 0.374 0.358 0.082 0.817

MNARInd 0.006 0.460 0.466 0.039 0.952 0.014 0.494 0.493 0.046 0.956 0.009 0.573 0.574 0.061 0.957
MNARCS 0.015 0.384 0.392 0.027 0.952 0.034 0.399 0.403 0.030 0.949 0.055 0.477 0.457 0.043 0.935
MNARAR 0.028 0.389 0.387 0.028 0.942 0.061 0.392 0.393 0.030 0.943 0.088 0.470 0.437 0.044 0.926
Full 0.012 0.247 0.248 0.011 0.953 0.005 0.230 0.231 0.009 0.950 0.011 0.248 0.249 0.011 0.947

M2 CC 0.298 0.272 0.265 0.035 0.799 0.354 0.250 0.247 0.042 0.724 0.433 0.274 0.265 0.061 0.654
MNARInd 0.019 0.336 0.346 0.020 0.954 0.018 0.337 0.354 0.021 0.961 0.023 0.394 0.405 0.029 0.956
MNARCS 0.024 0.282 0.280 0.014 0.944 0.036 0.267 0.280 0.013 0.957 0.074 0.313 0.319 0.019 0.946
MNARAR 0.030 0.293 0.289 0.016 0.941 0.053 0.280 0.286 0.015 0.949 0.100 0.321 0.319 0.021 0.935
Full 0.009 0.262 0.249 0.012 0.937 0.006 0.230 0.231 0.009 0.946 0.010 0.255 0.248 0.012 0.944

Heteroscedastic t errors
M1 CC 0.405 0.400 0.402 0.086 0.845 0.439 0.374 0.369 0.093 0.810 0.503 0.431 0.398 0.124 0.775

MNARInd 0.014 0.567 0.553 0.060 0.954 0.028 0.624 0.602 0.074 0.957 0.033 0.780 0.713 0.113 0.944
MNARCS 0.025 0.444 0.451 0.037 0.948 0.061 0.458 0.460 0.040 0.947 0.110 0.567 0.527 0.064 0.922
MNARAR 0.039 0.440 0.441 0.036 0.948 0.085 0.447 0.442 0.039 0.938 0.156 0.545 0.493 0.063 0.909
Full 0.022 0.284 0.283 0.015 0.944 0.003 0.265 0.258 0.013 0.941 0.013 0.287 0.283 0.015 0.946

M2 CC 0.359 0.306 0.303 0.049 0.785 0.443 0.274 0.275 0.063 0.660 0.559 0.305 0.296 0.096 0.575
MNARInd 0.016 0.393 0.417 0.028 0.961 0.030 0.422 0.437 0.032 0.958 0.065 0.511 0.517 0.049 0.954
MNARCS 0.029 0.319 0.330 0.019 0.954 0.069 0.311 0.327 0.018 0.950 0.132 0.371 0.379 0.029 0.933
MNARAR 0.042 0.328 0.335 0.020 0.950 0.091 0.319 0.327 0.020 0.944 0.166 0.375 0.369 0.032 0.916
Full 0.018 0.287 0.283 0.015 0.947 0.008 0.257 0.258 0.012 0.948 0.008 0.288 0.283 0.015 0.944

it can be seen that the SDs of the CC estimator are smaller than the proposed estimators since the CCmethod does
not need to estimate φ0. In addition, all SEs are quite close to the SDs, which shows our plug-in estimator works
well. (iii)MSE. TheMSEs of the proposedMNARAR1 andMNARCS are always smaller than theMSEs of the CC and
MNARInd estimators. Although the CS structure is the true structure, our proposed MNARAR1 estimator still has
comparable performance. This indicates that we can obtain a more efficient estimator by assuming an informative
working correlation structure that may not be correct, rather than ignoring the unknown correlation structure. (iv)
CP. The coverage rates of 95%Wald confidence intervals of our proposed three MNAR estimators are close to the
nominal level 95%, while the CPs are slightly low when τ = 0.75. Moreover, it can be seen that our CPs increase
slightly when n increases. However, for the CC estimator, it can be seen that its CPs decrease when n increases, since
some components of the CC estimator have large biases and thus do not obey the asymptotic distribution in D. Li
et al. (2022). Moreover, the CC estimator always has smaller CPs compared with the proposed estimators, especially
under (M2).

4.3. Power analysis

We compare the performance of our proposed testing procedure in Algorithm 2 with the CC testing proce-
dure for the existence of the kink points based on 600 repetitions. To be specific, we consider one single kink
point K = 1, τ = 0.25, 0.5 and 0.75, n = 500 and 1000, B = 200; the missing indicators rij are generated by
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Table 4. The 95% CPs under K = 2 and n = 1000.

τ = 0.25 τ = 0.5 τ = 0.75

MNAR MNAR MNAR

π CC Ind CS AR Full CC Ind CS AR Full CC Ind CS AR Full

Homoscedastic normal errors
M1 α0 0.657 0.954 0.954 0.959 0.958 0.548 0.964 0.947 0.936 0.943 0.497 0.955 0.925 0.910 0.950

γ 0.919 0.949 0.941 0.934 0.933 0.919 0.939 0.947 0.948 0.949 0.911 0.952 0.923 0.916 0.948
α1 0.968 0.946 0.957 0.953 0.958 0.946 0.964 0.941 0.944 0.942 0.935 0.955 0.934 0.931 0.952
β1 0.886 0.955 0.944 0.954 0.949 0.846 0.962 0.950 0.939 0.944 0.831 0.948 0.939 0.936 0.945
β2 0.864 0.943 0.952 0.947 0.936 0.846 0.953 0.958 0.941 0.944 0.824 0.938 0.926 0.924 0.944
δ1 0.924 0.947 0.943 0.945 0.953 0.925 0.949 0.947 0.929 0.950 0.902 0.943 0.930 0.925 0.949
δ2 0.953 0.949 0.943 0.944 0.934 0.953 0.957 0.955 0.952 0.947 0.922 0.946 0.941 0.937 0.939

M2 α0 0.735 0.960 0.960 0.951 0.945 0.624 0.962 0.965 0.947 0.954 0.534 0.954 0.932 0.921 0.941
γ 0.903 0.941 0.954 0.945 0.956 0.868 0.958 0.953 0.941 0.946 0.852 0.940 0.950 0.935 0.935
α1 0.810 0.954 0.943 0.939 0.933 0.742 0.960 0.967 0.956 0.954 0.714 0.953 0.949 0.934 0.947
β1 0.756 0.962 0.953 0.959 0.938 0.666 0.953 0.955 0.956 0.938 0.596 0.973 0.958 0.954 0.958
β2 0.773 0.968 0.946 0.945 0.946 0.719 0.957 0.954 0.943 0.945 0.634 0.954 0.951 0.939 0.952
δ1 0.932 0.953 0.945 0.956 0.938 0.933 0.947 0.953 0.942 0.946 0.921 0.948 0.952 0.941 0.954
δ2 0.947 0.943 0.944 0.956 0.945 0.943 0.945 0.945 0.938 0.925 0.944 0.949 0.944 0.929 0.945

Homoscedastic t errors
M1 α0 0.630 0.964 0.954 0.963 0.947 0.507 0.959 0.955 0.946 0.957 0.432 0.951 0.909 0.868 0.941

γ 0.910 0.961 0.953 0.949 0.942 0.924 0.949 0.951 0.944 0.960 0.904 0.955 0.940 0.925 0.966
α1 0.957 0.964 0.954 0.963 0.949 0.950 0.949 0.944 0.942 0.947 0.919 0.951 0.926 0.915 0.932
β1 0.886 0.962 0.955 0.959 0.948 0.836 0.962 0.947 0.932 0.945 0.807 0.949 0.929 0.916 0.944
β2 0.876 0.948 0.939 0.948 0.947 0.838 0.966 0.962 0.945 0.944 0.803 0.951 0.937 0.931 0.962
δ1 0.930 0.956 0.952 0.955 0.939 0.905 0.952 0.942 0.941 0.955 0.901 0.958 0.934 0.927 0.942
δ2 0.939 0.951 0.951 0.956 0.940 0.939 0.947 0.949 0.947 0.949 0.928 0.943 0.945 0.935 0.933

M2 α0 0.684 0.951 0.955 0.948 0.944 0.463 0.962 0.947 0.942 0.952 0.356 0.945 0.919 0.886 0.945
γ 0.881 0.950 0.947 0.939 0.948 0.885 0.953 0.952 0.934 0.934 0.844 0.958 0.948 0.950 0.953
α1 0.783 0.963 0.946 0.950 0.931 0.657 0.963 0.961 0.956 0.955 0.587 0.957 0.946 0.922 0.934
β1 0.707 0.955 0.950 0.943 0.936 0.579 0.957 0.957 0.948 0.957 0.458 0.960 0.943 0.919 0.945
β2 0.770 0.965 0.957 0.936 0.948 0.603 0.960 0.949 0.940 0.955 0.534 0.959 0.942 0.920 0.959
δ1 0.928 0.944 0.932 0.931 0.934 0.927 0.964 0.961 0.954 0.937 0.921 0.953 0.937 0.936 0.935
δ2 0.955 0.951 0.952 0.941 0.945 0.953 0.950 0.949 0.964 0.950 0.939 0.950 0.949 0.936 0.941

Heteroscedastic normal errors
M1 α0 0.638 0.966 0.957 0.942 0.953 0.519 0.953 0.950 0.941 0.961 0.487 0.955 0.924 0.903 0.951

γ 0.845 0.959 0.953 0.936 0.968 0.830 0.952 0.931 0.931 0.935 0.808 0.952 0.925 0.906 0.955
α1 0.946 0.947 0.951 0.948 0.957 0.950 0.956 0.948 0.951 0.948 0.938 0.957 0.941 0.938 0.943
β1 0.867 0.950 0.957 0.951 0.947 0.826 0.969 0.959 0.950 0.956 0.832 0.962 0.937 0.935 0.943
β2 0.860 0.951 0.946 0.947 0.948 0.810 0.959 0.961 0.932 0.944 0.815 0.948 0.933 0.932 0.949
δ1 0.915 0.949 0.950 0.935 0.947 0.917 0.946 0.946 0.943 0.953 0.903 0.966 0.936 0.930 0.943
δ2 0.945 0.941 0.947 0.935 0.948 0.942 0.955 0.951 0.952 0.951 0.937 0.959 0.946 0.941 0.943

M2 α0 0.685 0.952 0.943 0.937 0.933 0.540 0.966 0.958 0.948 0.945 0.413 0.950 0.934 0.926 0.944
γ 0.826 0.954 0.942 0.937 0.929 0.751 0.962 0.948 0.943 0.946 0.709 0.959 0.941 0.923 0.941
α1 0.762 0.951 0.938 0.939 0.928 0.665 0.960 0.959 0.943 0.937 0.587 0.955 0.943 0.940 0.945
β1 0.717 0.963 0.947 0.945 0.943 0.575 0.970 0.962 0.959 0.950 0.460 0.961 0.962 0.947 0.957
β2 0.723 0.959 0.950 0.948 0.951 0.641 0.957 0.954 0.949 0.942 0.526 0.951 0.943 0.929 0.935
δ1 0.938 0.954 0.951 0.939 0.936 0.940 0.958 0.960 0.943 0.944 0.929 0.955 0.944 0.939 0.941
δ2 0.945 0.945 0.939 0.945 0.939 0.955 0.957 0.959 0.957 0.960 0.952 0.961 0.954 0.943 0.947

Heteroscedastic t errors
M1 α0 0.584 0.954 0.951 0.942 0.940 0.465 0.963 0.942 0.926 0.940 0.396 0.939 0.913 0.880 0.942

γ 0.842 0.952 0.946 0.945 0.942 0.804 0.948 0.936 0.930 0.949 0.774 0.950 0.914 0.897 0.954
α1 0.951 0.949 0.945 0.947 0.940 0.949 0.962 0.950 0.947 0.943 0.922 0.941 0.914 0.905 0.939
β1 0.837 0.960 0.954 0.959 0.946 0.786 0.960 0.946 0.938 0.940 0.759 0.947 0.931 0.923 0.945
β2 0.852 0.961 0.951 0.946 0.944 0.804 0.956 0.951 0.938 0.940 0.750 0.945 0.913 0.911 0.948
δ1 0.910 0.943 0.946 0.947 0.943 0.929 0.962 0.955 0.944 0.937 0.892 0.941 0.924 0.907 0.953
δ2 0.937 0.957 0.945 0.947 0.950 0.933 0.950 0.949 0.944 0.938 0.930 0.946 0.948 0.939 0.942

M2 α0 0.648 0.967 0.954 0.955 0.947 0.410 0.951 0.956 0.941 0.948 0.279 0.950 0.911 0.896 0.945
γ 0.826 0.953 0.949 0.952 0.944 0.712 0.962 0.952 0.948 0.954 0.604 0.957 0.926 0.910 0.944
α1 0.744 0.966 0.960 0.956 0.949 0.599 0.954 0.961 0.947 0.948 0.509 0.953 0.937 0.916 0.946
β1 0.682 0.957 0.954 0.939 0.946 0.486 0.955 0.945 0.941 0.947 0.363 0.949 0.939 0.912 0.953
β2 0.701 0.965 0.951 0.954 0.949 0.522 0.969 0.944 0.940 0.938 0.420 0.958 0.933 0.914 0.943
δ1 0.942 0.966 0.963 0.945 0.954 0.941 0.953 0.945 0.945 0.953 0.921 0.955 0.944 0.936 0.938
δ2 0.952 0.951 0.950 0.948 0.942 0.952 0.959 0.948 0.948 0.946 0.929 0.958 0.940 0.925 0.942

φj0 = (−8.0, 0.1, 1.0)� for j = 1, 2, φj0 = (−8.0,−0.1, 1.0)� for j = 3, 4; β1 = 0, 0.1 and 0.15. The Type I error
and local power results under K = 2 and n = 1000 are shown in Tables 4 and 5 and other simulation results are
given in Tables S6–S10 in the Supplementary Material.

We have the following findings. (i) When β1 = 0, i.e., under the null hypothesis, our proposed MNAR test has
satisfactory Type I errors close to the nominal significance level 5%; the CC test has much larger errors, especially
when n = 1000.Moreover, when n increases, it can be seen that the Type I errors of the CC test become larger while
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Table 5. Power results with vary β1 under four different errors with n = 500, 1000 and τ = 0.25, 0.5, 0.75.

n = 500 n = 1000

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75

Errors β1 CC MNAR CC MNAR CC MNAR CC MNAR CC MNAR CC MNAR

(a) 0 0.207 0.040 0.255 0.048 0.292 0.030 0.330 0.033 0.442 0.027 0.560 0.037
0.1 0.242 0.478 0.245 0.413 0.168 0.300 0.532 0.860 0.450 0.835 0.317 0.693
0.15 0.698 0.788 0.698 0.778 0.567 0.628 0.938 0.967 0.923 0.955 0.868 0.910

(b) 0 0.188 0.028 0.312 0.053 0.352 0.050 0.345 0.030 0.562 0.030 0.577 0.030
0.1 0.175 0.313 0.150 0.242 0.098 0.168 0.283 0.688 0.225 0.602 0.165 0.417
0.15 0.497 0.633 0.520 0.583 0.388 0.432 0.795 0.902 0.773 0.835 0.625 0.747

(c) 0 0.207 0.027 0.300 0.037 0.328 0.050 0.418 0.027 0.547 0.032 0.623 0.025
0.1 0.162 0.343 0.135 0.273 0.090 0.190 0.327 0.730 0.218 0.665 0.153 0.503
0.15 0.548 0.682 0.528 0.653 0.402 0.465 0.842 0.923 0.815 0.910 0.608 0.818

(d) 0 0.205 0.027 0.332 0.038 0.385 0.052 0.405 0.030 0.610 0.025 0.640 0.043
0.1 0.080 0.222 0.078 0.198 0.057 0.100 0.133 0.540 0.122 0.457 0.073 0.248
0.15 0.363 0.542 0.318 0.460 0.225 0.303 0.608 0.860 0.562 0.778 0.378 0.620

Table 6. Parameter estimates and test results for the NGHS data.

Method τ = 0.25 τ = 0.5 τ = 0.75

CC P-values 0.000 0.000 0.000
K̂ 1 1 1
α̂0 68.665(2.910) 79.884(1.976) 84.452(2.105)
γ̂ 0.214(0.091) 0.266(0.093) 0.230(0.101)
α̂1 1.464(0.173) 0.975(0.116) 0.924(0.118)
β̂1 −1.176(0.183) −0.850(0.143) −0.842(0.148)
δ̂1 20.938(0.516) 24.966(0.879) 25.782(1.081)

Wald [−19.927,21.949] [23.243,26.689] [23.663,27.901]

MNAR P-values 0.000 0.000 0.000
K̂ 1 1 1
α̂0 73.977(2.203) 78.968(2.525) 83.979(3.367)
γ̂ 0.443(0.111) 0.415(0.125) 0.302(0.156)
α̂1 1.039(0.124) 0.974(0.134) 0.971(0.158)
β̂1 −1.004(0.168) −0.999(0.176) −1.040(0.209)
δ̂1 24.968(0.878) 26.199(1.070) 26.636(1.193)

Wald [23.247,26.689] [24.102,28.300] [24.298,28.974]

the proposed test has stable results. The main reason is that the CC estimator of α is not consistent, which has been
shown in D. Li and Wang (2022), such that the CC test would have big Tn and tend to reject the null hypothesis.
(ii) As β1 increases, i.e., under the local hypothesis, the proposed MNAR test has higher powers than those of the
CC test. When n increases, all powers become larger. When τ increases, all powers decrease, since the larger Yij is
more likely to be missing.

5. Analysis of blood pressure and bodymass index

In this section, we analyse the longitudinal NGHS data from the website https://biolincc.nhlbi.nih.gov/ to evaluate
our proposed method. The covariates Xij and Zij are the BMI and age respectively, and the response Yij is the blood
pressure (BP). The data were collected from 400 subjects whose ages range from 9 to 19 and maxi mi = 10 for
i = 1, . . . , 400. As we mentioned in Section 1, the nonignorable dropout rates of the follow-up times are 91.5%,
84.1%, 73.7%, 64.9%, 58.9%, 52.6%, 45.6%, 39.3%, 37.0% and 33.0%, respectively.

We compute the CC estimator and the proposedMNAR estimators using the CS structure for τ = 0.25, 0.5, 0.75.
The results of P-values for the kink points detection, the estimated number of kink points, the coefficients estimates,
their standard errors and the confidence intervals for kink locations are summarized in Table 6. It can be seen that
the CC estimator has smaller variances comparedwith the proposedMNAR estimator in general, which is in accord
with simulation results. However, δ̂1 obtained by the CC method is far from that of the proposed MNAR method
when τ = 0.25. Moreover, it can be seen that the proposed MNAR estimator under τ = 0.75 does not perform
well, compared with the MNAR estimator under τ = 0.25 and 0.5, due to the missing mechanism. In addition,
Figures 1–2 show scatter plots between the BP and BMI with the fitted curves at different levels τ based on the CC
and MNAR methods, respectively.

https://biolincc.nhlbi.nih.gov/
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Figure 1. The fitted expectile curves using CC method at τ = 0.25, 0.5 and 0.75 for BMI against systolic BP.

Figure 2. The fitted expectile curves using MNARmethod at τ = 0.25, 0.5 and 0.75 for BMI against systolic BP.

6. Conclusion

In this article, we develop a longitudinalmultiple kink expectile regressionmodelwith the unknownnumber of kink
points and nonignorable dropout. The selection consistency and the asymptotic properties of regression coefficients
and kink points are derived. In order to test the existence of kink effects at a given expectile with nonignorable
dropout, a weighted cumulative sum type statistic is proposed and we obtain its limiting distributions. Simulation
studies and real data analysis show that our proposed estimators and proposed test have good performance.

There are some interesting topics to further study. First, we only consider the expectile regression model and
this can be extended to other models, such as censored models, generalized linear models and so on. Second, in
this article, we establish the theoretical properties when the number of kink points is true. Hence, extending the
theoretical properties of estimators with the misspecified number of kink points is relegated to the further study.
Third, it is interesting to study how to test if kink locations depend on the expectile levels. Fourth, the computation
time of Algorithm 2 is long due to the bootstrap procedure and it is our further work to reduce the computational
complexity of our proposed method.
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