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ABSTRACT
Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in
compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties
of orthogonal projection matrix, we obtained a new number of iterations required for the OMP
algorithm to perform exact recovery of sparse signals, which improves significantly upon the
latest results as we know.
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1. Introduction

Orthogonal matching pursuit (OMP) has received
growing attention due to its simplicity and competi-
tive reconstruction performance recently. Consider the
following compressed linear model:

y = �x, (1)

where x ∈ Cn is a K-sparse signal (i.e., ‖x‖0 ≤ K),
� = [φ1, φ2, . . . , φn] ∈ Cm×n is a known measure-
ment matrix with m � n and y ∈ Cm is the obser-
vation signal. It has been demonstrated that under
some appropriate conditions on �, OMP can reli-
ably recover the signal x based on a set of compres-
sive observations y by iteratively identifying the sup-
port of the sparse signal according to the maximum
correlation between columns of measurement matrix
and the current residual. See Table 1 for a detailed
description of the OMP algorithm (Cai & Wang, 2011;
Chang & Wu, 2014; Tropp & Gilbert, 2007; Wang
& Shim, 2016; Wen et al., 2020, 2017; Wu et al., 2013).
In Table 1, supp(x) is the set of nonzero positions in x.
rk denotes the residual after the kth iteration of OMP
and Tk the estimated support set within kth iteration
of OMP.

In compressed sensing, a commonly used frame-
work for analysing the recovery performance is the
restricted isometry property (RIP) (Cai et al., 2010;
Candes & Tao, 2005; Chang & Wu, 2014). A matrix
� is said to satisfy the RIP of order K if there exists a
constant δ ∈ [0, 1) such that

(1 − δ)‖x‖2
2 ≤ ‖�x‖2

2 ≤ (1 + δ)‖x‖2
2, (2)

for all K-sparse signal x. In particular, the minimum
of all constants δ satisfying (2) is called the K-order

Restricted Isometry Constant (RIC) and denoted by δK .
Over the years, many RIP-based conditions have been
proposed to guarantee exact recovery of any K-sparse
signals via OMP in K iterations. It has been shown
in Davenport and Wakin (2010) that δK+1 < (3

√
K)−1

is sufficient for OMP to recover any K-sparse signals
x in K iterations. The sufficient reconstruction condi-
tion of OMP is then improved to δK+1 < (1 + 2

√
K)−1

by Huang and Zhu (2011). Mo (2015) demonstrated
that δK+1 < (

√
K + 1)−1 is a sharp condition for exact

recovery of any K-sparse signal with OMP in K itera-
tions. Our recent work Liu et al. (2017) provides some
sufficient conditions for recovering restricted classes of
K-sparse signals with a more relaxed bound on RIC.

Obviously, running fewer number of iterations of
OMP offers many benefits and many efforts have been
made to improve the condition (Cai et al., 2009; Chang
& Wu, 2014; Li & Wen, 2019; Wen et al., 2017; Wu et al.,
2013). In Livshitz (2012), Livshitz showed that with
proper choices of α and β (α ∼ 2 × 105, β ∼ 10−6),
OMP accurately reconstructs K-sparse signals in αK1.2

iterations under δαK1.2 = βK−0.2. It has been shown
by Zhang (2011) that OMP recovers any K-sparse
signal in 30 K iterations under δ31K ≤ 3−1. Livshitz
and Temlyakov (2014) considered random sparse sig-
nals and showed that with high probability, these signals
can be recovered within �(1 + ε)K	 iterations of OMP
for any ε > 0. Recently, Wang and Shim (2016) showed
that if

c ≥ −4(1 + δ)

1 − δ
ln

(
1
2

−
√

δ

2 + 2δ

)
, (3)

and δ[(c+1)K] ≤ δ, OMP can recover the K-sparse sig-
nals in �cK	 iterations. It is the best result as we know
in the literature.
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Table 1. Orthogonal matching pursuit.

Input: �, y, and maximum iteration number kmax

Initialize: k = 0, r0 = y, T0 = ∅
while k < kmax, do

k = k + 1,

tk = arg max1≤i≤n |〈rk−1, φi〉|,
Tk = Tk−1 ∪ {tk},
x̂k = arg minu∈Cn :supp(u)⊂Tk ‖y − �u‖2,

rk = y − �̂xk .

Output: Tk and x̂k

In this paper, we present a new result on how many
iterations of OMP would be enough to guarantee exact
recovery of sparse signals:

c ≥ −4(1 + δ1)

1 − δ
ln

(
1 − δ

2

)
,

which improves significantly upon the results proposed
in Wang and Shim (2016).

We first give some notation. Let N = {0, 1, 2, . . .}, N+
= {1, 2, . . .} and �n = {1, 2, . . . , n}. [·] and �·	 denote
floor and ceiling function, respectively. For any two
sets 	 and 
, let 	 \ 
 = {i : i ∈ 	, i /∈ 
}, and |	|
is the cardinality of 	. For 	 ⊂ �n and 	 �= ∅, �	

denotes the submatrix of � that contains only the
columns indexed by 	 and x	 denotes the subvec-
tor of x that contains only the entries indexed by 	,
and span(�	) represents the span of columns in �	.
Let P	 = �	(�∗

	�	)+�∗
	 stand for an orthogonal

projection matrix onto span(�	), where �∗ is the con-
jugate transpose of the matrix �, and (�∗

	�	)+ is
Moore–Penrose pseudo inverse of �∗

	�	. P⊥
	 = Im −

P	 is an orthogonal projection matrix onto the orthog-
onal complement of span(�	), where Im denotes the
identity matrix. In particular, if 	 = ∅, then x∅ is a
0-by-1 empty vector, �∅ is an m-by-0 empty matrix,
�∅x∅ is an m-by-1 zero matrix and span(�∅) := {0}.
For further details on empty matrices, see, e.g., Bern-
stein (2005).

2. Main results

For notational simplicity, we denote 
k = T \ Tk.

Theorem 2.1: For any δ ∈ (0, 1), let

α = −4(1 + δ1)

1 − δ
ln

(
1 − δ

2

)
,

and κ = [αK]. If the measurement matrix � in (1)
satisfies the RIP of order K + κ and δK+κ ≤ δ, then
|
κ | = 0.

Remark 2.1 (Performance of Theorem 2.1): From
Theorem 2.1, if

c ≥ −4(1 + δ1)

1 − δ
ln

(
1 − δ

2

)
, (4)

Figure 1. Performance of Theorem 2.1.

and δ[(c+1)K] ≤ δ, then OMP perfectly recovers the sig-
nal x from the measurements y = �x in [cK] iteration.
In the following, we compare the lower bound in (4)
with the result of Wang and Shim (2016), which has
been showed in (3). We first establish an upper bound
for the ratio of (4) to (3) by using monotonicity property
of the RIC (δ1 ≤ δK+κ ) as

R(δ) := ln
( 1−δ

2
)

ln
(

1
2 −

√
δ

2+2δ

) .

It is easy to check that R(δ) < 1 for 0 < δ < 1,
which means the lower bound of c in this paper is
uniformly smaller than the one proposed in Wang
and Shim (2016). See Figure 1, for example, we have
R(3−1) = 0.57 and R(2−1) = 0.58. For 0.015 < δ <

0.993, we have 0.57 < R(δ) < 0.8. That is, nearly 98%
of the values of the bounds proposed in this paper is
less than 0.8 times of the one in (3).

Remark 2.2 (Main differences with the previous
work): Our methods have several key distinctions
in construction of the more efficient lower and
upper bounds of resident in OMP. First, Wang
and Shim (2016) obtained the upper bound of residual
in OMP algorithm based on the following fundamental
set:

{‖x
‖2 : 
 ⊂ 
k}.
We modified the above set to

{‖�
x
‖2 : 
 ⊂ 
k},

which leads to a more efficient upper bound of
resident in OMP algorithm (see inequality (17) of
Section 3.3). Second, Livshitz and Temlyakov (2014),
Wang and Shim (2016), and Zhang (2011) only use
RIP to obtain the lower bound of resident. However, in
this paper, we not only used RIP, but also utilized the
Wielandt inequality (Wang & Ip, 1999) to derive more
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efficient lower bound of resident (see inequality (16) of
Section 3.3). The details can be found in the following
sections.

3. Proof of the main theorem

3.1. Preliminaries

In the following, we introduce the subset 
k
τ of 
k based

on the magnitude of elements in the set {‖�
x
‖2 :

 ⊂ 
k}. For k, τ ∈ N and 
k �= ∅, let

ℵτ = {	 : 	 ⊂ 
k, |	| ≤ 2τ − 1}, (5)

f (τ ) = min{‖�
k\	x
k\	‖ : 	 ∈ ℵτ }. (6)

It is clear that ℵτ ⊂ ℵτ+1, and f (τ ) ≥ f (τ + 1) with
τ ∈ N.

Definition 3.1: If subset 
k
τ in ℵτ satisfies: (a)

‖�
k\
k
τ
x
k\
k

τ
‖2 = f (τ ) and (b) |
k

τ | = max{|	| :
	 ∈ ℵτ , ‖�
k\	x
k\	‖2 = f (τ )}, then 
k

τ is said to be
the � − k − τ characteristic set of x.

It is easy to verify that the characteristic set 
k
τ has

the following properties:

(P.1) |
k
τ | ≤ 2τ − 1, for τ ∈ N;

(P.2) If 
 ⊂ 
k and ‖�
x
‖2 < ‖�
k\
k
τ
x
k\
k

τ
‖2,

then |
| ≤ |
k| − 2τ ;
(P.3) 0 = |
k

0| ≤ |
k
1| ≤ · · · , and 


k
Jk = 
k

Jk+1 = · · ·
= 
k, with Jk = 1 + [log2 |
k|].

In fact, (P.1) is obvious as 
k
τ ∈ ℵτ . For (P.2),

since 
 ⊂ 
k, 
 can be rewritten as 
 = 
k \ (
k \

). From (6) and ‖�
k\
k

τ
x
k\
k

τ
‖2 = f (τ ), we know

that if ‖�
x
‖2 < ‖�
k\
k
τ
x
k\
k

τ
‖2, then 
k \ 
 /∈

ℵτ . Hence |
k \ 
| = |
k| − |
| ≥ 2τ . That is |
| ≤
|
k| − 2τ . For (P.3), if f (τ ) = f (τ + 1), it is obvious
that |
k

τ | ≤ |
k
τ+1| based on Definition 3.1. If f (τ ) >

f (τ + 1), then

‖�

k\
k

τ+1
x


k\
k
τ+1

‖2 < ‖�
k\
k
τ
x
k\
k

τ
‖2.

From (P.2),

|
k| − |
k
τ+1| = |
k \ 
k

τ+1| ≤ |
k| − 2τ .

Thus |
k
τ+1| ≥ 2τ . From (P.1), |
k

τ | ≤ 2τ − 1 < |
k
τ+1|.

Otherwise, it is easy to verify that |
k| ≤ 2Jk − 1 ≤
2τ − 1 for Jk ≤ τ . Thus we have 
k

τ = 
k based on
Definition 3.1.

From the fact |
k
0| = 0, |
k

Jk | = |
k|, and (P.3), there
exists 0 ≤ νk ≤ Jk − 1 such that 
k

0 = · · · = 
k
νk

= ∅,
and 
k

νk+1 �= ∅. Then it follows from (P.3) that 
k
νk+i �=

∅, i = 1, 2, . . ..
Let σ = (1 − δ)−1, thus σ > 1. It can be verified that

there exists the maximum value of σ i‖�

k\
k

i
x


k\
k
i
‖2

2

over i ∈ N. Since ‖�

k\
k

i
x


k\
k
i
‖2

2 = 0 based on the
fact that 
k

i = 
k from (P.3) for i ≥ Jk. Hence, we give
the following definition.

Definition 3.2: Let 
k �= ∅, integer L(k) is said to be
the k − σ character of x if it satisfies the following
condition:

σ L(k)‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2 = max

i∈N
σ i‖�


k\
k
i
x


k\
k
i
‖2

2.

By Definition 3.2, it is easy to check that

‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2 ≥ σ −L(k)‖�
kx
k‖ > 0

and

‖�

k\
k

i
x


k\
k
i
‖2

2

≤ σ L(k)−i‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2, i ∈ N. (7)

Recalling that ‖�

k\
k

i
x


k\
k
i
‖2

2 = 0 for i ≥ Jk and σ >

1, we have νk ≤ L(k) ≤ Jk − 1. Thus

2L(k) ≤ 2Jk−1 ≤ |
k|. (8)

Based on k − σ character L(k), we define the following
integer sequence {κi} as

κi =

⎧⎪⎨⎪⎩
0 for i = 0,
κi−1 for |
κi−1 | = 0,
κi−1 + [α2L(κi−1)] for |
κi−1 | �= 0.

(9)

Obviously, the sequence {κi} is monotonically non-
decreasing, i.e., κ0 ≤ κ1 ≤ · · · .

3.2. Main idea

Inspired by Wang and Shim (2016) and Zhang (2011),
we show that after k iterations, OMP can select a sub-
stantial amount of indices in 
k for a specified number
of additional iterations, and the rate of the number of
additional iterations to the number of chosen indices is
upper bounded by the constant α. More precisely, we
give the following important proposition, which is the
basis of Theorem 2.1.

Proposition 3.1: Suppose 
k �= ∅, k + [α|
k|] ≤ κ ,
and δK+κ ≤ δ, then we have

|
k+[α2L(k)]| ≤ |
k| − 2L(k), (10)

where L(k) is the k − σ character of x.

Now, we can prove Theorem 2.1 based on Proposi-
tion 3.1. The proof can be divided into two steps.

Step 1: We first prove that

κi + [α|
κi |] ≤ κ , i ∈ N. (11)

Obviously, (11) holds when i = 0 since κ0 + [α|
0|] =
[α|
0|] ≤ [αK] = κ . In the following, we assume that
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κi−1 + [α|
κi−1 |] ≤ κ . If |
κi−1 | = 0, then |
κi | = 0
from 
κi ⊂ 
κi−1 . It follows that

κi + [α|
κi |] = κi = κi−1 + [α|
κi−1 |] ≤ κ .

If |
κi−1 | �= 0, by substituting k = κi−1 into (10), we
have

|
κi | = |
κi−1+[α2L(κi−1)]| ≤ |
κi−1 | − 2L(κi−1).

Thus

κi + [α|
κi |]
= [κi + α|
κi |]
≤ [κi−1 + α2L(κi−1) + α(|
κi−1 | − 2L(κi−1))]

= κi−1 + [α|
κi−1 |]
≤ κ .

This completes the proof of (11).
Step 2: We prove that there exists a constant s ∈ N

such that |
κs | = 0. On one hand, from (11) we have

κi ≤ κi + [α|
κi |] ≤ κ , i ∈ N. (12)

Thus {κi} is a monotonically non-decreasing and
bounded integer sequence. On the other hand, it is clear
that α ≥ 4 ln 2 > 2. Then from (9), one can easily show
that κi−1 < κi for |
κi−1 | �= 0. Therefore, there must
exist a constant s ∈ N such that |
κs | = 0. From (12),
we have κs ≤ κ , then |
κ | ≤ |
κs |. Hence |
κ | = 0,
which completes the proof.

3.3. Sketch of proof of Proposition 3.1

We here give a sketch of the proof of Proposition 3.1, the
remaining details of (16) and (17) can be found in the
Appendix. For notational simplicity, let k + [α2L(k)] =
n1. From 
k �= ∅, k + [α|
k|] ≤ κ , and (8), we have

n1 = k + [α2L(k)] ≤ k + [α|
k|] ≤ κ , (13)

and (10) can be rewritten as

|
n1 | ≤ |
k| − 2L(k). (14)

By (P.2), a sufficient condition of the above inequality is

‖�
n1 x
n1 ‖2
2 < ‖�


k\
k
L(k)

x

k\
k

L(k)
‖2

2. (15)

Now, what remains is the proof of (15), which is based
on the analysis of the residual of OMP. First, by exploit-
ing Wielandt inequality and RIP, we construct a lower
bound for ‖rn1‖2

2, that is,

‖rn1‖2
2 ≥ (1 − δ2)‖�
n1 x
n1 ‖2

2. (16)

Next, by exploiting some properties of orthogonal pro-
jection matrix and RIP, we construct an upper bound
for ‖rn1‖2

2,

‖rn1‖2
2 < (1 − δ2)‖�


k\
k
L(k)

x

k\
k

L(k)
‖2

2. (17)

From (16) and (17), it is easy to verify (15) holds.
Hence the remains is the proof of (16) and (17) (see
Appendices).

4. Conclusion

In this paper, we analyse the number of iterations
required for OMP to exactly recover sparse signals.
Our analysis shows that OMP can recover any K-
sparse signals in [cK] iterations (c ≥ − 4(1+δ1)

1−δ
ln 1−δ

2 ),
which is uniformly smaller than the one proposed in
Wang and Shim (2016). For example, to accurately
recover K-sparse signals, it has been shown in Wang
and Shim (2016) that OMP requires 30 K iterations with
δ31 K ≤ 2−1 while our result shows that OMP requires
only [16.8 K] iterations with δ[17.8 K] ≤ 2−1. In practical
application, a large number of iterations often lead to
a high computational complexity. Our result provides
a theoretical basis for the reduction of the number of
iterations required for OMP.
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Appendices

Appendix 1. Proof of (16)

The proof of (16) is based on the Wielandt inequality (Wang
& Ip, 1999), which is presented in the following Lemma.

Lemma A.1 (Wielandt inequality): Let A =
(

A11 A12
A21 A22

)
be

an n-order positive-definite matrix with aIn ≤ A ≤ bIn, (a >

0). Then we have

A21A−1
11 A12 ≤

(
b − a
b + a

)2
A22. (A1)

We now proceed to the proof of (16). The conclusion holds
naturally if 
n1 = ∅. In the following, we prove that (16)

still holds under 
n1 �= ∅. Without loss of generality, we
assume that Tn1 = {1, 2, . . . , n1}, and 
n1 = {n1 + 1, n1 +
2, . . . , n1 + n2}, where n2 = |
n1 |. Notice that

�∗
Tn1 ∪
n1 �Tn1 ∪
n1 =

(
�∗

Tn1 �Tn1 �∗
Tn1 �
n1

�∗

n1 �Tn1 �∗


n1 �
n1

)
. (A2)

By (13), we have n1 + n2 ≤ K + κ . Furthermore, from the
monotonicity of the RIC and δK+κ ≤ δ, we have δn1+n2 ≤
δK+κ ≤ δ. It implies that

(1 − δ)In1+n2 ≤ �∗
Tn1 ∪
n1 �Tn1 ∪
n1 ≤ (1 + δ)In1+n2 . (A3)

Since (A2), (A3), and Lemma A.1, we have

�∗

n1 PTn1 �
n1 = �∗


n1 �Tn1 (�∗
Tn1 �Tn1 )−1�∗

Tn1 �
n1

≤ δ2�∗

n1 �
n1 . (A4)

Hence by (A4), it follows that

‖rn1‖2
2 = ‖P⊥

Tn1 �
n1 x
n1 ‖2
2

= x∗

n1 �∗


n1 P⊥
Tn1 �
n1 x
n1

= x∗

n1 �∗


n1 �
n1 x
n1 − x∗

n1 �∗


n1 PTn1 �
n1 x
n1

≥ (1 − δ2)‖�
n1 x
n1 ‖2
2.

This completes the proof.

Appendix 2. Proof of (17)

The proof of (17) is based on the following Lemma A.2,
which generalized the results of Wang and Shim (2016) to the
complex field.

Lemma A.2: Suppose 
k �= ∅, and 
 be a nonempty subset of

k, the residual of OMP satisfies

‖rl′ ‖2
2 − ‖�
k\
x
k\
‖2

2 ≤ C
,l,l′(‖rl‖2
2 − ‖�
k\
x
k\
‖2

2),
(A5)

where C
,l,l′ = exp(− (1−δ|Tl′−1∪
|)(l
′−l)

(1+δ1)|
| ) for any integer l′ ≥
l ≥ k.

Proof: Since l ≤ l′, it follows that ‖rl′ ‖2
2 ≤ ‖rl‖2

2. Notice that
0 < C
,l,l′ ≤ 1. Thus if l′ = l or ‖rl′ ‖2

2 − ‖�
k\
x
k\
‖2
2 ≤ 0,

then Lemma A.2 holds evidently. In the following, we assume
that l′ > l and

‖rl′ ‖2
2 − ‖�
k\
x
k\
‖2

2 > 0. (A6)

It implies that

‖ri‖2
2 − ‖�
k\
x
k\
‖2

2 ≥ ‖rl′ ‖2
2 − ‖�
k\
x
k\
‖2

2 > 0,

i = 0, 1, . . . , l′. (A7)

We later proved that the residual of OMP satisfies

‖ri+1‖2
2 − ‖�
k\
x
k\
‖2

2

≤ exp
(

−
1 − δ|Tl′−1∪
|
(1 + δ1)|
|

) (
‖ri‖2

2 − ‖�
k\
x
k\
‖2
2

)
,

(A8)

for i = l, l + 1, . . . , l′ − 1. Then (A5) can be obtained by (A8)
as follows,

‖rl′ ‖2
2 − ‖�
k\
x
k\
‖2

2

≤ exp
(

−
1 − δ|Tl′−1∪
|
(1 + δ1)|
|

) (
‖rl′−1‖2

2 − ‖�
k\
x
k\
‖2
2

)
≤ exp

(
−

2(1 − δ|Tl′−1∪
|)
(1 + δ1)|
|

)
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×
(
‖rl′−2‖2

2 − ‖�
k\
x
k\
‖2
2

)
≤ . . .

≤ exp

(
−

(1 − δ|Tl′−1∪
|)(l
′ − l)

(1 + δ1)|
|

)

×
(
‖rl‖2

2 − ‖�
k\
x
k\
‖2
2

)
.

(A8) can be proved as follows. It is easy to check that P⊥
Ti+1 =

P⊥
Ti+1P⊥

Ti . Thus

ri+1 = P⊥
Ti+1y = P⊥

Ti+1P⊥
Tiy = P⊥

Ti+1ri.

Furthermore,

‖ri‖2
2 − ‖ri+1‖2

2 = ‖ri‖2
2 − ‖P⊥

Ti+1ri‖2
2

(a)= ‖PTi+1ri‖2
2

(b)≥ ‖P{ti+1}ri‖2
2

(c)= |〈ri, φti+1〉|2
φ∗

ti+1φti+1

(d)≥ |〈ri, φti+1〉|2
1 + δ1

, (A9)

where (a), (b), (c), (d) above can be obtained as follows: (a)
is from that fact that ‖P⊥

Ti+1ri‖2
2 + ‖PTi+1ri‖2

2 = ‖ri‖2
2; (b) is

due to ti+1 ∈ Ti+1; (c) is because

‖P{ti+1}ri‖2
2 = (ri)∗P{ti+1}ri = (ri)∗φti+1(φ∗

ti+1φti+1)+φ∗
ti+1ri

and (φ∗
ti+1φti+1)+ = 1

φ∗
ti+1 φti+1

; (d) is followed from the

definition of RIP.
Now we construct a lower bound for |〈ri, φti+1〉|2 below.
Notice that P⊥

Ti�	x	 = 0 for 	 ⊂ Ti and T \ 
k ⊂ Tk ⊂
Ti. Thus we have

ri = P⊥
Tiy = P⊥

Ti�TxT = P⊥
Ti(�
kx
k + �T\
kxT\
k)

= P⊥
Ti�
kx
k . (A10)

From (A10), it follows that

‖ri − P⊥
Ti�
\Tix
\Ti‖2

2

= ‖ri − P⊥
Ti�
x
 + P⊥

Ti�
∩Tix
∩Ti‖2
2

= ‖ri − P⊥
Ti�
x
‖2

2 = ‖P⊥
Ti(�
kx
k − �
x
)‖2

2

≤ ‖�
kx
k − �
x
‖2
2 = ‖�
k\
x
k\
‖2

2. (A11)

Notice that P⊥
Ti ri = ri. From (A11), we have

2Re〈ri, �
\Tix
\Ti〉 = 2Re〈P⊥
Ti ri, �
\Tix
\Ti〉

= 2Re〈ri, P⊥
Ti�
\Tix
\Ti〉

= ‖ri‖2
2 + ‖P⊥

Ti�
\Tix
\Ti‖2
2 − ‖ri − P⊥

Ti�
\Tix
\Ti‖2
2

≥ ‖ri‖2
2 + ‖P⊥

Ti�
\Tix
\Ti‖2
2 − ‖�
k\
x
k\
‖2

2. (A12)

Hence by (A7) and (A12), we have

2Re〈ri, �
\Tix
\Ti〉 ≥ ‖ri‖2
2 − ‖�
k\
x
k\
)‖2

2 > 0,
(A13)

and 
 \ Ti �= ∅.
Now we prove

‖P⊥
Ti�
\Tix
\Ti‖2

2 ≥ (1 − δ|Ti∪
|)‖x
\Ti‖2
2. (A14)

In fact, if i = 0, then T0 = ∅ and P⊥
T0 = Im. From RIP, we

have

‖P⊥
T0�
\T0x
\T0‖2

2 = ‖�
x
‖2
2 ≥ (1 − δ|
|)‖x
‖2

2

= (1 − δ|T0∪
|)‖x
\T0‖2
2.

For i �= 0, we have

‖P⊥
Ti�
\Tix
\Ti‖2

2

= ‖�
\Tix
\Ti − PTi�
\Tix
\Ti‖2
2

= ‖�
\Tix
\Ti − �Ti(�∗
Ti�Ti)+�∗

Ti�
\Tix
\Ti‖2
2

=
∥∥∥∥(

�
\Ti �Ti
) (

x
\Ti

−(�∗
Ti�Ti)+�∗

Ti�
\Tix
\Ti

)∥∥∥∥2

2

≥ (1 − δ|Ti∪
|)(‖x
\Ti‖2
2

+ ‖(�∗
Ti�Ti)+�∗

Ti�
\Tix
\Ti‖2
2)

≥ (1 − δ|Ti∪
|)‖x
\Ti‖2
2.

Then from (A12), (A14) and the arithmetic-geometric mean
inequality, it can be verified that

Re〈ri, �
\Tix
\Ti〉

≥
√

1 − δ|Ti∪
|‖x
\Ti‖2

√
‖ri‖2

2 − ‖�
k\
x
k\
‖2
2.

(A15)

On the other hand, we have |〈ri, φτ 〉| ≤ |〈ri, φti+1〉| for τ ∈
�n. Thus

Re〈ri, �
\Tix
\Ti〉 = Re

〈
ri,

∑
τ∈
\Ti

xτ φτ

〉

≤
∣∣∣∣∣∣
〈
ri,

∑
τ∈
\Ti

xτ φτ

〉∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

τ∈
\Ti

xτ 〈ri, φτ 〉
∣∣∣∣∣∣

≤ ‖x
\Ti‖1|〈ri, φti+1〉|. (A16)

Notice that
‖x


\Ti ‖2
1

‖x

\Ti ‖2

2
≤ |
 \ Ti| ≤ |
|. Combining (A15)

and (A16), we obtain

|〈ri, φti+1〉|2

≥ (1 − δ|Ti∪
|)‖x
\Ti‖2
2

‖x
\Ti‖2
1

(‖ri‖2
2 − ‖�
k\
x
k\
‖2

2)

≥ (1 − δ|Ti∪
|)
|
| (‖ri‖2

2 − ‖�
k\
x
k\
‖2
2). (A17)

This, together with (A9), implies

‖ri‖2
2 − ‖ri+1‖2

2 ≥ 1 − δ|Ti∪
|
(1 + δ1)|
| (‖ri‖2

2 − ‖�
k\
x
k\
‖2
2).

(A18)
Hence (A18) can be rewritten as

‖ri+1‖2
2 − ‖�
k\
x
k\
‖2

2

≤
(

1 − 1 − δ|Ti∪
|
(1 + δ1)|
|

) (
‖ri‖2

2 − ‖�
k\
x
k\
‖2
2

)
.

(A19)

Let a = 1−δ|Ti∪
|
(1+δ1)|
| , then 1 − a ≤ exp(−a). From monotonicity

of the RIC, we can obtain that δ|Ti∪
| ≤ δ|Tl′−1∪
| for i ≤ l′ −
1. Thus from (A19), we have

‖ri+1‖2
2 − ‖�
k\
x
k\
‖2

2

≤ exp
(

− 1 − δ|Ti∪
|
(1 + δ1)|
|

) (
‖ri‖2

2 − ‖�
k\
x
k\
‖2
2

)
≤ exp

(
−

1 − δ|Tl′−1∪
|
(1 + δ1)|
|

) (
‖ri‖2

2 − ‖�
k\
x
k\
‖2
2

)
,
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for i = l, l + 1, . . . , l′ − 1. This completes the proof of (A8).
�

We now proceed to the proof of (17). Let k0 = k and

ki = k +
νk+i∑

τ=νk+1

⌈α

4
|
k

τ |
⌉

, i = 1, 2, . . . , L(k) + 1 − νk.

Let l′ = ki, l = ki−1 and 
 = 
k
νk+i in (A5). Notice that ki −

ki−1 = � α
4 |
k

νk+i|	. Then it follows that

‖rki‖2
2 − ‖�


k\
k
νk+i

x

k\
k

νk+i
‖2

2

≤ C

k

νk+i ,ki−1,ki

(
‖rki−1‖2

2 − ‖�

k\
k

νk+i
x


k\
k
νk+i

‖2
2

)
,

(A20)

where

C

k

νk+i,ki−1,ki
= exp

⎛⎝−
(1 − δ|Tki−1∪
k

νk+i|)�
α
4 |
k

νk+i|	
(1 + δ1)|
k

νk+i|

⎞⎠ .

In the following, we construct an upper bound for
C


k
νk+i ,ki−1,ki

. Recall that α ≥ 4 ln 2 ≥ 2. Then from Appen-

dix 2 in Wang and Shim (2016), we have

l∑
τ=1

⌈α

4
(2l − 1)

⌉
≤ �α2l−1	 − 1. (A21)

By (P.1) and (A21), it follows that

kL(k)+1−νk = k +
L(k)+1∑
τ=νk+1

⌈α

4
|
k

τ |
⌉

≤ k +
L(k)+1∑

τ=1

⌈α

4
(2τ − 1)

⌉
≤ k + �α2L(k)	 − 1

≤ k + [α2L(k)]

= n1. (A22)

Notice that 
k
τ ⊂ 
k ⊂ T, and Tki−1 ⊂ TkL(k)+1−νk for i =

1, 2, . . . , L(k) + 1 − νk. From (13) and (A22), we obtain

|
k
νk+i ∪ Tki−1| ≤ |T ∪ TkL(k)+1−νk | ≤ |T ∪ Tn1 | ≤ K + κ .

Furthermore, from monotonicity of the RIC and δK+κ ≤ δ,
we have

1 − δ|
k
νk+i∪Tki−1|

1 + δ1
≥ 1 − δK+κ

1 + δ1
≥ 1 − δ

1 + δ1
. (A23)

Hence,

C

k

νk+i ,ki−1,ki
= exp

⎛⎝−
(1 − δ|Tki−1∪
k

νk+i|)�
α
4 |
k

νk+i|	
(1 + δ1)|
k

νk+i‖

⎞⎠
≤ exp

(
− (1 − δ) α

4 |
k
νk+i|

(1 + δ1)|
k
νk+i|

)
= (1 − δ)/2. (A24)

Together with (A20), it implies that

‖rki‖2
2 ≤ 1 − δ

2
‖rki−1‖2

2 + 1 + δ

2
‖�


k\
k
νk+i

x

k\
k

νk+i
‖2

2,

(A25)

for i = 1, 2, . . . , L(k) + 1 − νk. Note that we only need to
consider ‖rki−1‖2

2 ≥ ‖�

k\
k

νk+i
x


k\
k
νk+i

‖2
2 since if ‖rki−1‖2

2

< ‖�

k\
k

νk+i
x


k\
k
νk+i

‖2
2, (A25) holds from

‖rki‖2
2 ≤ ‖rki−1‖2

2 = 1 − δ

2
‖rki−1‖2

2 + 1 + δ

2
‖rki−1‖2

2

≤ 1 − δ

2
‖rki−1‖2

2

+ 1 + δ

2
‖�


k\
k
νk+i

x

k\
k

νk+i
‖2

2.

By substituting (7) into (A25), we further obtain

‖rki‖2
2 ≤ 1 − δ

2
‖rki−1‖2

2

+ 1 + δ

2
σ L(k)−νk−i‖�


k\
k
L(k)

x

k\
k

L(k)
‖2

2. (A26)

From 
k
νk

= ∅ and (7), we have

‖rk‖2
2 = ‖P⊥

Tk�
kx
k‖2
2

= ‖P⊥
Tk�
k\
k

νk
x
k\
k

νk
‖2

2

≤ ‖�
k\
k
νk

x
k\
k
νk

‖2
2

≤ σ L(k)−νk‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2. (A27)

Notice that σ = 1
1−δ

and ‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2 > 0, Then

by (A22), (A26), (A27), we obtain

‖rn1‖2
2 ≤ ‖rkL(k)+1−νk ‖2

2

≤
(

1 − δ

2

)L(k)+1−νk

(‖rk‖2
2

+ 1 + δ

2

L(k)+1−νk∑
τ=1

(
1 − δ

2

)−τ

× σ L(k)−νk−τ ‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2)

≤
(

1 − δ

2

)L(k)+1−νk

(σ L(k)−νk

+
(

1 + δ

2

) L(k)+1−νk∑
τ=1

(
1 − δ

2

)−τ

× σ L(k)−νk−τ )‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2

= (1 − δ2 − δ(1 − δ)

2L(k)+1−νk
)‖�


k\
k
L(k)

x

k\
k

L(k)
‖2

2

< (1 − δ2)‖�

k\
k

L(k)
x


k\
k
L(k)

‖2
2.

Thus (17) holds. This completes the proof.
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