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A new result on recovery sparse signals using orthogonal matching pursuit

Xueping Chen @, Jianzhong Liu and Jiandong Chen

School of Mathematics and Physics, Jiangsu University of Technology, Jiangsu, People’s Republic of China

ABSTRACT

Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in
compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties
of orthogonal projection matrix, we obtained a new number of iterations required for the OMP
algorithm to perform exact recovery of sparse signals, which improves significantly upon the

latest results as we know.

1. Introduction

Orthogonal matching pursuit (OMP) has received
growing attention due to its simplicity and competi-
tive reconstruction performance recently. Consider the
following compressed linear model:

y = &y, (1)

where x € C* is a K-sparse signal (i.e., ||x]lo < K),
D = [¢p1,02,...,¢0,] € C™" is a known measure-
ment matrix with m < n and y € C" is the obser-
vation signal. It has been demonstrated that under
some appropriate conditions on ®, OMP can reli-
ably recover the signal x based on a set of compres-
sive observations y by iteratively identifying the sup-
port of the sparse signal according to the maximum
correlation between columns of measurement matrix
and the current residual. See Table 1 for a detailed
description of the OMP algorithm (Cai & Wang, 2011;
Chang & Wu, 2014; Tropp & Gilbert, 2007; Wang
& Shim, 2016; Wen et al., 2020, 2017; Wu et al., 2013).
In Table 1, supp(x) is the set of nonzero positions in x.
r denotes the residual after the kth iteration of OMP
and T the estimated support set within kth iteration
of OMP.

In compressed sensing, a commonly used frame-
work for analysing the recovery performance is the
restricted isometry property (RIP) (Cai et al., 2010;
Candes & Tao, 2005; Chang & Wu, 2014). A matrix
® is said to satisty the RIP of order K if there exists a
constant § € [0, 1) such that

1= ®lxl; < 1015 < A+Olxl5 @)

for all K-sparse signal x. In particular, the minimum
of all constants § satisfying (2) is called the K-order
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Restricted Isometry Constant (RIC) and denoted by ék.
Over the years, many RIP-based conditions have been
proposed to guarantee exact recovery of any K-sparse
signals via OMP in K iterations. It has been shown
in Davenport and Wakin (2010) that g4+ < B/K) !
is sufficient for OMP to recover any K-sparse signals
x in K iterations. The sufficient reconstruction condi-
tion of OMP is then improved to §x+1 < (1 + 2/K) !
by Huang and Zhu (2011). Mo (2015) demonstrated
that §x11 < (/K + 1)~ is a sharp condition for exact
recovery of any K-sparse signal with OMP in K itera-
tions. Our recent work Liu et al. (2017) provides some
sufficient conditions for recovering restricted classes of
K-sparse signals with a more relaxed bound on RIC.
Obviously, running fewer number of iterations of
OMP offers many benefits and many efforts have been
made to improve the condition (Cai et al., 2009; Chang
& Wu, 2014; Li & Wen, 2019; Wen et al., 2017; Wu et al,,
2013). In Livshitz (2012), Livshitz showed that with
proper choices of @ and B (a ~ 2 x 10°, 8 ~ 1079),
OMP accurately reconstructs K-sparse signals in « K!-?
iterations under 8,512 = BK~%2. It has been shown
by Zhang (2011) that OMP recovers any K-sparse
signal in 30K iterations under 8315 < 37!. Livshitz
and Temlyakov (2014) considered random sparse sig-
nals and showed that with high probability, these signals
can be recovered within [(1 4 €)K] iterations of OMP
forany e > 0. Recently, Wang and Shim (2016) showed

that if
4146 1 1)
cz—gln Z_ , (3)
1-6 2 2426

and J[(c+1)k] < 8, OMP can recover the K-sparse sig-
nals in [¢K] iterations. It is the best result as we know
in the literature.

CONTACT Xueping Chen @ chenxueping@jsut.edu.cn

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2022.2048445&domain=pdf&date_stamp=2022-09-12
http://orcid.org/0000-0003-0499-0972
mailto:chenxueping@jsut.edu.cn
http://creativecommons.org/licenses/by/4.0/

Table 1. Orthogonal matching pursuit.

Input: ®, y, and maximum iteration number kmax
Initialize: k=0, = ) =9
while k < kmax, do
k=k+1,
K = arg max <i<n (7, 1),
T* = TK=1 U ),
X = arg minyccnsuppwycre 1Y — @ull2,
k =y — ox*.
Output: Tk and %

In this paper, we present a new result on how many
iterations of OMP would be enough to guarantee exact
recovery of sparse signals:

4(1 -
es X +81)ln(1 5),
1-3 2

which improves significantly upon the results proposed
in Wang and Shim (2016).

We first give some notation. Let N = {0, 1,2, ... J,NT
={1,2,...}and Q, = {1,2,...,n}. [-] and [-] denote
floor and ceiling function, respectively. For any two
sets Aand I', let A\T'={i:ie€ A,i¢ T}, and |A|
is the cardinality of A. For A C Q, and A # (J, ®y
denotes the submatrix of @ that contains only the
columns indexed by A and xa denotes the subvec-
tor of x that contains only the entries indexed by A,
and span(®,) represents the span of columns in ®4.
Let Pp = <I>A(<I>7\CDA)+CI>7\ stand for an orthogonal
projection matrix onto span(® 4 ), where ®* is the con-
jugate transpose of the matrix ®, and (@} PA)* is
Moore-Penrose pseudo inverse of ®% 4. Pk =1, —
Py is an orthogonal projection matrix onto the orthog-
onal complement of span(®, ), where I, denotes the
identity matrix. In particular, if A =, then xy is a
0-by-1 empty vector, @y is an m-by-0 empty matrix,
Dyxy is an m-by-1 zero matrix and span(Py) := {0}.
For further details on empty matrices, see, e.g., Bern-
stein (2005).

2. Main results

For notational simplicity, we denote I'* = T'\ T,

Theorem 2.1: For any § € (0, 1), let

4(1 + 61) 1—-46
= - In ,
1-6 2
and k = [aK]. If the measurement matrix & in (1)

satisfies the RIP of order K + «k and Sx4, <8, then
IT*| = 0.

Remark 2.1 (Performance of Theorem 2.1): From
Theorem 2.1, if

62—4(1+81) ln<1_5>, @)
1-46 2

STATISTICAL THEORY AND RELATED FIELDS . 221

0 0.1 02 03 04 05 06 07 08 09 1
0

Figure 1. Performance of Theorem 2.1.

and 8[(c+1)k] < 8, then OMP perfectly recovers the sig-
nal x from the measurements y = ®x in [cK] iteration.
In the following, we compare the lower bound in (4)
with the result of Wang and Shim (2016), which has
been showed in (3). We first establish an upper bound
for the ratio of (4) to (3) by using monotonicity property
of the RIC (81 < 8g4«) as

In (7
in (3 - /=)

It is easy to check that R(§) <1 for 0 <§ < 1,
which means the lower bound of ¢ in this paper is
uniformly smaller than the one proposed in Wang
and Shim (2016). See Figure 1, for example, we have
R(3~ 1) =0.57 and R2™') = 0.58. For 0.015 < § <
0.993, we have 0.57 < R(§) < 0.8. That is, nearly 98%
of the values of the bounds proposed in this paper is
less than 0.8 times of the one in (3).

R($) =

Remark 2.2 (Main differences with the previous
work): Our methods have several key distinctions
in construction of the more efficient lower and
upper bounds of resident in OMP. First, Wang
and Shim (2016) obtained the upper bound of residual
in OMP algorithm based on the following fundamental
set:

{llxrll2: T c Tk

We modified the above set to
{l®orxrly: T cTH,

which leads to a more efficient upper bound of
resident in OMP algorithm (see inequality (17) of
Section 3.3). Second, Livshitz and Temlyakov (2014),
Wang and Shim (2016), and Zhang (2011) only use
RIP to obtain the lower bound of resident. However, in
this paper, we not only used RIP, but also utilized the
Wielandt inequality (Wang & Ip, 1999) to derive more
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efficient lower bound of resident (see inequality (16) of
Section 3.3). The details can be found in the following
sections.

3. Proof of the main theorem
3.1. Preliminaries

In the following, we introduce the subset ¥ of ¥ based
on the magnitude of elements in the set {||®rxr|l; :
[ c T*).Fork,7 € Nand I'* £ ¢, let

N, ={A:ACTK|A| <27 —1}, (5)

It is clear that Ny C N¢yj, and f(7) > f(r + 1) with
T €N.

Definition 3.1: If subset FIT‘ in N; satisfies: (a)
1P i pexpeypilla = f(2) and (b) [TF| = max{|A| :
A € R, [ @pi g Xk o ll2 = f (7)), then ' is said to be
the ® — k — t characteristic set of x.

It is easy to verify that the characteristic set X has
the following properties:

(P1) Tk <27 —1,fort e N;
(P2) If I CT* and | ®rarllz < [ Dpkpexre rell2,
then |['| < K| — 27;
k
(P3) 0=|I§| <[ <---,and [} =T} 4 ="
= ¥ with Jy = 1 + [log, |T¥|].

In fact, (P.1) is obvious as F]T‘ € N;. For (P.2),
since I' € 'K, T' can be rewritten as I' = I' \ (Fk\
I'). From (6) and ||<I>Fk\1~1;x1~k\r1;||2 = f(7), we know
that if |®rxrlls < | Ppe pexpe k2, then T\ T ¢
R;. Hence |TK\ T'| = |T%| — || > 27. That is |['| <
|Tk| — 27, For (P3), if f(r) = f(r + 1), it is obvious
that |F’r‘| < |F];+1| based on Definition 3.1. If f(7) >
f(t + 1), then

”@Fk\rlgﬂxrk\rlgﬂ ll2 < 1P piypkXpe k2.
From (P.2),
K| — Ik 1= ok Tk < ok - 27,

Thus |[%, || > 27.From (P1),|T%| <27 — 1 < |T¥_,|.
Otherwise, it is easy to verify that |[%| <2k —1 <
27 —1 for J < 7. Thus we have I'* = I'* based on
Definition 3.1.

From the fact [T§| = 0,|T'} | = [T'¥|, and (P.3), there

exists 0 < v < Jr — 1 such that F§:~-:Fl’fk =,
and ¥ | # 0. Then it follows from (P.3) that % ,; 5
@i=1,2,...

Leto = (1 —8)~!,thuso > 1.Itcanbe verified that
there exists the maximum value of o*| q)rk\rerk\rk ||§

over i € N. Since ||q)l“k\1"f‘x1“k\1"}‘”§ = 0 based on the

fact that Ff = I'¥ from (P.3) for i > Ji. Hence, we give
the following definition.

Definition 3.2: Let ['* £ (3, integer L(k) is said to be
the k — o character of x if it satisfies the following
condition:

L(k) 2 i 2
o P X = maxo'||P X .
I Tk ¥TRrE I12 nax 9 piy prx ey o2
By Definition 3.2, it is easy to check that
—L(k)
@ K Xpipk 112> 0 T EO Dk > 0
1Preyrk , *rark, 12 = [P rrxp
and
D e ki ok I
ri\retrkreli2
L(k)—i 2 .
S o ”(Dr‘k\rllf(k)xrk\rf(k) ”2,1 (S N (7)

Recalling that ”q)rk\rerk\l"’ﬁ”% =0fori> Jrando >
1, we have vy < L(k) < Jr — 1. Thus

2H0 < ol < k), (8)

Based on k — o character L(k), we define the following
integer sequence {«;} as

0 fori =0,

for |T<-1| =0, (9)
for |Ti-1| £ 0.

Ki = Ki-1
ki1 + [t

Obviously, the sequence {«;} is monotonically non-
decreasing, i.e., kg < k1 < ---.

3.2. Mainidea

Inspired by Wang and Shim (2016) and Zhang (2011),
we show that after k iterations, OMP can select a sub-
stantial amount of indices in I'* for a specified number
of additional iterations, and the rate of the number of
additional iterations to the number of chosen indices is
upper bounded by the constant «. More precisely, we
give the following important proposition, which is the
basis of Theorem 2.1.

Proposition 3.1: Suppose T'* # @,k + [a|T¥|] < «,
and x4 < 8, then we have

PkHE2 ) <k plh), (10)
where L(k) is the k — o character of x.

Now, we can prove Theorem 2.1 based on Proposi-
tion 3.1. The proof can be divided into two steps.

Step 1: We first prove that
ki + [@|T*] <k, i€N. (11)

Obviously, (11) holds when i = 0 since o + [@|T0]] =
[@|T°|]] < [aK] = k. In the following, we assume that



ki—1 + [@|['%-1|] < k. If |[T¥i-1| =0, then |I'*i| =0
from I'“i C I'*i-1. It follows that

ki + [@|T4] = ki = ki1 + [@|T] < «.
If |[*-1] # 0, by substituting k = k;_; into (10), we
have
T | = el V) o prien L),
Thus
Ki + [o|T*]
= [Ki + T
< [iej—1 + @2M65) (Tt — 2H0))
= ki—1 + [o|[]

<KkK.

This completes the proof of (11).
Step 2: We prove that there exists a constant s € N
such that |[I"s| = 0. On one hand, from (11) we have

ki < Kki+ [a|]lT] <k, i€eN. (12)

Thus {«x;} is a monotonically non-decreasing and
bounded integer sequence. On the other hand, it is clear
thato > 4In2 > 2. Then from (9), one can easily show
that x;_1 < k; for |['*i=1| 2£ 0. Therefore, there must
exist a constant s € N such that |[I'| = 0. From (12),
we have xs <k, then |[I'*| < |I'|. Hence |I'*| =0,
which completes the proof.

3.3. Sketch of proof of Proposition 3.1

We here give a sketch of the proof of Proposition 3.1, the
remaining details of (16) and (17) can be found in the
Appendix. For notational simplicity, let k 4 [«2!®] =
ny. From T% = @, k 4 [o|T¥|] < «, and (8), we have

m=k+ 2" <k+ [l <k, (13)
and (10) can be rewritten as
0™ < |0k =280, (14)
By (P.2), a sufficient condition of the above inequality is
2 2
| ®rmxrm ”2 < ”(D[‘k\[‘]z(k)xrk\rlz(k) ”2 (15)

Now, what remains is the proof of (15), which is based
on the analysis of the residual of OMP. First, by exploit-
ing Wielandt inequality and RIP, we construct a lower
bound for ||r™ ||%, that is,

713 > (1 — 8%)[|Dprmxrm |13 (16)

Next, by exploiting some properties of orthogonal pro-
jection matrix and RIP, we construct an upper bound
for |3,

I3 < (=8I Pp k. Xk 50 (17)

Lk kN L

From (16) and (17), it is easy to verify (15) holds.
Hence the remains is the proof of (16) and (17) (see
Appendices).
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4. Conclusion

In this paper, we analyse the number of iterations
required for OMP to exactly recover sparse signals.
Our analysis shows that OMP can recover any K-
sparse signals in [cK] iterations (¢ > —% In IT_‘S),
which is uniformly smaller than the one proposed in
Wang and Shim (2016). For example, to accurately
recover K-sparse signals, it has been shown in Wang
and Shim (2016) that OMP requires 30 K iterations with
831k < 27! while our result shows that OMP requires
only [16.8 K] iterations with §[;7 8] < 271 In practical
application, a large number of iterations often lead to
a high computational complexity. Our result provides
a theoretical basis for the reduction of the number of
iterations required for OMP.
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Appendices

Appendix 1. Proof of (16)

The proof of (16) is based on the Wielandt inequality (Wang
& Ip, 1999), which is presented in the following Lemma.

. . oy _ (AL A
Lemma A.1 (Wielandt inequality): Let A = ( A A;) be
an n-order positive-definite matrix with al, < A < bl,, (a >
0). Then we have

_1 b—a\’
AnAjTAn < b a Az. (A1)

We now proceed to the proof of (16). The conclusion holds
naturally if I'"* = . In the following, we prove that (16)

still holds under I'"' # ). Without loss of generality, we
assume that 7™ = {1,2,...,n1}, and 'l = {n; + 1,n; +
2,...,n1 + ny}, where n, = |[I'™|. Notice that

@F, Drm DE, Drm
o n n = ™ ™
q)T”l urm qDT 1urm (qylinl q)T"l chnl q)l““l . (AZ)

By (13), we have n; + n; < K + «. Furthermore, from the
monotonicity of the RIC and dx4« < 8, we have 8,44, <
Sk+x < §. It implies that

A = Iy < Phuyypm Prmurm < (14 8) Iy, (A3)
Since (A2), (A3), and Lemma A.1, we have
Ofon, Prm D = Dfny Doy (O, Dot ) Dy Py
< 820}, Drm. (A4)
Hence by (A4), it follows that
713 = [P @ xpm [|3
= X, oy Py @ xpm
= Xy Ofomy @rmxrm — Xfony ®fony Prm P xpm
> (1= 8%)[|Prmxrn 3.

This completes the proof.

Appendix 2. Proof of (17)

The proof of (17) is based on the following Lemma A.2,
which generalized the results of Wang and Shim (2016) to the
complex field.

Lemma A.2: Suppose X = (), and T be a nonempty subset of
Tk, the residual of OMP satisfies

1713 = 1@ pxpm 13 < Crar (P13 = 190 pxpm r113),
(A5)
175”1,,1”')(1 -

o) for any integer I' >

(
where Cry = exp(—
>k

Proof: Sincel <1, it follows that (I I3 < ||rl||§. Notice that
0 < Cryp < 1.Thusifl = lor || |3 — [|®pu pxpm rlI3 < 0,
then Lemma A.2 holds evidently. In the following, we assume
that I’ > land

1713 = 1@ i i 13 > 0. (A6)
It implies that
17113 = 1@ ey pxpe 13 = 1713 = 1D pxpm e 113 > 0,
i=0,1,...,10. (A7)
We later proved that the residual of OMP satisfies

412 2
1715 = 1P pe pxpi e I3

1-6 -1 :
|T"-tur (;2 2
<exp|—————= ) I”llz = I1®pkxrk II))
p( <1+61>|r|) 2R
(A8)

fori =114+ 1,...,I' — 1. Then (A5) can be obtained by (A8)
as follows,

I'y2 2
712 = 1Pk rXporllz

1-46 -1
[T ~1ur| r—
<exp (—m> (||r i3 - ||¢’rk\rxrk\r||§>

< 2(1 _5|TI/’1U1"|)
=P\ T areir
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I'—2)2 2
x (17213 = 1oy ey pI3)

<...

1-24
<exp|-—

|Tl’—lur|)(l/ - l)
A+ onIT|
x (I71 = I ®pirxpar3)

(A8) can be proved as follows. It is easy to check that P; 1 =

P, P3;. Thus
rtl = T:+1)’ PT1+1P iy = PT1+17’
Furthermore,
. (a
713 = 1753 = 17113 — IPF 713 = IPpin (13
(b) i 2 (@ 7’1, i
O P12 € [, i) P @ [, )1  (a9)
¢t,+1¢ti+1 14 6;

where (a), (b), (¢), (d) above‘can be obtained as follows: (a)
is from that fact that ||PT,Hr’||% + ”PTHITIH% = ||r‘||%; (b) is
due to t1 e T1; (¢) is because

(r")*p{,,-+1}r" = (" ¢pir1 (@1 ie)) TP
and (¢:§+1¢ti+1)+ = ; (d) is followed from the

definition of RIP. .
Now we construct a lower bound for |(r', @i+1) |2 below.
Notice that Pl Dpaxp =0forA C Thand T\ rkc Tk

T'. Thus we have

[Pyisnyr |13 =

+1 ¢t’+

= PJ‘y PT,CDTxT = PT,(CDFkka + (DT\I"kxT\l"k)

= P i kX, (A10)
From (A10), it follows that
I — P @\ pixpypil3
= |Ir' = Pr®rar + P @rogixparill3
= |I¥' = Pr®rar |3 = [Pu(®rixps — Prar)|3
< | ®pixpx — @rarll; = | Ppopxpaplls. (AlD)

Notice that Plr = ri. From (A11), we have
2Re(r’, Op\ pixp\7i) = 2Re(P%,~r", O\ ixpy\7i)
= 2Re(ri,P%‘id>r\for\Ti)
= 1713 + 1P @y iz gill3 = IF = Pr®pypixrrill3
= ||7’ ||2 + ||PTi<DI‘\TixF\Ti||2 - ||<brk\rxrk\r||%- (A12)
Hence by (A7) and (A12), we have

2Re(r, @ iy 1) = (17113 — 1@ poxp 12 > 0,

. (A13)
and T\ T* # 0.
Now we prove
IPR®rrixrrilly = (1= §riurpllemril3. (A1)

In fact, if i = 0, then T = @ and PT0 = I,,. From RIP, we
have

P30 @y roxpypo 13 = [ @rar 3 = (1= 8 llxrll3

= (1= 8our) Iy o 3-
For i # 0, we have

L 2
||PT,-CDF\T1'XF\T1‘ ||2
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— Pri®p pixp\7ill3
‘DT"(q)t;iq)T")Jrq)i;iq)I‘\T"xF\Ti ||%

= |\ rixpy i

= [|@p\ixXp\7i —
2

_ ) ) Xr\Ti
= H (CDF\TI CDT:) <—((D*id)Ti)+cb;id)F\Tixl"\Ti) 5
> (1 = iur) Ulxpy i ||%

+ 1@ D)t Py iy 7i13)

> (1= 8iur llxp 7ill3-

Then from (A12), (A14) and the arithmetic-geometric mean
inequality, it can be verified that

Re(ri, ‘br\Ti.xF\Ti)

> /1= 8riur ||xr‘\Ti||2\/||7‘i||§ - ||cbrk\rxrk\r||§-

(A15)

On the other hand, we have |(r), ;)| < |(r', p,i1)]| for T €

Q. Thus

Re(i’i, Dy pixp\ i) :Re<ri, Z xr¢r>

rel\T!

= <ri> Z xr¢r>
rel\T!
=| D x(rio)
rel\T!
< lxpyilh [, gisi)l. (A16)
. er\Ti”% i ..
Notice that T < |I'\ T*| <|I'|. Combining (A15)
\7i 12
and (A16), we obtain
(', gy 2
(1 =8 pior) Ixpy il
> RS2 (112 — 1@ e i - 13)
oy rill 7

(1 = d7iur))
Z -
T

This, together with (A9), implies

(U713 = 1@ repxrel3).  (A17)

— d7iur

[T E——
1+

(715 = 1P i pxpep113)-
(A18)

2
15 —

Hence (A18) can be rewritten as

i+1),2 2
I3 — P riyr Xk 2

1—367i )
|TiUT| ( in2 2
< (1= —==2) (1713 = 1w ok ||).
( (1+81)|F|> 2 PATTAr 2
(A19)

1=8riyr .
Leta = CE=INE ,then1 — a < exp(—a). From monotonicity

of the RIC, we can obtain that §;riyp| < 8710 fori</l —
1. Thus from (A19), we have
1715 — 1P rxpi 113
1— 8 .
|T'Ur| i2 2
< exp (= ioth) (1713 = I0pay ¥ 13)
( (1+61>|F|) R

1—8 -1 .
|T'-1ur| ( in2 2)
< - — ||® R
< exp( A+ 60T ) 7112 = 1Pk rxrm el
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fori=11+1,...,I' — 1. This completes the proof of (A8).

|
We now proceed to the proof of (17). Let kg = k and
Vi+i o
ki=k+ > HFM, i=1,2,.. L) +1— v
T=V+1
Let!' = kil =kiy and T =T} ; in (A5). Notice that k; —
kiog =% |F’;k +il1. Then it follows that

kin2 _ 2
Iz = Pk Xk N2

ki—1)2 2
< i -
< Crt ik (nr 13 ||<1>rk\rﬁk+ixrk\rﬁk+i||z) :

(A20)
where
k
c 0 =i M1l
k Skio1.ki =exp| -
Fuk+1 1 (1 + Sl)lrlljk-ki'

In the following, we construct an upper bound for
Crk ki ki Recall that @ > 4In2 > 2. Then from Appen-

Vg i

dix 2 in Wang and Shim (2016), we have

3 {%(2’ - 1)} < a2 -1

=1
By (P.1) and (A21), it follows that

L+t
kLo s1-v =k+ Y {Zﬂﬂ]ﬂ-‘

T=V+1

(A21)

L(k)+1 o
J— T J—
<k+ > [4 @ 1)}
=1
<k+[a2MR] -1
< k+ [a2!®]
= nj. (A22)

Notice that T¥ ¢ T* ¢ T, and Tk~ ¢ TR®+1-w for i =
1,2,...,L(k) + 1 — vt. From (13) and (A22), we obtain

Tk UTS Y < | TUTHON %) < ITUT"| < K +«.

Furthermore, from monotonicity of the RIC and §g4, < 6,
we have

1— 6k ki—1
Ty, UTH 1-6 1—
it Kie > . (A23)
14+46; 146 1446;
Hence,
k
c a _5\Tki’lul"fk+i\)|—%|ka+1'|1
vk okiook = €XP | T
rikic1 A+ 8IS

(1 —8)%Tk il
< exp _7:1“
A+ 8Tk

=(1-4)/2 (A24)

Together with (A20), it implies that

144
ki—1 12 2
Iz + 2 ”d)rk\rlu(kﬂxrk\f‘ﬁkﬂ 12,

(A25)

1—
ki 2
I3 = ——

for i=1,2,...,L(k) + 1 — v. Note that we only need to
H ki—12 > 2 o : ki—1112
consider |r-1]5 > ||q)rk\rlﬁk+ixrk\rlﬁk+i 5 since if ||r"-1]|5

2
< || ¢Fk\rfk+ixrk\rfk+i I3, (A25) holds from

) . 1-6 ) 146 )
7513 < (1rk1)3 = an"H 12 + an"ﬂ 112
1—-9§ )
< lI7%=1)13
1446

2
+ 2 ”q>rk\rxlfk+ixrk\r§k+;”2'
By substituting (7) into (A25), we further obtain

1-46
ki 2 ki—12
Iz = —— 1

O,L(k)—l)k—i ” q>

1+
+ % (A26)

kk  Xpk\pk |I§.
RN Y
From ka = f and (7), we have
k)2 1 2
I ||2 = ||Pqu)rerk||2
1L 2
= IPE @y oo 1B
2
= ||q>rk\r{§erk\r{§k 12
<ot (A27)

rhrk Xpark 13-
\ L(k) \ L(k)

; [ 2
Notice that 0 = =5 and lld)rk\rli(k)xrk\rli(k)||2 > 0, Then

by (A22), (A26), (A27), we obtain

7 )3 < ke 2

1—3§ L(k)+1—vy
(—) (3

2
1-8\"°
2
2
rk\rli(k)xrk\rk ”2)

L(k)
_ L(k)+1—vy
( ! 5) (o0

REE
2 =1

% O_L(k)—l)k—t ||q>

=\
(1t L(k”zl_”’“ 1—5\""
2 o 2

L(k)—vg— 2
x o L=k T)“q)l“k\l"’z(k)xl“k\l"k 15

Lk
5(1 —96)

— g2 A M) 2
- (1 8 2L(k)+17vk)”(D[‘k\rlz(k)xrk\rllj(k) ”2

<(1-=8)|® X 2.
( )l rk\rlz(k) rk\rlf(k)nz

Thus (17) holds. This completes the proof.
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