Taylor & Francis
-] i Taylor & Francis Group

STATISTICAL THEORY

AND Statistical Theory and Related Fields

RELATED FIELDS

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

A new result on recovery sparse signals using
orthogonal matching pursuit

Xueping Chen, lianzhong Liu & Jiandong Chen

To cite this article: Xueping Chen, Jianzhong Liu & Jiandong Chen (2022) A new result on
recovery sparse signals using orthogonal matching pursuit, Statistical Theory and Related Fields,
6:3, 220-226, DOI: 10.1080/24754269.2022.2048445

To link to this article: https://doi.org/10.1080/24754269.2022.2048445

8 © 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

@ Published online: 13 Mar 2022.

N
C)/ Submit your article to this journal &'

||I| Article views: 282

A
& View related articles (£

(&) view Crossmark data &'

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=tstf20


https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2022.2048445
https://doi.org/10.1080/24754269.2022.2048445
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2022.2048445
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2022.2048445
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2022.2048445&domain=pdf&date_stamp=2022-03-13
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2022.2048445&domain=pdf&date_stamp=2022-03-13

STATISTICAL THEORY AND RELATED FIELDS

5 2022,VOL. 6,NO. 3, 220-226

https://doi.org/10.1080/24754269.2022.2048445

Taylor & Francis
Taylor &Francis Group

8 OPEN ACCESS v. Check for updates

A new result on recovery sparse signals using orthogonal matching pursuit
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ABSTRACT

Orthogonal matching pursuit (OMP) algorithm is a classical greedy algorithm widely used in
compressed sensing. In this paper, by exploiting the Wielandt inequality and some properties
of orthogonal projection matrix, we obtained a new number of iterations required for the OMP
algorithm to perform exact recovery of sparse signals, which improves significantly upon the

latest results as we know.

1. Introduction

Orthogonal matching pursuit (OMP) has received
growing attention due to its simplicity and competi-
tive reconstruction performance recently. Consider the
following compressed linear model:

y= X 1)
where x C" is a K-sparse signal (i.e., X ¢ =<K),
= [01,92,...,0n] C™" is a known measure-

ment matrix with m  nandy C™ is the obser-
vation signal. It has been demonstrated that under
some appropriate conditions on , OMP can reli-
ably recover the signal x based on a set of compres-
sive observations y by iteratively identifying the sup-
port of the sparse signal according to the maximum
correlation between columns of measurement matrix
and the current residual. See Table 1 for a detailed
description of the OMP algorithm (Cai & Wang, 2011;
Chang & Wu, 2014; Tropp & Gilbert, 2007; Wang
& Shim, 2016; Wen et al., 2020, 2017; Wu et al., 2013).
In Table 1, supp(X) is the set of nonzero positions in x.
rk denotes the residual after the kth iteration of OMP
and T the estimated support set within kth iteration
of OMP.

In compressed sensing, a commonly used frame-
work for analysing the recovery performance is the
restricted isometry property (RIP) (Cai et al., 2010;
Candes & Tao, 2005; Chang & Wu, 2014). A matrix

is said to satisfy the RIP of order K if there exists a
constantd [0, 1) such that

(1-3) x3< x2<(+3) x5 (2)
for all K-sparse signal x. In particular, the minimum
of all constants & satisfying (2) is called the K-order
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Restricted Isometry Constant (RIC) and denoted by 3k .
Over the years, many RIP-based conditions have been
proposed to guarantee exact recovery of any K-sparse
signals via OMP in K iterations. It has been _shown
in Davenport and Wakin (2010) that x+1 < (3 K)™!
is su cient for OMP to recover any K-sparse signals
x in K iterations. The su  cient reconstruction gondi-
tion of OMP is then improved to dk+1 < (1 +2 K)™!
by Huang anq/Zhu (2011). Mo (2015) demonstrated
that 8x+1 < ( K+ 1)~ is asharp condition for exact
recovery of any K-sparse signal with OMP in K itera-
tions. Our recent work Liu et al. (2017) provides some
su cient conditions for recovering restricted classes of
K-sparse signals with a more relaxed bound on RIC.

Obviously, running fewer number of iterations of
OMP o ers many bene tsand many e orts have been
made to improve the condition (Cai et al., 2009; Chang
& Wu, 2014; Li & Wen, 2019; Wen et al., 2017; Wu et al.,
2013). In Livshitz (2012), Livshitz showed that with
proper choices of a and B (a 2% 10°,f 1079),
OMP accurately reconstructs K-sparse signals in ak1-2
iterations under d,x12 = BK%2, It has been shown
by Zhang (2011) that OMP recovers any K-sparse
signal in 30K iterations under 831k < 371. Livshitz
and Temlyakov (2014) considered random sparse sig-
nals and showed that with high probability, these signals
can be recovered within (1 + )K iterations of OMP
forany > 0.Recently, Wang and Shim (2016) showed
that if

4(1+)9) 1 d

=5 " 2T 2wm 0 O

and dp(c+1)k] = 9, OMP can recover the K-sparse sig-
nalsin cK iterations. It is the best result as we know
in the literature.
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Table 1. Orthogonal matching pursuit.

Input: ,Y, and maximum iteration number Kmax
Initialize: k=0r0=y710=
while k < Kmax, do
k=k+1,
th= arg maxy<izn | rk_lv‘Pi [
Tk = Tk=1 {tk},
Xk = argmin, cnguopy ¢ Y= U 2
k=y— x
Output; Tkand xk

In this paper, we present a new result on how many
iterations of OMP would be enough to guarantee exact
recovery of sparse signals:

- _4(1 +91)

n 1-9%
1-3 2 '

which improves signi cantly upon the results proposed
in Wang and Shim (2016).

We rstgive some notation. LetN = {0,1,2,...},N*
={1,2,..}and ,={1,2,...,n}.[]and - denote

oor and ceiling function, respectively. For any two

sets and ,let \ ={i:i /7 }and | |
is the cardinality of . For nand = |
denotes the submatrix of  that contains only the
columns indexed by and x denotes the subvec-
tor of x that contains only the entries indexed by
and span( ) represents the span of columns in
LetP = ( ) stand for an orthogonal
projection matrix ontospan( ), where isthe con-
jugate transpose of the matrix , and ( )t is
Moore—Penrose pseudo inverse of e
P isan orthogonal projection matrix onto the orthog-
onal complement of span( ), where I, denotes the
identity matrix. In particular, if = , then x is a
0-by-1 empty vector, is an m-by-0 empty matrix,

X is an m-by-1 zero matrix and span( ) := {0}.
For further details on empty matrices, see, e.g., Bern-
stein (2005).

2. Main results

For notational simplicity, we denote ¥ = T\ Tk,

Theorem 2.1: Foranyé (0,1), let
_ _4(1 + 61) 1-9%
=TT M

and kK = [aK]. If the measurement matrix  in (1)
satis es the RIP of order K + Kk and dk+x < 9, then
| ¥|=0.

Remark 2.1 (Performance of Theorem 2.1): From
Theorem 2.1, if

_4+dy) 1-3

1-% 2 @)
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Figure 1. Performance of Theorem 2.1.

and dp(c+1)k] =< 9, then OMP perfectly recovers the sig-
nal x from the measurementsy =  x in [cK] iteration.
In the following, we compare the lower bound in (4)
with the result of Wang and Shim (2016), which has
been showed in (3). We rst establish an upper bound
for the ratio of (4) to (3) by using monotonicity property
of the RIC (01 < dk+k) as

R@G) :=

It is easy to check that R(d) <1 for 0 <d <1,
which means the lower bound of ¢ in this paper is
uniformly smaller than the one proposed in Wang
and Shim (2016). See Figure 1, for example, we have
R(3™1) =057 and R(271) = 0.58. For 0.015 <3 <
0.993, we have 0.57 < R(d) < 0.8. That is, nearly 98%
of the values of the bounds proposed in this paper is
less than 0.8 times of the one in (3).

Remark 2.2 (Main di erences with the previous
work): Our methods have several key distinctions
in construction of the more e cient lower and
upper bounds of resident in OMP. First, Wang
and Shim (2016) obtained the upper bound of residual
in OMP algorithm based on the following fundamental
set:

{x 2: k.

We modi ed the above set to

{ x 2 K,

which leads to a more e cient upper bound of
resident in OMP algorithm (see inequality (17) of
Section 3.3). Second, Livshitz and Temlyakov (2014),
Wang and Shim (2016), and Zhang (2011) only use
RIP to obtain the lower bound of resident. However, in
this paper, we not only used RIP, but also utilized the
Wielandt inequality (Wang & Ip, 1999) to derive more
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e cient lower bound of resident (see inequality (16) of
Section 3.3). The details can be found in the following
sections.

3. Proof of the main theorem
3.1. Preliminaries

In the following, we introduce the subset X of K based
on the magnitude of elements in the set { x 2

Kl Fork,T Nand K= | let
t={ 1 l=2" -1} (%)
fE)y=min{ o X o BN

It is clear that +
T N

t+1, and (1) = f(t + 1) with

De nition 3.1: If subset ‘T< in ¢ satis es: (a)
o Xk 2=f(1) and (b) | ¥|=max{| |:
&k Xk 2=f(0)}then Xissaidtobe

the — k — T characteristic set of x.

It is easy to verify that the characteristic set X has
the following properties:

(P1) | ¥|=2t—1,fort N;

(P2) If K and X 2< K\ kX Ky k2,
then| |<| ¥ —2T;
k
(P3) 0= §l<| ¥|=---,and ;, = ¥, =

= K with} =1+ [log,| ¥[].

In fact, (P1) is obvious as X 1. For (P2),

since K. can be rewritten as = K\ ( X\
). From (6) and kKX ey k2 = f(t), we know
that if X < A KX Ky k 2, then kn o/

. Hence | K\ |=| ¥ =] |=2". Thatis | | <
| K| —2T. For (P3), if f(t) = f(T + 1), it is obvious
that | 'T‘| =| {‘+1| based on De nition 3.1. If f(T) >
f(t + 1), then

Xk, 2<

T+1

ky K k\lT<X k\ k2.

+1

From (P.2),
| KI=1 %al=1 %\ Xal=| | -2n

Thus| X,,| =20 From(P1),| K| =2t —1<]| k4|
Otherwise, it is easy to verify that | K| <2k —1<
2T —1 for Jy < 1. Thus we have X = K based on
De nition 3.1.

Fromthefact| ¢ =0,] | = ¥, and (P3),there
exists 0w <J—1Lsuchthat §=...= X = |
and ¥ ., = .Thenitfollows from (P3) that \ ,; =

Jd=12,....

Leto = (1—28)"% thuso > 1.ltcanbeveri edthat

there exists the maximum value of o' KXk k Z

over i N. Since KX &y k 3 =0 based on the
I I

factthat k= Xfrom (P3) fori = Ji. Hence, we give
the following de nition.

De nition 3.2: Let K= | integer L(k) is said to be
the k — o character of x if it satis es the following
condition:

gt®

Kk Xy

2 = maxg'
i0) i N

2
k kX k 9.
LG 2

By De nition 3.2, it is easy to check that

X ky k EZO_L(k) Xk >0

“\ LK

k
L)

and

o kX 2i N (7)

k
L(k) K\ L(k)

Recallingthat  « kX « k 3 =0fori=Jando >
1, we have vy < L(k) < Jx — 1. Thus

L0 <2l < K, (8)

Based on k — ¢ character L(k), we de ne the following
integer sequence {k;} as

0 fori =0,
for| X-1] =0, 9
Ki—1 + [a2-&i-D]  for| Ki-1| = 0.

Obviously, the sequence {kj} is monotonically non-
decreasing, i.e., Ko <K; <---.

3.2. Mainidea

Inspired by Wang and Shim (2016) and Zhang (2011),
we show that after k iterations, OMP can select a sub-
stantial amount of indices in X for a speci ed number
of additional iterations, and the rate of the number of
additional iterations to the number of chosen indices is
upper bounded by the constant a. More precisely, we
give the following important proposition, which is the
basis of Theorem 2.1.

Proposition 3.1: Suppose X =  k+[a] ¥|] <k,

and dk+x < 9, then we have

LK)
| k+[a2 ]l < | kl _ 2L(k), (10)
where L(K) is the k — ¢ character of x.

Now, we can prove Theorem 2.1 based on Proposi-
tion 3.1. The proof can be divided into two steps.
Step 1: We  rst prove that

Ki+[o] “1<k, i N (11)

Obviously, (11) holds when i = 0since kg + [a] 9] =
[a] °[] = [aK] = k. In the following, we assume that



Ki-1 + [a] 1] <k. If | 42| =0, then | %] =0
from Ki Ki-1 It follows that

Ki + [a] ‘] = ki = ki1 +[a] ] =k

If | Ki-1] =0, by substituting k = ki—; into (10), we
have

| K= Ki—1+[G2L(Ki‘1)]| <| K1) — ob(ki-1)
Thus
ki + [a] ]
= [+ ol 9]

< [Ki—1 + o2t (ki-1) 4 a(| -1 — 2L(Ki—l))]
= k-1 + [a] 7]

=K.

This completes the proof of (11).
Step 2: We prove that there exists a constant s N
such that| *| = 0. On one hand, from (11) we have

Ki<ki+[a] “]]<k, i N. (12)

Thus {kj} is a monotonically non-decreasing and
bounded integer sequence. On the other hand, it is clear
thata = 4In2 > 2. Then from (9), one can easily show
that kj—1 < k; for | ¥i-1] = 0. Therefore, there must
exist a constant s N such that | ¥| = 0. From (12),
we have ks <K, then | X| <| *|. Hence | ¥| =0,
which completes the proof.

3.3. Sketch of proof of Proposition 3.1

We here give a sketch of the proof of Proposition 3.1, the
remaining details of (16) and (17) can be found in the
Appendix. For notational simplicity, let k + [a2"®] =

ni.From X=  k+[a] ¥|] <k, and (8), we have
n =k+[02"®] <k +[a] ¥ =k, (13)
and (10) can be rewritten as
| <] -2t (14)

By (P.2),asu cient condition of the above inequality is

nX 5 < (15)

A g
Now, what remains is the proof of (15), which is based
on the analysis of the residual of OMP. First, by exploit-
ing Wielandt inequality and RIP, we construct a lower

bound for " 3, that is,

M 2>1-8%) mxm 3 (16)
Next, by exploiting some properties of orthogonal pro-
jection matrix and RIP, we construct an upper bound
for rm 2,

M i< (1-8) (17)

AR :
From (16) and (17), it is easy to verify (15) holds.
Hence the remains is the proof of (16) and (17) (see
Appendices).

STATISTICAL THEORY AND RELATED FIELDS @ 223

4. Conclusion

In this paper, we analyse the number of iterations
required for OMP to exactly recover sparse signals.
Our analysis shows that OMP can recover any K-
sparse signals in [cK] iterations (c = —ﬂ%z In 17_5),
which is uniformly smaller than the one proposed in
Wang and Shim (2016). For example, to accurately
recover K-sparse signals, it has been shown in Wang
and Shim (2016) that OMP requires 30 K iterations with
331k < 2”1 while our result shows that OMP requires
only [16.8 K] iterations with d[17. gk} < 271, In practical
application, a large number of iterations often lead to
a high computational complexity. Our result provides
a theoretical basis for the reduction of the number of
iterations required for OMP.
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Appendices

Appendix 1. Proof of (16)
The proof of (16) is based on the Wielandt inequality (Wang
& Ip, 1999), which is presented in the following Lemma.

Lemma A.1 (Wielandt inequality): Let A= 7122 be

an n-order positive-de nite matrix with al, < A < bl,, (a >
0). Then we have

1 b—a 2
ApAT A < b¥a Ag. (A1)

We now proceed to the proof of (16). The conclusion holds
naturally if ™ = . In the following, we prove that (16)

still holds under ™ = . Without loss of generality, we
assume that T ={1,2,...,ni}, and ™ ={n; +1,n; +
2,...,n1 +ny}, where n, = | M|. Notice that

=TT A

nq np TN
T np TN ng n

By (13), we have n; + ny < K + K. Furthermore, from the
monotonicity of the RIC and dk+x < 8, we have dp,+n, <
Ok+k < 0. Itimplies that

(1 - 6)|n1+n2 = T nm T M = (1 + 6)|n1+n2. (A3)

Since (A2), (A3), and Lemma A.1, we have

P m= (o )T o m
< mo N (A4)
Hence by (A4), it follows that
r %: Py mXm %
=Xn  mPpy omXm
=Xn 0 mXn—Xn nPm o mXm
= (1—52) ng X ng %

This completes the proof.

Appendix 2. Proof of (17)

The proof of (17) is based on the following Lemma A.2,
which generalized the results of Wang and Shim (2016) to the
complex eld.

LemmaA.2: Suppose K= ,and beanonempty subset of
K the residual of OMP satis es
M2— WXk 3=C u(rd— Wxun 2
(A5)
(=31 N0-D .
where C j; = exp(——1 | ) for any integer | =

I+l |
I =k

Proof: Sincel <1, itfollowsthat r' 3 < r' 2 Notice that
0<C jy <LThusifl =lor r' 3— XK 3=0,
then Lemma A.2 holds evidently. In the following, we assume
that! > land

3= wxn 53>0 (A6)
It implies that
I'i%_ ky X ky %2 |'I %_ ky X ky §>O,
i=01,...,1. (A7)
We later proved that the residual of OMP satis es
I'i+l g_ ky X ky %
1—3- :
-t | i2 2
< ex - r - ky X k ]
p @+ | 2 A Xk 2
(A8)
fori=11+1,...,1 —1. Then (A5) can be obtained by (A8)
as follows,
r' g_ ky X ky %
1—93i-
-t | -1 2
sexp ———— —— r — K X k
ST AT 2Tt
20 =311 )
<exp Sy L
(1+0)] |
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(A8) can be proved as follows. Itis easy to check that P, =

Pis1Pyi- Thus
ri+1 = PTi+1y = I:)Ti+1 PTiy = PTi+1 ri-
Furthermore,
i2— 2= 2 p 2@ pr2
® i e M ON e
<) P{ti+1}l’| %(2 [ '@ | o | r', o+ | . (A9)

(pti+1(pti"':l 1+ 6l

where (a), (b), (c), (d) above can be obtained as follows: (a)
is from that fact that P_i.,r' §+ Prisar' 3= ' 2 (b) s
duetot*1 T*1: (c) is because

P{ti+1}l‘i % = (I’i) P{ti+1}l’i = (I’i) (pti+1((pti+1(pti+1)+(Pti+1ri

and ((pti+1(pti+1)+ = (P‘i+11(|)ti+1

de nition of RIP. _
Now we construct a lower bound for | r!, @i+ |? below.
NoticethatP; x = O0for TlandT\ kK TK

Ti. Thus we have

; (d) is followed from the

r'= 1Y =Pri TXT =Phi( WXk KXy k)

=P Xk (A10)
From (A10), it follows that
M—Pr  \TX T 5
= ri - PTi X + PTi ATiX ATi 2
= =Py x 3= Pu( wXk— Xx)3
< KX k— X %: Ky X Ky % (A11)

Notice that P_;r' = r'. From (A11), we have

2Re ri, \TIX \Ti — 2Re PTiri, \TiX \Ti
=2Re r',Pri \iX \i
— 24 p. _ S _ 2
r2 Ti \TIX\Ti 2 T Ti \TIX\Ti 2
= ri %"‘ PTi \TIX \Ti g_ ky X ky % (A12)
Hence by (A7) and (A12), we have
2Re ri, \TIX \Ti = ri %_ ky X ky ) §>O,
_ (A13)
and \T'=
Now we prove
Pri X AT 52 =8m ) X1 5 (Al4)

In fact, if i = 0, then TO =
have

and PTO = Iym. From RIP, we
Pro \TOX \T0 3= X 5=(@1-8 ) x 3
=130 ) X\ 3
For i = 0, we have

2
Pri \miX\Ti 2
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= \TX AT —Pri XT3
= wixar— 1 n T n XT3
— _ _ X \Ti ?
B N ™= o™ o ATXaT o,
=187 DX \7i 5

+ (o o mXam )
=(L—8ri ) X\7i 3

Then from (A12), (A14) and the arithmetic-geometric mean
inequality, it can be veri ed that

1 . .
Re r', \TIX \Ti

k\ X ky\ %
(A15)

= 1_6|Ti |X\Ti2 rig—

On the other hand, we have | r', @ | <| ', @i+ | for T
n. Thus
Rer, \riX\ri =Re r, Xt Qr
T \T
r, Xt @t
T \Ti

IA

= X I @
T \Ti

< X \7i 1| Qe |. (A16)

o2 .
Notice that — "3 <| \Ti<| |. Combining (A15)
\T!I 2

and (A16), we obtain

|I’i,(pti+1 |2
A=87i |) X \1i 3
= lx\lT_z (r3— WXk 3
1
A=dm ),
2$( Fi—  wXa 2 (AD)

This, together with (A9), implies

. . 1—290i :
p2_ 2 (LI I S X 2y
2 2 (1 + 51)| |( 2 ky, ky 2)
(A18)
Hence (A18) can be rewritten as
ri"'l g_ ky X ky %
1- 6|Ti | f
s 1-—— 1 f2Z_ X 2
RN 2( )
Al19
1-8 i
= or | — — ici
Leta = OTI)II then 1 — a < exp(—a). From monotonicity

ofthe RIC, we can obtain that djri | <o | fori<I —
1. Thus from (A19), we have

M 2— X 3
< exp — 1- 5|Ti ! ri 2 ky X ky 2
(1+31)] |
ex e rl X
U Tawsyry DT w2
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fori=11+1,...,1 —1. This completes the proof of (A8).

We now proceed to the proof of (17). Let ko = k and
Vg+i
ki=k+

T=v+1

i=12,

a
-1 5, LK) +1— vy

Let| = ki, | = ki— and Vk+, in (A5). Notice that kj —

kict = §1 ¥l - Thenit follows that

ki 2 2
ro - X
27 Xk 2
ki—1 2 2
< i—1 —
=Cx vk+| Ki—1,ki r 2 A\ \5k+|x A\ ‘5k+' 2
(A20)
where
. (1_5|Tki*1 I|) 4| Vk+||
=exp -—
vk+| Ki—1,ki (1 + 51)| vk+i|

In the following, we construct an upper bound for
C k ko k- Recall that a =4In2 = 2. Then from Appen-

Vg HT

dix 2 in Wang and Shim (2016), we have
[

a
Z(2' -1) = o2t -1 (A21)
=1
By (P.1) and (A21), it follows that
L(k)+1
KL()+1-v, = K+ Zl b
T=w+1
L+
<k+ —(2'—-1)
4
=1
<k+ oa2t® —1
< k+ [a2"®]
=n. (A22)
Notice that & K T, and TM 1 TK®+1-w for j =

1,2,...,L(K) + 1 — v. From (13) and (A22), we obtain

| Vet Tki—ll < |T TkL(k)+1—vk| < |T Tn1| <K +K.

Furthermore, from monotonicity of the RIC and dx+x <9,
we have

) ki—1 — -
| S T I>l 5K+K2 1 6. (A23)
1+0; 1+ 1+
Hence,
(1 - 6|Tki—1 |) 4| Vk+||
C « =exp —
Vk+' Ki—1, kl (1 + 51)' \}k+l
1=8)%1 i
(1 =+ 61)' Vk+i|
=(1-19)/2. (A24)

Together with (A20), it implies that
1+6

. 1-3
ki 2 Ki- 2 2
IS AT e E
(A25)
fori=1,2,...,L(k) + 1 — vk Note that we only need to
H ki-1 2 2 i H ki—1 2
consider r-t 5= ok X Ko 2 since if r-t 5
< kX 5k+i 2, (A25) holds from
M2 ko 2170 ko2 10 i
2 2 272
S 1_5 rkifl 2
2
T A\ \ljk+|X A \ljk+| z
By substituting (7) into (A25), we further obtain
. 1-3
rki 2 < — rki-1 2
1+3 L@
+ k=1 2.
(o) ky k ) k\ Ko 2 (A26)
From ¥ = and (7), we have
2= P, kX« }
= PTk Ky 5kX K\ 5k %
2
= ky ‘l}kX ky ‘l’(k 2
< L0k 2
=0 X 2 (A27)
Notice that 0 = 2z and 4 k X i k2 >0, Then
L(k) L(k)
by (A22), (A26), (A27), we obtain
n %S rkL(k)+1—vk g
1—§ LO+1-v <
= — r
5 (r 3
1+ L(K)+1-v 5 -1
2 =1 2
L(k)—vx—T 2
o K\ lE(k) K\ L(k) 2)
—5 LK+1-v
< 179 (6100w
2
145 SO g5 T
=1 2
L(K)—vk—T 2
=0 )Ny 2

3(1—73)
(1 _x2 _ 2
=(1-23 LR +1— vk) ky t(k)x N\ Ky 2
<(1—=08%) o«

L(k)
Thus (17) holds. This completes the proof.
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