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ABSTRACT
We propose two variable selection methods in multivariate linear regression with high-
dimensional covariates. The first method uses a multiple correlation coefficient to fast reduce
the dimension of the relevant predictors to amoderate or low level. The secondmethod extends
the univariate forward regression of Wang [(2009). Forward regression for ultra-high dimen-
sional variable screening. Journal of the American Statistical Association, 104(488), 1512–1524.
https://doi.org/10.1198/jasa.2008.tm08516] in a unified way such that the variable selection and
model estimation can be obtained simultaneously. We establish the sure screening property for
both methods. Simulation and real data applications are presented to show the finite sample
performance of the proposed methods in comparison with some naive method.

ARTICLE HISTORY
Received 1 January 2021
Revised 2 September 2021
Accepted 9 September 2021

KEYWORDS
Dimension reduction;
forward regression; multiple
correlation coefficient;
multivariate regression;
variable selection

1. Introduction

High-dimensional multivariate regression has been
widely applied in bioinformatics, chemometrics, and
medical image analysis where many of the response
variables are highly correlated (Cai et al., 2013; Ferte
et al., 2013; Jia et al., 2017; Peng et al., 2010; Smith
& Fahrmeir, 2007). For instance, in genetics study,
we are interested in the association between corre-
lated phenotypes (involved in biological pathways) and
genotypes, as genetic effects and their possible interac-
tion have been recognized as an important component
for the genetic architecture of each complex pheno-
type (Yi, 2010). For this kind of problem, the number
of covariates or explanatory variables is much larger
than the number of observations or samples. Tradi-
tional methods of subset selection and stepwise pro-
cedure become infeasible when confronted with high
dimensionality (Breiman, 1995).

Statistical methods and theories have been devel-
oped to solve this problem through various approaches
such as network-based regularization method (C. Li
& Li, 2008; Ren et al., 2019, 2017), graphical model (B.
Li, Chuns et al., 2012; Yin&Li, 2011), correlation-based
screening (B. Li, Chuns et al., 2012; Song et al., 2016)
and group lasso (Y. Li et al., 2015; J. Wang et al., 2019;
Yang & Zou, 2015).

Variable selection methods for regression models
with a univariate response have been proposed in the
past. Some popular methods include the bridge regres-
sion (Frank & Friedman, 1993; Fu, 1998), LASSO

(Tibshirani, 1996), SCAD (Fan & Li, 2001), LARS
(Efron et al., 2004), elastic net (Zou & Hastie, 2005),
adaptive LASSO (H. H. Zhang & Lu, 2007; Zou, 2006),
and Dantzig selector (Candes & Tao, 2007; Y. Kong
et al., 2016), among others. On the other hand, variable
screening procedures have been developed to reduce
the dimensionality from an ultrahigh dimension to a
lower dimension which is smaller than the sample size
(Fan & Lv, 2008; X. Kong et al., 2017; G. Li, Peng
et al., 2012; H. Wang, 2009; Zhu et al., 2011).

For variable selection under multivariate regression
models, one simple approach is to apply some vari-
able selection method to univariate regression of each
response separately. Such an approach may produce
sub-optimal results since it does not utilize the joint
information among the responses (Breiman & Fried-
man, 1997; Kim et al., 2009). To improve the estima-
tion, various attempts have been made. One approach
is to use dimension reduction techniques such as the
reduced rank regression (Chen & Huang, 2012; He
et al., 2018; Zhao et al., 2017) and the sliced inverse
regression (Setdji & Cook, 2004; N. Zhang et al., 2019).
Another approach is to use a block-structured reg-
ularization method to select a subset which can be
used as predictors for all outcome variables (Obozinski
et al., 2011; Peng et al., 2010; Turlach et al., 2005). The
latter approach assumes that a covariate affects either
all or none of the responses. However, this assump-
tion may be too strong when each response variable
is affected by different sets of predictors. Rothman
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et al. (2010) proposed a penalized framework to esti-
mate multivariate regression coefficient and covari-
ance matrix simultaneously under �1 penalty. Lee
and Liu (2012) further improved Rothman et al.’s
(2010) work by using a weighted �1 regularization.
Cai et al. (2013) proposed a method to first estimate
the regression coefficients in a column-wise fashion
with Dantzig selector and then to estimate the preci-
sion matrix by solving a constrained �1 minimization
problem.

In high-dimensional setting, most of the aforemen-
tioned multivariate regression methods use the tech-
nique of regularization to estimate the regression coef-
ficient matrix (Obozinski et al., 2011; Peng et al., 2010;
Turlach et al., 2005). However, a well-chosen penalty
requires an efficient exploration of the correlation
structure of the responses. It is reported that simultane-
ously estimating covariance and selecting variables via
joint optimization can be numerically unstable in high-
dimensional cases (Deshpande et al., 2019; Pecanka
et al., 2019; Ren et al., 2019).

In this study, we propose two methods in parallel
for variable screening and variable selection, namely
the multiple correlation coefficient (MCC) screening
(Section 3) and the unified forward regression (UFR)
(Section 4). The firstmethod is for dimension reduction
which filters out covariates that have weak correlation
with the response variables. It significantly reduces the
feature space to a moderate or low dimension that cov-
ers the set of relevant predictors almost certainly. The
second method is for variable selection which uses an
extended forward regression (FR) (H. Wang, 2009) to
identify all relevant predictors consistently under mild
conditions. By MCC all relevant predictors are identi-
fied or screened, whereas by UFR both variable selec-
tion and model estimation are obtained. We illustrate
the finite sample performance of the proposed meth-
ods in comparison with a naive method by simulation
(Section 5) and a real data application (Section 6). We
conclude the paper in Section 7 and defer the technical
proofs in Appendix.

2. Notation and assumptions

Let y = (y1, y2, . . . , yq)� denote the q-dimensional
response vector of interest. Let x = (x1, x2, . . . , xp)�
denote the p-dimensional covariates or predictors.
Denote the covariance matrices of y and x by
�y and �x = (σij), respectively. Without loss of
generality, assume that E(xk) = 0 and var(xk) = 1
for k = 1, . . . , p and that E(yj) = 0 for j = 1, . . . ,
q. In practice, these can be achieved by standardization
and centralization.

Consider the multivariate linear regression model

y = B�x + �ε, (1)

where B is a p × q matrix of coefficients and �ε is the
random error vector which is independent with x. For
j = 1, . . . , q and k = 1, . . . , p, denote �βj as the jth col-
umn vector of B and �β(k) as the kth row vector of B. If
�β(k) �= 0, xk is referred to as a relevant predictor.
Let F = {1, . . . , p} denote the full model of pre-

dictors. Let S = {k : �β(k) �= 0} denote the true model.
Denote the compliment of S by Sc. Denote the cardi-
nalities of F and S as |F| = p and |S| = p0, respectively.
Throughout, let ‖ · ‖ denote the Euclidean norm of a
vector.

Let {(yi, xi) : i = 1, . . . , n} denote independent and
identically distributed samples of (y, x). DenoteXn×p =
(x1, . . . , xn)� andYn×q = (y1, . . . , yn)�. For j = 1, . . . ,
q, let y(j) denote the jth column of Y.

Assume that x is high dimensional with p being
much larger than the sample size n (in the sense of Cai
& Lv, 2007). Assume that the response vector is associ-
ated with only a small portion of predictors, i.e., p0/p
is small and p0 is O(n) (Fan & Lv, 2008). This sparsity
principle is frequently adopted and deemed useful in
analysis.

3. Multiple correlation coefficient

Wefirst propose to use amultiple correlation coefficient
(MCC) to identify S. It is known that the multiple cor-
relation coefficient between y and xk is defined as ρk =
max�α∈Rq corr(�α�y, xk) and its square can be further
expressed as

ρ2
k = E( �γ �

k yxk), (2)

where �γk = �−1
y E(yxk) (Anderson, 2003, Section 12.2).

Given the standardized samples, we estimate ρ2
k by

ρ̂2
k = 1

n

n∑
i=1

�̂γ �
k yixik, (3)

where �̂γ k = ( 1n
∑n

i=1 yiy
�
i )−1∑n

i=1 yixik. Note that the
computation of ρ̂2

k is simple and fast through matrix
algebra and does not involve any iteration. Then,
we estimate S by ŜMCC = {k : ρ̂2

k ≥ τ }, where τ is
the threshold which determines the size of the esti-
mated predictors. Here we adopt the threshold of Fan
and Lv (2008) by choosing τ = ρ̂2

(p−dn+1), where ρ̂2
(1) ≤

· · · ≤ ρ̂2
(p) are the order statistics and dn = 	n/ log(n)


(	·
 is the ceiling function), so that dn predictors with
the largest values of ρ̂2

k are retained. The naive corre-
lation coefficient (NCC) method of Fan and Lv (2008)
estimates S by ŜNCC = ∪p

j=1{k : ρ̂2
k,j ≥ τj}, where ρ̂k,j is

the sample correlation coefficient between yj and xk and
τj is determined in the sameway as inMCCwith respect
to the jth response.

We now show that the MCC-based screening proce-
dure has the sure screening property (i.e., the probabil-
ity of selecting all true relevant predictors tends to one)
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and reduces the dimensionality of predictors below the
sample size.

We state some assumptions first.

Assumption 3.1: Let λmin(A) and λmax(A) denote the
smallest and largest eigenvalue of a positive definite
matrix A, respectively. Assume that there exist two
positive constants τmin < τmax such that

2τmin < λmin(�
−1
y ) ≤ λmax(�

−1
y ) < 2−1τmax

and

2τmin < λmin(�x) ≤ λmax(�x) < 2−1τmax.

Assumption 3.2: Assume that (i) for j = 1, . . . , q,
‖ �βj‖ ≤ CB for some positive constant CB and that (ii)
for k = 1, . . . , p, βmin = mink∈Sminj |βkj| ≥ νBn−ξmin

for some positive constants ξmin and νB.

Assumption 3.3: Assume that there exist positive con-
stants 0 < η < 4−1, K such that (i) n−1 log(pq) ≤ η,
and (ii) E(etx

2
k) ≤ K for |t| ≤ η and all k = 1, . . . , p.

Assumption 3.1 requires the matrix X to be well
behaved. Assumption 3.2 requires the smallest nonzero
regression coefficient does not converge too fast. Oth-
erwise, it cannot be consistently identified. (See Fan
& Peng, 2004 for more discussions.) Assumption 3.3
ensures the exponential convergence rate of arbitrary
order moments of x and �ε (Cai et al., 2011) which is
superior to the polynomial type counterpart (Raviku-
mar et al., 2010).

Theorem3.1: UnderAssumptions 3.1–3.3, ifρ2
k ≥ τ for

all k ∈ S, then P(S ⊂ ŜMCC) → 1 as n → ∞.

Theorem 3.1 reveals that for a properly chosen
threshold τ , the probability that MCC detects all rel-
evant predictors tends to one.

4. Unified forward regression

In this section, we propose a unified forward regres-
sion (UFR) for variable selection. It extends Wang’s
(2009) forward regression method for the multivariate
response case.

Let M = {k1, . . . , kt} denote a generic subset of
F with |M| = t. Denote x(M) = (xk1 , . . . , xkt )

� and
denote X(M) = (x1(M), . . . , xn(M))

� as the subset of X
corresponding to M. We first describe a naive for-
ward regression (NFR) method that combines the
selected variables obtained by repeatedly applying
Wang’s (2009) forward regressionmethod to univariate
regressions with respect to every response. The proce-
dure is summarized as follows. Initially, set S(0)

(j) = ∅ for
j = 1, . . . , q. Perform forward regression with respect

to the jth response by iterating the following two steps
for � = 1, . . . , n.

(i) For every k ∈ F\S(�−1)
(j) , letM(�−1)

kj = S(�−1)
(j)

⋃{k}.
Compute the sum square of residuals RSS(�−1)

kj =
y�
(j)(In − H̃(�−1)

k )y(j), where H̃(�−1)
kj = X

(M(�−1)
kj )

(X�
(M(�−1)

kj )
X

(M(�−1)
kj )

)−1X�
(M(�−1)

kj )
. Let a�j =

argmink∈F\S(�−1)
(j)

RSS(�−1)
kj .

(ii) Update S(�)
(j) = S(�−1)

(j)
⋃{a�j}.

The solution path of NFR is obtained by {S(�)
NFR =

∪q
j=1S

(�)
(j) : � = 1, . . . , n}.

Next, we propose the unified forward regression to
select predictors by applying amodified forward regres-
sion algorithm that makes use of all response variables
simultaneously. The procedure is modified from the
previous one as follows. Initially, set S(0) = ∅. Perform a
modified forward regression by iterating the following
two steps for � = 1, . . . , n.

(i) For every k ∈ F\S(�−1), letM(�−1)
k = S(�−1)⋃{k}.

Compute the sum square of residuals RSS(�−1)
k =

tr{Y�(In − H̃(�−1)
k )Y}, where H̃(�−1)

k = XM(�−1)
k

(X�
M(�−1)

k
XM(�−1)

k
)−1X�

M(�−1)
k

. Let a�

= argmink∈F\S(�−1)RSS(�−1)
k .

(ii) Update S(�) = S(�−1)⋃{a�}.

The solution path of UFR is obtained by {S(�)
UFR =

S(�) : � = 1, . . . , n}. Notice that both NFR andUFR ter-
minate automatically after n iterations. It is seen that
the UFR algorithm makes use of all response variables
simultaneously by the trace operator. It has nearly one
qth computation cost of NFR.

We show that the proposed UFR method also pos-
sesses the sure screening property. Also, we add a few
more assumptions to facilitate the development of the
theory.

Assumption 4.1: Assume that (i) x follows ellipti-
cally contoured distribution, whose density admits the
form |�x|−1/2g{(x − �μ)��−1

x (x − �μ)} with �μ = Ex
and g(·) > 0, denoted by EC( �μ,�x, g), and that (ii) the
distribution of �ε is normal.

Assumption 4.2: There exist positive constants ξ , ξ0
and ν such that (i) log(p) ≤ νnξ , (ii) p0 ≤ νnξ0 , and (iii)
ξ + 6ξ0 + 12ξmin < 1.

Assumption 4.3: The row vectors of B, i.e, �β(k), k =
1, . . . , p, have the same ‘all-or-nothing’ structure, i.e.,
the entries of �β(k) are either all zero or none-zero.
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Usually, the normality assumption of x is imposed
to facilitate theory development (Fan & Lv, 2008; H.
Wang, 2009). Here in Assumption 4.1, we relax it to
elliptically contoured distribution and show its suf-
ficiency to obtain Lemma 1 of H. Wang (2009) in
Appendix. Assumption 4.1, together with Assump-
tion 3.1, ensures the sparse Riesz assumption (C. Zhang
& Huang, 2008) to derive some key inequalities in
proving Theorem 4.1. Assumption 4.2 has been popu-
larly assumed in the literature of ultra-high dimensional
inference (Fan & Lv, 2008; H. Wang, 2009). It implies
that the dimension of the covariates diverges to infin-
ity at an exponential rate (Fan & Lv, 2008). Assump-
tion 4.3 implies that all responses are associated with
the same covariates (Turlach et al., 2005). It warrants
the row-wise selection of B by UFR in contrast to the
element-wise selection by NFR, which enables UFR to
reach the sure screening property in fewer steps than
NFR.

Define K = 2τmaxνC2
Bτ

−2
minν

−4
B , where the factors

are defined in Assumptions 3.1, 3.2 and 4.2. Applying
Theorem 1 of H.Wang (2009), we can readily get P(S ⊂
S(qKνn2ξ0+4ξmin )

NFR ) → 1, i.e., the NFR selects all relevant
predictors with high probability after qKνn2ξ0+4ξmin

steps for the multivariate regression setting. While the
following theorem shows that the UFR can do the job
in much fewer (one qth) steps.

Theorem 4.1: Under Assumptions 3.1–4.3, P(S ⊂
S(Kνn2ξ0+4ξmin )
UFR ) → 1 as n → ∞.

We adopt the BIC criteria to select the best subset
of variables from a solution path (Liang et al., 2012; H.
Wang, 2009). Let

BIC(M) = log
[
n−1tr

{
Y�(In − H(M))Y

}]
+ n−1|M|(log n + 2 log p), (4)

where H(M) = X(M){X�
(M)X(M)}−1X�

(M). We then cho-
ose the subset of the variables from the solution path
which minimizes BIC(M). The selection consistency
was showed by H. Wang (2009) and Sofer et al.
(2014).

Note that theUFRmethod is consistent if p = O(nα)

for some α > 0, while the MCC method works with
log(p) = O(nα). In this sense, the MCC method can
handle higher dimensional variable screening than the
UFR method. Secondly, the UFR method is compu-
tationally more expensive than the MCC method as
the former involves n−1 more times of matrix inver-
sion operation than the latter. On the other hand,
when p and n are of the same order, both MCC
and UFR perform well in terms of coverage prob-
ability and UFR performs better in yielding a par-
simonious model with high specificity in terms of

model size and correct fit (defined later) as seen in
simulation.

5. Simulation

We conduct numerical studies to investigate the finite
sample performance of the proposed methods, i.e.,
MCC and UFR, in comparison with the naive correla-
tion coefficient (NCC) method and the naive forward
regression (NFR).

5.1. Models

Consider five models for generating the p-dimensional
covariates x in Table 1, which are adopted from Exam-
ples 1 and 2 of Fan and Lv (2008), Example 1 of Tibshi-
rani (1996), and Examples 4 and 5 of H. Wang (2009),
respectively.

For models 1 to 3, x follows a multivariate nor-
mal distribution with zero mean vector and covariance
matrix �x of the structure of identity, autoregressive
and compound symmetry, respectively. In model 4, x is
generated by xr = (zr + wr)/

√
2 for r = 1, . . . , p0 and

xr = (zr +∑p0
r′=1 zr′)/2 for r = p0 + 1, . . . , p, where zr

and wr are independent standard normal variables (H.
Wang, 2009). Note that model 4 is a challenging case
as the correlation coefficient of the relevant predictors
and the response variables are much smaller than the
correlation coefficient of irrelevant predictors and the
response variables. The details of �x are provided in
Table 1. In model 5, we generate independent compo-
nents of both x and �ε to be e−1 where e is an exponen-
tial random variable with parameter one. This model is
used to examine the robustness of the proposed meth-
ods against the departure from the normality assump-
tion. Consider the number of predictors p to be 1000,
5000, and 10,000, respectively, which are allmuch larger
than the sample sizes considered in the five models.
Recall p0 is the number of relevant predictors. Denote
the first p0 rows of B by B0. We generate independent
entries of B0 from distributions given in the last column
of Table 1, where N(4 log(n)/

√
n, 1) is a normal ran-

dom variable with mean 4 log(n)/
√
n and variance 1,

�(2, 1) denotes a random variable of gamma distribu-
tion with shape parameter 2 and scale parameter 1, and
exp(9) is an exponential random variable with parame-
ter 9. They are all independentwith x. Set the remaining
entries (the last p − p0 rows) of B to be zero.

Table 1. Five models.

Model n q p0 �x Entries of B0

1 200 4 8 Ip N(4 log(n)/
√
n, 1)

2 75 5 3 0.5Ip + 0.51p1�
p N(4 log(n)/

√
n, 1)

3 200 3 3 σkr = 0.5|k−r| , 1 ≤
k, r ≤ p

�(2, 1)

4 300 2 5 diag{Ip0 , 4−1(Ip−p0 +
p01(p−p0)1

�
(p−p0)

)}
exp(9)

5 200 6 10 Ip exp(9)



STATISTICAL THEORY AND RELATED FIELDS 245

Table 2. Measures for thefinite sampleperformanceof variable
selection.

Model size MS = |̂S|
Coverage probability CP = P(S ⊂ Ŝ)
% of correctly fitted model CF = P(S = Ŝ)
% of correct zero CZ = (p − p0)−1|Sc ∩ Ŝc|
% of incorrect zero IZ = p−1

0 |S ∩ Ŝc|

For the multivariate response case, the signal-to-
noise ratio is given by

R2 = tr{var(B�x)}
tr{var(y)} = tr(B��xB)

pσ 2 + tr(B��xB)
.

We chose the values of σ 2 such that the signal-to-noise
ratios are 30%, 60%, and 90%, respectively.

Throughout, set the number of replications N to be
1000.

5.2. Evaluation criteria

For MCC screening, we use Fan and Lv’s (2008) hard
threshold method to retain the relevant predictors. For
both NFR and UFR, we use the BIC criterion (4) to
determine the relevant predictors.

Table 3. Five measures of the performance of variable selec-
tion defined in Table 2 obtained by the four competing meth-
ods under various numbers of covariates (p) and signal-to-noise
ratio (R2) for Model 1 in Table 1 with (n, q, p0) = (200, 4, 8).

Method p R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 1000 30 38 75.9 0 98.4 24.8
60 38 96.7 0 98.6 3.3
90 38 99.5 0 98.6 0.5

5000 30 38 58.2 0 99.6 41.8
60 38 93.2 0 99.7 6.8
90 38 98.5 0 99.7 1.5

10,000 30 38 50.8 0 99.8 49.2
60 38 90.6 0 99.9 9.4
90 38 98.1 0 99.9 1.9

NCC 1000 30 38 26.2 0 97.9 73.8
60 38 40.6 0 98.9 59.2
90 38 50.5 0 98.2 49.5

5000 30 38 13.9 0 99.6 86.1
60 38 30.7 0 99.6 69.3
90 38 41.8 0 99.6 58.2

10,000 30 38 10.9 0 99.8 89.1
60 38 25.6 0 99.8 74.4
90 38 37.9 0 99.8 62.0

NFR 1000 30 1.1 1.5 0 99.9 98.5
60 8.1 12.9 0 99.9 87.1
90 8.3 99.7 90.9 99.9 0.3

5000 30 2.1 0.5 0 99.9 99.4
60 6.5 6.2 0 99.9 93.8
90 7.8 95.3 76.9 100 4.7

10,000 30 3.1 0.4 0 100 99.6
60 7.4 4.6 0 100 95.4
90 10.3 87.9 65.8 100 12.1

UFR 1000 30 0.3 4.1 0 100 95.9
60 7.6 94.9 71.9 100 5.1
90 8.0 100 100 100 0

5000 30 0.1 1.1 0 100 98.9
60 6.9 86.4 49.9 100 13.6
90 8.0 100 99.9 100 0

10,000 30 0.1 0.7 0 100 99.3
60 5.9 73.8 34.2 100 26.1
90 8.0 100 99.9 100 0

We adopt five measures as described in Table 2 to
evaluate the finite sample performance of the proposed
methods, where the model size (MS) is the number
of the selected relevant predictors, the coverage prob-
ability (CP) measures how likely all the relevant pre-
dictors are identified, the percentage of correctly fitted
(CF) measures the capability in identifying the true
model correctly, the correct zero (CZ) characterizes the
capability in producing sparse solution, and the incor-
rect zero (IZ) characterizes the method’s under-fitting
effects. Ideally, we wish a method to have MS close to
p0, CP, CF, CZ all close to 100% and IZ close to zero.

For b = 1, . . . ,N, let B̂(b) denote the estimate
of B under the bth replication. The corresponding

selected model is denoted by Ŝ(b) = {k : �̂β(b)
(k) �= 0, k =

1, . . . p}. The empirical MS is computed as MS =
N−1∑N

b=1 |̂S(b)| and the empirical values of the other
measures are similarly computed.

5.3. Results

Tables 3–7 report the finite sample performance of
the four competing methods in terms of the measures

Table 4. Five measures of the performance of variable selec-
tion defined in Table 2 obtainedby the four competingmethods
under various numbers of covariates (p) and signal to noise ratio
(R2) for Model 2 in Table 1 with (n, q, p0) = (75, 5, 3).

Method p R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 1000 30 18 80.7 0 98.4 19.3
60 18 98.1 0 98.5 1.9
90 18 99.7 0 98.5 0.3

5000 30 18 68.1 0 99.7 31.9
60 18 95.5 0 99.7 4.5
90 18 99.6 0 99.7 0.4

10,000 30 18 61.3 0 99.8 38.7
60 18 95.1 0 99.8 4.9
90 18 99.7 0 99.9 0.3

NCC 1000 30 18 79.7 0 96.5 23.3
60 18 95.8 0 96.5 4.7
90 18 98.9 0 96.5 1.4

5000 30 18 68.9 0 99.3 39.1
60 18 94.3 0 99.3 7.3
90 18 98.7 0 99.3 3.4

10,000 30 18 68.1 0 99.6 51.9
60 18 89.9 0 99.6 10.1
90 18 95.3 0 99.7 2.1

NFR 1000 30 1.6 7.9 0.1 99.9 92.1
60 3.2 51.6 23.7 99.9 48.4
90 3.4 99.2 93.2 99.9 0.8

5000 30 1.2 3.5 0 99.9 96.5
60 3.9 35.6 11.3 99.9 64.4
90 4.6 97.8 88.1 99.9 2.2

10,000 30 1.6 2.3 0 99.9 97.4
60 3.8 28.6 6.7 99.9 71.3
90 4.7 96.4 84.7 99.9 3.6

UFR 1000 30 1.5 45.6 11.7 99.9 54.4
60 3.0 99.8 99.1 100 0.2
90 3.0 100 100 100 0

5000 30 1.0 28.8 2.4 99.9 71.2
60 2.9 98.9 97.5 100 1.0
90 3.0 100 100 100 0

10,000 30 0.9 24.4 2.0 99.9 75.6
60 3.0 98.6 95.6 100 1.4
90 3.0 100 100 100 0
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Table 5. Five measures of the performance of variable selec-
tion defined in Table 2 obtained by the four competing meth-
ods under various numbers of covariates (p) and signal-to-noise
ratio (R2) for Model 3 in Table 1 with (n, q, p0) = (200, 3, 3).

Method p R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 1000 30 38 100 0 96.5 0
60 38 100 0 96.5 0
90 38 100 0 96.5 0

5000 30 38 100 0 99.3 0
60 38 100 0 99.3 0
90 38 100 0 96.3 0

10,000 30 38 99.9 0 99.6 0.1
60 38 100 0 99.6 0
90 38 100 0 99.6 0

NCC 1000 30 38 29.5 0 98.3 70.5
60 38 47.8 0 98.3 52.2
90 38 54.8 0 98.4 45.2

5000 30 38 18.2 0 99.7 81.8
60 38 38.1 0 99.6 61.9
90 38 52.0 0 99.7 48.0

10,000 30 38 13.3 0 99.8 86.7
60 38 36.0 0 99.8 63.9
90 38 50.6 0 99.8 49.4

NFR 1000 30 2.2 99.9 0.2 100 60.1
60 3.0 67.8 17.8 99.9 32.2
90 4.7 90.6 71.6 99.9 9.4

5000 30 2.2 37.0 0 100 63.0
60 3.0 65.0 13.7 100 35.0
90 3.7 89.8 69.2 100 10.2

10,000 30 2.1 36.2 0.1 100 63.8
60 3.9 63.1 11.7 100 36.9
90 5.7 89.2 67.4 100 10.8

UFR 1000 30 2.1 71.5 22.6 100 28.5
60 2.9 96.4 89.1 100 3.6
90 3.0 99.9 99.6 100 0

5000 30 2.0 67.2 14.4 100 32.8
60 2.8 94.1 82.3 100 5.9
90 3.0 99.9 99.7 100 0.1

10,000 30 1.9 63.7 10.9 100 36.3
60 2.8 93.6 80.6 100 6.4
90 3.0 99.9 99.5 100 0

given in Table 2 under various numbers of covariates
p and signal strength R2. We summarize the findings
as follows. (i) The MCC method is uniformly superior
to the NCC method with larger coverage probability
(CP), better estimation of sparsity (with larger CZ and
smaller IZ), as expected. (ii) As we adopted the fixed
threshold procedure for MCC and NCC, these two
methods produce conservatively large coverage of pre-
dictors at the cost of large model size. For the same rea-
son, the percentage of incorrect zero is larger than the
other two regression-based methods (UFR and NFR).
So the resulting percentages of correctly fitted mod-
els for MCC and NCC are zero. (iii) When comparing
UFR with NFR, the UFR demonstrates its superior-
ity over NFR uniformly in all five measures across all
five models (including Model 5 with the non-normal
distribution). This corroborates the advantage of UFR
in utilizing the correlation within responses over NFR.
When comparing UFR with PWL, both methods per-
form comparably when the signal strength is as small as
30%.When the signal strength is as large as 60%or 90%,
UFR outperforms PWL in all five measures in general.
(iv) The UFR method performs inferior to the MCC

Table 6. Five measures of the performance of variable selec-
tion defined in Table 2 obtainedby the four competingmethods
under various numbers of covariates (p) and signal to noise ratio
(R2) for Model 4 in Table 1 with (n, q, p0) = (300, 2, 5).

Method p R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 1000 30 53 21.7 0 97.1 78.3
60 53 27.8 0 97.1 72.2
90 53 37.7 0 97.2 79.7

5000 30 53 19.8 0 99.4 80.2
60 53 26.7 0 99.4 73.1
90 53 36.1 0 99.4 63.9

10,000 30 53 17.7 0 99.7 82.3
60 53 25.2 0 99.7 74.8
90 53 35.1 0 99.7 64.9

NCC 1000 30 53 19.8 0 97.1 80.2
60 53 20.7 0 97.1 79.2
90 53 21.8 0 97.1 78.1

5000 30 53 16.8 0 99.4 83.1
60 53 18.6 0 99.4 81.3
90 53 19.7 0 99.4 80.3

10,000 30 53 16.2 0 99.7 83.8
60 53 17.3 0 99.7 82.7
90 53 20.0 0 99.7 80.0

NFR 1000 30 2.7 15.6 0 99.9 84.4
60 4.9 34.3 0 99.9 65.7
90 5.0 65.1 5.0 99.9 34.9

5000 30 2.6 13.2 0 99.9 86.8
60 4.8 27.5 0 99.9 72.5
90 5.5 57.8 3.1 99.9 42.3

10,000 30 2.0 12.1 0 99.9 87.9
60 4.8 26.6 0 99.9 73.4
90 6.5 54.7 1.9 99.9 45.3

UFR 1000 30 2.4 35.9 0 99.9 64.1
60 4.4 75.8 10.3 99.9 24.2
90 5.0 96.8 70.8 99.9 3.2

5000 30 2.1 28.9 0 99.9 71.1
60 4.2 70.9 7.2 99.9 29.1
90 5.0 95.5 63.2 99.9 4.5

10,000 30 2.0 24.7 0 99.9 75.3
60 4.1 69.3 4.9 99.9 30.7
90 5.0 95.6 61.9 99.9 4.4

method in cases of ultra-high dimensional covariates
especially under lower signal strength, as pointed out
earlier. For instance, in Model 1 of Table 3, the cov-
erage probability of UFR reduces by 83%, while the
counterpart of MCC reduces by 33% when the dimen-
sion of predictors p increases from 1000 to 10,000 at
the signal strength of 30%. (v) As for the impact of the
signal strength, the percentage of incorrect zeros rises
under the weak signal strength cases from those under
the strong signal strength cases. It is consistent with
the findings for the univariate case in H. Wang (2009)
and Y. Li et al. (2017). However, as the signal strength
increases (e.g., from 30% to 90%), the percentages of
coverage probability (CP) and probability of correct fit
(CF) increase significantly (e.g., 61.9% to 98.3% and
28.8% to 58.8%, respectively, with p = 5000) and the
percentage of incorrect zeros (IZ) drops quickly (e.g.,
from 53.7% to 2.35% with p = 5000) by both NFR and
UFR as seen in Table 3. (vi) To examine the impact
of the sample size, Table 8 reports the performance of
the proposed methods under Model 1 with a number
of covariates p fixed at 5000 and varying sample size
n to be 100, 200, and 400, respectively. It is seen that
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Table 7. Five measures of the performance of variable selec-
tion defined in Table 2 obtainedby the four competingmethods
under various numbers of covariates (p), and signal-to-noise
ratio (R2) for Model 5 in Table 1 with (n, q, p0) = (200, 6, 10).

Method p R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 1000 30 38 85.2 0 97.0 14.8
60 38 97.2 0 97.1 2.8
90 38 99.8 0 97.2 0.2

5000 30 38 70.1 0 99.4 29.9
60 38 93.3 0 99.4 6.7
90 38 99.5 0 99.4 0.6

10,000 30 38 63.0 0 99.7 37.0
60 38 90.6 0 99.7 9.4
90 38 99.3 0 99.7 0.8

NCC 1000 30 38 61.2 0 96.8 38.8
60 38 78.8 0 96.9 21.2
90 38 85.8 0 97 14.2

5000 30 38 40.8 0 99.3 59.2
60 38 64.9 0 99.4 24.3
90 38 75.7 0 99.4 24.3

10,000 30 38 33.0 0 99.6 66.9
60 38 60.0 0 99.7 39.9
90 38 72.5 0 99.7 27.5

NFR 1000 30 3.8 7.6 0 99.9 92.4
60 10.2 50.9 0.2 99.9 49.0
90 10.7 96.5 63.9 99.9 3.5

5000 30 2.5 4.3 0 99.9 95.7
60 6.4 40.2 0.1 99.9 59.8
90 10.6 94.6 49.9 99.9 5.4

10,000 30 2.4 3.3 0 99.9 96.7
60 10.6 35.3 0.1 99.9 64.7
90 11.6 93.9 44.3 99.9 6.1

UFR 1000 30 2.7 27.3 0 100 72.7
60 9.9 99.3 92.8 100 0.7
90 10.0 100 99.9 100 0

5000 30 1.3 13.3 0 100 86.7
60 4.1 98.2 84.5 100 1.8
90 10.0 100 99.9 100 0

10,000 30 1.0 10.1 0 100 89.9
60 9.8 97.8 81.3 100 2.2
90 10.0 100 99.9 100 0

the measures of model size (MS), coverage probabil-
ity (CP), probability of correct fit (CF) and probabil-
ity of incorrect zero (IZ) are sensitive to sample size.
The improvement of performance is significant. For
instance, when the sample size increases from n = 100
to n = 200 with signal strength R2 = 60%, the CP
increases from 52.2% to 80.4% on average and the per-
centage of incorrect zero drops from 47.8% to 19.7% on
average.

In conclusion, the MCC method performs bet-
ter when the dimension of covariates is ultra-high
(log(p) = O(nα)) with respect to the sample size and
the UFR method outperforms the MCC method when
the dimension of covariates is of polynomial order (p =
O(nα)).

6. Real data application

We apply the proposed methods to a real data
set regarding bone mineral density (BMD) (Reppe
et al., 2010). The data were collected from 84 post-
menopausal Caucasian women aged from 50 to 86. For
each subject, there are two responses, namely the body
mass index and total hip z-score (a measure of how

Table 8. Five measures of the performance of variable selec-
tion defined in Table 2 obtainedby the four competingmethods
under various sample sizes (n) and signal-to-noise ratio (R2) for
Model 1 in Table 1 with (p, q, p0) = (5000, 4, 8).

Method n R2 (%) MS CP (%) CF (%) CZ (%) IZ (%)

MCC 100 30 22 39.3 0 99.6 60.3
60 22 72.6 0 99.7 27.4
90 22 92.3 0 99.7 7.7

200 30 38 81.2 0 99.4 18.8
60 38 95.5 0 99.4 4.5
90 38 98.9 0 99.4 1.1

400 30 67 96.7 0 98.8 3.3
60 67 99.3 0 98.8 0.7
90 67 99.8 0 98.8 0.1

NCC 100 30 22 24.7 0 99.6 75.3
60 22 45.9 0 99.6 54.0
90 22 57.4 0 99.6 42.6

200 30 38 48.3 0 99.3 51.8
60 38 65.2 0 99.3 34.8
90 38 70.9 0 99.4 29.1

400 30 67 62.1 0 98.8 37.9
60 67 72.2 0 98.8 27.8
90 67 76.7 0 98.8 23.3

NFR 100 30 2.1 1.4 0 99.9 98.6
60 6.2 14.8 0 99.9 85.2
90 8.3 78.8 14.2 99.9 21.2

200 30 3.0 10.6 0 99.9 89.4
60 8.0 50.0 0.2 99.9 49.9
90 8.9 84.8 24.0 100 15.2

400 30 7.7 33.3 30.0 100 66.6
60 8.0 65.9 2.2 100 34.1
90 9.0 86.8 30.7 100 13.1

UFR 100 30 1.0 3.2 0 100 96.8
60 5.6 69.2 12.0 100 30.8
90 8.0 99.9 99.1 100 0.1

200 30 2.8 35.5 0.1 100 64.5
60 7.6 95.6 69.8 100 4.4
90 8.0 99.9 99.7 100 0

400 30 6.4 79.5 12.3 100 20.5
60 7.9 98.4 88.1 100 1.5
90 8.0 100 100 100 0

strong the bone in the hip), and 8649 gene expression
levels in trans-iliacal bone biopsies served as covariates.
It is known that low bone mineral density is usually
related to fragile bone and osteoporosis and progressive
reduction of bone strength which leads to increasing
susceptibility of bone fractures (Cooper, 1997; Reppe
et al., 2010). The goal of the study is to identify the genes
that are related to BMD.

Table 9 reports the genes identified by the five com-
peting methods. The MCC method identified 19 genes
which include all 13 genes identified by NFR except
gene TNK2. The PWL method identified 12 genes
which all identified byNFR except PAIP1. And theUFR
found 10 significant geneswhich are all contained in the
set identified by NFR.

To examine the quality of variable selection of these
methods, we compare the predictionmean square error
(E‖y − B�

S xS‖2) obtained by the three methods. To
this end, we randomly split the data into a training
set of 60 samples and a testing set of the remain-
ing 24 samples. The average prediction mean square
errors over the 100 replications for MCC, NCC, NFR
and UFR are 273.7, 293.5, 271.0 and 241.6, respec-
tively. Clearly, the UFR method is the winner. All the
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Table 9. Selected genes for the BMD data.

method genes

MCC ACSL3, NIPSNAP3B, DLEU2, C1ORF61, DKK1, SOST, ABCA8,
AFFX-M27830-M-at, RRNF216, PLIN5, PACS2, MUM1, CRYGS,
RABEP2, PEX14, USP2, FKBP14, FAM55C, MAPK8

NCC ACSL3, NIPSNAP3B, DLEU2, C1ORF61, DKK1, SOST, ABCA8,
AFFX-M27830-M-at, RRNF216, PLIN5, MEPE, COPS4, CRYGS
RABEP2, CTSE, PEX14, FKBP14, NARG1, PAIP1

NFR ACSL3, NIPSNAP3B, DLEU2, C1ORF61, DKK1, SOST, ABCA8,
AFFX-M27830-M-at, RNF216, PLIN5, FKBP14, FAM55C, TNK2

UFR ACSL3, NIPSNAP3B, DLEU2, C1ORF61, DKK1, SOST, ABCA8,
AFFX-M27830-M-at, RNF216, PLIN5

eight genes (ACSL3, NIPSNAP3B, DLEU2, C1ORF61,
DKK1, SOST, ABCA8, andAFFX-M27830-M-at) iden-
tified by Reppe et al. (2010) were selected by the four
competing methods. The UFR method discovered two
more genes, RNF216 and PLIN5, with the smallest pre-
diction mean square errors. Similar to the findings in
simulation, both MCC and NCC selected more genes
than NFR and UFR with larger prediction error.

7. Conclusion

We propose two methods for variable screening in
high-dimensional multivariate linear regression. The
MCC method has the advantage of computational ease
and can provide fast variable screening to obtain an
accurate subset with a dimension below the ample size.
The proposed UFR method has the feature of dis-
covering all relevant predictors consistently at nearly
the same computational cost as the univariate for-
ward regression. The performance of UFR is sensitive
to the dimensionality and signal strength. Our theory
assumes Gaussian distribution for the response vari-
ables. The numerical study also shows the robustness
of the proposed methods against non-normality. It is of
interest to investigate the problem under more general
non-homogeneously sparse assumption and nonlinear
models.
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Appendix

A.1 Proof of Theorem 3.1

Let CK = τ + η−1K and ϑ = 3η−1CK
√
n log(pq). When

ρ2
k ≥ τ for all k ∈ S, it suffices to show that under Assump-

tions 3.1–3.3
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First, we compute the rate of convergence for A2. For
k = 1, . . . , p, letωk = n−1∑n

i=1 �γ �
k (yixik − Eyxk). (SoA2 =

|ωk|.) Let t1 = η
√
n−1 log(pq). Applying the inequalities

P(|U| ≥ V) ≤ e−t1VEet1|U| for any V > 0 and |es − 1 − s| ≤
s2emax(s,0) for any s ∈ R, we obtain
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Second, we compute the rate of convergence for A1. Notice
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Parallel to (A3), we have
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Similar to (A5),
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Combining (A4), (A5) and (A6),
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At last, combining (A3) and (A7), we get

P
(
A1 + A2 ≥ 3η−1CK

√
n log(pq)

)
≤ 3p−τq−τ ,

which, coupled with (A2), implies (A1). This completes the
proof.

A.2 A lemma used to prove theorem 4.1

Lemma A.1: Suppose Assumptions 3.1, 4.1 and 4.2 hold. Let
�x(M) denote the submatrix of �x afterM. Let �̂x(M) and �̂x
denote the corresponding estimators, respectively. Suppose m =
O(n2ξ0 + 4ξmin), where ξ0 and ξmin are defined in Assump-
tion 4.2. Then, with probability tending to one, we have

τmin ≤ min
|M|≤m

λmin(�̂x(M)) ≤ max
|M|≤m

λmax(�̂x(M)) ≤ τmax.

(A8)

Proof: The proof is similar to that for Lemma 1 of H.
Wang (2009). Here, we relax the normality assumption of x
to the elliptically contoured distribution.

First, for i = 1, . . . , n, j, k = 1, . . . , p, let Ui = (zij +
zik)/

√
2(1 + ρjk) and Vi = (zij − zik)/

√
2(1 − ρjk). By Ass-

umption 4.1 and the additive property of elliptical contoured
distribution (Fang et al., 2018), (zij, zik) ∼ EC2(0, 0, 1, 1, ρjk,

g), Ui
i.i.d.∼ EC(0, 1, g) and Vi

i.i.d.∼ EC(0, 1, g).
Second, observe that
n∑
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.
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Then, following Lemma A.3 of Bickel and Levina (2008), we
have
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Further, for i = 1, . . . , n, let Wi = U2
i − 1 and B2n = ∑n

i=1
var(Wi). Observe that by Jensen inequality there exist pos-
itive constants c1, . . . , cn, C3 and C4 such that∣∣∣∣ ln{E exp(ζWi)}

ζ 2

∣∣∣∣ ≤ c2i for |ζ | < C3 and

limn→∞
1
B2n

n∑
i=1

c2n ≤ C4,

satisfying condition (P) of Saulis and Statulevicius (1991).
The same result holds when Wi = V2

i − 1. By Theorem 3.2
of Saulis and Statulevicius (1991), the first and second terms
of (A9) are bounded, respectively, by

2 exp
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and

2 exp
{
− 2nv2

(1 − ρjk)2(σjjσkk) + 2v(1 − ρjk)(σjjσkk)1/2

}
.

Therefore,
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This, together with λmax(�x) < 2−1τmax, implies that

P(|̂σij − σij| ≥ nv) ≤ C1 exp(−C2nv2) for|v| ≤ δ, (A10)

where the positive constants C1, C2 and δ all depend on τmax
alone (Bickel & Levina, 2008, Lemma A.3).

The rest of the proof follows exactly the same as that for
Lemma 1 of H. Wang (2009). �

A.3 Proof of theorem 4.1

Our proof follows similar arguments as in the proof of
Theorem 1 of H. Wang (2009).

Assume that no relevant predictor has been discovered in
the first � iterations, i.e., S �⊂ S(�). We evaluate the probabil-
ity that at least one relevant will be identified in the (� + 1)’s
iteration or equivalently its complementary probability that
the predictor selected by the (� + 1)’s iteration is still an
irrelevant one.

Let X(S) = (x1(S), . . . , xn(S)) denote the subset of X corre-
sponding to S. Let B(S) denote the coefficient matrix under
the true model.

Denote
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Assume a�+1 /∈ S. We have

�(�) ≥ max
j∈S

tr
{
Y�(In − H(S(�)))

�H(�)�
k H(�)

k (In − H(S(�)))Y
}

≥ tr
{
Y�(In − H(S(�)))

�H(�)�
k̂

H(�)

k̂
(In − H(S(�)))Y

}
,

(A12)

where
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Further, observe that the last inequality of (A12) is no less
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where ε = (�ε1, . . . , �εn)� ∈ R
n×q.

In what follows, we study the two terms in (A13) sepa-
rately.

Step 1: The first term of (A13). Define Q(S(k)) = In −
H(S(k)). And denote x(�)

k = x�
k Q(S(�)). Then, the first term

in (A13) can be expressed as
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where the last inequality follows after the fact ‖xk‖ ≥ ‖x(�)

k ‖.
On the other hand, observe that
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Applying (A16) to (A15) and (A14), using the fact that
maxk∈S ‖xk‖2/n ≤ τmax with probability tending to one, and
by Assumptions 3.1, 4.1 and Lemma 1 of H.Wang (2009), we

obtain
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�
(S)B(S)

}

≥
[
tr
{
B�

(S)X(S)Q(S(�))X�
(S)B(S)

}]2
q2nτmaxp0 × maxj ‖ �βj‖2

. (A17)

Define ζ(S(�)) = (X�
(S(�))

X(S(�)))
−1X�

(S)B(S). We have

tr
{
B�

(S)X(S)Q(S(�))X
�
(S)B(S)

}
= tr

(
B�

(S)X(S)X�
(S)B(S) − ζ�

(S(�))
X�

(S(�))
X(S(�))ζ(S(�))

)
.

Recall the assumption at the beginning of the proof that S �⊂
S(k). Then, by Assumptions 3.1, 3.2 and 4.1, and Lemma 1 of
H. Wang (2009), we get

tr
{
B�

(S)X(S)Q(S(�))X
�
(S)B(S)

}
≥ qnτminβ

2
min (A18)

with probability tending to one. Applying (A18) to (A17) and
using Assumptions 3.2, 4.1 and 4.2, we obtain

max
k∈S

tr
{
B�

(S)X(S)Q�
(S(�))

H(�)�
k H(�)

k Q(S(�))X
�
(S)B(S)

}
≥ nτ−1

maxp
−1
0 (max

j
‖ �βj‖)−2τ 2minβ

4
min

≥ τ−1
maxν

−1C−2
B τ 2minν

4
Bn

1−ξ0−4ξmin . (A19)

Step 2: The second term of (A13). Recall

x(�)

k = xk − H(S(�))xk = xk − X(S(�))θk(S(�))

where

θk(S(�)) =
(
X�

(S(�))
X(S(�))

)−1
X�

(S(�))
xk.

Then, by Assumptions 3.1 and 3.2 and Lemma 1 of H.
Wang (2009), we have ‖x(�)

k ‖2 ≥ nτmin.
Moreover, since x(�)

k = (In − H(S(�)))xk, we have

tr
{
�ε�(In − H(S(�)))

�H(�)�
k H(�)

k (In − H(S(�)))�ε
}

= ‖x(�)

k ‖−2tr
(
�ε�xkx�

k �ε − �ε�H�
(S(�))

xkx�
k H(S(�))�ε

)
≤ τ−1

minn
−1tr

(
�ε�xkx�

k �ε − �ε�H�
(S(�))

xkx�
k H(S(�))�ε

)

= τ−1
minn

−1tr
(
ε�Q(S(�))xkx

�
k Q(S(�))�ε

)
≤ τ−1

minn
−1 max

k∈S
max

|M|≤m∗ tr
(
�ε�Q(M)xkx�

k Q(M)�ε
)

= τ−1
minn

−1 max
k∈S

max
|M|≤m∗

q∑
j=1

(
�ε�
j Q(M)xkx�

k Q(M)�εj
)
,

(A20)

wherem∗ = Kνn2ξ0+4ξmin .
Notice that x�

k Q(M)�εj is a normal random variable with
mean zero and variance given by ‖Q(M)xk‖2 ≤ ‖xk‖2. Thus,
the RHS of (A20) is no greater than

qτ−1
minn

−1 max
k∈S

‖xk‖2 max
k∈S

max
|M|≤m∗ χ2

1 , (A21)

where χ2
1 stands for a chi-square random variable with one

degree of freedom. ByAssumptions 3.1 and 4.1, and Lemma 1
ofH.Wang (2009), we get thatn−1 maxk∈S ‖xk‖2 ≤ τmax with
probability tending to one.
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On the other hand, the total number of combinations
for k ∈ S and |M| ≤ m∗ is no more than dm∗+2. Then, by
Assumption 4.2, we get

max
k∈S

max
|M|=�

χ2
1

≤ 2(m∗ + 2) log(p)

≤ 3Kνn2ξ0+4ξmin × νnξ = 3Kν2nξ+2ξ0+4ξmin

with probability tending to one. Therefore, (A21) is
bounded by

qτ−1
minτmax3Kν2nξ+2ξ0+4ξmin−1. (A22)

Combining (A13), (A19) and (A22), we have

n−1�(�) ≥ τ−1
maxν

−1C−2
B τ 2minν

4
Bn

1−ξ0−4ξmin

− qτ−1
minτmax3Kν2nξ+2ξ0+4ξmin−1

= τ−1
maxν

−1C−2
B τ 2minν

4
Bn

1−ξ0−4ξmin

× (
1 − qτ 2maxν

3C2
Bτ

−3
maxν

−4
B 3Knξ+3ξ0+8ξmin−1)

(A23)

uniformly for every � ≤ Knξ0+4ξmin . Recall K = 2τmaxνC2
B

τ−2
minν

−4
B defined in Section 4. Then, by Assumption 4.2

and 4.3, we have

n−1‖Y‖2F ≥ n−1
Knξ0+4ξmin∑

�=1

�(�)

≥ 2
(
1 − qτ 2maxν

3C2
Bτ

−3
maxν

−4
B 3Knξ+3ξ0+8ξmin−1)

p→ 2, (A24)

where ‖ · ‖F is the Frobenius norm.
Without loss of generality, we can assume var(yi1) + · · · +

var(yiq) = 1, andwe have n−1‖Y‖2F
p→ 1. (Otherwise, we can

standardize it by letting y∗
ik = yik/

√
var(yi1) + · · · + var(yiq)

for i = 1, . . . , n and k = 1, . . . , q.) Thus, it is impossible
to have S(k)⋃Mt = ∅ for every 1 ≤ k ≤ Knξ0+4ξmin , which
implies that at least one relevant variable will be discovered
within Knξ0+4ξmin steps. This completes the proof.
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