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ABSTRACT
The modified Cholesky decomposition (MCD) is an efficient technique
for estimating a covariance matrix. However, it is known that the MCD
technique often requires a pre-specified variable ordering in the esti-
mationprocedure. In thiswork,wepropose aweighted average ensem-
ble covariance estimation for high-dimensional data based on theMCD
technique. It can flexibly accommodate the high-dimensional case and
ensure the positive definiteness property of the resultant estimate. Our
key idea is to obtain different weights for different candidate estimates
by minimizing an appropriate risk function with respect to the Frobe-
nius norm. Different from the existing ensemble estimation based on
the MCD, the proposed method provides a sparse weighting scheme
such that one can distinguish which variable orderings employed in
the MCD are useful for the ensemble matrix estimate. The asymptoti-
cally theoretical convergence rate of the proposed ensemble estimate
is established under regularity conditions. The merits of the proposed
method are examined by the simulation studies and a portfolio alloca-
tion example of real stock data.
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1. Introduction

The estimation of covariancematrix plays an important role in themultivariate statistics with
a broad spectrum of applications including dimension reduction, linear discriminant anal-
ysis, social network, remote sensing, functional magnetic resonance imaging etc. Recently,
scholars have investigated the covariance estimation for a certain type of data, such as the
compositional data (Cao et al., 2019), thematrix-valued data (Zhang et al., 2022) and the spa-
tial data (Kidd & Katzfuss, 2022). However, the covariance estimation for high dimensions
where the number of variables is larger than the sample size encounters challenges due to two
difficulties. One is the positive definite and symmetric properties required by the covariance
matrix itself. The other is a large amount of parameters involved in the model estimation
in the sense that the number of parameters increases rapidly in the quadratic order of the
model dimension. Therefore, the covariance matrix estimation is not an easy work, and has
attracted extensive interest among many scholars.
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To induce the sparsity for the high-dimensional covariance matrix estimate, Bickel
and Levina (2008a) suggested a hard-thresholding method which directly sets the small
quantities of the sample covariance matrix to be zero, and provided its theoretical results.
In addition, with the assumption that variables are weakly correlated when they are far
away in an ordering, Furrer and Bengtsson (2007) and Bickel and Levina (2008b) intro-
duced the tapering and banded covariance estimates which are consistent under some
conditions. Although the computational cost of such thresholding-based methods is small,
their estimates cannot guarantee the property of the positive definiteness. To circumvent
this problem, Bien and Tibshirani (2011) improved the covariance estimation via impos-
ing the L1 penalty on the negative log likelihood. Furthermore, Xue et al. (2012) developed
a covariance estimation with additional positive definite constraint added on their objective
function. However, they are computationally intensive due to either the non-convexity of the
objective function or the iterative estimation procedure. More covariance estimation stud-
ies can be found in Deng and Tsui (2013), Cai et al. (2016), C. Huang et al. (2017), Ledoit
and Wolf (2020), Jenny Shi et al. (2021) and Xin and Zhao (2023), among others.

Another powerful tool for the estimation of the high-dimensional covariancematrix is the
modified Cholesky decomposition (MCD) (Pourahmadi, 1999) which is efficient to deal with
the two challenges mentioned above. It guarantees the positive definiteness and symmetry of
the covariance estimate via thematrix decomposition, and transforms the difficult problemof
matrix estimation into the easy tasks of solving linear regressions, which is thus statistically
meaningful and able to accommodate large number of variables in the high-dimensional
data analysis. In view of this, many papers in the literature have studied the covariance
estimation via the MCD (J. Huang et al., 2006; Kang & Wang, 2021; Leng & Li, 2011; Lv
et al., 2018; Pedeli et al., 2015;Wu&Pourahmadi, 2003).However, thematrix estimates by the
MCD technique depend on the variable ordering when constructing the linear regressions,
implying that different variable orderings will lead to different Cholesky-based estimates.
Therefore, it requires a prior knowledge on the variable ordering of data in practice, e.g.,
the longitudinal data and the spatial data have a natural ordering. This remarkably narrows
down the scope of its applications, since in most cases the real data do not have a natural
ordering, or we do not have any information on the variable orderings before the analy-
sis, such as the gene data, the stock data, the industry data and the medical data. Hence
several papers have contributed to solving this ordering issue. One idea is that a certain vari-
able ordering can be determined based on several criteria via some data driven mechanisms
before applying the MCD technique. Typical criteria include the Isomap proposed byWaga-
man and Levina (2009), the Bayesian Information Criterion (BIC) suggested by Dellaportas
and Pourahmadi (2012), the Best Permutation Algorithm (BPA) introduced by Rajaratnam
and Salzman (2013) and so forth. Although their methods extend the application scope of
the MCD approach, an inappropriately identified ordering will damage the performance of
the subsequent Cholesky-based estimation.

In contrast to using only one single variable ordering, H. Zheng et al. (2017) introduced
another idea of employing the ensemble model via the MCD for the covariance estima-
tion, which has been extensively studied in the later literature (Kang & Deng, 2020; Kang
et al., 2025; Li et al., 2021; Liang et al., 2024). These methods have two advantages: (1) they
require no prior knowledge on the variable ordering, solving the issue mentioned above;
(2) the ensemble estimators combine useful information attained from different candidate
models to reduce the estimation risk caused by relying on one single variable ordering which
might be incorrectly selected, thus improving the estimation accuracy. The numerical studies
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have empirically shown that the Cholesky-based matrix estimates by the ensemble model
perform better than the estimates using one single variable ordering.

Nonetheless, such ensemble matrix estimates by the MCD technique in general have two
main disadvantages. The first one is that they randomly generated a set of different variable
orderings, and considered them to contribute equally in constructing the ensemble estimates.
That is, they assigned the same weight to the candidate estimates that are obtained by the
MCD corresponding to different variable orderings. An obvious way to improving the per-
formance of such simply averaging estimators is to consider an ensemble model by using
the optimal weights that might be different for each candidate estimate. The second disad-
vantage is that they took into account all the randomly generated variable orderings for the
ensemble covariance estimation, without distinguishing whether the variable orderings are
useful for building the covariance estimators under the framework of the MCD. To our best
knowledge, these two disadvantages lie in all the existing Cholesky-based ensemble meth-
ods of matrix estimation. Especially the second one might affect the estimation accuracy if
some useless variable orderings are involved into the covariance estimation. Therefore, in
this paper we propose a Weighted Averaging Ensemble (WAE) for covariance estimation
based on the MCD technique. We take the advantage of the MCD framework that it is able
to provide multiple candidates of the covariance estimates by considering different variable
orderings. The proposedmethod overcomes the first disadvantage by aggregating such candi-
dates via the optimal weights, which are adaptively determined byminimizing a risk function
in terms of the Frobenius norm. The proposed method also solves the second disadvantage
through identifying which variable orderings are the most useful for the ensemble covari-
ance estimates by means of imposing a penalty with respect to the weights on the objective
function.

The remaining of this article is organized as follows. In Section 2, we review the MCD
for the covariance estimation, then introduce the proposed WAE methods in details, and
establish the theoretical properties. The simulations are conducted in Section 3, and a real
case study of portfolio selection is presented in Section 4. We conclude this work with some
discussions in Section 5. All the technical proofs are in the Appendix.

2. Methodology

2.1. Covariance estimation via theMCD

Without loss of generality, we assume that X = (X1, . . . ,Xp)
� is a p-dimensional random

vector with mean value of 0 and covariance matrix �. The MCD technique regresses each
variable Xj on its preceding errors ε1, . . . , εj−1 for 2 ≤ j ≤ p. Specifically, consider a series of
linear regressions

Xj =
j−1∑
i=1

ljiεi + εj, j = 2, . . . , p, (1)

where lj = (lj1, . . . , lj(j−1))
� is the vector consisted of regression coefficients, and εj is the

error term for the jth regression with its expectation of 0 and variance of d2j . In addition, let
ε1 = X1 and d21 = Var(X1). Define by a diagonal matrix D = diag(d21, . . . , d

2
p) the variance

matrix of the error vector ε = (ε1, . . . , εp)�. Let L = (lji)p×p be a lower triangular matrix
whose diagonal elements are all ones, where ljj = 1 and lji = 0 if i> j. As a result, the linear
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regressions (1) can be written in the matrix form of X = Lε. The covariance matrix can be
thuswritten as� = Var(X) = Var(Lε) = LDL�. By thismeans, theMCD technique reduces
the difficulty of covariance estimation by decomposing it into the estimation of the Cholesky
factor matrices D and L, which can be obtained easily by solving the p−1 linear regressions
in (1).

Let x1, . . . , xn be n independent observations from the random vector X, and X =
(x1, . . . , xn)� be the n × p data matrix. Define the jth column of X by x(j). Denote by e(j)

the residuals of the jth regression for j ≥ 2, and e(1) = x(1). Let Z
(j) = (e(1), . . . , e(j−1)) be

the matrix containing the first j−1 residuals. For the high-dimensional data, the Lasso regu-
larization is often used to shrink the estimated regression coefficients (Chang & Tsay, 2010;
J. Huang et al., 2006)

l̂j = argmin
lj

‖x(j) − Z
(j)lj‖22 + λj‖lj‖1, j = 2, . . . , p, (2)

where λj ≥ 0 is a tuning parameter. The symbols ‖ · ‖1 and ‖ · ‖2 stand for the vector L1 and
L2 norms. e(j) = x(j) − Z

(j) l̂j is used to construct the residuals for the last column of Z
(j+1).

The estimate d̂2j is calculated as the sample variance of e(j). Consequently, the covariance

estimate is �̂ = L̂D̂L̂�, where L̂ is constructedwith l̂j as its jth row, and D̂ = diag(d̂21, . . . , d̂
2
p).

2.2. The proposed estimators

Since the Cholesky factor matrix estimates L̂ and D̂ depend on the variable ordering
X1, . . . ,Xp as one can see from Equation (1), we apply the ensemble model to solve this
issue by considering multiple orderings for the MCD technique. Define a mapping � :
{1, 2, . . . , p} → {1, 2, . . . , p} as {1, 2, . . . , p} → {�(1), . . . ,�(p)}, and let P� be the corre-
sponding permutation matrix. Let (L�,D�) be the matrices of (L,D) obtained by the MCD
using the variable ordering permutation �. Accordingly we have a covariance estimate for
� under � by transforming �̂� = L̂�D̂�L̂

�
� back to the original ordering in the following

way

�̂ = P��̂�P�
� = P�L̂�D̂�L̂

�
�P

�
� = (P�L̂�P�

�)(P�D̂�P�
�)(P�L̂

�
�P

�
�) = L̂D̂L̂�, (3)

where L̂ = P�L̂�P�
� and D̂ = P�D̂�P�

�. Suppose we consider M different variable order-
ings �k, k = 1, . . . ,M, and denote the corresponding estimates �̂, L̂, and D̂ in (3) by �̃k, L̃k,
and D̃k. H. Zheng et al. (2017) proposed a model averaging estimate �̂zheng = 1

M
∑M

k=1 �̃k,
which has a relatively smaller variance due to the averaging and displays better performance
than the Cholesky-based covariance estimate with one single variable ordering. However,
since the Cholesky-based covariance estimates �̃k’s with different orderings may have dif-
ferent estimation biases, and H. Zheng et al. (2017) simply assigns equal weights to each
candidate estimate �̃k, their method hence ignores that these estimates under different vari-
able orderings may have different effects to the ensemble model. Therefore, we propose the
following WAE estimate

�̂wae =
M∑
k=1

ωk�̃k, (4)

where ω = (ω1, . . . ,ωM)� is the vector of weights, which plays a critical role in producing a
good and reliable ensemble covariance estimate. To obtain the optimal weights, we consider
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to minimize the difference between the ensemble estimator and the true covariance matrix
under the Frobenius norm. It is worth noting that such a strategy is also used in shrinking the
estimators of covariance matrix (Ledoit &Wolf, 2003). Specifically, we employ the following
quadratic loss function as the risk function to determine the optimal weights by

ω̂ = argmin
ω

R(ω) = argmin
ω

E||ω1�̃1 + · · · + ωM�̃M − �||2F

s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0,

where E(·) represents the expectation. Let � = (σij)p×p and �̃k = (σ̃ k
ij )p×p. We decompose

the risk function as

R(ω) = E||ω1�̃1 + · · · + ωM�̃M − �||2F

=
p∑

i=1

p∑
j=1

E(ω1σ̃
1
ij + · · · + ωMσ̃M

ij − σij)
2

=
p∑

i=1

p∑
j=1

{Var(ω1σ̃
1
ij + · · · + ωMσ̃M

ij ) + [E(ω1σ̃
1
ij + · · · + ωMσ̃M

ij − σij)]2}

=
p∑

i=1

p∑
j=1

{ω2
1Var(σ̃

1
ij ) + · · · + ω2

MVar(σ̃M
ij ) +

∑
h�=�

ωhω�Cov(σ̃ h
ij , σ̃

�
ij )

+ [ω1E(σ̃ 1
ij ) + · · · + ωME(σ̃M

ij ) − σij]2}

=
p∑

i=1

p∑
j=1

M∑
k=1

ω2
k[Var(σ̃

k
ij ) + E2(σ̃ k

ij )]

+
p∑

i=1

p∑
j=1

∑
h�=�

ωhω�[Cov(σ̃ h
ij , σ̃

�
ij ) + E(σ̃ h

ij )E(σ̃ �
ij )]

−
p∑

i=1

p∑
j=1

M∑
k=1

2ωkE(σ̃ k
ij )σij +

p∑
i=1

p∑
j=1

σ 2
ij .

To write the risk function R(ω) in a quadratic form of amatrix, we define a symmetric matrix
A = (amn) and a vector b = (bk), where

amn =
p∑

i=1

p∑
j=1

Cov(σ̃m
ij , σ̃

n
ij ) + E(σ̃m

ij )E(σ̃ n
ij ) and bk = −2

p∑
i=1

p∑
j=1

E(σ̃ k
ij )σij.

Consequently, the risk function R(ω) is rewritten as

R(ω) = ω�Aω + b�ω +
p∑

i=1

p∑
j=1

σ 2
ij .
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The optimal weight vector ω is estimated as the minimizer of R(ω), that is,

ω̂ = argmin
ω

ω�Aω + b�ω s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0. (5)

This optimization problem can be easily solved using the function solve.QP(·) in the package
quadprog of R software.

As we mention in Section 1, not all the variable orderings would be useful in the weighted
ensemble model for estimating the covariance matrix based on theMCD. Some sets of linear
regressions of (1) from certain variable orderings may play no roles in the sense that using
them in theMCDwould increase themodel complexity but not improve the estimation accu-
racy. It is equivalent to saying that some candidate estimates �̃k might contribute little or
nothing to the weighted ensemble covariance estimation in Equation (4). In such case, we
hence need to rule out such variable orderings that could be useless for the data analysis, and
simultaneously to simplify themodel complexity. It can be realized by setting the correspond-
ingweights to zeros. To this end, we adopt the Lasso (Tibshirani, 1996) and the adaptive Lasso
ideas (Zou, 2006) and suggest to impose two types of penalties on Equation (5), which yields

ω̂ = argmin
ω

ω�Aω + b�ω + φ

M∑
i=1

|ωi| s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0 (6)

and

ω̂∗ = argmin
ω

ω�Aω + b�ω + ξ

M∑
i=1

θi|ωi| s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0, (7)

where φ ≥ 0 and ξ ≥ 0 are tuning parameters. A little algebra on (6) shows

ω̂ = argmin
ω

ω�Aω + b�ω + φ

M∑
i=1

ωi

= argmin
ω

ω�Aω + b�ω + φ s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0,

which is equivalent to the optimization problem (5). It is thereby very interesting to see that
the proposed WAE method with weight ω̂ solved from (5) overcomes two disadvantages
of existing methods that are mentioned in the Introduction by simultaneously completing
the tasks of allocating different weights to the estimates �̃k and picking up the most useful
variable orderings for the ensemble estimation.

For the optimization problem (7), let θ = (θ1, . . . , θM)�, and then it follows that

ω̂∗ = argmin
ω

ω�Aω + b�ω + ξ

M∑
i=1

θiωi

= argmin
ω

ω�Aω + b�ω + ξθ�ω

= argmin
ω

ω�Aω + (b + ξθ)�ω s.t.
M∑
i=1

ωi = 1 and ωi ≥ 0.
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Similar to the adaptive Lasso idea, we suggest the value of θ = 1/ω̂, where ω̂ is the solu-
tion from the optimization problem (5). As a result, we induce a sparsity in the estimated
weight vector, which automatically distinguishes and thus selects a set of the most important
candidate estimates �̃k, or equivalently the most useful variable orderings, for the ensemble
covariance estimation under the framework of MCD based on the data themselves.

The optimal value of the tuning parameter ξ in the optimization problem (7) can be deter-
mined by minimizing the negative likelihood function of covariance matrix �. Specifically,
consider a set of candidate values for ξ , denoted as Aξ = {ξ1, . . . , ξN}. Let �̂wae∗(ξt) repre-
sent the proposed weighted ensemble covariance estimate computed from Equation (4) with
its weights solved from the optimization (7) using tuning parameter ξt , t = 1, . . . ,N.We then
obtain Qt = log |�̂wae∗(ξt)| + tr[�̂−1

wae∗(ξt)S], where S is the sample covariance matrix. Sub-
sequently denote t̃ = argmint{Qt , t = 1, . . . ,N}. Consequently, the optimal value of ξ is ξt̃ ,
and the resultant covariance estimate is �̂wae∗(ξt̃). That is, the proposed covariance estimate
is

�̂wae∗ =
M∑
k=1

ω̃∗
k�̃k,

where ω̃∗ = (ω̃∗
1 , . . . , ω̃

∗
M)� is the solution of Equation (7) using tuning parameter ξt̃ .

2.3. Theoretical properties

This section establishes the convergence properties of the proposed WAE estimators. To
facilitate the expression of the theoretical results, some assumptions are made on the true
model. Let �0 = L0D0L�

0 represent the underlying covariance matrix and its MCD. Simi-
larly, let �0�k = L0�kD0�kL

�
0�k

be the MCD of the underlying covariance matrix regarding
a variable order �k. Define C�k = {(i, j) : j < i, l�k

0ij �= 0} to be a set indexing the nonzero

elements in the lower triangular part of the matrix L0�k = (l�k
0ij ). Then denote the max-

imum cardinality of C�k by s. Additionally, denote the singular values of matrix �0 by
sv1(�0) ≥ · · · ≥ svp(�0) in a decreasing order. In order to establish the theoretical property,
we assume the regularity conditions as listed below.

C1: The singular values of�0 are bounded. That is, there exist constants l1 and u1 such that
0 < l1 < svp(�0) ≤ sv1(�0) < u1 < ∞.

C2: The tuning parameters λj’s in (2) satisfy
∑p

j=1 λj = O(
√
log(p)/n).

C3: (s + p) log(p) = o(n).

The condition C1 is commonly used to guarantee the positive definiteness of �0 in the
literature. The conditions C2 and C3 are used to derive the consistency properties of the
proposed estimators. Let an 
 bn represent that two sequences an and bn are the same order.
Now we present the main results.

Theorem 2.1: Suppose that the data are independently and identically distributed from
N(0,�0). Under the conditions C1–C3, we have

‖�̂wae − �0‖F 
 ‖�̂wae∗ − �0‖F = Op

(√
(s + p) log(p)

n

)
.
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Theorem 2.1 demonstrates the asymptotic convergence rates of the proposed WAE esti-
mators with respect to the Frobenius norm. Such rate is parallel with that of some existing
works (Lam& Fan, 2009; Rothman et al., 2008). The review paper of Cai et al. (2016) pointed
out that the high-dimensional covariance estimators have the convergence rate in the form

of Op(

√
(κ+p) log(p)

n ) in terms of the Frobenius norm, where κ is a measure of the sparsity for
the underlying covariance matrix.

2.4. Estimates ofmatrixA and vector b

In order to solve the weights in the optimizations (5) and (7), we need to find consistent
estimators for Var(σ̃ k

ij ), Cov(σ̃
k
ij , σ̃

�
ij ), E(σ̃ k

ij )E(σ̃ �
ij ) and E(σ̃ k

ij )σij in the matrix A and vec-
tor b. Define ϕk

ij = AsyVar(
√
nσ̃ k

ij ), ρk�
ij = AsyCov(

√
nσ̃ k

ij ,
√
nσ̃ �

ij ), γ k�
ij = E(σ̃ k

ij )E(σ̃ �
ij ) and

ηkij = E(σ̃ k
ij )σij, where AsyVar and AsyCov represent the asymptotic variance and covariance.

Letmj = ∑n
i=1 x

(j)
i /n be themean value of the jth column of datamatrixX. Standard asymp-

totic theory provides consistent estimators for ϕk
ij, ρ

k�
ij , γ

k�
ij and ηkij, as shown in the following

lemmas.

Lemma 2.2: A consistent estimator for ϕk
ij is given by

ϕ̂k
ij = 1

n

n∑
t=1

[(xti − mi)(xtj − mj) − σ̃ k
ij ]

2.

Proof: Without loss of generality, we assume i< j. Because Xi = ∑i
k=1 likεk and Xj =∑j

k=1 ljkεk, we have Cov(Xi,Xj) = ∑i
k=1 likljkd

2
k. Hence sij = ∑i

k=1 l̂ikl̂jkd̂
2
k = σ̃ k

ij without
regularization (H. Zheng et al., 2017). By the Lemma 1 in Ledoit and Wolf (2003), ϕ̂k

ij
converges in probability to ϕk

ij. �

Lemma 2.3: A consistent estimator for ρk�
ij is given by

ρ̂k�
ij = 1

n

n∑
t=1

[(xti − mi)(xtj − mj) − σ̃ k
ij ][(xti − mi)(xtj − mj) − σ̃ �

ij ].

Proof: It is an easy extension of the result from Lemma 2.2. �

Under conditions C1–C3 and from Theorem 2.1, estimators for γ k�
ij and ηkij are σ̃ k

ij σ̃
�
ij and

σ̃ k
ij sij, where sij is the (i, j)th element of the sample covariance matrix. Consequently, we can

replace ϕk
ij, ρ

k�
ij , γ

k�
ij and ηkij with their corresponding estimators into the optimizations (5)

and (7) to solve the weights for each �̃k.

3. Simulation

In this section, the performances of the proposed WAE estimators �̂wae and �̂wae∗ are eval-
uated by the comparison with the method developed by H. Zheng et al. (2017), denoted as
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�̂zheng, which will demonstrate the advantages of the optimal weights solved from the opti-
mization problems (5) and (7) over the equal weights for the average ensemble idea in the
MCD. Let I{·} represent the indicator function. We consider seven different setups for the
true covariance matrix in the simulation studies.

Scenario-1 (Identity Structure): �1 = I is the identity matrix.
Scenario-2 (Compact Banded Structure): �2 = B�B, where B = (bst) with bst = I{s=t} +

0.8I{s−t=1} + 0.6I{s−t=2}, is the second-order moving average structure.
Scenario-3 (Permuted Banded Structure): �3 is obtained by randomly permutating rows

and corresponding columns of �2.
Scenario-4 (Loose Banded Structure): �4 = B�B, where B = (bst) with bst = I{s=t} +

0.8I{s−t=1} + 0.6I{2≤s−t≤5}.
Scenario-5 (Block Diagonal Structure): �5 = (σst), σst = I{s=t} + 0.5I{s�=t,s≤20,t≤20}.
Scenario-6 (Dense Structure):�6 = BB�, B = (bst) is a unit lower triangular matrix with

bst independently generated from normal distribution N(0, 0.2).
Scenario-7 (Compound Structure): �7 = (σst), σst = I{s=t} + 0.5I{s�=t}.

Scenario-1 is the identity matrix, indicating variables are independent from each other.
Scenarios-2 and 4 are banded matrices, indicating each variable is only correlated with its
most nearby variables. Scenario-5 has a compound structure with element values 0.5 on the
upper left corner. Scenario-6 represents a randomly generated matrix. Scenario-7 indicates
that each variable is correlated with others. Therefore, the true covariance matrices in this
study include very sparse cases (e.g., Scenario-1, Scenario-2, Scenario-3), moderate sparse
cases (e.g., Scenario-4, Scenario-5) as well as the dense cases (e,g, Scenario-6, Scenario-7). In
order to measure the accuracy of covariance estimates, we consider the following three loss
functions

F = ||�̂ − �||F , MAE = 1
p2

∑
i,j

|σ̂ij − σij| and L2 = λmax(�̂ − �),

where �̂ = (σ̂ij) stands for a covariance estimate � = (σij), and λmax represents the maxi-
mum eigenvalue of the matrix. For each scenario, the data are independently generated from
multivariate normal distributionN(0,�)with the sample size n = 50, and the dimensional-
ity p = 50, 100. The number of variable orderingsM is set to be 30 as suggested by H. Zheng
et al. (2017). Such 30 variable orderings are uniformly sampled, that is, they are randomly
generated with equal probability from all p! possible orderings. The LASSO technique of (2)
in the proposed method is implemented by the function glmnet(·) in the R software with the
value of its tuning parameter selected by the function itself. The setAξ for the tuning param-
eter ξ in the optimization problem (7) contains an arithmetic sequence starting from 0.01 to
3 with the common difference 0.05. Table 1 shows the averaged values and corresponding
standard errors of loss functions for each compared estimator over 50 replications.

It can be seen that overall two proposed WAE methods are substantially superior to the
estimate �̂zheng in terms of F and L2 loss functions for all the considered covariance struc-
tures, and they are at least comparable with or slightly better than �̂zheng with respect to
the MAE loss. By comparing the results of Scenario-2 and Scenario-3, we observe that the
proposed WAE methods have the similar performances when we permute the rows and
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Table 1. Means and standard errors (in parentheses) of loss functions from each estimate for normal data.

(n, p) = (50, 50) (n, p) = (50, 100)

Scenario �̂zheng �̂wae �̂wae∗ �̂zheng �̂wae �̂wae∗

F
�1 4.36(0.03) 3.43(0.09) 3.59(0.08) 4.88(0.02) 4.36(0.06) 4.44(0.06)
�2 10.2(0.05) 7.80(0.06) 7.90(0.07) 15.3(0.05) 12.2(0.05) 12.3(0.06)
�3 10.3(0.05) 7.94(0.06) 8.00(0.07) 15.3(0.05) 12.2(0.06) 12.3(0.07)
�4 27.9(0.08) 16.6(0.20) 16.8(0.21) 41.4(0.08) 28.1(0.18) 28.6(0.18)
�5 8.81(0.04) 6.06(0.17) 6.64(0.16) 9.27(0.03) 7.22(0.14) 7.68(0.13)
�6 20.6(0.06) 16.8(0.09) 17.1(0.09) 51.5(0.08) 48.6(0.09) 49.1(0.09)
�7 23.0(0.05) 15.6(0.44) 16.2(0.42) 47.9(0.05) 37.3(0.61) 37.3(0.61)

L2
�1 4.00(0.03) 2.72(0.11) 2.86(0.11) 4.15(0.02) 3.24(0.07) 3.30(0.07)
�2 3.64(0.02) 3.09(0.03) 3.08(0.04) 3.84(0.02) 3.43(0.02) 3.45(0.02)
�3 3.68(0.02) 3.15(0.04) 3.17(0.04) 3.84(0.02) 3.44(0.03) 3.45(0.03)
�4 13.1(0.05) 9.05(0.16) 9.10(0.16) 13.8(0.03) 10.8(0.09) 10.9(0.09)
�5 8.64(0.04) 5.64(0.20) 6.19(0.17) 8.90(0.03) 6.55(0.16) 6.90(0.15)
�6 9.49(0.05) 7.46(0.09) 7.56(0.09) 18.0(0.07) 16.8(0.11) 16.9(0.10)
�7 22.9(0.05) 15.3(0.45) 16.0(0.44) 47.8(0.05) 37.1(0.62) 37.0(0.62)

MAE
�1 0.026(0.000) 0.024(0.001) 0.024(0.001) 0.012(0.000) 0.011(0.000) 0.011(0.000)
�2 0.083(0.000) 0.082(0.001) 0.081(0.001) 0.050(0.000) 0.048(0.000) 0.048(0.000)
�3 0.084(0.000) 0.083(0.001) 0.083(0.001) 0.050(0.000) 0.048(0.000) 0.048(0.000)
�4 0.271(0.001) 0.203(0.002) 0.203(0.002) 0.149(0.000) 0.128(0.001) 0.128(0.001)
�5 0.079(0.000) 0.056(0.002) 0.061(0.001) 0.024(0.000) 0.021(0.000) 0.022(0.000)
�6 0.315(0.001) 0.266(0.001) 0.269(0.001) 0.398(0.001) 0.381(0.001) 0.385(0.001)
�7 0.458(0.001) 0.299(0.009) 0.311(0.009) 0.478(0.001) 0.366(0.007) 0.364(0.007)

Table 2. Means and standard errors (in parentheses) for the number of non-zeros
weights for the proposed estimates.

(n, p) = (50, 50) (n, p) = (50, 100)

Scenario �̂wae �̂wae∗ �̂wae �̂wae∗

�1 7.12(0.27) 3.68(0.21) 8.46(0.33) 5.22(0.17)
�2 9.02(0.30) 4.86(0.22) 9.86(0.25) 5.34(0.15)
�3 8.94(0.26) 6.00(0.15) 9.76(0.28) 6.18(0.15)
�4 7.64(0.27) 4.66(0.16) 8.62(0.25) 4.48(0.14)
�5 5.52(0.28) 2.32(0.08) 6.32(0.26) 2.86(0.16)
�6 12.1(0.27) 6.76(0.21) 10.5(0.32) 6.70(0.15)
�7 5.58(0.29) 3.24(0.12) 4.62(0.21) 2.92(0.16)

columns of the banded covariance matrix randomly. Besides, by the comparison of two pro-
posedmethods, we observe that the estimate �̂wae∗ is almost comparable with but sometimes
slightly worse the estimate �̂wae. A possible reason can be found inTable 2, which displays the
number of non-zero elements in the estimated weights ω̂ and ω̂∗ from the optimizations (5)
and (7), respectively. We observe that the ensemble estimate �̂wae∗ aggregates less number of
candidate estimates than �̂wae, implying that it reduces the model complexity and thus picks
up the most useful variable orderings for constructing the covariance estimate. Therefore,
the estimate �̂wae might be a little more accurate sometimes, and the estimate �̂wae∗ leads to
a simpler model. Furthermore from Table 2 we conclude that in practice it is no need to cal-
culate every candidate estimate �̃k with respect to all the p! variable orderings, which is very
computationally expensive, since there are only a few orderings that are the most important
for constructing the ensemble matrix estimate.

Notice that the MCD technique empirically does not require the normal property of data
to estimate the covariance matrix. It is thus interesting to examine the robust performance
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Table 3. Means and standard errors (in parentheses) of loss functions from each estimate for non-normal
data.

Case (n, p) = (50, 50) (n, p) = (50, 100)

Case �̂zheng �̂wae �̂wae∗ �̂zheng �̂wae �̂wae∗

F (I) 16.4(1.32) 14.0(1.47) 14.4(1.53) 46.3(0.14) 37.7(2.30) 38.7(2.52)
(II) 23.3(0.13) 17.0(0.62) 17.0(0.63) 48.0(0.07) 37.9(0.71) 37.8(0.71)

L2 (I) 16.1(1.30) 12.6(1.44) 12.9(1.50) 46.0(0.14) 34.6(2.35) 35.1(2.60)
(II) 23.1(0.06) 16.5(0.56) 16.5(0.57) 47.9(0.05) 37.7(0.71) 37.6(0.71)

MAE (I) 0.323(0.026) 0.233(0.023) 0.238(0.024) 0.460(0.001) 0.328(0.013) 0.334(0.014)
(II) 0.464(0.002) 0.327(0.013) 0.326(0.013) 0.479(0.001) 0.372(0.007) 0.371(0.008)

of the proposed WAE methods for the non-normal data. Now we conduct a simulation
study using �7 as the true covariance matrix, and consider the following two cases of data
generating processes with n = 50 and p = 50, 100.

Case (I). Independently generate data from t distribution with degrees of freedom 4, as
well as mean 0 and �7 as its scale matrix.

Case (II). Independently generate data from a mixed distribution (1 − b)N(0,�7) + bT,
where b is a random number following Bernoulli distribution with the probability of success
equal to 0.1. Here T represents t distribution with degrees of freedom 4, as well as mean 5
and the identity matrix as its scale matrix.

The data in Case (I) come from a heavy-tailed distribution, and Case (II) presents a set of
contaminated data. Table 3 displays the averaged values and corresponding standard errors of
loss functions from each competitor over 50 replications. Overall, the proposed WAE meth-
ods outperform the estimate �̂zheng substantially under the considered losses, implying the
advantages of the ensemble idea with the optimally selected weights for different candidate
covariance estimates.

To sum up, the simulation studies demonstrate that the proposedWAEmethods improve
the performance of the ensemble estimation for covariance matrix under the framework of
MCD technique by assigning each covariance candidate estimate with different weights that
are obtained from minimizing the risk functions as in (5) and (7).

4. Case study of portfolio allocation

To further explore the performances of the proposedWAEmethods, we apply them to analyse
a real stock market data, where the estimated covariance matrix is subsequently used for the
decision on the portfolio allocation.

The common portfolio strategy (Markowitz, 1952) tries to minimize the risk of an
expected return level by diversifying the investment of various assets. Letw = (w1, . . . ,wp)

�
represent the proportions of a set of assets in the portfolio, and � denote the volatility
matrix of the returns in the asset pool. The minimum variance portfolio selection problem
is formulated as

minw��w s.t.
p∑

i=1
wi = 1 and wi ≥ 0, i = 1, . . . , p. (8)

Since the objective function in (8) involves the covariance matrix, an ill-conditioned matrix
estimatemay lead to an unstable solution ofw, and thus greatly magnifies the error of portfo-
lio allocation. In addition, when a large amount of stocks is considered for the investment, a
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Table 4. The performances of weekly returns of portfolio for com-
pared methods.

AWR SE AWR/SE

�̂zheng 0.647 0.565 1.145
�̂wae 0.764 0.604 1.265
�̂wae∗ 0.795 0.606 1.296

valid estimate of volatility matrix that accommodates for the high dimensions is needed. Fur-
thermore, because there is no natural variable ordering among stocks, the idea of ensemble
model by the MCD is suitable for this analysis. We hence apply the proposed WAE methods
for the covariance estimation, whichmay lead to a good subsequent portfolio allocation strat-
egy.We compare the performances of the proposedmethods with �̂zheng as in the simulation
studies.

The data are consisted of the stock returns collected weekly from years 2020 to 2021 from
the CSI300 Index, which contain p = 100 randomly selected stocks with n = 104 observa-
tions (52 weeks for each year). The first j observations are used to construct the covariance
estimate �̂j, j = 52, . . . , 103, for each method. Then the estimated portfolio weight ŵj+1 is
the solution of the optimization problem (8) by replacing� with its estimate �̂j. Wemeasure
the performance of the estimated portfolio by the realized averaged weekly return (AWR) for
the year of 2021, which is defined as

AWR = 1
52

103∑
j=52

ŵ�
j+1xj+1,

as well as their standard errors (SE) and the information ratio AWR/SE. Although a larger
AWR is the main pursue for the investors since it is the profit, a higher information ratio is
also desired as it reflects both profit and risk.

Table 4 presents the compared portfolio performances obtained by the proposed WAE
methods and �̂zheng for year 2021. We observe that although the proposed models produce
a slightly larger SE, they have higher AWR and AWR/SD values compared with the method
of �̂zheng, which indicates that the proposed methods gain more realized returns. Further-
more, Figure 1 are the plots of the cumulativeweekly returns for different comparedmethods.
Because the most parts of lines produced by the estimates �̂wae∗ and �̂wae overlap each other
as they behave similarly in this study, we plot their cumulative weekly returns separately in
two plots in order to see them clearly in comparison with the estimate �̂zheng. From the plots
it is observed that the cumulative weekly returns of the proposed WAE methods are consis-
tently higher than that of the estimate �̂zheng. Especially as the investment time increases,
the advantages of the proposed methods over the estimate �̂zheng are much more evidenced.
Therefore the proposed WAE methods are able to provide a valid strategy for the portfo-
lio allocation for this set of stock data, verifying the merits of using different weights in the
ensemble model of MCD for this study.

5. Discussion

In this work, we propose a weighted average ensemble covariance matrix estimation via the
MCD technique. The weights are adaptively determined by minimizing a risk function in
terms of the Frobenius norm. The risk function can be transformed into a matrix quadratic
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Figure 1. The cumulative weekly returns from compared methods for portfolio study.

formwith respect to theweights such that it can be solved easily by the off-the-shelf softwares.
At the same time, the proposed methods are able to automatically distinguish which variable
orderings utilized in the MCD are useful, and thus preclude from the ensemble model the
candidate covariance estimates corresponding to the useless variable orderings to reduce the
model complexity. The asymptotic convergence rates of the proposed methods are estab-
lished, and the numerical studies demonstrate the merits of the proposed methods that use
the optimal weights under the MCD framework.

There are several research directions along this line in the future work. Firstly, we would
like to point out that although a simulation is performed to examine the robustness of the
proposed methods, they are not designed for the non-normal data. One may employ some
robust techniques such as Huber method instead of LASSO in Equation (2) to decrease the
impact of the outliers or heavy-tailed data on the linear models, hence leading to a robust
covariance estimate (Wang et al., 2023). Secondly, we might improve the proposed WAE
by constructing an appropriate objective function regarding the Cholesky factor matrices
L and D rather than � for the weights optimization. Such weights are used to compute the
weighted averaging values on L̃k and D̃k, i.e., L̂ = ∑M

k=1 ωkL̃k and D̂ = ∑M
k=1 ωkD̃k. Then

a covariance estimate is �̂ = L̂D̂L̂� which would have a smaller variance than �̂wae, hence
leading to a more accurate estimate (Kang & Deng, 2020). However, solving such objective
functions in terms of L and D is more complicated. Another idea to determine a covariance
matrix estimate from matrices �̃k is based on the concepts of Bures-Wasserstein distance
and the Fréchet mean, which are used to measure the central tendency of a set of positive
semi-definite matrices (J. Zheng et al., 2023). However, whether such technique is suitable
for the Cholesky-based covariance estimation still needs further investigation.
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Appendix. Proof of Theorem 2.1

In this section, we provide the technical proofs of the main theoretical results in the paper. To prove
Theorem 2.1, we need to present three lemmas.

Lemma A.1: Assume a positive definite matrix � has its modified Cholesky decomposition � = LDL�.
Under condition C1 (that is, the singular values of � are bounded), there exist constants l2 and u2 such
that

l2 < svp(L) ≤ sv1(L) < u2,

l2 < svp(D) ≤ sv1(D) < u2.

The proof of Lemma A.1 is similar to that of Lemma 3 in Kang et al. (2025), which is omitted here.

Lemma A.2: Suppose that the data are independently and identically distributed from N(0,�0). Under
the conditions C1 and C2, the estimates of Cholesky factor matrices L̂� and D̂� corresponding to a
permutation � have the following consistent properties

‖̂L� − L0�‖F = Op(
√
s log(p)/n),

‖D̂� − D0�‖F = Op(
√
p log(p)/n).

Proof: To simplify the notations, we prove it without the symbol � since the conclusions hold for
any variable orderings. From Equation (1), it is easy to see ε = L−1X ∼ N(0,D). Hence, the penalized
negative log likelihood, up to some constant, is

�(D, L) = (log |D| + tr
[
(L�)−1D−1L−1S

]
+

p∑
j=1

λj
∑
k<j

|ljk|.

Define G(�L,�D) = �(D0 + �D, L0 + �L) − �(D0, L0). Let B1 = {�L : ‖�L‖2F ≤ κ1s log(p)/n}
and B2 = {�D : ‖�D‖2F ≤ κ2p log(p)/n}, where κ1 ≥ 0 and κ2 ≥ 0 are constants. Denote ∂B1 and
∂B2 as the boundaries of B1 and B2. We will show that for each �L ∈ ∂B1 and �D ∈ ∂B2, probability
Pr(G(�L,�D) > 0) → 1 as n → ∞ for sufficiently large κ1 and κ2. Additionally, sinceG(�L,�D) = 0
when�L = 0 and�D = 0,G(�L,�D) achieves itsminimumvaluewhen�L ∈ B1 and�D ∈ B2. That
is ‖�L‖2F = Op(s log(p)/n) and ‖�D‖2F = Op(p log(p)/n).

Assume ‖�L‖2F = κ1s log(p)/n and ‖�D‖2F = κ2p log(p)/n. According to Lemma A.1 and con-
dition C1, there exists a constant δ satisfying 0 < 1/δ < svp(L0) ≤ sv1(L0) < δ < ∞ and 0 <
1/δ < svp(D0) ≤ sv1(D0) < δ < ∞. Let D = D0 + �D and L = L0 + �L, and then we decompose
G(�L,�D) into five parts and then bound them separately.

G(�L,�D) = �(D, L) − �(D0, L0)

= log |D| − log |D0| + tr
(
(L�)−1D−1L−1S

)
− tr

(
(L�

0 )−1D−1
0 L−1

0 S
)

+
p∑

j=1
λj

∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|

= log |D| − log |D0| + tr
[
(D−1 − D−1

0 )D0
] − tr

[
(D−1 − D−1

0 )D0
]

+ tr
[
(L�)−1D−1L−1S

]
− tr

[
(L�

0 )−1D−1
0 L−1

0 S
]

+
p∑

j=1
λj

∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|

= log |D| − log |D0| + tr
[
(D−1 − D−1

0 )D0
] + tr

[
(L�)−1D−1L−1S

]
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− tr
[
(L�)−1D−1

0 L−1S
]

+ tr
[
(L�)−1D−1

0 L−1S
]

+
p∑

j=1
λj

∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|

= log |D| − log |D0| + tr
[
(D−1 − D−1

0 )D0
]

+ tr
(
D−1 − D−1

0
) [

L−1(S − �0)(L�)−1
]

+ tr
[
D−1
0 (L−1(S − �0)(L�)−1 − L−1

0 (S − �0)(L�
0 )−1)

]
+ tr

[
D−1
0 (L−1�0(L�)−1 − L−1

0 �0(L�
0 )−1)

]
+ tr

(
D−1 − D−1

0
) (

L−1�0(L�)−1 − D0

)
+

p∑
j=1

λj
∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|

= log |D| − log |D0| + tr
[
(D−1 − D−1

0 )D0
]

+ tr
(
D−1 − D−1

0
) [

L−1(S − �0)(L�
0 )−1

]
+ tr

[
D−1
0 (L−1(S − �0)(L�)−1 − L−1

0 (S − �0)(L�
0 )−1)

]
+ tr

[
D−1(L−1�0(L�)−1 − L−1

0 �0(L�
0 )−1)

]
+

p∑
j=1

λj
∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|

� R1 + R2 + R3 + R4 + R5,

where

R1 = log |D| − log |D0| + tr
[
(D−1 − D−1

0 )D0
]
,

R2 = tr
(
D−1 − D−1

0
) [

L−1(S − �0)(L�)−1
]
,

R3 = tr
[
D−1
0 (L−1(S − �0)(L�)−1 − L−1

0 (S − �0)(L�
0 )−1)

]
,

R4 = tr
[
D−1(L−1�0(L�)−1 − L−1

0 �0(L�
0 )−1)

]
,

R5 =
p∑

j=1
λj

∑
k<j

|ljk| −
p∑

j=1
λj

∑
k<j

|l0jk|.

From the proof of Lemma 3 in Kang and Deng (2021), we can derive
(1) R1 ≥ 1/8δ4‖�D‖2F ;
(2) for any ε > 0, there exist constantsV1 > 0 andV2 > 0 such that |R2| ≤ V1

√
p log(p)/n‖�D‖F ;

and R4 − |R3| > 1/2δ4‖�L‖2F − V2
√
log(p)/n

∑
(j,k)∈Wc |ljk| − V2

√
s log(p)/n‖�L‖F , where the set

W = {(j, k) : k < j, l0jk �= 0}.
Next, the term R5 is further decomposed as

R5 =
p∑

j=1
λj

∑
(j,k)∈Wc

|ljk| +
p∑

j=1
λj

∑
(j,k)∈W

(|ljk| − |l0jk|) = R(1)
5 + R(2)

5 ,
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where R(1)
5 = ∑p

j=1 λj
∑

(j,k)∈Wc |ljk|, and
∣∣∣R(2)

5

∣∣∣ =
∣∣∣∣∣∣

p∑
j=1

λj
∑

(j,k)∈W
(|ljk| − |l0jk|)

∣∣∣∣∣∣ ≤
p∑

j=1
λj

∑
(j,k)∈W

|ljk − l0jk| ≤
p∑

j=1
λj

√
s‖�L‖F .

Combining all the bounded terms R1 to R5 together, with probability greater than 1 − 2ε, we have

|G(�L,�D)|
≥ R1 − |R2| + R4 − |R3| + R(1)

5 − |R(2)
5 |

≥ 1
8δ4

‖�D‖2F − V1
√
p log(p)/n‖�D‖F + 1

2δ4
‖�L‖2F − V2

√
log(p)/n

∑
(j,k)∈Wc

|ljk|

− V2
√
s log(p)/n‖�L‖F +

p∑
j=1

λj
∑

(j,k)∈Wc

|ljk| −
p∑

j=1
λj

√
s‖�L‖F

= κ2p log(p)
8δ4n

− V1
√

κ2p log(p)
n

+ κ1s log(p)
2δ4n

− V2
√
log(p)/n

∑
(j,k)∈Wc

|ljk|

− V2
√

κ1s log(p)
n

+
p∑

j=1
λj

∑
(j,k)∈Wc

|ljk| − s
√

κ1 log(p)/n
p∑

j=1
λj

=
√

κ2p log(p)
n

(√
κ2

8δ4
− V1

)
+

√
κ1sp log(p)

n

(√
κ1

2δ4
−

∑p
j=1 λj√

log(p)/n
− V2

)

+
∑

(j,k)∈Wc

|ljk|
⎛⎝ p∑

j=1
λj − V2

√
log(p)/n

⎞⎠ .

Assume
∑p

j=1 λj = V3(
√
log(p)/n) where V3 > V2, and choose κ1 > 4δ8(K + V2)

2 as well as κ2 >

64δ8V2
1 . Then G(�L,�D) > 0, which completes the proof. �

Lemma A.3: Suppose that the data are independently and identically distributed from N(0,�0). Under
the conditions C1 and C2, we have∥∥�̃k − �0

∥∥
F = Op

(√
(s + p) log(p)

n

)
, k = 1, . . . ,M.

Proof: From the proof of Theorem 2 in Kang and Deng (2021), it follows that∥∥∥�̃k − �0

∥∥∥2
F

= Op
(‖L̃k − L0‖2F

) + Op
(‖D̃k − D0‖2F

) = Op

(
(s + p) log(p)

n

)
,

where the second equation results from Lemma A.2. �

Lemma A.3 establishes the convergence rate for each candidate estimate �̃k for any variable
orderings, based on which we prove the main results of Theorem 2.1.

Proof of Theorem 2.1: By Equation (4), we obtain

∥∥�̂wae − �0
∥∥
F =

∥∥∥∥∥
M∑
k=1

ωk�̃k − �0

∥∥∥∥∥
F

=
∥∥∥∥∥

M∑
k=1

ωk(�̃k − �0)

∥∥∥∥∥
F

.
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Based on the property of Frobenius norm, together with Lemma A.3, we have

∥∥�̂wae − �0
∥∥
F ≤

M∑
k=1

∥∥ωk(�̃k − �0)
∥∥
F =

M∑
k=1

ωk
∥∥�̃k − �0

∥∥
F = Op

(√
(s + p) log(p)

n

)
.

The proofs for the convergence rate of the estimator �̂wae∗ follow the same principles. �
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