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ABSTRACT
In this paper, we propose a new algorithm to handle massive data
sets, which are modelled by modal regression models. Differing from
the existing methods regarding distributed modal regression, the pro-
posed method combines the divide-and-conquer idea and a linear
approximation algorithm. It is computationally fast and statistically effi-
cient to implement. Theoretical analysis for the resultant distributed
estimator under some regularity conditions is presented. Simulation
studies are conducted to assess the effectiveness and flexibility of the
proposed method with a finite sample size. Finally, an empirical appli-
cation to the chemical sensors data is analysed for further illustration.
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1. Introduction

With the rapid development of information science and computing techniques, massive data
sets become ubiquitous in many fields. Nowadays, on the one hand, it is convenient for
researchers and data analysts to collect a data set with a huge sample size (e.g. tens of GBs)
from various application scenarios, such as stock data in the Shanghai exchange market. On
the other hand, a massive data set may be stored inmany separate machines or local workers.
One of themajor challenges to analysing themassive data is the difficulty in statistical compu-
tation.When using a statistical model to describe the data, the cost of calculating parameters
is huge and even infeasible to accomplish the entire computation on one personal computer
(PC). To solve this issue, many useful approaches have been documented in the literature.

Generally, there are three kinds of approaches that could be used to efficiently solve
the statistical estimation problems associated with massive data. The first kind is the sub-
sampling method. Ma et al. (2015) proposed a subsampling method for linear regression
models and developed a two-step subsampling algorithm for which the first step is to find a
weight for each data point to be sampled and the second step is to form a weighted esti-
mator by combining the sampled data points with the weights obtained in the first step.
However, Ma et al. (2015)’s approach is not optimal. In order to develop an optimal sub-
sampling approach, Wang et al. (2018) further proposed two strategies based on minimum
mean squared error (mMSE) and minimum variance-covariance (mVC), respectively. More
recently, Wang and Ma (2021) considered the quantile regression for massive data using the
subsampling technique. The second kind is the divide-and-conquer (DAC) method. This
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method first divides the whole large data set into many disjoint subsets such that on each
subdata,model parameters can be computed in a parallel way, and then aggregates the estima-
tors via a simple averaging. Chen and Xie (2014) referred the DAC to the split-and-conquer
method, and applied such an idea to generalized linear models with sparse structures. Shi
et al. (2018) studied a class of M-estimators using the DAC and established a cubic conver-
gence rate for their estimators, which is faster than that of the commonM-estimators. The last
kind is the approximation algorithm. Chen et al. (2022) developed an approximate Newton
algorithm using stochastic subgradient. What is more, many papers have further extended
the above three kinds of approaches. For instance, Zhang and Wang (2021) developed a dis-
tributed optimal subdata selection approach using the subsampling and DAC techniques.
Chen et al. (2019) designed an approximation algorithm to solve quantile regression under
memory constraints via DAC. Jordan et al. (2019) developed a communication-efficient dis-
tributed statistical inference for M-estimators and penalized M-estimation using a surrogate
likelihood.

Even if many excellent and useful approaches were proposed in the last decade, however,
most mainly focus on the mean regression or quantile regression models. In this paper, dif-
fering from the previous works, we consider themodal regressionmodels, which can be used
to capture the most likely value, rather than the mean and quantile of the response variable.
To address this issue, Wang and Li (2021) developed a robust communication-efficient dis-
tributedmodal regression (CDMR) by using a surrogate loss to approximate the globalmodal
regression objective function. This work is an extension of Jordan et al. (2019)’s approach.
The parameter estimation in the CDMR is mainly done on the first machine via an iter-
ated algorithm, which involves broadcasting the gradient to the other machines. A merit of
this approach is that it does not require to calculate the Hessian matrix on all the machines.
Whereas, when the data on the first machine is contaminated such as outliers or heavy-tailed,
the performance of CDMRmay not be robust. This in part motivates us to consider a robust
method for massive data. It is worth noting that the modal regression was initially studied in
Yao and Li (2014), which provided an expectation-maximization (EM) algorithm. However,
this algorithm is not applicable to parallel computing. Thus, it can not be directly used to
handle massive data.

Inspired by the work of Chen et al. (2019), we propose a new linear-type estimator in
modal regression models. Our estimation is applicable to the distributed massive data and
involves a bandwidth to approximate the density of the response. Compared to the CDMR,
our proposedmethod does not require to compute the gradient, whichmakes the entire com-
putation easier. The simulation results showed that our method is computationally fast to
implement and more efficient than the CDMR.

The rest of this article is organized as follows. In Section 2, we introduce the proposed
method in details and provide theoretical analysis. Simulation studies are presented in
Section 3. A real data set is analysed in Section 4. All technical proofs of main results are
postponed to the Appendix.

2. Methodology

2.1. A linear-type estimator

Let {(Xi,Yi)}ni=1 be independent and identically distributed sample data drawn from the joint
distribution of population {(X,Y)}, where X is a p-dimensional vector of covariates, and Y
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represents the response, which is a scalar. We consider the following model:

Yi = X�
i β + εi, i = 1, 2, . . . , n,

where β is the parameter vector in R
p. The conditional density, fεi |Xi(u |Xi), of εi given Xi

has a strictly global maximum at εi = 0, which implies Mode(Y|X = x) = x�β0. Given the
data, we can obtain an estimator of β via maximizing a kernel-based objective function, i.e.

β̂ = arg max
β∈Rp

1
n

n∑
i=1

Kh

(
Yi − X�

i β
)
, (1)

where Kh(·) = h−1K(·/h), h>0 is a bandwidth, and the kernel K(·) can be specified as a
probability density function. In the literature, a common choice for the kernel is Gaussian

kernel, i.e. the density of standard normal distribution, φ(u) = 1√
2π e−u2/2, suggested by Yao

and Li (2014). For the sake of convenience, we use the Gaussian kernel throughout this paper.
Optimizing (1) is equivalent to solving the following estimating equation

1
n

n∑
i=1

K ′
h

(
Yi − X�

i β
)
Xi = 0, (2)

with respect to β , where K ′
h(u) = d

duKh(u) = 1
h2K

′(u/h). We denote by β̂ the solution of (2)
with respect to β , and then we have

1
n

n∑
i=1

K ′
h

(
Yi − X�

i β̂
)
Xi = 0. (3)

It follows from K(u) = φ(u) that K ′(u) = −uφ(u). Then, the Equation (3) becomes

1
nh

n∑
i=1

Xi

(
Yi − X�

i β̂
)
φ

(
Yi − X�

i β̂

h

)
= 0. (4)

Accordingly, it can be expressed as

β̂ =
[

1
nh

n∑
i=1

XiX�
i φ

(
Yi − X�

i β̂

h

)]−1 [
1
nh

n∑
i=1

XiY�
i φ

(
Yi − X�

i β̂

h

)]
. (5)

However, we can see that in the formula, the term on the right-hand side of the equation still
involves the estimator β̂ . In general, there is no closed form for the expression of β̂ in the
Equation (3). If we have a good initial estimator β̂

(0) in advance (e.g. a consistent estima-
tor of the true parameter vector β0), we can plug it into the term on the right-hand side of
Equation (5), which leads to a linear-type estimator of modal regression (LEMR):

β̂ =
[

1
nh

n∑
i=1

XiX�
i φ

(
Yi − X�

i β̂
(0)

h

)]−1 [
1
nh

n∑
i=1

XiYiφ

(
Yi − X�

i β̂
(0)

h

)]
. (6)

If the data size is not very large, the above estimator can be easily computed using a single PC.
However, when the data size is extremely large such as having tens ofGBs, storing thismassive
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data in one PC could be very difficult under the limited memory. Thus, it may be rather
computational expensive to calculate the estimator using a single machine. One solution to
the problem is to divide the entire dataset into many manageable subsets such that they are
processed concurrently bymany computers in practice. Another feasible solution is that if the
user has only one machine in hand, we can divide the data into many batches such that one
batch of dataset can be uploaded to thememory when computing some quantities of interest,
and then repeat the procedure over all batches and aggregate these outputs from each batch
to form a final estimator.

2.2. DAC-LEMR

In this subsection, we present our procedure in the framework of modal regression. Let S =
{1, 2, . . . , n} denote all sample observations. We assume that the observations are distributed
across K local machines with equal sizem = n/K. Thus, S is divided into K distinct subsets
H1,H2, . . . ,HK such thatHj ∩ Hk = ∅, j �= k and |Hj| = m. LetXk = {(Xi,Yi), i ∈ Hk} be
the sample observations distributed to the kth machine. When the kth machine receives an
initial estimator β̂

(0) from the master machine, we can compute the following two quantities
on the kth machine

Vk = 1
nh

∑
i∈Hk

XiX�
i φ

(
Yi − X�

i β̂
(0)

h

)
, (7)

and

Uk = 1
nh

∑
i∈Hk

XiYiφ

(
Yi − X�

i β̂
(0)

h

)
. (8)

Next, all the quantities {Vk,Uk}Kk=1 are broadcasted from local machines to the master
machine, and we can do the following calculation of β̂ in (6) on the master machine

β̂ =
[ K∑
k=1

Vk

]−1 [ K∑
k=1

Uk

]
.

We can repeat such a procedure several rounds and obtain an efficient estimator. The
details of such a procedure are summarized in Algorithm 1, where the first machine is
used as the master machine. In practice, we use some stopping rule, instead of q, such as
‖β̂(g+1) − β̂

(g)‖ ≤ 10−6. Our limited experience indicates that this algorithm has a fast con-
vergence. Furthermore, the initial estimator β̂

(0) can be chosen as the estimator of quantile
regression.

Now, we provide a bandwidth selection method for the practical use of the modal
regression estimator. Following the suggestion of Yao et al. (2012), we may denote

Fk(h) = 1
m

∑
i∈Hk

K ′′
h (ε̂i),

Gk(h) = 1
m

∑
i∈Hk

{K ′
h(ε̂i)}2.
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Algorithm 1 DACLEMR

Input: Data batchesXk for k = 1, 2, . . . ,K, and the number of iterations q, ĥoptA. Initialize:
Calculate an initial estimator based on X1:

β̂
(0) = arg max

β∈Rp

1
m

∑
i∈H1

Kh

(
Yi − X�

i β
)

B. Distributed/Parallel computation: Distribute the computation across K local
machines

1: for k = 1, 2, . . . ,K do
2: Swap data Xk into the local machine and compute (Uk,Vk) according to (7) and (8)

using the bandwidth ĥopt.
3: Send (Uk,Vk) to the master machine.
4: end forC. Aggregation on master machine
5: for g = 1, 2, . . . , q do
6: Aggregate (Uk,Vk) from all local machines
7: Compute the global estimator β̂

(g) using the aggregated sums

β̂
(g) =

⎛⎝ K∑
j=1

Vk

⎞⎠−1 ⎛⎝ K∑
j=1

Uk

⎞⎠
8: end for
Output: The final estimator β̂

(q).

Thus, we can obtain an optimal bandwidth, ĥopt, by minimizing

r̂(h) = 1
K

K∑
k=1

Gk(h)F−2
k (h)

σ̂ 2
k

, (9)

where ε̂i∈Hk = Yi∈Hk − X�
i∈Hk

β̃k is a residual obtained by fitting the data using any robust
smoothingmethod, such as quantile regression. The estimator σ̂k is formed based on the pilot
estimates ε̂i∈Hks. Here, β̃k denotes the estimator of quantile regression for the data batchXk.
In our numerical study, this is achieved via fitting quantile regression to ensure the robust-
ness of the initial parameter estimator.While, in real data analysis, we use themean regression
rather than quantile regression for the initial estimator. Themain reason is that the optimiza-
tion of the quantile regression is quite time-consuming in computation for large-scale data.
The grid search method may be useful in finding hopt. Yao et al. (2012) suggested that the
candidate grid points for h can be taken as h = 0.5σ̂ × 1.02j, j = 0, 1, . . . , l for some fixed l,
where σ̂ = 1/K

∑K
k=1 σ̂k. We follow the suggestion of Wang and Li (2021) to set l = 60 in

our implementation.
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2.3. Theoretical analysis

In this subsection, we present some regularity conditions and related theoretical results. It
can be easily derived that we have the following Bahadur representation of β̂ :

β̂ =
[

1
nh

n∑
i=1

XiX�
i φ

(
Yi − X�

i β̂
(0)

h

)]−1 [
1
nh

n∑
i=1

XiYiφ

(
Yi − X�

i β̂
(0)

h

)]
= β0 + D−1

nh Anh,

where

Dnh = 1
nh

n∑
i=1

XiX�
i φ

(
Yi − X�

i β̂
(0)

h

)
,

Anh = 1
nh

n∑
i=1

Xiεiφ

(
Yi − X�

i β̂
(0)

h

)
.

To this end, denote

A∗
nh = 1

nh

n∑
i=1

Xiεiφ
(εi
h

)
and

D∗
nh = 1

nh

n∑
i=1

XiX�
i φ

(εi
h

)
.

We mean that for a vector a, ‖a‖ denotes the Euclidean norm, and for a square matrix A,
‖A‖ denotes the operator norm, i.e., ‖A‖ = √

λmax(AA�), where λmax(·) stands for the
maximum eigenvalue of a matrix. We present the following conditions.

(C1) Assume that {(Xi,Yi)}ni=1 are iid observations drawn from the population (X,Y).
(C2) Assume that in a neighbourhood of zero, the conditional density function fε |X(u |X)

of ε given X has the first, second and third derivatives f ′ε |X(u |X), f ′′ε |X(u |X), f ′′′ε |X
(u |X), which are bounded uniformly in X. Moreover, we assume that f ′ε |X(0 |X) and
h = o(1).

(C3) Assume that the minimum and maximum eigenvalues of matrix D � E{fε |X(0 |X)
XX�} satisfy 0 < c2 ≤ λmin(D) < λmax(D) ≤ c2 < ∞ for some positive constants c1
and c2.

(C4) Assume that E{‖X‖4} < ∞.

The above conditions are standard and mild in the literature of modal regression. Con-
dition (C1) assumes the generating process of sample data. Conditions (C2) and (C3) are
similar to the assumptions (A1) and (A2) of Yao and Li (2014), respectively. Condition (C4)
requires the fourth moment of covariate vector to be finite. Similar conditions are also made
in Zhang et al. (2023).

The following theorem establishes the convergence rates of Anh and Dnh given in
Section 2.2, respectively.
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Proposition 2.1: Suppose that the initial estimator β̂
(0) satisfies ‖β̂(0) − β0‖ = Op(ξn). If

Conditions (C1)–(C4) hold and ξn = O(h), then we have that (i)

‖Anh − A∗
nh − D(β(0) − β0)‖ = Op

(
ξn

h

(
log n
n

)1/4
+ ξnh2 + ξ 3n + h4

)
;

(ii)

‖Dnh − D∗
nh‖ = Op

(
ξn

h2

(
log n
n

)1/4
+ ξ 2n

)
;

(iii)

‖D∗
nh − D‖ = Op

(
1√
nh

+ h2
)
;

and (iv)

‖Dnh − D‖ = Op

(
ξn

h2

(
log n
n

)1/4
+ ξ 2n + 1√

nh
+ h2

)
.

Remark 2.1: From this proposition, it is interesting to see that the convergence rate on the
right-hand side of (ii) is quadratic in ξn, which is the rate of the initial estimator of β . Ide-
ally, if the initial estimator is set as the true value, β0, i.e., ξn equals zero, then we must have
Dnh = D∗

nh explicitly. This is certified in Proposition 2.1(ii) since the order is zero in this
case. Further, the result (iv) follows directly from the triangle inequality as well as the results
(ii) and (iii). It should be clarified that our theory analysis is in fact also related to classi-
cal nonparametric regression (Härdle, 1990; Ullah & Pagan, 1999) due to the use of kernel
smoothing. While our estimator relies on the initial value, that is, Dnh and Anh rely on the
initial estimator of β , which makes the asymptotic properties for β̂ more difficult to inves-
tigate. To our best knowledge, the above proposition has never been stated in the existing
literature.

According to Proposition 2.1, we can obtain the following property.

Proposition 2.2: Under the conditions of Proposition 2.1, we have

β̂ − β0 = D−1A∗
nh + Op

(
ξ 2n
h2

(
log n
n

)1/4
+ ξn + h

(
h2 ∨ 1√

nh

)2
)
.

Remark 2.2: This property provides a Badur convergence rate of β̂ . The rigorous proof of
this result is given in the Appendix and depends on the theory of empirical processes. From
the proof in the Appendix, we know A∗

nh = Op(
√
hn−1 + h4). Thus, the convergence rate

of β̂ − β0 is Op

(
ξ2n
h2

(
log n
n

)1/4 + ξn + h4 + n−1
)
. If ξn = h, the bandwidth can be taken as

h = n−1/4. In our implementation, we use a grid search method as described in Section 2.2.
Our code for simulation and real data analysis can be available upon request.
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Table 1. The simulation results of AEE (×10−3) for Example 3.1 with ρ = 0.

Case 1 Case 2

r K Method p = 2 p = 10 p = 2 p = 10

0 20 LEMR 3.831 3.809 4.48 4.251
CDMR 3.951 4.052 4.569 4.654

50 LEMR 3.670 3.731 4.441 4.471
CDMR 4.145 5.658 4.986 6.529

100 LEMR 3.911 3.824 4.334 4.448
CDMR 5.830 9.275 6.477 11.009

0.1 20 LEMR 3.893 3.793 4.594 4.538
CDMR 8.156 6.810 8.285 7.387

50 LEMR 3.989 3.890 4.426 4.441
CDMR 11.305 11.123 11.621 12.371

100 LEMR 4.078 3.760 4.455 4.417
CDMR 13.637 17.877 14.745 20.16

0.2 20 LEMR 4.427 4.024 5.325 4.785
CDMR 32.139 18.112 33.304 19.665

50 LEMR 3.847 3.865 4.595 4.507
CDMR 40.415 28.997 42.625 32.148

100 LEMR 3.768 3.765 4.375 4.425
CDMR 46.223 42.268 51.808 48.408

0.3 20 LEMR 5.203 4.124 6.544 5.024
CDMR 91.262 44.551 96.012 48.666

50 LEMR 4.166 3.957 4.834 4.606
CDMR 110.733 68.481 119.634 77.067

100 LEMR 3.947 3.861 4.429 4.499
CDMR 126.781 104.127 135.898 112.426

3. Simulations

In this section, we compare our proposed method (LEMR) with the CDMR of Wang
and Li (2021) in the finite sample performance. We set the number of machines K ∈
{20, 50, 100}. n = 5 × 104 in Examples 3.1 and 3.2. Each experiment is repeated 200 times.

Example 3.1: Similar to Wang and Li (2021), we consider the linear model Yi = X�
i β + εi,

where we set β = (β0,β1, . . . ,βp)�, βj ∼ U[1, 2],Xi = (1,Z�
i )

�, andZi follows amultivari-
ate normal distribution with Cov(Zij,Zik) = ρ|j−k|(ρ = {0.0, 0.5}). εis are simulated from
two distributions: (Case 1) N(0, 1) and (Case 2) t(3). Furthermore, in order to evaluate
the robustness of the methods against outliers, we contaminate the sample observations of
Y on the first machine with a proportion r% of observations from the distribution χ2(5),
i.e., chi-square distribution with 5 degrees of freedom. We here consider four settings for
r = {0, 10, 20, 30}, where f = 0 corresponds to the situation that the data has no contamina-
tion. To assess the performance of the proposed method, we compute the average estimator
error (AEE), which is defined as 1/(200(p + 1))

∑200
m=1

∑p
j=0 |βj − β̂mj | for 200 replications.

Note that β̂mj denotes the estimator of LEMR or CDMR at themth experiment.

Tables 1 and 2 report the simulation results of Example 3.1. From this table, we can draw
the following conclusions.

(1) When there is no contamination in the data set, almost LEMR and CDMR perform very
comparably. Both methods are not sensitive to the values of K and p.

(2) When the data set is contaminated with outliers, our proposed LEMR performs much
better than CDMR especially in the case of r = 0.3, in which setting, the value of AEE of
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Table 2. The simulation results of AEE (×10−3) for Example 3.1 with ρ = 0.5.

Case 1 Case 2

r K Method p = 2 p = 10 p = 2 p = 10

0 20 LEMR 4.218 4.690 4.917 5.257
CDMR 4.354 4.995 4.982 5.755

50 LEMR 4.103 4.621 4.912 5.538
CDMR 4.682 6.980 5.559 8.087

100 LEMR 4.315 4.720 4.801 5.551
CDMR 6.646 11.666 7.154 13.938

0.1 20 LEMR 4.309 4.719 4.972 5.656
CDMR 8.546 8.282 9.053 8.951

50 LEMR 4.413 4.791 4.909 5.516
CDMR 12.219 13.539 12.640 15.244

100 LEMR 4.482 4.556 4.787 5.488
CDMR 15.221 21.967 16.252 24.891

0.2 20 LEMR 4.705 4.960 5.823 5.841
CDMR 33.526 20.872 34.878 23.007

50 LEMR 4.216 4.778 4.972 5.572
CDMR 42.392 34.610 44.958 38.241

100 LEMR 4.135 4.698 4.894 5.535
CDMR 48.791 50.695 54.989 58.104

0.3 20 LEMR 5.548 5.044 6.989 6.085
CDMR 93.795 51.071 98.915 55.523

50 LEMR 4.592 4.775 5.342 5.723
CDMR 114.976 80.240 123.506 89.726

100 LEMR 4.322 4.814 4.889 5.514
CDMR 134.045 122.913 142.939 133.418

CDMR is much larger than that of LEMR. For instance, when looking at the Case 1 with
p = 2, K = 50 and ρ = 0.0, the AEE of CDMR is 110.733. However, the LEMR results
in the AEE of value 4.166.

(3) Whether the data set is contaminated or not, our LEMR always has a stable performance,
showing the robustness of our method. Because the CDMR mainly involves the calcu-
lation of the first and second gradient over the data on the first machine. When the data
on this machine is contaminated, the estimated gradient would be far from normal. This
leads to a poor performance of CDMR.

Furthermore, we run our R code with R version 4.2.1 on the desktop computer with AMD
2990WX32-core 3.00GHz processor and 32.0GBRAM. The computational results are given
in Table 3, fromwhich, one can see that the computing time for variousmethods is very close.

Example 3.2: In this example, we still generate the data from the model in Example 3.1,
except that we set β = (1, 0.5, 1, 1.5, 2)� and let Zi = (Zi1,Zi2,Zi3,Zi4)� follow a multivari-
ate normal distribution with zero mean and covariance matrix Cov(Zij,Zik) = ρ|j−k|. Here
we consider two cases for ρ = {0.2, 0.6}. To evaluate the behaviour of the methods, we also
add one criteria AEEj, the average absolute estimator error for each individual covariate
including an intercept, which is defined as 200−1 ∑200

m=1 |βj − β̂mj | over 200 replications. The
simulation results are shown in Tables 4 –7.

According to Tables 4– 7, we can observe that LEMR clearly outperforms CDMR.

Example 3.3: Furthermore, we conducted an additional simulation study to examine the
asymptotic properties of the estimator. We only consider Case 1 of Example 3.2 with ρ = 0
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Table 3. The simulation results of computing time (seconds) for Example 3.1 with ρ = 0.

Case 1 Case 2

r K Method p = 2 p = 10 p = 2 p = 10

0 20 LEMR 15.92 36.00 16.82 38.05
CDMR 15.75 36.05 16.88 37.73

50 LEMR 18.69 32.55 21.74 32.43
CDMR 18.68 32.44 21.52 32.31

100 LEMR 29.79 21.42 31.64 20.90
CDMR 29.11 21.17 31.13 20.80

0.1 20 LEMR 16.22 36.33 16.64 33.21
CDMR 15.98 35.77 16.50 33.47

50 LEMR 19.00 32.75 19.12 33.37
CDMR 18.61 32.27 19.02 32.83

100 LEMR 28.87 21.50 28.65 21.86
CDMR 28.47 21.30 28.13 21.25

Table 4. The simulation results of AEEj (×10−3) and AEE (×10−3) for Case 1 in Example 3.2 with ρ = 0.2.

r K Method AEE0 AEE1 AEE2 AEE3 AEE4 AEE

0 20 LEMR 3.856 4.315 4.264 4.222 3.902 4.112
CDMR 4.001 4.304 4.315 4.338 3.918 4.175

50 LEMR 3.946 3.504 4.064 4.149 3.906 3.914
CDMR 4.332 4.516 4.750 5.294 5.305 4.839

100 LEMR 4.233 3.920 4.153 3.726 3.903 3.987
CDMR 6.399 6.764 7.338 7.367 7.112 6.996

0.1 20 LEMR 4.096 4.545 4.117 3.762 3.994 4.103
CDMR 13.966 6.263 5.494 6.097 6.035 7.571

50 LEMR 3.560 3.888 4.180 4.107 3.755 3.898
CDMR 17.462 9.172 9.282 9.586 8.675 10.836

100 LEMR 3.781 3.723 3.747 3.663 3.980 3.779
CDMR 21.577 14.943 13.249 14.398 14.941 15.822

0.2 20 LEMR 5.945 3.695 4.156 4.207 4.073 4.415
CDMR 72.702 11.894 12.851 13.752 12.396 24.719

50 LEMR 4.344 3.783 4.198 3.784 3.735 3.969
CDMR 81.231 19.988 18.679 20.203 18.236 31.667

100 LEMR 4.335 3.806 3.694 3.783 3.724 3.868
CDMR 89.688 30.238 29.609 29.994 31.874 42.281

0.3 20 LEMR 8.191 3.855 3.812 3.835 4.050 4.749
CDMR 224.474 25.802 28.156 28.958 24.816 66.441

50 LEMR 4.483 3.601 4.034 3.653 4.070 3.968
CDMR 249.219 40.272 45.550 48.461 44.488 85.598

100 LEMR 4.038 3.813 4.002 3.908 3.941 3.940
CDMR 268.772 63.647 68.260 70.605 67.374 107.731

and r = 0 with different values of sample size n and two different values of K to vali-
date the asymptotic properties. We proceed with this process over 200 replications. We let
the entire sample size n vary from n ∈ {4 × 104, 5 × 104, 6 × 104, 7 × 104, 8 × 104, 9 × 104}.
The results are given in Table 8, fromwhich we can see that as n increases, the AEE gradually
decreases to zero, indicating that the proposed estimator has the consistency.

4. Real data analysis

In this section, we apply our proposed method to chemical sensors data. The data were col-
lected at the ChemoSignals Laboratory in the BioCircuits Institute, University of California
San Diego. It consists of the readings of 16 chemical sensors exposed to the mixture of Ethy-
lene and CO at varying concentrations in air. Each measurement was constructed by the
continuous acquisition of the sixteen-sensor array signals for a duration of about 12 hours
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Table 5. The simulation results of AEEj (×10−3) and AEE (×10−3) for Case 2 in Example 3.2 with ρ = 0.2.

r K Method AEE0 AEE1 AEE2 AEE3 AEE4 AEE

0 LEMR 20 4.556 4.519 4.255 4.911 4.404 4.529
CDMR 20 4.625 4.773 4.314 5.153 4.703 4.714
LEMR 50 4.333 4.697 4.560 4.769 4.242 4.520
CDMR 50 5.378 5.383 5.607 5.647 5.458 5.495
LEMR 100 4.424 4.529 4.843 4.318 4.737 4.570
CDMR 100 6.804 8.152 8.218 7.884 7.891 7.790

0.1 LEMR 20 5.374 4.548 4.823 4.685 4.079 4.702
CDMR 20 13.122 6.219 7.038 6.775 6.803 7.991
LEMR 50 4.517 4.451 4.451 4.940 4.216 4.515
CDMR 50 16.790 8.508 9.820 9.540 9.324 10.796
LEMR 100 4.253 4.121 4.550 4.907 4.678 4.502
CDMR 100 18.514 14.451 14.252 13.223 14.527 14.993

0.2 LEMR 20 7.526 4.129 4.837 4.250 4.375 5.023
CDMR 20 74.185 13.732 14.091 14.324 13.700 26.006
LEMR 50 5.110 4.403 4.533 5.202 4.518 4.753
CDMR 50 84.757 19.947 22.380 22.784 22.810 34.536
LEMR 100 4.030 5.131 4.751 4.402 4.357 4.534
CDMR 100 96.863 34.707 36.354 37.620 33.037 47.716

0.3 LEMR 20 10.567 4.585 4.322 4.653 4.303 5.686
CDMR 20 229.527 27.921 30.178 34.965 26.868 69.892
LEMR 50 5.424 4.597 4.120 4.784 4.748 4.735
CDMR 50 260.725 45.340 50.401 52.931 46.465 91.172
LEMR 100 4.136 4.849 4.773 4.664 4.174 4.519
CDMR 100 288.818 75.202 81.794 81.649 79.032 121.299

Table 6. The simulation results of AEEj (×10−3) and AEE (×10−3) for Case 1 in Example 3.2 with ρ = 0.6.

r K Method AEE0 AEE1 AEE2 AEE3 AEE4 AEE

0 20 LEMR 3.856 5.240 5.858 5.842 4.774 5.114
CDMR 4.001 5.246 5.957 6.063 4.799 5.213

50 LEMR 3.949 4.240 5.895 5.919 4.786 4.958
CDMR 4.332 5.316 6.696 7.816 6.497 6.131

100 LEMR 4.235 4.958 5.711 5.338 4.777 5.004
CDMR 6.399 8.611 10.090 10.096 8.710 8.781

0.1 20 LEMR 4.096 5.180 5.650 5.461 4.891 5.056
CDMR 13.966 7.333 8.024 8.726 7.391 9.088

50 LEMR 3.559 4.794 5.763 5.503 4.599 4.844
CDMR 17.462 10.945 13.416 13.029 10.625 13.096

100 LEMR 3.783 4.620 5.115 5.246 4.874 4.728
CDMR 21.577 17.088 19.436 20.259 18.298 19.332

0.2 20 LEMR 5.941 4.645 5.918 5.868 4.989 5.472
CDMR 72.702 14.702 18.493 19.344 15.182 28.085

50 LEMR 4.348 4.645 5.889 5.286 4.574 4.948
CDMR 81.231 25.379 26.673 27.603 22.334 36.644

100 LEMR 4.335 4.316 5.236 5.214 4.560 4.732
CDMR 89.688 36.629 41.342 42.399 39.038 49.819

0.3 20 LEMR 8.191 4.838 5.525 5.699 4.960 5.843
CDMR 224.474 31.360 38.830 40.247 30.394 73.061

50 LEMR 4.483 4.561 5.545 5.218 4.985 4.958
CDMR 249.219 50.600 64.831 65.687 54.487 96.965

100 LEMR 4.038 4.798 5.525 5.577 4.827 4.953
CDMR 268.772 77.234 98.600 96.605 82.516 124.745

without interruption. The concentration transitions were set at random times and concen-
tration levels. Further information about the data set can be found in Fonollosa et al. (2015).
We follow the suggestion ofWang et al. (2019) to consider the last sensor as the response and
other sensors as covariates. We take a log-transformation of the sensors readings. Readings
from the second sensor are excluded in the analysis because there are approximately 20% of
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Table 7. The simulation results of AEEj (×10−3) and AEE (×10−3) for Case 2 in Example 3.2 with ρ = 0.6.

r K Method AEE0 AEE1 AEE2 AEE3 AEE4 AEE

0 20 LEMR 4.558 5.278 6.139 6.662 5.392 5.606
CDMR 4.625 5.664 6.219 6.946 5.760 5.843

50 LEMR 4.334 5.424 6.501 6.738 5.196 5.639
CDMR 5.378 6.220 7.998 8.016 6.685 6.859

100 LEMR 4.424 5.544 6.926 6.280 5.800 5.795
CDMR 6.804 9.673 12.215 10.877 9.665 9.847

0.1 20 LEMR 5.374 5.849 6.504 6.274 4.995 5.799
CDMR 13.122 7.949 9.687 9.162 8.332 9.650

50 LEMR 4.517 5.493 6.410 6.587 5.163 5.634
CDMR 16.790 10.930 13.881 13.182 11.419 13.241

100 LEMR 4.250 5.122 6.483 6.793 5.736 5.677
CDMR 18.514 17.252 18.627 19.139 17.792 18.265

0.2 20 LEMR 7.521 5.072 6.765 5.836 5.359 6.110
CDMR 74.185 16.688 19.932 20.207 16.779 29.558

50 LEMR 5.109 5.493 6.424 7.056 5.533 5.923
CDMR 84.757 25.056 32.911 32.400 27.936 40.612

100 LEMR 4.030 6.251 6.427 6.228 5.335 5.654
CDMR 96.863 43.459 50.859 49.601 40.462 56.249

0.3 20 LEMR 10.567 5.459 6.173 6.293 5.270 6.753
CDMR 229.527 36.466 43.539 46.606 32.906 77.809

50 LEMR 5.424 5.476 6.041 6.580 5.815 5.867
CDMR 260.725 56.020 72.670 71.130 56.908 103.490

100 LEMR 4.136 5.867 6.731 6.483 5.112 5.666
CDMR 288.818 100.030 117.116 116.307 96.794 143.813

Figure 1. The kernel density estimation of the response variable.

the negative values for unknown reasons. Thus, we exclude the first 20000 data points that
correspond to less than 4 minutes of system run-in time. Thus, the data to be analysed have
the size of n = 4188261 and the dimensionality of p = 14.

We assume the number of machines K = {20, 50, 100, 150, 200}, and use the mean square
error (MSE) defined by n−1 ∑n

i=1(yi − ŷi)2 for a comparison with mode regression with full
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Table 8. The simulation results of AEE (×10−3) for Example 3.3 with Case 1, ρ = 0 and r = 0.

K n AEE0 AEE1 AEE2 AEE3 AEE4

50 4 × 104 4.274 4.372 4.061 4.070 4.364
5 × 104 3.772 3.951 3.824 3.751 3.789
6 × 104 3.493 3.454 3.550 3.280 3.444
7 × 104 3.124 3.326 3.183 3.266 3.198
8 × 104 3.053 2.990 2.884 2.832 3.001
9 × 104 2.752 2.822 2.849 2.813 2.827

100 4 × 104 4.324 4.263 4.520 4.086 4.494
5 × 104 3.834 3.762 3.970 3.642 3.702
6 × 104 3.441 0.350 3.200 3.467 3.559
7 × 104 3.213 3.277 3.205 3.267 3.081
8 × 104 2.985 2.952 3.063 3.031 2.970
9 × 104 2.777 2.655 2.968 2.976 2.890

Table 9. The results ofMSE (×10−3) for chemical sensors data, where the values in the
parentheses correspond to optimal bandwidth involved in the methods.

20 50 100 150 200

LEMR 0.220 0.228 0.231 0.232 0.233
MEM 0.184 0.193 0.199 0.201 0.203
(h.opt) (11.668) (8.977) (7.085) (6.519) (6.172)

data, where ŷi is the predictive value of yi. Figure 1 shows that the distribution of the response
has two peaks and is asymmetric. The CDMRworks poorly with extremely largeMSE, which
is not displayed here. To investigate the performance of our proposal, we also compare the
MEMmethod of Yao and Li (2014) that uses the full data. For a fair comparison, we consider
the same bandwidth selected by (9). Table 9 shows the results. TheMSEs of bothmethods are
very small and generally less than 2.4 × 10−4. TheMEMhas slightly better performance than
LEMR. For example, we can see that when K = 100, the MSE for the MEM is 1.99 × 10−4,
while our method has the MSE of 2.31 × 10−4. The relative error is only about 16%.
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Appendix. Proofs

Before beginning with our proof, we let φ(u) denote the density function of a standard normal random
variable. It can be seen that φ′(u) = −xφ(u) and φ′′(u) = (u2 − 1)φ(u).

Proof of Proposition 2.1: First of all, we prove the first assertion. To this end, denote

�nh(β) = 1
nh

n∑
i=1

Xiεiφ

(
Yi − X�

i β

h

)
− 1

nh

n∑
i=1

Xiεiφ
(εi
h

)
. (A1)

Clearly, �nh(β̂
(0)
) = Anh − A∗

nh. Our aim is to derive the probabilistic order for the term
sup‖β−β0‖≤Cξn ‖�nh(β)−�nh(β0)‖, where C is a large constant. Define a ball B = {β : ‖β − β0‖ ≤
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the union of a set of balls {Bk, k = 1, . . . ,K}, where Bk means a ball with a centre βk and a radius
δn = ξn/n2. Then, K = O(n2p).

Denote θ � β − β0 and θk � βk − β0. Write

�nh(θ) � �nh(β) = �nh(β)−�nh(β0)

= 1
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)]
.

By Taylor’s expansion and properties of density function of standard normal random variable, we have
that for any ‖θ‖ ≤ Cξn,
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and similarly,
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Thus, it follows from Conditions (C2) and (C4) that

‖E{�nh(β)} − D(β − β0)‖ = O(h2‖β − β0‖ + ‖β − β0‖3 + h4).
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Accordingly, we have

sup
‖β−β0‖≤Cξn

‖E{�nh(β)} − D(β − β0)‖ ≤ O(ξnh2 + ξ 3n + h4). (A4)

On the other hand, we have
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We first consider the term In1. We can decompose
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Using the facts that both φ(x) and xφ(x) are Lipschitz continuous and φ(x) is bounded, we have

‖�nh(β)−�nh(βk)‖ ≤ C2
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for some positive constants C2 and C′
2. It follows from Condition (C4) and ξn = O(h) that

E

{
max
1≤k≤K

sup
β∈Bk

‖�nh(β)−�nh(βk)‖
}

= O
(
ξn

n2h

)
.

This together with Markov’s inequality implies that

In1 ≤ max
1≤k≤K

sup
β∈Bk

‖�nh(β)−�nh(βk)‖

+ max
1≤k≤K

sup
β∈Bk

E{‖�nh(β)−�nh(βk)‖}

= Op

(
ξn

n2h

)
. (A6)
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Next, we consider the term In2. Let ψijk � h−1Xijεi

[
φ
(
εi−X�

i θk
h

)
− φ( εih )

]
. Then, by the Lipschitz’s

continuity of xφ(x) and boundedness of φ(x), we have that for any β ∈ Bk, there exists some positive
constant C3 such that

|ψijk| =
∣∣∣∣∣Xij

[
εi − X�

i θk

h
φ

(
εi − X�

i θk

h

)
− εi

h
φ
(εi
h

)
+ X�

i θk

h
φ

(
εi − X�

i θk

h

)]∣∣∣∣∣
≤ |Xij|

∣∣∣∣∣εi − X�
i θk

h
φ

(
εi − X�

i θk

h

)
− εi

h
φ
(εi
h

)∣∣∣∣∣ + |Xij| ‖Xi‖‖θk‖
h

φ

(
εi − X�

i θk

h

)
≤ C3h−1|Xij|‖Xi‖‖θk‖
≤ C3Cξnh−1|Xij|‖Xi‖ =: Vij.

Denote en = ξn
h (

n
log n )

1/4 and let ψ†
ijk = ψijkI(Vij ≤ en) and ψ‡

ijk = ψijkI(Vij > en). Using the fact that
‖a‖ ≤ ‖a‖1 = ∑

i |ai|, we have
In2 = max

1≤k≤K
‖�nh(βk)− E{�nh(βk)}‖

≤ max
1≤k≤K

p∑
j=1

∣∣∣∣∣ 1n
n∑
i=1

[
ψijk − E

(
ψijk

)]∣∣∣∣∣
≤ max

1≤k≤K

p∑
j=1

∣∣∣∣∣ 1n
n∑
i=1

[
ψ†
ijk − E

(
ψ†
ijk

)]∣∣∣∣∣
+ max

1≤k≤K

p∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

[
ψ‡
ijk − E

(
ψ‡
ijk

)]∣∣∣∣∣
=: In2,1 + In2,2.

Let δn = Len
√

log n
n , where L denotes a sufficiently large positive constant. It follows from Boole’s

inequality and Hoeffding’s inequality that

P
{
In2,1 > δn

} = P

⎧⎨⎩ max
1≤k≤K

p∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

[
ψ†
ijk − E

(
ψ†
ijk

)]∣∣∣∣∣ > δn

⎫⎬⎭
≤

K∑
k=1

p∑
j=1

P

{∣∣∣∣∣ 1n
n∑

i=1

[
ψ†
ijk − E

(
ψ†
ijk

)]∣∣∣∣∣ > δn/p

}

≤ 2Kp exp
(

− δ2nn
2e2np2

)
= O(1) exp

(
2p log n + log p − δ2nn

2e2np2

)
= O(1) exp(−(L2/p2 − 2p) log n + log p) = o(1)

for a sufficiently large n, where the last line is because p is fixed and the constant L is large enough. This
implies that

In2,1 = Op

(
en

√
log n
n

)
= Op

(
ξn

h

(
log n
n

)1/4
)
. (A7)
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On the other hand, we first note that

In2,2 = max
1≤k≤K

p∑
j=1

∣∣∣∣∣ 1n
n∑

i=1

[
ψ‡
ijk − E

(
ψ‡
ijk

)]∣∣∣∣∣
≤ max

1≤k≤K

p∑
j=1

1
n

n∑
i=1

|ψ‡
ijk| + max

1≤k≤K
E

⎧⎨⎩
p∑

j=1

1
n

n∑
i=1

|ψ‡
ijk|

⎫⎬⎭ .

By Condition (C4), we can derive that

E

⎧⎨⎩ max
1≤k≤K

p∑
j=1

1
n

n∑
i=1

|ψ‡
ijk|

⎫⎬⎭ ≤ E

⎧⎨⎩
p∑

j=1

1
n

n∑
i=1

VijI(Vij > en)

⎫⎬⎭
≤ 1

en
E

⎧⎨⎩
p∑

j=1

1
n

n∑
i=1

V2
ij

⎫⎬⎭
= O

(
ξ 2n
enh2

)

= O

(
ξn

h

(
log n
n

)1/4
)
.

This in conjunction with Markov’s inequality leads to

In2,2 = Op

(
ξn

h

(
log n
n

)1/4
)
. (A8)

As a result, by combining the results (A7) and (A8), we have In2 = Op

(
ξn
h

(
log n
n

)1/4)
. This together

with (A5) and (A6) gives

sup
‖β−β0‖≤Cξn

‖[�nh(β)−�nh(β0)] − E{�nh(β)−�nh(β0)}‖ = Op

(
ξn

h

(
log n
n

)1/4
)
.

This combining (A4) implies

sup
‖β−β0‖≤Cξn

‖�nh(β)−�nh(β0)− D(β − β0)‖

≤ sup
‖β−β0‖≤Cξn

‖[�nh(β)−�nh(β0)] − E{�nh(β)−�nh(β0)}‖

+ sup
‖β−β0‖≤Cξn

‖E{�nh(β)−�nh(β0)} − D(β − β0)‖

= Op

(
ξn

h

(
log n
n

)1/4
+ ξnh2 + ξ 3n + h4

)
.

Thus, the assertion (i) is proved.
Secondly, we are going to verify the second assertion. To proceed, let

�nh(β) = 1
nh

n∑
i=1

XiX�
i

[
φ

(
εi − X�

i θ

h

)
− φ

(εi
h

)]
,
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where θ = β − β0.Obviously, we have�nh(β̂
(0)
) = Dnh − D∗

nh.Writeψnijl(θ)=h−1XijXil[φ
(
εi−X�

i θ

h

)
− φ( εih )]. Then, the (j, l)th element of�nh(β) is 1

n
∑n

i=1 ψnijl(θ). Further, by Taylor’s expansion,

E

{
φ

(
εi − X�

i θ

h

)∣∣∣∣∣Xi

}
= hfεi |Xi(0 |Xi)+ h

2
f ′′εi |Xi

(0 |Xi)
[
h2 + (X�

i θ)2
]
{1 + o(1)}

and

E
{
φ
(εi
h

)∣∣∣Xi

}
= hfεi |Xi(0 |Xi)+ 1

2
f ′′εi |Xi

(0 |Xi)h3{1 + o(1)}.
Thus, it follows that

E{ψnijl(θ)} = E

{
h−1XijXilE

[
φ

(
εi − X�

i θ

h

)
− φ

(εi
h

)∣∣∣Xi

]}

= 1
2
E
{
XijXilf ′′εi |Xi

(0 |Xi)(X�
i θ)2

}
{1 + o(1)}.

Using the fact that ‖A‖ ≤ p‖A‖∞ for any symmetric p × p square matrix A, where ‖A‖∞ =
maxj,l |Ajl|, we have

sup
‖β−β0‖≤Cξn

‖�nh(β)−�nh(β0)− E{�nh(β)−�nh(β0)}‖

≤ max
1≤j≤p

max
1≤l≤p

sup
‖θ‖≤Cξn

∣∣∣∣∣ 1n
n∑
i=1

[
ψnijl(θ)− E{ψnijl(θ)}

]∣∣∣∣∣ . (A9)

On the other hand, note that

sup
‖θ‖≤Cξn

∣∣∣∣∣ 1n
n∑

i=1

[
ψnijl(θ)− E{ψnijl(θ)}

]∣∣∣∣∣
≤ max

1≤k≤K
sup
β∈Bk

∣∣∣∣∣ 1n
n∑
i=1

[
ψnijl(θ)− ψnijl(θk)− E{ψnijl(θ)− ψnijl(θk)}

]∣∣∣∣∣
+ max

1≤k≤K

∣∣∣∣∣ 1n
n∑

i=1

[
ψnijl(θk)− E{ψnijl(θk)}

]∣∣∣∣∣
≤ max

1≤k≤K
sup
β∈Bk

∣∣∣∣∣ 1n
n∑
i=1

[
ψnijl(θ)− ψnijl(θk)

]∣∣∣∣∣
+ max

1≤k≤K
sup
β∈Bk

∣∣∣∣∣ 1n
n∑
i=1

[
E{ψnijl(θ)− ψnijl(θk)}

]∣∣∣∣∣
+ max

1≤k≤K

∣∣∣∣∣ 1n
n∑

i=1

[
ψnijl(θk)− E{ψnijl(θk)}

]∣∣∣∣∣
≤ max

1≤k≤K
sup
β∈Bk

1
n

n∑
i=1

∣∣∣∣∣h−1XijXil

[
φ

(
εi − X�

i θ

h

)
− φ

(
εi − X�

i θk

h

)]∣∣∣∣∣
+ E

{
max
1≤k≤K

sup
β∈Bk

1
n

n∑
i=1

∣∣∣∣∣h−1XijXil

[
φ

(
εi − X�

i θ

h

)
− φ

(
εi − X�

i θk

h

)]∣∣∣∣∣
}
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+ max
1≤k≤K

∣∣∣∣∣ 1n
n∑

i=1

[
ψnijl(θk)− E{ψnijl(θk)}

]∣∣∣∣∣
=: T(1)njl + T(2)njl + T(3)njl .

We first consider the second termT(2)njl . Because φ(u) is Lipschitz continuous, so there exists a universal
constant C4 > 0 such that

max
1≤j≤p

max
1≤l≤p

T(2)njl ≤ C4h−2 max
1≤j≤p

max
1≤l≤p

E

{
max
1≤k≤K

sup
β∈Bk

1
n

n∑
i=1

|Xij||Xil|‖Xi‖‖β − βk‖
}

≤ C4
ξn

n2h2
∑
1≤j≤p

∑
1≤l≤p

E

{
1
n

n∑
i=1

|Xij||Xil|‖Xi‖
}

≤ C4
pξn
n2h2

1
n

n∑
i=1

E
{‖Xi‖3

}
= O

(
ξn

n2h2

)
, (A10)

where the second and third lines use the basic inequalities that maxj,l |aij| ≤ ∑
i,j |aij| and

(
∑p

l=1 |al|)2 ≤ p
∑p

l=1 a
2
l , respectively, and the last line is due to Condition (C4). For the first term

T(1)njl , using this result and by Markov’s inequality, we can easily obtain that

max
1≤j≤p

max
1≤l≤p

T(1)njl = Op

(
ξn

n2h2

)
. (A11)

We next handle the third term T(3)njl . For any βk ∈ B, there exists a universal constant C5 > 0 such

that max1≤k≤K |ψnijl(θk)| ≤ C5ξnh−2|Xij||Xil|‖Xi‖ =: Vijl. Let ēn = ξn
h2

(
log n
n

)−1/4
and write ψ†

nijlk =
ψnijl(θk)I(Vijl ≤ ēn) and ψ‡

nijlk = ψnijl(θk)I(Vijl > ēn). Then, it follows that

max
1≤j≤p

max
1≤l≤p

T(3)njl ≤ max
1≤j≤p

max
1≤l≤p

max
1≤k≤K

∣∣∣∣∣ 1n
n∑
i=1

[ψ†
nijlk − E{ψ†

nijlk}]
∣∣∣∣∣

+ max
1≤j≤p

max
1≤l≤p

max
1≤k≤K

∣∣∣∣∣ 1n
n∑
i=1

[ψ‡
nijlk − E{ψ‡

nijlk}]
∣∣∣∣∣

=: IIn1 + IIn2.

Following the same arguments as used in (A7), we can derive that

IIn1 = Op

(
ēn

(
log n
n

)1/2
)

= Op

(
ξn

h2

(
log n
n

)1/4
)
.

Furthermore, since Vijl is positive, we have

E{IIn2} ≤ 2E

{
max
1≤j≤p

max
1≤l≤p

max
1≤k≤K

1
n

n∑
i=1

|ψ‡
nijlk|

}

≤ 2E

{
max
1≤j≤p

max
1≤l≤p

1
n

n∑
i=1

VijlI(Vijl > ēn)

}
≤ 2E

{
VijlI(Vijl > ēn)

}
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≤ 2
ēn

p∑
j=1

p∑
l=1

1
n

n∑
i=1

E
{
V2
ijl

}

= 2C2
5ξ

2
n

ēnh4
1
n

n∑
i=1

E
{‖Xi‖4

}
= O

(
ξ 2n
ēnh4

)
.

Thus, by Markov’s inequality, we have

IIn2 = Op

(
ξ 2n
ēnh4

)
= Op

(
ξn

h2

(
log n
n

)1/4
)
.

Hence, it follows that

max
1≤j≤p

max
1≤l≤p

T(3)njl = Op

(
ξn

h2

(
log n
n

)1/4
)
. (A12)

Invoking the results (A9)–(A12), we obtain

sup
‖β−β0‖≤Cξn

‖�nh(β)−�nh(β0)− E{�nh(β)−�nh(β0)}‖ = Op

(
ξn

h2

(
log n
n

)1/4
)
. (A13)

By the previous arguments and Conditions (C2) and (C4), we can obtain

sup
‖β−β0‖≤Cξn

‖E{�nh(β)−�nh(β0)}‖

≤ max
1≤j≤p

max
1≤l≤p

sup
‖β−β0‖≤Cξn

∣∣∣∣∣E
{
1
n

n∑
i=1

ψnijl(θ)

}∣∣∣∣∣
≤ C7 max

1≤j≤p
max
1≤l≤p

sup
‖θ‖≤Cξn

1
n

n∑
i=1

E
{
|Xij||Xil||f ′′εi |Xi

(0 |Xi)|‖Xi‖2
}

‖θ‖2

≤ C7C2pξ 2n
1
n

n∑
i=1

E
{
‖Xi‖4|f ′′εi |Xi

(0|Xi)|
}

≤ C8pξ 2nE
{‖X‖4}

= O(ξ 2n ),

where C7 and C8 are some positive constants. Connecting this result with (A13) yields

sup
‖β−β0‖≤Cξn

‖�nh(β)−�nh(β0)‖ = Op

(
ξn

h2

(
log n
n

)1/4
+ ξ 2n

)
.

Therefore, the second assertion is proved.
Thirdly, we verify the assertion (iii). Let ϕijl = XijXilh−1φ( εih ). On one hand, by Conditions (C2)

and (C4) and Taylor’s expansion, we can derive that for any δ > 0,

P
{‖D∗

nh − E{D∗
nh}‖ > δ

} ≤ P

{
max
1≤j≤p

max
1≤l≤p

∣∣∣∣∣ 1n
n∑

i=1
[ϕijl − E{ϕijl}]

∣∣∣∣∣ > δ

}

≤
∑
1≤j≤p

∑
1≤l≤p

P

{∣∣∣∣∣ 1n
n∑

i=1
[ϕijl − E{ϕijl}]

∣∣∣∣∣ > δ

}
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≤
∑
1≤j≤p

∑
1≤l≤p

δ−2E

{
1
n2

n∑
i=1

X2
ijX

2
ilh

−2φ2
(εi
h

)}

≤ C9δ
−2(nh)−1

for some positive constant C9. By taking δ = L/
√
nh with L being a constant, as L → ∞, P{‖D∗

nh −
E{D∗

nh}‖ > L/
√
nh} = o(1), which implies that ‖D∗

nh − E{D∗
nh}‖ = Op

(
1√
nh

)
. On the other hand, it

can be easily derived that

‖E{D∗
nh} − D‖ ≤

∑
1≤j≤p

∑
1≤l≤p

∣∣∣∣∣ 1n
n∑
i=1

E
{
XijXil

∫
φ(t)[fεi |Xi(ht |Xi)− fεi |Xi(0 |Xi)] dt

}∣∣∣∣∣
≤ C10ph2

1
n

n∑
i=1

E
{‖Xi‖2

} = O(h2)

for some positive constant C10. Thus, the assertion (iii) follows by using the above arguments and the
triangle inequality of norms. �

Proof of Proposition 2.2: We first derive the probabilistic orders of ‖E{A∗
nh}‖ and ‖A∗

nh − E{A∗
nh}‖,

respectively. An application of Taylor’s expansion yields

E{A∗
nh} = h4

2n

n∑
i=1

E{Xif ′′′εi |Xi
(0 |Xi)}{1 + o(1)},

which in conjunction with Conditions (C2) and (C4) leads to

‖E{A∗
nh}‖ = O(h4). (A14)

Furthermore, by Taylor’s expansion and Conditions (C2) and (C4), we have

E
{‖A∗

nh − E{A∗
nh}‖2

} = E

⎧⎨⎩
p∑

j=1

(
1
nh

n∑
i=1

[
Xijεiφ

(εi
h

)
− EXijεiφ

(εi
h

)])2
⎫⎬⎭

≤ 1
n2h2

p∑
j=1

n∑
i=1

E
{
X2
ijε

2
i φ

2
(εi
h

)}

= O
(
h
n

)
,

which implies

‖A∗
nh − EA∗

nh‖ = Op

(√
h
n

)
. (A15)

Thus, combining (A14) and (A15) gives

‖A∗
nh‖ ≤ ‖A∗

nh − E{A∗
nh}‖ + ‖E{A∗

nh}‖

= Op

(√
h
n

+ h4
)
. (A16)

Hence, it follows from the result (A16), Proposition 1, Conditions (C3) and the fact thatD−1
nh − D−1 =

D−1(D − Dnh)D−1
nh that

‖β̂ − β0 − D−1A∗
nh‖ = ‖D−1

nh Anh − D−1A∗
nh‖

≤ ‖(D−1
nh − D−1)Anh‖ + ‖D−1(Anh − A∗

nh)‖
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≤ ‖D−1‖‖D − Dnh‖‖D−1
nh ‖‖Anh‖ + ‖D−1‖‖Anh − A∗

nh‖
≤ ‖D−1‖‖D − Dnh‖‖D−1

nh ‖‖Anh − A∗
nh‖

+ ‖D−1‖‖D − Dnh‖‖D−1
nh ‖‖A∗

nh‖ + ‖D−1‖‖Anh − A∗
nh‖

= Op

(
ξ 2n
h2

(
log n
n

)1/4
+ ξn + h

(
h2 ∨ 1√

nh

)2
)
.
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