
Statistical Theory and Related Fields

ISSN: 2475-4269 (Print) 2475-4277 (Online) Journal homepage: www.tandfonline.com/journals/tstf20

glabcmcmc: a Python package for ABC-MCMC
with local and global moves

Xuefei Cao, Shijia Wang & Yongdao Zhou

To cite this article: Xuefei Cao, Shijia Wang & Yongdao Zhou (2025) glabcmcmc: a Python
package for ABC-MCMC with local and global moves, Statistical Theory and Related Fields, 9:2,
168-177, DOI: 10.1080/24754269.2025.2495505

To link to this article: https://doi.org/10.1080/24754269.2025.2495505

© 2025 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 05 May 2025.

Submit your article to this journal

Article views: 76

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

https://www.tandfonline.com/journals/tstf20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2025.2495505
https://doi.org/10.1080/24754269.2025.2495505
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2025.2495505?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2025.2495505?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2495505&domain=pdf&date_stamp=05%20May%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2495505&domain=pdf&date_stamp=05%20May%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tstf20

SS

T
A

T
I
S

T
I
C

A
L

 T

H
E

ORY AND
 R

E
L

A
T

E
D

F

I
E

L
D

S

STATISTICAL THEORY AND RELATED FIELDS
2025, VOL. 9, NO. 2, 168–177
https://doi.org/10.1080/24754269.2025.2495505

glabcmcmc: a Python package for ABC-MCMCwith local and
global moves

Xuefei Caoa, Shijia Wang b and Yongdao Zhoua

aNITFID, School of Statistics and Data Science, Nankai University, Tianjin, People’s Republic of China; bInstitute
of Mathematical Sciences, ShanghaiTech University, Shanghai, People’s Republic of China

ABSTRACT
We introduce a new Python package glabcmcmc, which implements
anapproximateBayesian computationMarkov chainMonteCarlo (ABC-
MCMC) algorithm that combines global and local proposal strategies to
address the limitations of standard ABC-MCMC. The proposed package
includes key innovations such as the determination of global proposal
frequencies, the implementationof ahybridABC-MCMCalgorithm inte-
grating global and local proposals, and an adaptive version that uti-
lizes normalizing flows andgradient-based computations for enhanced
proposal mechanisms. The functionality of the software package is
demonstrated through illustrative examples.

ARTICLE HISTORY
Received 25 January 2025
Revised 2 April 2025
Accepted 15 April 2025

KEYWORDS
Approximate Bayesian
Computation; Markov chain
Monte Carlo; global-local
proposal

1. Introduction

Approximate Bayesian Computation (ABC) (Beaumont et al., 2002; Pritchard et al., 1999) is a
likelihood-free inference method for posterior approximation when the likelihood function
is intractable but sampling from the model is possible.

Numerous software packages are available for ABC inference: the R package abc (Csil-
léry et al., 2012) implements the ABC rejection algorithm and provides various regres-
sion post-processing methods. The R package EasyABC (Easy, 2013) offers multiple ABC
algorithms, including five sequential sampling schemes and three schemes coupled with
MCMC. ABCtoolbox (Wegmann et al., 2010) runs on both Linux and Windows plat-
forms and is specialized forABCanalysis of geneticmodels. In addition,EP-ABC (Barthelmé
& Chopin, 2014) is a MATLAB toolbox for ABC analysis of state-space models and related
models, and ABC-SDE (Picchini, 2014) is another MATLAB toolbox focussed on stochastic
differential equations. ABC-SysBio (Liepe et al., 2010) includes Python scripts for ABC
analysis in systems biology, and the R package abcrf (Raynal et al., 2019) is designed to
implement ABC random forests for Bayesian parameter inference. The R package ejMCMC
(Cao et al., 2024b) utilizes a Gaussian process model to early reject some candidate param-
eters, thereby accelerating ABC-MCMC inference. These packages or standalone software

CONTACT Shijia Wang wangshj1@shanghaitech.edu.cn, shijia_wang@nankai.edu.cn Institute of Mathematical
Sciences, ShanghaiTech University, Shanghai, People’s Republic of China; Yongdao Zhou ydzhou@nankai.edu.cn

NITFID, School of Statistics and Data Science, Nankai University, Tianjin, People’s Republic of China

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms
on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2025.2495505&domain=pdf&date_stamp=2025-05-14
http://orcid.org/0000-0003-0339-1716
mailto:wangshj1@shanghaitech.edu.cn
mailto:shijia_wang@nankai.edu.cn
mailto:ydzhou@nankai.edu.cn
http://creativecommons.org/licenses/by/4.0/

STATISTICAL THEORY AND RELATED FIELDS 169

tools are specifically designed for conducting ABC inference, targeting either a broad spec-
trum or particular types of model. They generally employ rejection sampling algorithms or
MCMCmoves with simple proposal distributions.

In contrast, our Python package introduces an innovative approach, utilizing ABC-
MCMC with global-local proposal algorithms (GL-ABC-MCMC) described in Cao
et al. (2024a). The package provides a unified framework for performing likelihood-free
Bayesian inference by combining global and local proposal strategies to improve sampling
efficiency, and can be applied to parameter inference across various models. It offers a vari-
ety of GL-ABC-MCMC sampling methods, including the usage of a distribution directly as a
proposal, employing iterative sampling importance resampling (iSIR) to construct the global
proposal, utilizing the gradient-based Metropolis-Adjusted Langevin algorithm (MALA) as
a local proposal, and enhancing the global proposal with normalizing flows. Additionally,
the package provides functionality to evaluate the expected square jump distance (ESJD), a
criterion used to select appropriate hyperparameters.

2. Review of global-local ABC-MCMC

The basic ABC algorithm for posterior inference p(θ |y) is the rejection sampling. MCMC
methods are commonly used in ABC inference; however, their inherent proposal mecha-
nisms often cause them to get stuck in local regions, impacting the algorithm’s convergence
speed. This paper presents an implementation package for a more efficient algorithm, the
GL-ABC-MCMC algorithm. In each iteration of the MCMC process, the algorithm selects a
global proposal with a probability of γ , otherwise opting for a local proposal. This approach
balances the exploration capability of the global proposal with the exploitation capabil-
ity of the local proposal. When γ is set to 0 or 1, the algorithm reduces to the standard
ABC-MCMC, making it more versatile. Regarding the local proposals, users can use a Gaus-
sian proposal, or they can opt for an adaptive version, that is, the Metropolis-Adjusted
Langevin algorithm (MALA) based on gradient calculations. For global proposals, there are
two options: users can choose a specific distribution, or construct global proposals using iSIR.
Additionally, normalizing flows can be employed to improve the global proposals.

3. Key features

You can install glabcmcmc using pip:

git clone https://github.com/caofff/GL-ABC-MCMC
cd GL-ABC-MCMC
pip install -e .

3.1. Core components

The package offers four implementations of the GL-ABC-MCMC algorithm.

(1) GlobalMCMC: This combines parametric global and local proposal distributions.

170 X. CAO ET AL.

(2) GLMCMC: The global proposal of GlobalMCMC is replaced with one constructed
using iSIR.

(3) GLMALA: This version uses MALA as the local proposal in the GLMCMC algorithm.
(4) GLMCMC-NFs: Building upon GLMCMC, this implementation utilizes normalizing

flows to enhance the global proposal distribution.

And theMCMCRunner class provides a unified interface for all MCMCmethods.We can
define a ‘runner’ by inputting the ABC model set and the directory where posterior samples
are stored.

1 runner = MCMCRunner(
2 abc_set, # Problem-specific ABC set
3 output_dir=’./’ # Output directory and the default is
4 # the current directory.
5)

Before conducting Bayesian inference, it is essential to define several model functions.
These include the function for generating simulated data based on parameters, the discrep-
ancy function, the kernel function, and the prior function. The implementation of these
components can be effectively managed using the ABCset interface, structured as follows.

1 class ABCSet:
2 def __init__(self, epsilon):
3 self.epsilon = epsilon
4 self.theta_dim = theta_dim
5 self.y = y_obs
6 def generate_samples(self, theta):
7 """Generate synthetic samples for
8 parameters theta."""
9 pass
10 def discrepancy(self, x):
11 """Compute discrepancy between simulated and
12 observed data."""
13 pass
14 def calculate_log_kernel(self, x):
15 """Compute log of ABC kernel."""
16 pass
17 def prior_log_prob(self, theta):
18 """Compute log prior probability."""
19 pass

STATISTICAL THEORY AND RELATED FIELDS 171

For precise implementation details, Example/Mixabs.py is recommended.
Then, we can invoke four different ABC-MCMC with global and local methods through

‘runner.∗()’. The specific operations are as follows.

(1) GlobalMCMC:

1 runner.run_global_mcmc(
2 num_iterations, # Number of iterations
3 initial_theta, # Initial parameters
4 initial_y, # Initial synthetic data
5 global_frequency, # Global frequency
6 local_proposal, # Local proposal
7 global_proposal, # Global proposal
8 output_file = ’global_mcmc_results.csv’
9 # Output file, default is ‘global_mcmc_results.csv’.
10)

(2) GLMCMC:

1 runner.run_glmcmc(num_iterations, initial_theta,
2 initial_y, global_frequency, local_proposal,
3 importance_proposal, # Importance proposal of iSIR
4 batch_size, # Batch_size of iSIR.
5 output_file=’glmcmc_results.csv’
6)

(3) GLMALA:

1 runner.run_glmala(num_iterations, initial_theta,
2 initial_y, global_frequency, importance_proposal,
3 batch_size, tau, # Step-size of MALA
4 num_grad, # Simulation number used for
5 # calculating gradients.
6 output_file=’glmala_results.csv’
7)

172 X. CAO ET AL.

(4) GLMCMC-NF:

1 runner.run_glmcmc_nf(num_iterations, initial_theta,
2 initial_y, global_frequency, local_proposal,
3 batch_size, importance_proposal_base,
4 # The initial importance proposal of iSIR
5 step_size,
6 #The frequency of updating the importance proposal.
7 train_steps,
8 #The total times of updating the importance proposal.
9 output_file=’glmcmc_nf_results.csv’
10)

Proposal distributions like ‘local_proposal’, ‘global_propoal’, and ‘importance_proposal’
are classes that include the ‘forward’ function and the ‘log_prob’ function. These pro-
posal distributions can be accessed from the glabcmcmc.distribution mod-
ule in the Python package. ‘importance_proposal_base’ needs to be chosen from
normflows.distributions.basemodule.

3.2. Output

The generated Markov chain data will be returned and stored in ‘output_dir/output_file’, a
CSV-formatted file, to facilitate subsequent processing and analysis of the results. Addition-
ally, the posterior mean, variance, 95% credible interval, and effective sample size for each
parameter will be displayed.

4. Example

Here we provide an example of utilizing functions of the glabcmcmc package to perform
ABC inference. Specifically, we use a mixture model with four Gaussian peaks. The follow-
ing codes illustrate the implementation of four different MCMC methods, the optimization
of hyperparameters, and print the output of the GLMCMC approach. We also present the
visualization of the GLMCMC results.

‘Mixture_set()’ is an ABCset interface that contains the key functions of the ABC model.
Regarding ABCset, users can define it based on the format of ‘Mixture_set()’ according to
target model.

1 from glabcmcmc import MCMCRunner
2 import glabcmcmc.distribution as distribution
3 from Mixture import Mixture_set
4 # Define ABC model set

STATISTICAL THEORY AND RELATED FIELDS 173

5 Model = Mixture_set(epsilon=0.05)
6 theta0 = torch.tensor([0.0, 0.0])
7 # Set a random seed at the beginning to
8 # ensure the reproducibility of our results.
9 torch.manual_seed(0)
10 np.random.seed(0)
11 y0 = Model.generate_samples(theta0)
12 runner = MCMCRunner(Model, output_dir=’./’)

Next, we present a practical example of hyperparameter selection. In this example, all other
hyperparameters of ‘runner.run_glmcmc()’ are constant, and optimization is performed
solely on the global frequency parameter. The ‘lp’ refers to local proposal. The candidate
parameter θ∗ = θold + z, where θold is the current state of Markov chain and z is a random
sample from local proposal ‘lp’. The ‘ip’ refers to the importance proposal of iSIR. ‘esjd()’
computes the ESJD of a Markov chain. The selection of the optimal value for this parame-
ter is guided by the rESJD (relative version of ESJD) criterion (Cao et al., 2024a) with fixed
computational budgets.

1 from glabcmcmc import esjd
2 import numpy as np
3 import time
4 # Local proposal: theta_old + z, z~N((0,0),(0.35^2,0.35^2))
5 lp = distribution.DiagGaussian(2, loc=torch.zeros(1, 2),
6 log_scale=torch.log(torch.tensor([0.35, 0.35])))
7 # Importance proposal of iSIR
8 ip = distribution.DiagGaussian(2, torch.tensor([0.0, 0.0]),
9 torch.tensor([0.0, 0.0]))
10 seeds = np.linspace(1, 10, num=10)
11 batch_size = 5
12 global_frequencies = np.linspace(0, 1, num=11)
13 id = list(range(len(global_frequencies)))
14 resjd_value = [[0 for _ in id] for _ in range(len(seeds))]
15 num_ite2 = 1000
16 for i in range(len(seeds)):
17 torch.manual_seed(seeds[i])
18 for j in id:
19 gf = global_frequencies[j]
20 start_time = time.time()
21 chain = runner.run_glmcmc(num_ite2, theta0, y0, gf,
22 lp, ip, batch_size, output_file=None)
23 end_time = time.time()

174 X. CAO ET AL.

24 time_mean =(end_time - start_time)/num_ite2
25 resjd_value[i][j] = esjd(chain)/time_mean
26 resjd_mean = np.mean(resjd_value,axis=0)
27 best_gf = global_frequencies[np.argmax(resjd_mean)]
28 print(f"The best global frequency: {best_gf}")

The output is

The best global frequency: 0.9

For scenarios involving the optimization of multiple hyperparameters, a similar method-
ology can be employed, either through sequential tuning or joint optimization, to further
enhance the model’s overall performance.

Subsequently, the program is executed using the selected hyperparameter values.

1 chain_glmcmc = runner.run_glmcmc(1000000, theta0, y0, 0.9,
2 lp, ip, 5)

Running this function will print information including the posterior mean, variance, and
the 95% credible interval. Additional information can be obtained by directly manipulating
the returned value, ‘chain_glmcmc’, or by processing theMarkov chain data saved in the ‘.csv’
file. When we run multiple MCMC chains, there might exist slight differences among differ-
ent chains due to the intrinsic randomness. Here, we set a random seed prior to executing
the MCMC chain to ensure the reproducibility of the results.

Theta_Re 1:
Mean: -0.0017
Variance: 2.0824
95% Confidence Interval: (tensor(-2.8301), tensor(2.8268))
Theta_Re 2:
Mean: -0.0259
Variance: 2.0957
95% Confidence Interval: (tensor(-2.8632), tensor(2.8115))

STATISTICAL THEORY AND RELATED FIELDS 175

Figure 1. Trace plots (left) and posterior density contour (right) estimated by GLMCMC. The red dots and
their size represent location and number of particles, and the grey lines depict the movement trajectories.

We visualize the posterior samples. Figure 1 displays part of the trace plots (left) (i.e.,
iteration 30001 ∼ 40000) and the posterior density contour (right) estimated by GLMCMC.

For other GL-ABC-MCMC methods, the following code provides an example. The out-
puts of these functions are similar to that of ‘runner.run_glmcmc()’. In the method of
updating the proposal distribution using normalizing flows, the initial proposal distribution
should be selected from the normflows.distribution.basemodule.

1 gp = distribution.DiagGaussian(2, torch.tensor([0.0, 0.0]),
2 torch.tensor([0.0, 0.0]))
3 chain_global = runner.run_global_mcmc(num_ite, theta0, y0,
4 0.5, lp, gp)
5 chain_glmala =runner.run_glmala(num_ite, theta0, y0, 0.8,
6 ip, 5, 0.3, 100)
7 import normflows as nf
8 gp_base = nf.distributions.base.DiagGaussian(2)
9 chain_glmcmc_nf =runner.run_glmcmc_nf(num_ite, 0.5, lp, 5,
10 gp_base, 200, 50)

In addition, we infer the mixture of Gaussian posterior using ‘ABC_mcmc’ function of
the R package EasyABC (Easy, 2013). This function implements the ordinary ABC-MCMC
algorithm (Marjoram et al., 2003; Wegmann et al., 2009). We ensure that the length of the
MCMC chain is consistent with our algorithm. The visualization of the posterior samples is
shown in Figure 2. The results demonstrate that for multimodal posterior distributions, our
algorithm exhibits superior inference performance. It effectively navigates the entire poste-
rior space rather than becoming confined to a local region. Furthermore, our algorithm can
also implement ordinary ABC-MCMC by setting the global frequency to zero.

176 X. CAO ET AL.

Figure 2. Trace plots (left) andposterior density contour (right) estimatedby ‘ABC_mcmc’ from theRpack-
age EasyABC. The red dots and their size represent location and number of particles, and the grey lines
depict the movement trajectories.

5. Conclusion

In this paper, we presented the glabcmcmc Python package, which implements a novel
ABC-MCMC approach by integrating global and local proposal strategies. This innovative
framework addresses the limitations commonly faced by traditional ABC-MCMCmethods,
particularly the challenges of slow convergence and entrapment in local regions. The package
provides a comprehensive framework for the GL-ABC-MCMC algorithm, allowing users to
flexibly call upon different sampling methods according to their specific goals andmodelling
needs.

Acknowledgments

The authorship is listed in alphabetic order.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the National Natural Science Foundation of China [grant numbers
12131001 and 12101333], the startup fund of ShanghaiTech University, the Fundamental Research
Funds for the Central Universities, LPMC, and KLMDASR.

ORCID

Shijia Wang http://orcid.org/0000-0003-0339-1716

References

Barthelmé, S., & Chopin, N. (2014). Expectation propagation for likelihood-free inference. Journal of
the American Statistical Association, 109(505), 315–333. https://doi.org/10.1080/01621459.2013.864
178

http://orcid.org/0000-0003-0339-1716
https://doi.org/10.1080/01621459.2013.864178

STATISTICAL THEORY AND RELATED FIELDS 177

Beaumont,M.A., Zhang,W., &Balding,D. J. (2002). Approximate Bayesian computation in population
genetics. Genetics, 162(4), 2025–2035. https://doi.org/10.1093/genetics/162.4.2025

Cao, X., Wang, S., & Zhou, Y. (2024a). An adaptive approximate Bayesian computation MCMC with
Global-Local proposals. arXiv:2412.15644.

Cao, X., Wang, S., & Zhou, Y. (2024b). Using early rejection Markov chain Monte Carlo and Gaus-
sian processes to accelerate ABCmethods. Journal of Computational and Graphical Statistics Online.
https://doi.org/10.1080/10618600.2024.2379349

Csilléry, K., François, O., & Blum,M. G. (2012). ABC: An R package for approximate Bayesian compu-
tation (ABC).Methods in Ecology and Evolution, 3(3), 475–479. https://doi.org/10.1111/mee3.2012.
3.issue-3

Easy, A. B. C. (2013). Performing efficient approximate Bayesian computation sampling schemes using
R.Methods in Ecology and Evolution, 4(7), 684–687.

Liepe, J., Barnes, C., Cule, E., Erguler, K., Kirk, P., Toni, T., & Stumpf, M. P. (2010). ABC-
SysBio–approximate Bayesian computation in Python with GPU support. Bioinformatics (Oxford,
England), 26(14), 1797–1799.

Marjoram, P., Molitor, J., Plagnol, V., & Tavaré, S. (2003). Markov chain Monte Carlo with-
out likelihoods. Proceedings of the National Academy of Sciences, 100(26), 15324–15328.
https://doi.org/10.1073/pnas.0306899100

Picchini, U. (2014). Inference for SDEmodels via Approximate BayesianComputation. Journal of Com-
putational andGraphical Statistics, 23(4), 1080–1100. https://doi.org/10.1080/10618600.2013.866048

Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth of
humanY chromosomes: A study of Y chromosomemicrosatellites.Molecular Biology and Evolution,
16(12), 1791–1798. https://doi.org/10.1093/oxfordjournals.molbev.a026091

Raynal, L., Marin, J. M.., Pudlo, P., Ribatet, M., Robert, C. P., & Estoup, A. (2019). ABC random forests
for Bayesian parameter inference. Bioinformatics (Oxford, England), 35(10), 1720–1728.

Wegmann, D., Leuenberger, C., & Excoffier, L. (2009). Efficient Approximate Bayesian Computa-
tion coupled with Markov chain Monte Carlo without likelihood. Genetics, 182(4), 1207–1218.
https://doi.org/10.1534/genetics.109.102509 .https://doi.org/10.1534/genetics.109.102509

Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010). ABCtoolbox:
A versatile toolkit for approximate Bayesian computations. BMC Bioinformatics, 11, 1–7.
https://doi.org/10.1186/1471-2105-11-116

https://doi.org/10.1093/genetics/162.4.2025
https://doi.org/10.1080/10618600.2024.2379349
https://doi.org/10.1111/mee3.2012.3.issue-3
https://doi.org/10.1073/pnas.0306899100
https://doi.org/10.1080/10618600.2013.866048
https://doi.org/10.1093/oxfordjournals.molbev.a026091
https://doi.org/10.1534/genetics.109.102509
https://doi.org/10.1534/genetics.109.102509
https://doi.org/10.1186/1471-2105-11-116

	1. Introduction
	2. Review of global-local ABC-MCMC
	3. Key features
	3.1. Core components
	3.2. Output

	4. Example
	5. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

