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ABSTRACT
In this paper, we study optimal model averaging estimators of regression coefficients in a multi-
nomial logit model, which is commonly used in many scientific fields. A Kullback–Leibler (KL)
loss-based weight choice criterion is developed to determine averaging weights. Under some
regularity conditions, we prove that the resulting model averaging estimators are asymptoti-
cally optimal. When the true model is one of the candidate models, the averaged estimators are
consistent. Simulation studies suggest the superiority of the proposed method over commonly
used model selection criterions, model averaging methods, as well as some other related meth-
ods in terms of the KL loss andmean squared forecast error. Finally, the website phishing data is
used to illustrate the proposed method.
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1. Introduction

Model selection is a traditional data analysis method-
ology. By minimizing a model selection criterion, such
as Akaike information criterion (AIC) (Akaike, 1973),
Bayesian information criterion (BIC) (Schwarz, 1978)
and Mallow’s Cp (Mallows, 1973), one model can be
chosen from a number of candidate models. After that,
one can make statistical inferences under the selected
model. In this progress, we ignore the additional uncer-
tainty or even bias introduced by the model selec-
tion produce, and thus often underreport the variance
of inferences, as discussed in H. Wang et al. (2009).
Instead of focusing on one model, the model averag-
ing approach considers a series of candidate models
and gives higher weights to the better models. It is
an integrated progress that avoids ignoring the uncer-
tainty introduced by themodel selection procedure and
reduces the risk in regression estimations.

Model averaging can be classified as Bayesian model
averaging (BMA) and Frequentist model averaging
(FMA). Compared with the FMA approach, there has
been an enormous literature about the BMA method,
See Hoeting et al. (1999) for a comprehensive review.
Unlike the BMA approach which considers the model
uncertainty by giving a prior probability to each candi-
date model, FMA approach does not require priors and
the corresponding estimators are totally determined
by the data itself. Therefore, the current studies pay
more attention to the FMA approach in statistics and
econometrics.

In recent years, optimal model averaging meth-
ods have received a substantial amount of interests.

Hansen (2007) proposed a Mallows model averaging
(MMA)method for linear regressionmodels with inde-
pendent and homoscedastic errors. He developed its
asymptotic optimality for a class of nested models by
constraining the model weights in a special discrete
set. A. T. Wan et al. (2010) provided a more flexi-
ble theoretical framework for the MMA which kept
its asymptotic optimality for continuous weights and
non-nested models. Hansen and Racine (2012), Liu
andOkui (2013) developed a jackknifemodel averaging
(JMA)method and heteroscedasticity-robust Cp model
averaging (HRCp) for the linear regression with inde-
pendent and heteroscedastic errors, respectively. Zhang
et al. (2013) broadened the JMA to the linear regression
with dependent errors. Cheng et al. (2015) provided
a feasible autocovariance-corrected MMA method to
select weights across generalized least squares for
the linear regression with time series errors. Zhu
et al. (2018) proposed the MMA for multivariate mul-
tiple regression models.

Hansen’s approach and the subsequent extensions
listed above mainly focus on linear models. Recently,
some optimal model averaging literatures for nonlin-
ear models have also been developed, including opti-
mal model averaging criterion for partially linear mod-
els (Zhang & Wang, 2019), quantile regressions (Lu
& Su, 2015), generalized linear models and general-
ized linear mixed-effects models (Zhang et al., 2016),
varying coefficient models (Li et al., 2018), varying-
coefficients partially linear models (Zhu et al., 2019),
spatial autoregressive models (Zhang & Yu, 2018), and
others. All of these methods are asymptotically optimal
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in the sense of achieving the lowest loss in the large sam-
ple case. To the best of our knowledge, there are few
optimal averaging estimations for a multinomial logit
model that allows all candidate models to be possibly
misspecified. The main contribution of this paper is to
fill this gap.

The multinomial logit model is widely used in mar-
keting research (Guadagni & Little, 1983), risk anal-
ysis (Bayaga, 2010), credit ratings (Ederington, 1985)
and other fields including categorical data. A. T. Wan
et al. (2014) developed the ‘approximately optimal’ (A-
opt) method for the multinomial logit model under a
local misspecification model assumption but did not
establish asymptotic optimality of the resulting model
averaging estimator. Besides, there have been many
debates concerning the realism of the local misspec-
ification assumption, e.g., Raftery and Zheng (2003).
After that, S. Zhao et al. (2019) proposed M-fold cross-
validation (MCV) criterion for the multinomial logit
model and yielded forecasting superior to the strat-
egy proposed by A. T. Wan et al. (2014). Then, its
asymptotic optimality is proved for the dimension of
covariates being fixed.

These two papers formultinomial logitmodels listed
above both concerned a squared estimation error-based
risk. Different from squared errors, the KL loss was
produced to measure the closeness between the model
and the true data generating process. Then, there are
amounts of criterion developed from the KL loss, such
as Generalised information criteria (GIC) (Konishi
&Kitagawa, 1996), Kullback–Leibler information crite-
ria (KIC) (Cavanaugh, 1999) and an improved version
of a criterion based on the Akaike information crite-
rion (AICc) (Hurvich et al., 1998). In addition, Zhang
et al. (2015) clarified that the model averaging methods
based on the KL loss yield better forecasts than these
model averaging approaches in terms of squared errors
under linear regressions. Motivated by these facts, to
propose a novel model averaging method based on the
KL loss seems to be potentially interesting. Our sim-
ulation study demonstrates that the model averaging
method based on the KL loss has strong competitive
advantages than the model averaging strategy by con-
sidering the squared estimation error for the multino-
mial logit model.

In order to develop an optimal model averaging
method for the multinomial logit model, the weights
are obtained through minimizing the KL loss. That
is, we use a plug-in estimator of the KL loss plus a
penalty term as the weight choice criterion, which is
equivalent to penalizing the negative log-likelihood. It
is interesting to note that this criterion reduces to the
Mahalanobis Mallows criterion of Zhu et al. (2018)
where they assume that the distribution of multi-
ple responses is multivariate normal. The asymptotic
optimality based on the KL loss of the proposed
method is built on the consistency of estimators in

misspecified models which is more flexible than the
above-mentioned local misspecification assumption.
Moreover, the asymptotic optimality will be established
for the dimension of covariates being either fixed or
diverging.

This article is the first study that proposes optimal
model averaging estimation formultinomial logit mod-
els based on theKL loss.When the number of candidate
models is small, the corresponding numerically solu-
tions obtained are nearly instantaneous. If the number
of candidate models is large, the computational bur-
den of our model averaging procedure will be heavy. In
this case, a model screening step prior to model aver-
aging is desirable. That is, we use penalized regression
with LASSO (Friedman et al., 2010) to prepare candi-
datemodels. Different tuning parametersmay results in
differentmodels, whichwill be included in our resulting
candidate models. Using the website phishing data, we
demonstrate the superiority of our proposed method.

Our work is related to Zhang et al. (2016), which
developed the model averaging method for univariate
generalized linear models. We differ from this study by
establishing the asymptotic optimality based on some
original conditions, while they prove the asymptotic
optimality by assuming some conclusions are valid.
Moreover, we discuss the case when the true model is
one of the candidate models and prove that the model
averaging estimators based on our weight choice crite-
rion are consistent.

The remainder of this article is organized as fol-
lows. In Section 2, we first describe the multinomial
logit model. Then, we introduce the model averag-
ing estimation for the multinomial logit model and
propose a weight choice criterion by considering the
KL loss. The asymptotic optimality of the proposed
method and the estimation consistency are discussed
in Sections 3 and 4, respectively. Sections 5 and 6
present the numerical results through various simu-
lations and a real data example, respectively. Techni-
cal proofs of the main results are presented in the
Appendix.

2. Model framework and weight choice

2.1. Multinomial logit model

Consider a general discrete choice model with n inde-
pendent individuals and d nominal alternatives. And
yi = j means individual i selects alternative j. We use
a multinomial logit regression to describe the discrete
choice model (A. T. Wan et al., 2014). The correspond-
ing assumption is that the log odds of category j rel-
ative to the reference category (without losing gener-
ality, we regard alternative d as reference) are deter-
mined by a linear combination of regressors. Thus, the
choice probabilities for the ith individual can then be
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expressed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f (yi = j |Xi)

= exp(Xiβ j)

1+∑d−1
j=1 exp(Xiβ j)

, for j = 1, . . . , (d − 1),

f (yi = d |Xi)

= 1
1+∑d−1

j=1 exp(Xiβ j)
,

(1)

where X is an n × k covariate matrix with full column
rank, Xi is constructed from the ith row of X, and β j is
an unknown parameter vector. We first assume k to be
fixed and discuss the diverging situation in Section 3.
Formula (1) can be rewritten as an exponential family
form.

f (yi | θ i,Xi) = exp
{
T(yi)Tθ i − b(θ i)

}
, i = 1, . . . , n,

(2)

where θ i = (θi1, . . . , θi(d−1))
T is a parameter vector,

with the canonical parameter θij connecting the param-
eters β j and the k-dimension covariate vector in
the form θij = Xiβ j. And θ i = (Id−1 ⊗ Xi)β , where
⊗ is a Kronecker product, Id−1 is a (d − 1) × (d −
1) identity matrix, and β = (βT

1 , . . . ,β
T
d−1)

T, which
is a k(d − 1) × 1 parameter vector. Besides, b(θ i) =
log(

∑d−1
j=1 exp(θij) + 1) is a vector-valued function,

T(y) = (I{y=1}, . . . , I{y=d−1})T, and I{·} is an indicator
function.

2.2. Model averaging estimator

We denote a set of S candidate modelsM1, . . . ,MS by

Ms : f (yi | θ i{βs},X(s),i)

= exp
{
T(yi)T(Id−1 ⊗ X(s),i)βs

− b
(
(Id−1 ⊗ X(s),i)βs

) }
, (3)

where S is fixed, and X(s) is an n × ks matrix contain-
ing ks columns of X with full column rank, whose rows
areX(s),1, . . . ,X(s),n. Under the sth candidatemodel, the
maximum-likelihood estimator of the regression coef-
ficients is β̂s. And let β̂s ∈ R(d−1)×ks be the subvector
containing estimators in β̂(s) ∈ R(d−1)×k. Note that the
rest components of β̂(s) are restricted to be zeros. Let
θ0i be the true value of θ i. And θ0i is not required that
there exists a β0 so that θ0i = (Id−1 ⊗ Xi)β0. Thus,
each of the candidate models can be misspecified. After
their maximum-likelihood estimators are obtained, we
need to determine the weight of each candidate model.
Let ω = (w1, . . . ,wS) be a weight vector in the unit
simplex of RS : H = {ω ∈ [0, 1]S,

∑S
s=1 ws = 1}. Then

the model averaging estimator of β̂(ω) is β̂(ω) =∑S
s=1 wsβ̂(s).
Let Y = (T(y1), . . . ,T(yn))T, U = E(Y) be n ×

(d − 1)matrices,� = (θ1, . . . , θn)T be an n × (d − 1)

parametermatrix and�0 = (θ01, . . . , θ0n)T be the true
value of �. We put the model estimator in vector form
by using the vectoring operation Vec(·), which creates a
column vector by stacking the column vectors of below
one another. Then, the model averaging estimator can
be expressed as

Vec(�T{β̂(ω)}) = Zβ̂(ω), (4)

where Z = ((Id−1 ⊗ X1)
T, . . . , (Id−1 ⊗ Xn)

T)T, which
is an n(d − 1) × k(d − 1) matrix.

2.3. KL loss-basedweight choice criterion

For linear models, the weight choice criterion is based
on squared prediction error. In this paper, we use theKL
divergence as a replacement for the squared prediction
error to establish the asymptotic optimality. TheKL loss
of �{β̂(ω)} is

KL(ω) = 2
n∑

i=1
EY∗{log{f (Y∗ | �0)}

− log(f [Y∗ | �{β̂(ω)}])}
= 2B{β̂(ω)} − 2Vec(UT)T Vec(�T{β̂(ω)})

− 2B0 + 2Vec(UT)T Vec(�T
0 )

= 2J(ω) − 2B0 + 2Vec(UT)T Vec(�T
0 ),

where Y∗ = U + �∗ is another realization from
f (Y∗ | �0),�∗ is independent of�,� = Y − U , B0 =∑n

i=1 b(θ0i), J(ω) = B{β̂(ω)} − Vec(UT)T Vec�T

{β̂(ω)}, and B{β̂(ω)} = ∑n
i=1 b(θ i{β̂(ω)}).

Because of the relationship between J(ω) andKL(ω),
we can obtain ω to minimize J(ω) instead of KL(ω).
In practice, minimizing J(ω) is infeasible because
the value of U is unknown. A intuition idea is
that we can plug Y into J(ω) instead of U . That
is, we can get ω by minimizing J∗(ω) = B{β̂(ω)} −
Vec(YT)T Vec(�T{β̂(ω)}). But, this progress will lead
to overfitting. Motivated by that J∗(ω) equals the corre-
sponding negative log-likelihood of Vec(�T{β̂(ω)}) =
Zβ̂(ω). We add a penalty term λn(d − 1)ωTK to
2J∗(ω), where K = (k1, . . . , kS)T, and ks is the number
of columns of X used in the sth candidate model. And
the weight choice criterion is introduced as

℘(ω) = 2B{β̂(ω)} − 2Vec(YT)T Vec(�T{β̂(ω)})
+ λn(d − 1)ωTK .

The resultant weight vector is defined as ω̂ =
argminω∈H ℘(ω). Because ℘(ω) is convex in ω,
the global optimization can be performed efficiently
through constrained optimization programming. For
example, the fmincon of MATLAB can be applied for
this purpose. Note that when we restrict one element
of ω to 1 others 0, then ℘(ω) is equivalent to AIC and
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BIC in the sense of choosing weights when λn = 2 and
λn = log(n), respectively. In addition,whenλn = 2, the
criterion℘(ω) can reduce to theMahalanobis Mallows
criterion of Zhu et al. (2018) where they assume that
the distribution of multiple responses is multivariate
normal.

3. Asymptotic optimality

This section presents the main theoretic results of this
paper, which demonstrates the asymptotic optimality of
the model averaging estimator �{β̂(ω̂)}. We define the
pseudo true regression parameter vector as β∗

(s) which
minimizes the KL divergence between the true model
and the sth candidate model. From Theorem 3.2 of
White (1982), when the dimension of β∗

(s), k, is fixed,
under some regularity conditions, we have

∥∥∥β̂(s) − β∗
(s)

∥∥∥ = Op(n−1/2). (5)

Before we provide the relevant theorems, we first
list the relevant notations in this paper. Let β∗(ω) =∑S

s=1 wsβ
∗
(s), KL∗(ω) = 2B{β∗(ω)} − 2Vec(UT)T

Vec(�T{β∗(ω)}) − 2B0 + 2Vec(UT)T Vec (�T
0 ), ξn =

infω∈H KL∗(ω),�i be the ith row of�, λ̄=maxi∈{1,...,n}
λmax {Cov(�i)}, and λ = mini∈{1,...,n} λmin{Cov(�i)},
where Cov(·), λmax{·} and λmin{·} denote the covari-
ance, the maximum and minimum eigenvalues of a
matrix, respectively. Note that all the limiting proper-
ties here and throughout the text hold under n → ∞.
The following conditions will be made:

R.1 There exist constants C and C, such that 0 < C <

λmin{XTX/n} < λmax{XTX/n} < C.
R.2 maxi∈{1,...,n} ‖Xi‖2/n → 0, and there exist con-

stants C1 and C2, such that 0 < C1 < λ < λ <

C2.
R.3 nξ−2

n = o(1).
R.4 n−1/2λn = O(1).

Remark 3.1: Conditions R.1 and R.2 are regular. Con-
dition R.1 is the same as condition C.2 and the second
part of condition C.3 of Zhang et al. (2020). The first
part of Condition R.2 is the same as the first part of
condition C.3 of Zhang et al. (2020). The second part
of Condition R.2 assumes the covariance matrix of �i
is positively definite. Condition R.3 requires ξn grows
at a rate no slower than n

1
2 . And both λn = 2 and λn =

log(n) satisfy Condition R.4, which means that if one
prefers AIC or BIC, this can be achieved by choosing
λn = 2 or λn = log(n). Condition R.4 is also used by
Theorem 2 of Zhang et al. (2020).

The following theorem illustrates the asymptotic
optimality of the model averaging estimators for fixed k
situation.

Theorem 3.1: For fixed k, if Equation (5) and the regu-
larity Conditions R.1–R.4 hold. Then ω̂ is asymptotically
optimal in the sense that

KL(Oω)

infω∈H KL(ω)
→ 1, (6)

where the convergence is in probability.

Remark 3.2: Theorem 1 of S. Zhao et al. (2019) is
based on the squared loss. The squared loss only con-
cerns on the point distance. Different from them, the
KL loss measures the closeness between the model
and the true data generating process, which concerns
on the full distribution. In addition, from KL(ω) =∫ +∞
−∞ f (Y∗ | �0) log

f (Y∗ | �0)

f (Y∗ |�{β̂(ω)}) dY∗ , we know that
the KL loss pays more attention to these points with
high probability. However, the squared loss considers
all points are equally important.

Considering for diverging k, let β∗
s ∈ R(d−1)×ks be

the corresponding subvector of β∗
(s) and define

Bn(β∗
s | δ)

=
{
βs ∈ R(d−1)×ks :

∥∥∥∥ n1/2

{(d − 1)k}1/2 (βs−β∗
s )

∥∥∥∥≤δ

}
.

Let b(2) = ∂2b(x)
∂x∂xT , Ds = diag{b(2)[(Id−1 ⊗ X(s),i)

βs]}i=1,...,n and Z(s) = ((Id−1 ⊗ X(s),1)
T, (Id−1 ⊗

X(s),2)
T, . . . , (Id−1 ⊗ X(s),n)

T)T, which are n(d − 1) ×
n(d − 1) and n(d − 1) × ks(d − 1) matrices, respec-
tively. We list the following conditions required for the
case with diverging k.

R.5 There exists a constant C3 > 0 such that
∑n

i=1
‖Xi‖/(k1/2n) ≤ C3 < ∞.

R.6 There exists a constant C0 > 0 such that for any
fixed δ > 0, any βs ∈ Bn(β∗

s | δ) and every s =
1, . . . , S, the minimum eigenvalue of 1

nZ
T
(s)DsZ(s)

is bound below by C0 for all sufficiently large n.
R.7 k2nξ−2

n = o(1).

Remark 3.3: Condition R.5 is implied by condi-
tion A.1(iii) of Lu and Su (2015). Condition R.6 guar-
antees that ‖β̂(s) − β∗

(s)‖ = Op(n−1/2k1/2s ), which is an
extension of the first part of condition C.4 of Zhang
et al. (2016). Condition R.7 is an extension of Con-
dition R.3 under the diverging k situation. Condi-
tion R.7 allows k to increase with n, but restricts its rate.
Obviously, as k increases, ξn decreases. Therefore, the
smaller k is easier to satisfy Condition R.7. In practice,
we can exclude redundant variables from the candidate
set prior to model averaging to control k.

Theorem 3.2: For diverging k, if Conditions R.1–R.2
and R.4–R.7 are satisfied, then (6) remains valid as
n → ∞.
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Remark 3.4: Note that both λn = 2 and λn = log(n)
satisfy Condition R.4. In Section 4, the numerical anal-
ysis shows that both of them outperform alternative
model selection methods (AIC and BIC) and model
averaging methods (Smoothed AIC and Smoothed
BIC), respectively. And, when the sample size is small,
the optimal value of λn increases as the level of the
model misspecification improves.

4. Estimation consistency

Here we would like to comment on the case when the
truemodel is included in the candidate models. That is,

θ0i = (Id−1 ⊗ Xi)β0,

where β0 ∈ R(d−1)×k is the true value of β and the
number of non-zero coefficients of β0 is ktrue. Let ωtrue
be a weight vector in which the element corresponding
to the true model is 1, and all others are 0. When k is
fixed, from chapter 3.4.1 of Fahrmeir and Tutz (2013),
under some regularity conditions, we have∥∥∥β̂(ωtrue) − β0

∥∥∥ = Op(n−1/2). (7)

For diverging k, from Theorem 2.1 of Portnoy (1988),
under some regularity conditions, we can obtain∥∥∥β̂(ωtrue) − β0

∥∥∥ = Op(k
1/2
truen

−1/2). (8)

Denote Di(β) = b(2)[(Id−1 ⊗ Xi)β]. In order to prove
the estimation consistency, we further impose the fol-
lowing condition.

R.8 There exists δ(r) ≥ d > 0, such that uniformly
for ω ∈ H and r ∈ (0, 1) and for almost all i ∈
{1, . . . , n},∥∥∥D1/2

i [β0 + r(β̂(ω) − β0)](Id−1 ⊗ Xi)

× (β̂(ω) − β0)
∥∥∥2 /

∥∥∥β̂(ω) − β0

∥∥∥2 > δ(r).

Remark 4.1: ConditionR.8 states thatmostD1/2
i [β0 +

r(β̂(ω) − β0)](Id−1 ⊗ Xi)s do not degenerate, in the
sense that their inner products with β̂(ω) − β0 do not
approach zero, which is implied by λmin{diag{Di[β0 +
r(β̂(ω) − β0)]}i=1,...,n} > 0, uniformly for ω ∈ H and
r ∈ (0, 1), and the first part of condition R.1. Our
asymptotic study mainly requires Condition R.8 so
that the positive definition of diag{Di[β0 + r(β̂(ω) −
β0)]}i=1,...,n is not necessary.

We now describe the performance of the weighted
estimator when the true model is among the candidate
models.

Theorem 4.1: When k is fixed and the true model is
one of the candidate models, if Conditions R.1, R.2, R.4,

R.8 and Equation (7) are satisfied, then the weighted
estimator satisfies∥∥∥β̂(ω̂) − β0

∥∥∥ = Op(n−1/2λ
1/2
n ) = op(1). (9)

Remark 4.2: Theorem 4.1 states that ‖β̂(ω̂) − β0‖ =
op(1). I conjecture that it may be possible to extend the
converge rate of the weighted estimator to n1/2, similar
to Theorem 2 of Zhang and Liu (2019).

Theorem 4.2: For diverging k, if k = o(n1/2), Condi-
tions R.1, R.2, R.4, R.8 and Equation (8) are satisfied,
then the weighted estimator satisfies∥∥∥β̂(ω̂) − β0

∥∥∥ = Op(k1/2n−1/2λ
1/2
n ) = op(1). (10)

5. Monte Carlo simulations

In this section, we evaluate the empirical performance
of our proposedmodel averaging strategy for themulti-
nomial logit model. We use two versions of our pro-
posed model averaging method named OPT1-KL with
λn = 2 and OPT2-KL with λn = log(n) to compare
with some alternative FMA methods and model selec-
tion strategies. Model selection methods include AIC,
BIC, and LASSO proposed by Friedman et al. (2010),
where the tuning parameter, ζ̂ , is selected by cross-
validation. Model averaging strategies include A-OPT
(A. T. Wan et al., 2014), MCV (S. Zhao et al., 2019)),
Smoothed AIC (SAIC) and Smoothed BIC (SBIC)
(Buckland et al., 1997). The SAIC strategy assigns the
weight

exp(−AICs/2)

/ S∑
s=1

exp(−AICs/2)

to the sth model and SBIC allocates weights similarly.
We use the KL loss for assessment and generate 1000

simulated data. For the convenient comparison, we nor-
malize all KL losses by dividing the KL loss correspond-
ing to the best method. The sample size varies at 100,
200. Note that MCV and A-OPT are the model aver-
aging methods to average estimate of the probability
yi = j. Which leads to computing the KL loss is infea-
sible. Therefore, we compare our methods with MCV
and A-OPT in terms of the mean squared forecast error
(MSFE) instead of the KL loss. Without loss of general-
ity, we also normalize all MSFEs by dividing the MSFE
corresponding to the best method.

Two situations of simulations are used. In the first
situation, when the candidate models do not contain
the true model, we examine the effect of the chang-
ing magnitude of coefficients and the changing level of
the model misspecification. Moreover, we consider the
case when the number of covariates is diverging with
the sample size. Note that all candidate models are mis-
specified in this situation, so there does not exist the full
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model. It implies that the A-OPTmethod is not feasible
for this situation. In the second situation, when the can-
didate models include the true model, we compare our
methods with other competitive methods and validate
the estimation consistency.

Setting 1. We generate yi from the setup of the
multinomial logit model (2) with the following specifi-
cations: d = 3,Xi1 = 1, Xij, j = 2, . . . , 6 follow normal
distributions with mean zeros, variance ones and the
correlation between different components of Xi is ρ =
0.75, and θ i = (θi1, θi2)T = (I2 ⊗ Xi)(β

T
1 ,β

T
2 )T, where

β1 = γ1(1, 1, 0.2,−1.2,−0.5, 0.7)T;

β2 = γ1(0.7, 0.9, 0.3,−1.1,−0.6, 0.7)T.

In order to imitate that all candidate models are mis-
specified, we pretend the last covariate missed. Let Xi1
contain in all candidate models. So there are 24 − 1 =
15 candidate models to combine. The parameter γ1 is
used to control the magnitude of coefficients, and we
let it vary in the set {0.5, 1, 2}.

Simulation results are shown inTable 1.One remark-
able aspect of the results is thatOPT1-KL andOPT2-KL
yield smaller mean and standard deviance (SD) val-
ues than the other four competitions (SAIC, SBIC, AIC
and BIC) in different magnitudes of coefficients. In
the majority of cases, FMA approaches are superior to
model selection methods. This pattern appears to be
more obvious when γ1 is small than when it is large.
For example, when γ1 = 0.5, all model averaging meth-
ods deliver smaller mean values than model selection
strategies.When γ1 increases to 2, for n = 200, AIC has
marginal advantages than SBIC regarding themean val-
ues. This result is reasonable, because when γ1 is small,
and the non-zero coefficients in the true model are all
close to zero, which makes it difficult to distinguish the
non-zero coefficients from a false model that contains
many zeros. As a result, model selection criterion scores
can be quite similar for different candidate models and
the choice of models becomes unstable. On the other
hand, when the absolute values of the non-zero coef-
ficients are large, and a model selection criterion can
identify a non-zero coefficient more readily.

Table 1. Simulations results of the KL loss for setting 1.

γ1 n OPT1-KL OPT2-KL SAIC SBIC AIC BIC

0.5 100 Mean 1.2854 1.0000 2.6779 2.2431 3.8806 3.0228
SD 2.1785 1.0000 5.2774 4.5048 4.5793 4.5313

200 Mean 1.0181 1.0000 1.8427 1.7991 2.4709 2.2732
SD 1.6082 1.0000 3.3939 3.0055 2.9032 2.8244

1 100 Mean 1.0359 1.0000 1.9150 1.8519 2.4402 2.3318
SD 1.5007 1.0000 3.0423 2.7406 2.7229 2.5896

200 Mean 1.0000 1.0373 1.5212 1.6712 1.8182 1.9670
SD 1.1837 1.0000 2.2872 2.3921 2.3530 2.4111

2 100 Mean 1.0260 1.0000 1.7058 1.7868 1.9758 2.0719
SD 1.3210 1.0000 2.6279 2.6401 2.7112 2.6516

200 Mean 1.0000 1.0173 1.3756 1.5121 1.5009 1.6475
SD 1.1638 1.0000 2.3457 2.8700 2.6478 3.2289

Figure 1. Themeansof ratiobymethodsofOPT1-KL andOPT2-
KL with γ1 = 1.

In addition, we calculate the means of KL(ω̂)/

infω∈HKL(ω)(ratio) by methods of OPT1-KL and
OPT2-KL with γ1 = 1. The values of mean, presented
in Figure 1, decrease and approach to 1 as the sample
size n increases. This feature verifies asymptotic opti-
mality numerically. Then,we compare our strategywith
MCV in terms of MSFE. We generate 100 observations
as the training sample and 10 observations as the test
sample under setting 1 with γ1 = 1. And the simulation
results are based on 1000 replications.

MSFE = 1
10000

1000∑
r=1

10∑
v=1

3∑
j=1

(p̂[r]vj − p[r]vj )2,

where p̂[r]vj is the forecast of p[r]vj , which represents the
probability that the vth test observation selects alterna-
tive j for the rth replication.

Table 2 shows that our proposed approaches outper-
form other strategies. Then, SAIC and SBIC perform
better than MCV. Note that MCV is the model averag-
ing method based on the squared loss, and our strategy
is based on the KL loss. It implies that the approach
based on the KL loss has a strong competitive advan-
tage than this approach based on the square loss for a
multinomial logit model.

Setting 2. In order to examine the effects of the
changing level of the model misspecification, we
set θi1 = U iβ1 + γ2 exp(0.5Xi6), θi2 = U iβ2 + γ2 exp
(0.6Xi6), and

β1 = (1, 1, 0.2,−1.2,−0.5)T;

β2 = (0.7, 0.9, 0.3,−1.1,−0.6)T,

where U i = (1,Xi2, . . . ,Xi5), Xi2, . . . ,Xi6 have the
same specification as the previous design, γ2 controls

Table 2. Simulation results of MSFE.

OPT1-KL OPT2-KL SAIC SBIC AIC BIC MCV

Mean 1.0000 1.0195 1.0703 1.0728 1.2243 1.2424 1.1675
SD 1.0858 1.0906 1.1869 1.1656 1.3430 1.2729 1.0000
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Table 3. Simulations results of the KL loss for setting 2.

γ2 n OPT1-KL OPT2-KL SAIC SBIC AIC BIC

0.25 100 Mean 1.0000 1.0302 1.0886 1.0955 1.3113 1.2951
SD 1.1114 1.0000 1.2915 1.0422 1.4790 1.1611

200 Mean 1.0000 1.1340 1.1028 1.2919 1.2384 1.4722
SD 1.0000 1.0499 1.1158 1.0986 1.2548 1.2265

0.50 100 Mean 1.0000 1.0189 1.0736 1.0566 1.2941 1.2694
SD 1.1225 1.0000 1.3122 1.0794 1.4152 1.1858

200 Mean 1.0000 1.1282 1.1018 1.2484 1.2400 1.4465
SD 1.0000 1.0259 1.1005 1.0071 1.2501 1.1436

0.75 100 Mean 1.0084 1.0000 1.0614 1.0103 1.2938 1.2220
SD 1.1939 1.0000 1.3298 1.0451 1.6517 1.1342

200 Mean 1.0000 1.1333 1.0764 1.2175 1.2037 1.4217
SD 1.0324 1.0108 1.1369 1.0000 1.3275 1.1295

the level of the model misspecification, we study it in
the set {0.25, 0.5, 0.75}. We take the multinomial logit
model (3) to fit the data. We still omit the last covariate
Xi6 and consider S = 24 − 1 candidate models.

The simulation results under different levels of the
model misspecification are shown in Table 3. It is
seen that OPT1-KL and OPT2-KL always deliver bet-
ter performances than their competitors SAIC/AIC and
SBIC/BIC in terms of mean values, respectively. Focus-
ing on SD values, OPT1-KL always performs much
better than SAIC and AIC, and OPT2-KL outperforms
SBIC and BIC in most cases. It demonstrates the supe-
riority of our methods.

In addition, we explore our strategies with other val-
ues of λn differing from 2 and log(n). That is, we vary
λn from 0.5 to n0.4. The simulation results are pre-
sented in Figure 2. For cases of γ2 = 0.25, 0.5 and 0.75,
when n = 100, the means of KL loss are minimized
at λn = 2.5, λn = 2.75 and λn = 3.25, respectively. It
states that when the level of the model misspecification
improves, the optimal value of λn increases slightly for
the small sample size. For a larger sample size n = 200,
the optimal values of λn are same for all cases with
λn = 2.

Setting 3. This setup discusses the case when the
number of covariates is diverging. The data gener-
ate progress is the same as those in setting 1. Except

that we adapt the covariance matrix to R = (rij) with
rij = 0.40|i−j|, for that the model screening method is
not suitable for the case when the covariances have
strong dependence which is implied by the first part of
Lemma 3.2 in Ando and Li (2014). Then, β1 and β2 are
chosen according to the following cases:

β1 = (1, 1.2, 0, 0, 1.5, 0, 0, 1.1, 0, 0, 0.1,

. . . , 0.1, 0.9)T[3n1/3]×1;

β2 = (1, 1.3, 0, 0, 2, 0, 0, 1.2, 0, 0, 0.1,

. . . , 0.1, 0.8)T[3n1/3]×1.

Similar to setting 1, we also pretend the last covari-
ate wasmissed. Then, there are 2[3n

1/3]−2 − 1 candidate
models. The computation burden will be heavy. There-
fore, a screening method to screen candidate models
is desirable. That is, we use penalized regression with
LASSO (Friedman et al., 2010) to prepare candidate
models. Different tuning parameters may result in dif-
ferent models, which will be included in our resulting
candidate models. Obviously, the resulting candidate
model contains lots of redundant variables when the
tuning parameter is very small. In order to avoid the
generated candidate models including a lot of redun-
dant variables, we use tuning parameters larger than ζ̂

to prepare candidate models.
Simulation results are provided in Table 4. Focus-

ing on the mean values, Table 4 shows that OPT1-
KL always performs better than SAIC and AIC, and
OPT2-KL still outperforms SBIC and BIC, respectively.
In addition, OPT2-KL always outperforms LASSO. It
implies the advantages of our proposed method com-
paring with other competitive methods.

Setting 4. This setup verifies the estimation consis-
tency. The data generate progress is the same as those in
setting 3. Except that we choose β1 and β2 as follows:

case1 : β1 = (1, 1.5, 3, 0, 0)T;

β2 = (1, 1.7, 4, 0, 0)T;

Figure 2. The relationship between the mean of KL loss and λn. The points with the smallest losses are indicated by the filled circle
•. (a) n = 100 and (b) n = 200.
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Table 4. Simulations results of the KL loss for setting 3.

n OPT1-KL OPT2-KL SAIC SBIC AIC BIC LASSO

100 Mean 1.0863 1.0000 1.3113 1.1209 1.4165 1.2136 1.0172
SD 1.7691 1.3568 2.7897 1.6756 3.1682 1.9177 1.0000

200 Mean 1.0322 1.0000 1.1918 1.0406 1.2664 1.0821 1.1053
SD 1.1986 1.1635 1.7025 1.4451 1.8834 1.5681 1.0000

and

case2 : β1 = (1, 1.5, 3, 1.2, 0)T;

β2 = (1, 1.7, 4, 1.3, 0)T.

All candidate models include Xi1. Thus, we consider a
total of 24 − 1 = 15 candidate models. Note that the
true model is included in the candidate models. We
compare our proposed method with other competitive
methods based on the KL loss and MSFE. The results
are presented in Tables 5 and 6, respectively. These
results show that OPT2-KL always obtain the small-
est KL loss and MSFE among these methods, which
validates the superiority of our method.

Also, we calculate the mean squared error (MSE) by
methods of OPT1-KL and OPT2-KL.

MSE = 1
1000

1000∑
r=1

‖β(r)(ω̂) − β‖2,

where β(r)(ω̂) represents the estimator of β for the
rth replication and β = (βT

1 ,β
T
2 )T. The MSE curves,

Table 5. Simulations results of the KL loss for setting 4.

Case n OPT1-KL OPT2-KL SAIC SBIC AIC BIC

1 100 Mean 1.2060 1.0000 1.4672 1.1862 1.2667 1.2462
SD 1.5345 1.1268 2.1304 1.4188 1.4251 1.0000

200 Mean 1.1020 1.0000 1.2307 1.0853 1.0256 1.1022
SD 1.2962 1.0000 1.7283 1.3664 1.0145 1.1259

2 100 Mean 1.1659 1.0000 1.5795 1.3179 1.3301 1.3501
SD 1.7378 1.0000 2.9602 1.9637 1.8268 1.4928

200 Mean 1.0311 1.0000 1.2623 1.2498 1.0708 1.3389
SD 1.5307 1.1471 2.0867 1.6240 1.0798 1.0000

shown in Figure 3, decrease and approach zero with
the increase of sample size n. The feature confirms
estimation consistency numerically.

6. An empirical application

In this part, we apply the proposed method to the
website phishing data, which was previously used by
Abdelhamid et al. (2014). This data set contains three
types of website (702 phishing websites, 548 legitimate
websites and 103 suspicious websites). The dependent
variables consist of Server Form Handler, Using Pop-
UpWindow, Fake HTTPs protocol, Request URL, URL
ofAnchor,Website Traffic,URLLength, Age ofDomain
and Having IP address. These variables are categor-
ical (or binary). We transform this information into
indicator variables. After this operation, the total num-
ber of predictors is 16. After the screening method, we
analyse this dataset using candidate multinomial logit
models. We randomly select 677 observations as the
training sample and predict the remaining instances.
We repeat this progress 500 times.We use the following
KL-type prediction loss LKL to measure the prediction
performance.

LKL = − 2
n0

n0∑
v=1

d∑
j=1

I{ytest,v=j} log{p̂(ytest,v = j)},

where {ytest,1, . . . , ytest,n0} are testing observations, and
p̂(ytest,v = j) is the predicted probability of the vth test
observation taking on j.

Figure 4 shows the box plot of all KL-type predic-
tion losses by seven methods. It is observed that our
proposedmethods of OPT1-KL andOPT2-KL produce
better performances than their competitions SAIC/AIC
and SBIC/BIC, respectively. In addition, OPT2-KL out-
performs LASSO in terms of the KL loss.

Table 6. Simulations results of MSFE for setting 4.

Case OPT1-KL OPT2-KL SAIC SBIC AIC BIC A-OPT MCV

1 Mean 1.0901 1.0000 1.2252 1.1081 1.2523 1.2838 2.0084 1.0225
SD 1.1847 1.0764 1.3439 1.1847 1.4777 1.4331 14.1238 1.0000

2 Mean 1.0694 1.0000 1.2367 1.1510 1.4000 1.4735 1.8465 1.0653
SD 1.1278 1.0278 1.2833 1.1722 1.4611 1.5611 10.6498 1.0000

Figure 3. Assessing the estimation consistency of OPT1-KL and OPT2-KL. (a) case 1 and (b) case 2.
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Figure 4. Boxplots of KL-type prediction losses by seven methods in the website phishing data.

In addition, we evaluate the prediction performance
based on the hit-rate, which is computed by dividing
the number of correct predictions by the size of the
test sample. The prediction value of an observation is
j (1 ≤ j ≤ 3) if the predicted probability of this obser-
vation taking on j has the largest value among the three
predicted probability values. In addition, we also calcu-
late the optimal rate (OPR) and the worst rate (WOR)
of each method, which is the proportion of times with
the largest hite-rate and the smallest hit-rate. Table 7
presentsmean values of hit-rate (HRV), OPR andWOR
corresponding to these methods, which shows that
OPT1-KL and OPT2-KL methods obtain the larger
HRV, OPR and smaller WOR than other competitions
SAIC, SBIC, AIC, BIC and LASSO, demonstrating the
superiority of our proposed strategies.

Table 8 reports the Diebold–Mariano test (Diebold
& Mariano, 2002) results for the differences in hit-rate.
Note that a positiveDiebold–Mariano statistic indicates
that the estimator in the numerator produces a larger

Table 7. Out-of-sample performances in the website phishing
data.

OPT1-KL OPT2-KL SAIC SBIC AIC BIC LASSO

HRV 0.8879 0.8921 0.8811 0.8812 0.8799 0.8800 0.8841
OPR 0.2200 0.6100 0.0200 0.0400 0.0100 0.0100 0.0900
WOR 0.0200 0.0200 0.2100 0.2600 0.2600 0.1600 0.0700

hit-rate than the estimator in the denominator. The test
statistics and p-values show that the differences in hit-
rate between our methods and other strategies are all
statistically significant.

7. Discussion

In the context of multinomial logit model, we pro-
posed model averaging estimator and weight choice
criterion based on KL loss with a penalty term. And
we proved the asymptotic optimality of the resulting
model averaging estimator under some regularity con-
ditions. When the true model is one of the candidate
models, the averaged estimators are consistent. Also, in
order to reduce the computational burden, we applied
a model screening step before averaging. Numerical
experiments were performed to demonstrate the supe-
riority of the proposed methods over other commonly
usedmodel selection strategies, model averagingmeth-
ods, MCV, Lasso in terms of KL loss and MSFE.

While we consider the multinomial logit model, the
extension to other models, such as ordered logit model,
warrants further investigation. And the data structure
of the regressors further complicates this issue. Another
interesting question is how to choose an optimal λn.
Shen et al. (2004) have proposed an adaptive method to
choose λn for model selection criterion in generalized

Table 8. Diebold–Mariano statistics of hit-rate in the website phishing data.
OPT1−KL
OPT2−KL

OPT1−KL
SAIC

OPT1−KL
SBIC

OPT1−KL
AIC

OPT1−KL
BIC

OPT1−KL
LASSO

OPT2−KL
SAIC

DM −7.6502 16.6320 9.7040 14.0080 13.1790 4.9572 16.8250
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

OPT2−KL
SBIC

OPT2−KL
AIC

OPT2−KL
BIC

OPT2−KL
LASSO

SAIC
SBIC

SAIC
AIC

SAIC
BIC

DM 22.0980 14.1900 16.1360 8.4057 −0.0124 5.7799 4.1535
p-value 0.0000 0.0000 0.0000 0.0000 0.9901 0.0000 0.0000

SAIC
LASSO

SBIC
AIC

SBIC
BIC

SBIC
LASSO

AIC
BIC

AIC
LASSO

BIC
LASSO

DM −5.0119 1.9948 4.0979 −4.7816 −0.0955 −5.7478 −6.4553
p-value 0.0000 0.0474 0.0000 0.0000 0.9240 0.0000 0.0000
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linear models. Building similar methods for our pro-
posed model averaging method to choose an optimal
λn warrants future researches.
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Appendix

Proof of Theorem 3.1: Let ℘̃(ω) = ℘(ω) − 2B0 + 2Vec
(UT)T Vec(�T

0 ). It’s obvious that ℘̃ and ℘ are equivalent in
the sense of choosing weights. From the proof of Theorem 1
in Zhang et al. (2016), Theorem 3.1 is valid if the following
holds:

sup
ω∈H

|KL(ω) − KL∗(ω)|
KL∗(ω)

→ op(1) (A1)

and

sup
ω∈H

|℘̃(ω) − KL∗(ω)|
KL∗(ω)

→ op(1). (A2)

By Equation (5), we can know that uniformly for ω ∈ H

∥∥∥β̂(ω) − β∗(ω)

∥∥∥ =
∥∥∥∥∥

S∑
s=1

ωs(β̂(s) − β∗
(s))

∥∥∥∥∥ = Op(n−1/2).

(A3)

From (A3), λmax(ZTZ) = λmax(XTX), Condition R.1 and
Taylor expansion uniformly for ω ∈ H∣∣∣B{β̂(ω)} − B

{
β∗(ω)

}∣∣∣
=
∣∣∣∣∣

n∑
i=1

[(
exp(Xiβ̃(ω)1)Xi∑d−1

j=1 (exp(Xiβ̃(ω)j) + 1
,

. . . ,
exp(Xiβ̃(ω)d−1)Xi∑d−1
j=1 (exp(Xiβ̃(ω)j) + 1

)
(β̂(ω) − β∗(ω))

]∣∣∣∣∣
≤ ‖β̂(ω) − β∗(ω)‖

n∑
i=1

∥∥∥∥∥
(

exp(Xiβ̃(ω)1)Xi∑d−1
j=1 (exp(Xiβ̃(ω)j) + 1

×, . . . ,
exp(Xiβ̃(ω)1)Xi∑d−1

j=1 (exp(Xiβ̃(ω)j) + 1)

)∥∥∥∥∥
≤ ‖β̂(ω) − β∗(ω‖

n(d−1)∑
l=1

‖Zl‖

≤ ‖β̂(ω) − β∗(ω‖
n(d−1)∑
l=1

(1 + ‖Zl‖2)

= ‖β̂(ω) − β∗(ω‖[trace(ZTZ) + n(d − 1)]

≤ ‖β̂(ω) − β∗(ω‖[λmax(ZTZ)(k(d − 1)) + n(d − 1)]

= Op(n1/2), (A4)

where β̃(ω) is between β̂(ω) and β∗(ω). From U ij < 1, i =
1, . . . , n, j = 1, . . . , (d − 1), we can obtain ‖Vec(UT)‖2 =
O(n), which along with (A3), λmax(ZTZ) = λmax(XTX) and
Condition R.1, we have

Vec(UT)T
[
Vec(�T{β̂(ω)}) − Vec(�T {β∗(ω)

}
)
]

= Vec(UT)T{Zβ̂(ω) − Zβ∗(ω)}
≤ ‖Vec(UT)TZ‖

∥∥∥β̂(ω) − β∗(ω)

∥∥∥
= [(Vec(UT)TZ(1))2

+ . . . + (Vec(UT)TZ(k(d−1)))2]1/2
∥∥∥β̂(ω) − β∗(ω)

∥∥∥
≤ [‖Vec(UT)‖2(‖Z(1)‖2

+ · · · + ‖Z(k(d−1))‖2)]1/2
∥∥∥β̂(ω) − β∗(ω)

∥∥∥
≤ [‖Vec(UT)‖2trace(ZTZ)]1/2

∥∥∥β̂(ω) − β∗(ω)

∥∥∥
≤ [λmax(ZTZ)k(d − 1)‖Vec(UT)‖2]1/2

∥∥∥β̂(ω) − β∗(ω)

∥∥∥
= Op(n1/2), (A5)

where Z(j) is the jth column of Z. Note that
∑n(d−1)

l=1 ‖Zl‖2 =
trace(ZTZ) ≤ λmax(ZTZ)k(d − 1), which combined with
central limit theorem, Condition R.1, and the second part of
Condition R.2, we obtain ‖Vec(
T)TZ‖ = Op(n1/2). From
‖Vec(
T)TZ‖ = Op(n1/2) and (A3), we have

Vec(�T)T
[
Vec(�T{β̂(ω)}) − Vec(�T {β∗(ω)

}
)
]

= Vec(
T)T{Zβ̂(ω) − Zβ∗(ω)}
≤
∥∥∥Vec(
T)TZ

∥∥∥ ∥∥∥β̂(ω) − β∗(ω)

∥∥∥ = Op(1). (A6)

From Condition R.1 and the first part of Condition R.2, we
have

n∑
i=1

θTi (β∗
(s))Cov(
i)θ i(β

∗
(s))

< C2

n∑
i=1

‖θ i(β∗
(s))‖2 = C2β

∗
(s)

TZTZβ∗
(s)

≤ C2λmax(ZTZ)‖β∗
(s)‖2 = O(n),

and

max
i∈{1,...,n}

‖θ i(β∗
(s))‖2

/ n∑
i=1

‖θ i(β∗
(s))‖2
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= max
i∈{1,...,n}

‖(Xiβ
∗
(s)1, . . . ,Xiβ

∗
(s)(d−1))‖2

/ n∑
i=1

‖θ i(β∗
(s))‖2

≤ max
i∈{1,...,n}

(d − 1)‖Xi‖2‖β∗
(s)‖2

/ n∑
i=1

‖θ i(β∗
(s))‖2

≤ max
i∈{1,...,n}

(d − 1)‖Xi‖2‖β∗
(s)‖2/(‖β∗

(s)‖2λmin(ZTZ))

= o(1).

These along with Theorem 1 in P. Zhao and Li (2008) and
the second part of Condition R.2, we know that uniformly
for ω ∈ H

Vec(
T)T Vec(�T{β∗(ω)})

=
n∑

i=1

iθ i{β∗(ω)}

=
S∑

s=1
ws

n∑
i=1


iθ i(β
∗
(s)) = Op(n1/2). (A7)

Therefore, (A4) and (A5) indicate that

sup
ω∈H

|KL(ω) − KL∗ω|

≤ 2 sup
ω∈H

∣∣∣B{β̂(ω)} − B
{
β∗(ω)

}∣∣∣
+ 2

∣∣∣Vec(UT)T
[
Vec(�T{β̂(ω)})−Vec(�T {β∗(ω)

}
)
]∣∣∣

= Op(n1/2). (A8)

And (A4), (A5), (A6), (A7) indicate that

sup
ω∈H

|℘̃(ω) − KL∗(ω)| ≤ 2 sup
ω∈H

∣∣∣B{β̂(ω)} − B
{
β∗(ω)

}∣∣∣
+ 2 sup

ω∈H

∣∣∣Vec(YT)T Vec(�T{β̂(ω)})

− Vec(UT)T Vec(�T {β∗(ω)
}
)

∣∣∣+ λn(d − 1)ωTK

≤ 2 sup
ω∈H

∣∣∣B{β̂(ω)} − B
{
β∗(ω)

}∣∣∣
+ 2 sup

ω∈H

∣∣∣Vec(UT)(Vec(�T{β̂(ω)})

− 2Vec(�T {β∗(ω)
}
))

∣∣∣
+ 2 sup

ω∈H

∣∣∣Vec(
T)T Vec(�T{β̂(ω)})

− Vec(�T {β∗(ω)
}
)

∣∣∣
+ 2 sup

ω∈H

∣∣∣Vec(
T)T Vec(�T{β∗(ω)})
∣∣∣

+ λn(d − 1)ωTK = Op(n1/2) + λn(d − 1)ωTK .
(A9)

Now, from (A8), (A9) and Conditions R.3 and R.4, we can
get (A1) and (A2). This completes the proof of Theorem 3.1.

�

Proof of Theorem 3.2: From the result of Theorem 3.1, it
suffices to prove that (A10)–(A14), as n → ∞

sup
ω∈H

∣∣∣B{β̂(ω)} − B
{
β∗(ω)

}∣∣∣
KL∗(ω)

= op(1), (A10)

sup
ω∈H

∣∣∣Vec(UT)T
(
Vec(�T{β̂(ω)}) − Vec(�T {β∗(ω)

}
)
)∣∣∣

KL∗(ω)

= op(1), (A11)

sup
ω∈H

∣∣Vec(
T)T Vec(�T {β∗(ω)
}
)
∣∣

KL∗ = op(1), (A12)

sup
ω∈H

∣∣∣Vec(
T)T
(
Vec(�T{β̂(ω)}) − Vec(�T {β∗(ω)

}
)
)∣∣∣

KL∗

= op(1), (A13)

λn(d − 1)ωTK
KL∗ = o(1). (A14)

First of all, we show that for any fixed ε > 0, there exists δε >

0 such that for all sufficiently large n

P
(∥∥∥∥ n1/2

{(d − 1)k}1/2 (β̂s − β∗
s )

∥∥∥∥ ≤ δε

)
≥ 1 − ε.

Write u∗
s = (b(1)[(Id−1 ⊗ X(s),i)β

∗
s ]T, . . . , b(1)[Id−1 ⊗ X(s),n)

β∗
s ]T)T, where u∗

s is a n(d − 1) × 1 vector. The quasi true
value β∗

s minimizes the KL divergence so that

∂{B(βs) − Vec(UT)T Vec(�T(βs))}/∂βs|βs=β∗
s

= 0ks(d−1)×1,

which implies that ZT
(s)u

∗
s = ZT

(s) Vec(U
T). Then, by using

first-order Taylor expansion of ∂ log f (Y|Z(s) βs)/∂βs =
0ks(d−1)×1 at β∗

(s), we can get

0ks(d−1)×1 = −ZT
(s){Vec(YT) − Vec(UT)}

+ ZT
(s)DsZ(s)(β̂s − β∗

s ),

which implies (ZT
(s)DsZ(s))

−1ZT
(s){Vec(YT) − Vec(UT)} =

(β̂s − β∗
s ), then

n1/2

{(d − 1)k}1/2 (β̂s − β∗
s )

=
(
1
n
ZT

(s)DsZ(s)|βs=β̃s

)−1 ZT
(s){Vec(YT) − Vec(UT)}

{(d − 1)k}1/2n1/2 ,

where β̃s between β̂s and β∗
s . It follows Condition R.6 and

sufficiently large n

P
(∥∥∥∥ n1/2

{(d − 1)k}1/2 (β̂s − β∗
s )

∥∥∥∥ ≤ δ

)

≥ P

(
C−1
0

∥∥∥∥∥
ZT

(s){Vec(YT) − Vec(UT)}
{(d − 1)k}1/2n1/2

∥∥∥∥∥ ≤ δ

)

≥ 1 −
∑n

i=1 ‖Xi‖2 λ̄2(d − 1)
C2
0δ

2(d − 1)kn

≥ 1 − C1

C2
0δ

2 ,

By taking δε = C1/2
1 /(ε1/2C0), we can obtain ‖β̂s − β∗

s ‖ =
‖β̂(s) − β∗

(s)‖ = Op({k(d − 1)}1/2n−1/2), and thus∥∥∥β̂(ω) − β∗(ω)

∥∥∥
≤

S∑
s=1

ωs

∥∥∥β̂(s) − β∗
(s)

∥∥∥
= Op({k(d − 1)}1/2n−1/2). (A15)
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From (A15) and Condition R.5, we can show that uniformly
for ω ∈ H∣∣∣B{β̂(ω)} − B

{
β∗(ω)

}∣∣∣ ≤ ‖β̂(ω) − β∗(ω‖
n(d−1)∑
l=1

‖Zl‖

= ‖β̂(ω) − β∗(ω‖(d − 1)
n∑

i=1
‖Xi‖

= Op(k(d − 1)n1/2), (A16)

and similar to the proof of (A5), we can obtain

Vec(UT)T
[
Vec(�T{β̂(w)}) − Vec(�T {β∗(ω)

}
)
]

= Vec(UT)T
(
Zβ̂(ω) − Zβ∗(ω)

)
≤ [λmax(ZTZ)k(d − 1)‖Vec(UT)‖2]1/2

∥∥∥β̂(ω)−β∗(ω)

∥∥∥
= Op(kn1/2). (A17)

By combining (A16), (A17) and Condition R.7, we obtain
(A10) and (A11). By using

∑n(d−1)
l=1 ‖Zl‖2 = trace(ZTZ) ≤

λmax(ZTZ)k(d − 1), central limit theorem, Condition R.1,
and the second part of Condition R.2, we obtain ‖Vec(
T)TZ
‖ = Op({k(d − 1)}1/2n1/2), which combined with (A15)
implies

Vec(�T)T
(
Vec(�T{β̂(ω)}) − Vec(�T {β∗(ω)

}
)
)

= Op(k(d − 1)). (A18)

From Condition R.1 and the first part of Condition R.2, we
obtain

n∑
i=1

θTi (β∗
(s))Cov(
i)θ i(β

∗
(s))

< C2

n∑
i=1

‖θ i(β∗
(s))‖2 = C2β

∗
(s)

TZTZβ∗
(s)

≤ C2λmax(ZTZ)‖β∗
(s)‖2 = O(nk),

and

max
i∈{1,...,n}

‖θ i(β∗
(s))‖2

/ n∑
i=1

‖θ i(β∗
(s))‖2 = o(1).

These along with Theorem 1 in P. Zhao and Li (2008), and
the second part of Condition R.2, we know that uniformly
for ω ∈ H

Vec(
T)T Vec(�T{β∗(ω)})

=
n∑

i=1

iθ i{β∗(ω)}

=
S∑

s=1
ws

n∑
i=1


iθ i(β
∗
(s)) = Op((nk)1/2). (A19)

Using (A18), (A19) and Conditions R.4, R.7, the claims
(A12)–(A14) are obtained. This completes the proof of
Theorem 3.2. �

Proof of Theorem 4.1: Note that the true valueβ0 minimizes
the KL divergence so that

∂{B(β) − Vec(UT)T Vec(�T(β))}/∂β|β=β0 = 0k(d−1)×1,

which implies that

ZTu0 = ZT Vec(UT), (A20)

where u0=(b(1)[(Id−1⊗Xi)β0]T, . . ., b(1)[Id−1 ⊗ Xn)β0]T)T,
which is a n(d − 1) × 1 vector. Then by using second order
Taylor expansion of B{β̂(ωtrue)} at β0, we have

B{β̂(ωtrue)}
= B0 + (β̂(ωtrue) − β0)

TZTu0

+ 1
2
(β̂(ωtrue) − β0)

TZTD̃(ωtrue)Z(β̂(ωtrue) − β0).

(A21)

where D̃(ωtrue) = diag{Di[β0 + r(β̂(ωtrue) − β0)]}i=1,...,n.
From every element of symmetricmatrixDi[β0 + r(β̂(ωtrue)
− β0)] bound, (A20), (A21), (7) and Condition R.1, we have

KL(ωtrue) = 2(B{β̂(ωtrue)} − B0)

− 2[Vec(UT)(Vec(�T{β̂(ωtrue)}) − Vec(�T
0 )]

= 2[β̂(ωtrue) − β0]
TZTu0

+ [β̂(ωtrue)−β0]
TZTD̃(ωtrue)Z[β̂(ωtrue)−β0]

− 2[(β̂(ωtrue) − β0)
TZT Vec(UT)]

= [β̂(ωtrue) − β0]
TZTD̃(ωtrue)Z[β̂(ωtrue) − β0]

≤ λmax(D̃(ωtrue))λmax(ZTZ)‖β̂(ωtrue) − β0‖2

≤ max
i=1,...,n

trace(b(2)[(Id−1 ⊗ Xi)β̃(ω)])λmax

× (XTX)‖β̂(ωtrue) − β0‖2

≤ (d − 1)λmax(XTX)‖β̂(ωtrue) − β0‖2

≤ Op(n)‖β̂(ωtrue) − β0‖2
= Op(1). (A22)

In addition, let ℵ be the set of i such that the inequality in
Condition R.8 holds. From Condition R.8, and the second-
order Taylor expansion of B{β̂(ω̂)} at β0, we have

KL(ω̂) = 2(B{β̂(ω̂)} − B0)

− 2[Vec(UT)(Vec(�T{β̂(ω̂)}) − Vec(�T
0 )]

= 2(β̂(ω̂) − β0)
TZTu0

− 2(β̂(ω̂) − β0)
TZT Vec(UT)

+
n∑

i=1

∥∥∥D1/2
i [β0 + r(β̂(ω̂) − β0)]

× (Id−1 ⊗ Xi)(β̂(ω̂) − β0)
∥∥∥2

=
n∑
i=1

∥∥∥D1/2
i [β0 + r(β̂(ω̂) − β0)]

× (Id−1 ⊗ Xi)(β̂(ω̂) − β0)
∥∥∥2

≥
∑
i∈ℵ

d
∥∥∥β̂(ω̂) − β0)

∥∥∥2

≥ dn∗
∥∥∥β̂(ω̂) − β0)

∥∥∥2 , (A23)

where n∗ is the number of elements in ℵ, and from Con-
dition R.8 we know that n∗ has the same order as n. Note
that

℘̃(ωtrue) = KL(ωtrue) + 2Vec(
T)T Vec(�T{β̂(ωtrue)})
+ λn(d − 1)ktrue,
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and

℘̃(ω̂) = KL(ω̂) + 2Vec(
T)T Vec(�T{β̂(ω̂)})
+ λn(d − 1)ω̂TK . (A24)

These along (A22), (A24) and ℘̃(ωtrue) ≥ ℘̃(ω̂), we have

KL(ωtrue) + 2Vec(
T)T Vec(�T{β̂(ωtrue)})
+ λn(d − 1)ktrue ≥ KL(ω̂)

+ 2Vec(
T)T Vec(�T{β̂(ω̂)}) + λn(d − 1)ω̂TK ,

which follows that

KL(ωtrue) + 2Vec(
T)T[Vec(�T{β̂(ωtrue)})
− Vec(�T

0 )] + λn(d − 1)ktrue

− 2Vec(
T)T[Vec(�T{β̂(ω̂)}) − Vec(�T
0 )]]

− λn(d − 1)ω̂TK ≥ KL(ω̂).

Note that
∑n(d−1)

l=1 ‖Zl‖2 = trace(ZTZ) ≤ λmax(ZTZ)k(d −
1), which along with central limit theorem, Condition R.1,
and the second part of Condition R.2, we obtain ‖Vec(
T)T

Z‖ = Op(n1/2). From ‖Vec(
T)TZ‖ = Op(n1/2), (A23) and
(7), we can know

Op(1) + λn(d − 1)ktrue + Op(n1/2)‖β̂(ω̂) − β0‖

+ λn(d − 1)ω̂TK ≥ dn∗
∥∥∥β̂(ω̂) − β0)

∥∥∥2 .
Thus, there exists ãn = Op(n), c̃n = Op(n1/2), such that

ãn‖β̂(ω̂) − β0‖2 + c̃n‖β̂(ω̂) − β0‖ ≤ Op(λn).

This lead to

‖β̂(ω̂) − β0‖2 + c̃n
ãn

‖β̂(ω̂) − β0‖ ≤ Op

(
λn

ãn

)
,

and thus,(
‖β̂(ω̂) − β0‖ + c̃n/2

ãn

)2
≤ Op

(
λn

ãn

)
+ c̃n2/4

ã2n
,

which implies that

‖β̂(ω̂) − β0‖ = Op(n−1/2λ
1/2
n ).

This completes the proof of Theorem 4.1. �

Proof of Theorem 4.2: The proof of Theorem 4.2 can be
treated analogously to the proof of Theorem 4.1. �
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