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ABSTRACT
Cui and Zhong (2019), (Computational Statistics & Data Analysis, 139, 117–133) proposed a test
based on the mean variance (MV) index to test independence between a categorical random
variable Y with R categories and a continuous random variable X. They ingeniously proved the
asymptotic normality of the MV test statistic when R diverges to infinity, which brings many
merits to the MV test, including making it more convenient for independence testing when R
is large. This paper considers a new test called the integral Pearson chi-square (IPC) test, whose
test statistic can be viewed as a modified MV test statistic. A central limit theorem of the martin-
gale difference is used to show that the asymptotic null distribution of the standardized IPC test
statistic when R is diverging is also a normal distribution, rendering the IPC test sharing many
merits with the MV test. As an application of such a theoretical finding, the IPC test is extended
to test independence between continuous random variables. The finite sample performance of
the proposed test is assessed by Monte Carlo simulations, and a real data example is presented
for illustration.
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1. Introduction

As a fundamental task in statistical inference and data analysis, testing independence of random variables has been
explored for decades in the literature. Based on different types of random variables, many approaches to test inde-
pendence have been proposed. For instance, if one wants to test independence between two categorical random
variables, then the contingency table analysis and the Pearson chi-square test can be used. If both variables are con-
tinuous, there are alsomany important tests, such as, Hoeffding (1948), Rosenblatt (1975), Csörgö (1985) and Zhou
and Zhu (2018), among others. Testing independence between random vectors has also received much attention
in recent years, for instance, Székely et al. (2007), Székely and Rizzo (2009), Heller et al. (2012), Zhu et al. (2017),
Pfister et al. (2018) and Xu et al. (2020).

It is also important to test independence between a continuous variable and a categorical variable. SupposeX is a
continuous variable with supportRX andY ∈ {1, . . . ,R} is a categorical variable withR categories.We are interested
in the following test of hypothesis:

H0: X and Y are independent, versue H1: X and Y are not independent.

Or, equivalently,

H0: F (x) = Fr (x) , for any x ∈ RX and r = 1, . . . ,R,

versue H1: F (x) �= Fr (x) , for some x ∈ RX and r = 1, . . . ,R, (1)

where F(x) = P(X ≤ x), pr = P(Y = r), and Fr(x) = P(X ≤ x | Y = r), r = 1, . . . ,R. Thus, testing independence
between X and Y is equivalent to testing the equality of conditional distributions, which is known as the k-sample
problem in the literature (see e.g., Jiang et al., 2015).

Recently, Cui and Zhong (2019) proposed the mean variance (MV) test based on a new measure of dependence
between X and Y, the MV index (Cui et al., 2015), to test hypothesis (1). The MV index is defined as

MV (X | Y) = EX [VarY (F (X | Y))] =
R∑

r=1
pr
∫

[F (x) − Fr (x)]2 dF (x) ,
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where F(x | Y) = P(X ≤ x | Y). Given {(Xi,Yi), i = 1, . . . , n} with sample size n, the MV test statistic is proposed:

nM̂Vn (X | Y) = n
∫ R∑

r=1
p̂r [Fn (x) − Frn (x)]2 dFn (x) ,

where Fn(x), p̂r and Frn(x) are the empirical counterparts of F(x), pr and Fr(x), respectively. An important theo-
retical finding of Cui and Zhong (2019) is that when the number of categories of Y is allowed to diverge with the
sample size, the standardized MV test statistic is a standard normal distribution. Cui and Zhong (2019) has argued
many appealing merits of this finding. For instance, this makes it convenient for obtaining any critical value of the
MV test by using an approximated normal distribution when R is large.

For any fixed x ∈ RX , dividing MV test statistic’s integrand by Fn(x)(1 − Fn(x)) leads to the Pearson chi-square
test statistic

χ2
n (x) = n

R∑
r=1

p̂r
[Fn (x) − Frn (x)]2

Fn (x) (1 − Fn (x))
(2)

=
R∑

r=1

2∑
l=1

(
nlr (x) n − nl+ (x) n+r

)2
nl+ (x) n+rn

, (3)

which is widely used in practice to test independence between the indicator function I(X ≤ x) and Y. Here nlr(x)
(l = 1, 2, r = 1, . . . ,R) are the counts in a 2 × R contingency table (Table 1) determined in the following way

n1r (x) = |{(Xi,Yi) : Xi ≤ x and Yi = r}| , for r = 1, . . . ,R,

n2r (x) = |{(Xi,Yi) : Xi > x and Yi = r}| , for r = 1, . . . ,R,

where |A| denotes the cardinality of a set A, and nl+(x) = ∑R
r=1 nlr(x), n+r = ∑2

l=1 nlr(x), for l = 1, 2, r =
1, . . . ,R. As the Pearson chi-square test is more widely used in testing independence, we can imitate the MV test
statistic to take the integral of χ2

n(x) with respect to Fn(x), and propose the following test statistic:

nÎPCn (X,Y) =
n∑
i=1

R∑
r=1

2∑
l=1

(
nlr (Xi) n − nl+ (Xi) n+r

)2
nl+ (Xi) n+rn

= n
R∑

r=1
p̂r
∫

[Fn (x) − Frn (x)]2

Fn (x) (1 − Fn (x))
dFn (x) . (4)

We call ÎPCn(X,Y) as the integral Pearson chi-squared (IPC) statistic, and nÎPCn(X,Y) as the IPC test statistic.
It is not difficult to see that the IPC test statistic is essentially a reestablishment of the k-sample AndersonDarling

test statistic proposed by Scholz and Stephens (1987). The reader is referred to He et al. (2019) and Ma et al. (2022)
for some recent work on this statistics. The asymptotic null distribution of the IPC test statistic when R is fixed was
established in Scholz and Stephens (1987). The promising performance of the k-sample Anderson Darling statistic
(IPC test statistic) has been verified by many subsequent works in the literature and a variety of applications in
practice. However, to our best knowledge, its theoretical property when the number of categories of Y is diverging
remains unknown. The main goal of this paper is to fill in gaps in this area. In analogy to the MV test, we find that
the IPC test also enjoys an appealing property, that is, the asymptotic null distribution of the standardized IPC test
statistic whenR is diverging is a standard normal distribution. This important theoretical finding allows the IPC test
to share many distinguished merits with the MV test. Our work, together with Cui and Zhong (2019), establishes a
solid theoretical foundation and empirical evidence for independence testing between a continuous variable and a
categorical variable with a diverging number of categories. As an application of such a theoretical finding, we also
extend the IPC test to test independence between two continuous random variables. The approach is carried out
by slicing one of the variables on its support to get a categorical variable, and then the IPC test can be applied. We

Table 1. Empirical bivariate distribution for a fixed x.

Events Y = 1 Y = 2 . . . Y = R Total

X ≤ x n11(x) n12(x) . . . n1R(x) n1+(x)
X > x n21(x) n22(x) . . . n2R(x) n2+(x)
Total n+1 n+2 . . . n+R n
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allow the slicing scheme to be finer as the sample size increases, which ensures us to obtain a satisfactory test power.
Slicing technique is widely used across many statistical fields, such as feature screening (Mai & Zou, 2015b; Yan
et al., 2018; Zhong et al., 2021) and k-sample test (Jiang et al., 2015). It has also been used for testing independence.
For instance, it is commonly seen in practice to slice two univariate variables into categorical variables and apply
Pearson chi-squared test to test their independence. Please refer to Zhang et al. (2022) for more recent development
of sliced independence test. Our research enriches the application of the slicing skill in the field of independence
testing. The proposed approach also provides a computationally tractable way to compute the p-value efficiently.
Simulation studies show that the proposed test has satisfactory test power in many scenarios.

The rest of the paper is organized as follows. Section 2 introduces some preliminaries of the IPC test. Section 3
presents themain results, including the asymptotic null distribution of the test statistic when R is diverging with the
sample size. Simulation studies of the proposed test and a real data application are included in Section 4. Section 5
concludes the paper. Due to the limited space, all the technical proofs of theorems are given in Appendix.

2. Preliminaries

Let X be a continuous random variable with support RX , Y ∈ {1, . . . ,R} be a categorical variable with R categories.
Motivated by the IPC statistic in (4), we define the following IPC index between X and Y.

IPC (X,Y) =
R∑

r=1
pr
∫

RX

[F (x) − Fr (x)]2

F (x) (1 − F (x))
dF (x) . (5)

The IPC statistic is a natural estimator of the IPC index. Note that the nl+(Xi) in the denominator of the right-hand
side of the first equality of (4) will take zero when Xi is the largest or smallest one among all {Xi}ni=1. A solution is
to follow Mai and Zou (2015a) and consider the Winsorized empirical CDF

F̃n (x) =
⎧⎨⎩
b, if Fn (x) ≥ b;
Fn (x) , if a < Fn (x) < b;
a, if Fn (x) ≤ a

at a predefined pair of number (a, b). The Winsorization will cause bias in estimating the IPC index. Though such
bias can automatically vanish if we let a → 0 and b → 1 as n → ∞. However, how to properly choose a and b is
beyond the scope of this paper. At the same time we notice that, if Xi is the largest or smallest one, the numerator of
the first equality of (4) will also take zero. Therefore, we hereafter denote 0/0 = 0 following the common practice
in the literature (see for example, He et al., 2019; Ma et al., 2022) to avoid confusion. Then we have the following
lemmas.

Lemma 2.1: Let Y ∈ {1, . . . ,R} be a categorical variable with R categories and X a continuous variable with support
RX,

ÎPCn (X,Y)
P→ IPC (X,Y) , (6)

as n → ∞.

Lemma 2.1 shows that ÎPCn(X,Y) is a consistent estimate of the IPC index.

Lemma 2.2: 0 ≤ IPC(X,Y) < 1 and IPC(X,Y) = 0 if and only if X and Y are independent.

According to Lemma 2.2, the IPC index is an effective measure of dependence between a continuous variable
and a categorical variable. Thus we can construct test of independence via the IPC statistic.

Let Tn = nÎPCn(X,Y). Note that Tn is essentially the k-sample Anderson Darling test statistic proposed by
Scholz and Stephens (1987), and then we can directly derive the asymptotic null distribution of Tn.

Theorem 2.3: Suppose X is a continuous random variable and Y is a categorical random variable with a fixed class
number R. Under H0,

Tn = nÎPCn (X,Y)
d→

∞∑
j=1

1
j
(
j + 1

)χ2
j (R − 1) , (7)

where χ2
j (R − 1)’s, j = 1, 2, . . ., are identically and independent distributed (i.i.d.) χ2 random variables with R−1

degree of freedom, and d→ denotes the convergence in distribution.



238 W. MA ET AL.

Though Theorem 2.3 gives an explicit form of the asymptotic null distribution, the exact distribution of∑∞
j=1[j(j + 1)]−1χ2

j (R − 1) is not accessible since it is a summation of infinitely many chi-square random vari-

ables. To address this issue, a widely adopted approach is to approximate
∑∞

j=1
χ2
j (R−1)
j(j+1) by DN + (R − 1)/(N + 1)

for a sufficiently largeN, whereDN = ∑N
j=1

χ2
j (R−1)
j(j+1) , and R−1

N+1 is the expectation of
∑∞

j=N+1
1

j(j+1)χ
2
j (R − 1). How-

ever, as a chi-square type mixture, DN ’s cumulative distribution function does not have a known closed form. In
practice, we usually generate many samples from DN and then use the empirical distribution as a surrogate of the
true distribution. We can also use permutation test or bootstrap to compute the p-value for the IPC test. However,
though these numerical methods are valid, they do make the IPC test less convenient for independence testing.

Lemma 2.1 declares that ÎPCn(X,Y) converges in probability to IPC(X,Y), which is a new result not discussed
in Scholz and Stephens (1987). Furthermore, we have a better result about the convergence rate.

Theorem 2.4: Under the conditions of Lemma 2.1, for any ε > 0,

P
(∣∣ÎPCn (X,Y) − IPC (X,Y)

∣∣ > ε
) ≤ C1nR exp

(−C2nε2/R2
) → 0, (8)

as n → 0. Here C1 is a positive constant, and C2 > 0 depends only onmin1≤r≤R pr.

Theorem 2.4 follows directly from Theorem 3.2 in Section 3.1. The probability inequality in (8) allows us to give
a lower bound of the power of the test with finite sample size. In specific, according to Theorem 2.3, we compute
the critical value Cα for a given significance level α > 0. Then under H1, the power is

P (Tn ≥ Cα|H1) = 1 − P
(
ÎPCn (X,Y) <

Cα

n

∣∣∣∣H1

)
= 1 − P

(
IPC (X,Y) − ÎPCn (X,Y) > IPC (X,Y) − Cα

n

∣∣∣∣H1

)
≥ 1 − P

(∣∣IPC (X,Y) − ÎPCn (X,Y)
∣∣ > IPC (X,Y) − Cα

n

∣∣∣∣H1

)

≥ 1 − C1nR exp

{
−C2n

(
IPC (X,Y) − Cα

n

)2
/

R2
}
.

According to Lemma 2.2, we have IPC(X,Y) > 0 under H1. Therefore, the power of the test converges to 1 as the
sample size increases to infinity. In other words, this ensures that the IPC test of independence is a consistent test.

Wewould like to conclude this section by introducing two relevant recentwork in the literature on IPC index. The
application of the dependence measure in marginal feature screening has received increasing attention. Recently,
He et al. (2019) proposed a novel feature screening procedure based on the IPC index (which they referred to as
the AD index) for ultrahigh-dimensional discriminant analysis where the response is a categorical variable with a
fixed number of classes. The theoretical guarantee of the IPC statistic in He et al. (2019) has focused primarily on
concentration inequality, rather than the asymptotic distribution. They showed that the proposed screeningmethod
is more competitive than many other existing methods. The promising numerical performance of He et al. (2019)’s
method soon inspired subsequent work. Later, Ma et al. (2022) extended He et al. (2019)’s work with the help of
slicing technique, and proposed an IPC index-based screening procedure which can handle many types of response
variable, including continuous variable, categorical variable and discrete variable taking finite or infinite values.
Especially, the slicing technique used in Ma et al. (2022) is further considered in this article to develop method for
testing independence between two continuous random variables. The details are postponed in Section 3.2.

3. Main results

In this section, we allow the number of categories of Y to approach infinity with the sample size n, and consider the
properties of the IPC test. Research on the categorical variable with a diverging number of categories has received
increasing attention in the literature. For instance, Cui et al. (2015) established the sure screening property of the
MV index for discriminant analysis with a diverging number of response classes. In their setting, they allow the
number of categories R to approach infinity at a slow rate of n. And Ni and Fang (2016) also proposed an entropy-
based feature screening for ultrahigh dimensional multiclass classification allowing the number of response classes
to diverge. Readers are also referred to Ni et al. (2017), Yan et al. (2018), Ni et al. (2020) andMa et al. (2022), among
others, for more examples.
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Here, we emphasize that it is also important to study test of independence between a continuous variable and a
categorical variable with a diverging number of categories. One of its applications is to provide a feasible approach
for testing independence between a continuous variable and a categorical variable taking infinite values. To be
specific, suppose Y is a categorical variable taking infinite values (e.g., Poisson variable) and X is a continuous
variable. To test independence between X and Y, we can define a new variable Y ′ = Y ∧ R for some R, where
a ∧ b = min(a, b). The IPC test is then applied to test independence between X and Y ′, which gives us important
information about whetherX and Y are independent. Then a natural question is how to choose an appropriate R. A
reasonable approach is to allow R to go to infinity with the sample size n so as to obtain satisfactory test power. This
is one of the reasons that motivates us to study the asymptotic properties of the IPC statistic when R is diverging.

3.1. Asymptotic properties when R is diverging

In the following, we establish the large sample properties of the IPC statistic whenR is divergingwith the sample size
n. To avoid any ambiguity, in Section 3.1, we actually consider a sequence of problems indexed by k, k = 1, 2, . . ..
For each k, Yk ∈ {1, . . . ,Rk} denotes the categorical variable with Rk categories, pr,k = P(Yk = r), for r = 1, . . . ,Rk,
Xk denotes the continuous variable, and {(Xki,Yki): i = 1, 2, . . . , nk} is a random sample with sample size nk from
(Xk,Yk). The following theorem shows the asymptotic normality of the standardized test statistic if Xk and Yk are
independent for any k = 1, 2, . . ..

Theorem3.1: Assume that nk → ∞ as k → ∞. Let Tnk = nkÎPCnk(Xk,Yk). If
√
Rk/min1≤r≤Rk pr,k = o(n3/8k ) and

Rk → ∞ as nk → ∞, and Xk and Yk are independent for k = 1, 2, . . ., we have

Tnk − (Rk − 1)√
2
(

π2

3 − 3
)

(Rk − 1)

d→ N (0, 1) , (9)

as k → ∞.

If min1≤r≤Rk pr,k = O(n−γ

k ) where 0 < γ < 3/8, then we derive that Rk = O(nη

k) for some 0 < η < 3/4 − 2γ ,
namely, we allow the number of categories to go to infinity with the sample size n at the relatively slow rate. Cui
and Zhong (2019) also gave a similar result for the MV test with R diverging.

Let V(R) = ∑∞
j=1 χ2

j (R − 1)/[j(j + 1)] be the asymptotic null distribution in Theorem 2.3 where R is fixed. A
direct application of Theorem 3.1 is that we can use a normal distribution with mean R−1 and variance 2(π2/3 −
3)(R − 1) to approximate the asymptotic null distribution of the IPC test (i.e., V(R)) when R is large. Denote
W(R) = N(R − 1, 2(π2/3 − 3)(R − 1)). To gain more insight into the connection between the normal distribu-
tionW(R) andV(R), one can notice that the mean and the variance ofV(R) are also R−1 and 2(π2/3 − 3)(R − 1),
respectively. This result is a distinguished merit of the IPC test. It enables us to reduce the computational cost since
it is more easy to calculate the critical value ofW(R) than of V(R).

To further check the validity of using W(R) as a surrogate for V(R) to compute the critical value of the IPC
test when R is large, we compare the empirical quantiles of the IPC test statistic with the theoretical quantiles of
the normal distributionW(R) in (9) and the asymptotic null distribution V(R) in (7). We generate Y ∈ {1, . . . ,R}
with equal probabilities and X independently from U(0, 1). We consider R = 10, 15, . . . , 35. For each R, let n =
40 × R, and we repeat the simulation 1000 times to obtain 1000 values of the IPC test statistic Tn. We report the
90% and 95% quantiles of 1000 Tn’s (denoted by empirical quantile in Table 2), as these two quantiles are most
widely used in hypothesis testing. The 90% and 95% quantiles of V(R) (denoted by theoretical quantile 1) and
W(R) (denoted by theoretical quantile 2) are also computed. The results are gathered in Table 2. The empirical
quantiles are close to the theoretical quantiles of W(R) even when R = 10, which further supports our proposed
method of using the approximated normal distribution to calculate the critical value of the IPC test when R is
relatively large. Looking further into the results in Table 2, we can see thatTn’s empirical quantiles seem to be almost
systematically smaller than the quantiles of V(R) (with the exception of the 95% quantile when R = 35), while

Table 2. Comparison of empirical quantiles with two theoretical quantiles.

90% 95%

R 10 15 20 25 30 35 10 15 20 25 30 35

Empirical quantile 11.930 17.726 23.448 28.915 34.379 39.655 13.099 19.114 24.943 30.460 36.149 41.802
Theoretical quantile 1 12.027 17.806 23.401 28.923 34.425 39.785 13.206 19.178 24.995 30.636 36.298 41.592
Theoretical quantile 2 11.927 17.651 23.253 28.780 34.255 39.690 12.757 18.686 24.459 30.135 35.744 41.303
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larger than the quantiles ofW(R) (both by a very small amount). Note that the asymptotic distributionV(R) can be
viewed as a chi-square-type mixture. Such chi-square-type mixture follows an asymmetrical, positively skewed (or
right-skewed) distribution, in which the left tail is shorter while the right tail is longer. To be specific, the skewness
of V(R) is E(V(R) − EV(R))3/Var(V(R))3/2 = (80 − 8π2)/{(2π2/3 − 6)3/2(R − 1)1/2} > 0, which will tend to
zero as R goes to infinity. While the normal distribution W(R) is symmetric, its skewness is 0. Since V(R) is a
better approximation of the exact distribution of Tn, it makes sense that the 90% and 95% quantiles of both the Tn’s
empirical distribution andV(R)will be slightly larger than that ofW(R). It is also interesting that the Tn’s empirical
quantiles fall between the quantiles of V(R) and the quantiles ofW(R). This may implicate that the skewness of the
exact distribution of Tn seems to be smaller than that of V(R).

We further compare the empirical null distribution with W(R). Still generate Y ∈ {1, . . . ,R} with equal prob-
abilities and X independently from U(0, 1). Consider four scenarios: (a) R = 5, n = 100 × R = 500; (b) R = 10,
n = 80 × R = 800; (c)R = 20, n = 40 × R = 800; (d)R = 50, n = 30 × R = 1500.We run the simulation 100000
times for each scenario to obtain 100000 values of the IPC test statistic Tn. Then we compare the empirical dis-
tribution of the standardized IPC test statistic [Tn − (R − 1)]/

√
2(π2/3 − 3)(R − 1) with the standard normal

distribution N(0, 1) in Figure 1. In scenario (a) when R = 5 is too small, the empirical density curve of the stan-
dardized IPC test statistic deviates to some extent from the normal density function, even though the sample size
n = 500 is large. Also, when R = 5, the empirical density is positively skewed, with more values clustered around
the left tail while the right tail is slightly longer. The empirical density curve, however, is very well matched to the

Figure 1. Comparing the empirical distribution of the standardized IPC test statistic with the standard normal distribution. The blue
broken line represents the empirical density and the black solid line represents the standard normal density. The empirical density is
a kernel density estimate using Gaussian kernels based on 100000 values of Tn. In each panel, the histogram of the standardized IPC
test statistic is also displayed. (a) R = 5, n = 500. (b) R = 10, n = 800. (c) R = 20, n = 800 and (d) R = 50, n = 1500.
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standard normal density curve when R increases, such as in scenario (c) when R = 20. This further emphasizes
that R should be large enough (say, larger than 10) to ensure the normal approximation in Theorem 3.1 to hold.

The following theorem allows us to bound the deviation of the IPC statistic when R is diverging, which is parallel
to Theorem 3.1 in Ma et al. (2022).

Theorem 3.2: Suppose Rk = O(nη

k) for some 0 ≤ η < 1/2 and there exists a positive constant c1 such that c1/Rk ≤
pr,k for r = 1, . . . ,Rk, k = 1, 2, . . .. Then for any ε ∈ (0, 1),

P
(∣∣ÎPCnk (Xk,Yk) − IPC (Xk,Yk)

∣∣ > ε
) ≤ C1nkRk exp

(
−C2nkε2

R2k

)
, (10)

where C1 is a positive constant and C2 > 0 depends only on c1.

Remark 3.1: He et al. (2019) has also established a concentration inequality for the IPC statistic. However, their
theoretical guarantee relies on a fixed number of categories (i.e., η = 0). Thus, Theorem 3.2 is different to Lemma 4
in He et al. (2019).

The condition c1/Rk ≤ pr,k for r = 1, . . . ,Rk, which is also used in Cui et al. (2015) and Cui and Zhong (2019),
requires that the proportion of each category of Yk can not be too small. Indeed, the condition can be relaxed in a
way that c1 is allowed to tend to 0 at a slow rate. Specifically, if we assume c1 = o(n−τ

k ) for some 0 < τ < 1/2 − η,
then the probability in (10) will still converge to zero, but the convergence rate will be relatively slower. Note that
Theorem 2.4 is a special case of Theorem 3.2 when η = 0, i.e., Rk is fixed, and the condition on pr,k is automatically
satisfied.

3.2. Extension of the IPC test

A natural application of Theorem 3.1 is to extend the IPC test to test independence between two continuous vari-
ables via the slicing technique. Consider two continuous random variables X and Z. Without loss of generality, we
assume that the supports of X and Z are R. We define a partition of the support of Z with a given positive integer R:

S = {[
qr−1, qr

)
: qr−1 < qr, r = 1, . . . ,R

}
, (11)

where q0 = −∞, qR = ∞. Each interval [qr−1, qr) is called a slice in the literature (Mai & Zou, 2015b; Yan
et al., 2018). And a new random variable can be accordingly defined as YS = r if and only if qr−1 ≤ Z < qr for
r = 1, . . . ,R. The IPC test can be applied to test independence between X and YS. If the distribution of Z is
known, we suggest a uniform slicing to partition Z such that qr = F−1

Z (r/R) for r = 1, . . . ,R, where FZ(z) is the
cumulative distribution function of Z. However, in practice, FZ(z) is usually unknown. But given observations
{(Xi,Zi), i = 1, . . . , n} with sample size n, we can use q̂r = F̂−1

Z (r/R) to estimate qr for r = 1, . . . ,R, where F̂Z(z)
is the empirical distribution of Z. And Ŝ = {[q̂r−1, q̂r), r = 1, . . . ,R} is regarded as an intuitive uniform slicing
scheme (Yan et al., 2018). We also define Y Ŝ

i = r if and only if Zi ∈ [q̂r−1, q̂r) for r = 1, . . . ,R, i = 1, . . . , n. Now,
we compute ÎPCn(X,Y Ŝ) as

ÎPCn

(
X,Y Ŝ

)
:=

R∑
r=1

p̃r
∫ [

Fn (x) − F̃rn (x)
]2

Fn (x) (1 − Fn (x))
dFn (x) ,

where p̃r = 1
n
∑n

i=1 I(Y
Ŝ
i = r) = 1/R, and F̃rn(x) = 1

n
∑n

i=1 I(Xi ≤ x,Y Ŝ
i = r)/̃pr is the empirical conditional dis-

tribution ofX based on the subjects for which q̂r−1 ≤ Zi < q̂r. We reject hypothesisH0:X and Z are independent, if
(nÎPCn(X,Y Ŝ) − R + 1)/

√
2(π2/3 − 3)(R − 1) ≥ �−1(1 − α) for some given significance value α ∈ (0, 1), where

�(x) is the standard normal distribution function.
Obviously, it is important to choose an appropriate R for testing independence. If R is too large, then the sample

size in each slice is too small, making the estimate of the IPC index inaccurate. And if R is too small, then much
information of Z may be lost, making the test power poor. In the slicing literature (Mai & Zou, 2015b; Yan et al.,
2018; Zhong et al., 2021), a common choice is to set R = �log n�, where �x� is the integer part of x. And according
to Theorem 3.1, we can also choose R < �n1/4�. In practice, we recommend choosing R = �n/k� for some 20 ≤
k ≤ 50, so that the sample size in each slice is about 20 to 50.
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3.3. Comparisonwith theMV test

In this subsection, we would like to discuss the advantages of the IPC test compared to the MV test. As explained
in Cui and Zhong (2019), the MV index can be considered as the weighted average of Cramér-von Mises distances
between Fr(x), the conditional distribution of X given Y = r, and F(x), the unconditional distribution function
of X. Note that the IPC index can be viewed as a modification of the MV index by adding a weight function
{F(x)(1 − F(x))−1}. Such weight function is large for F(x) near 0 and 1, and smaller near F(x) = 1/2. Hence,
the IPC test emphasizes more on the difference between Fr(x) and F(x) near the tail of F(x). As it is known,
Fr(x) − F(x) = ∑R

j=1 pj(Fr(x) − Fj(x)). Accordingly, the IPC test is more sensitive to tail differences among the
conditional distributions. In the following, we consider the test of independence between a continuous random
variable and a categorical variable with a relatively large number of classes (i.e., R is large) and the test of indepen-
dence for two continuous random variables, and further illustrate the IPC test’s sensitivity to differences in the tails
of the conditional distributions through numerical simulations.

1.When R is large or is allowed to diverge. In this case, we recommend using a normal distribution to approximate
the IPC test’s null distribution due to Theorem 3.1. It is not surprising that given a large R, IPC test still retains
sensitivity to tail differences when using a normal distribution instead of V(R) to calculate p-value. The following
example is used to illustrate this issue.

Let Y ∈ {1, . . . , 20} with P(Y = r) = 1/20, for r = 1, . . . , 20. When Y = r, generate X ∼ BW + (1 − B)Vr,
where B ∼ Binomial(1, p), W and Vr are independent, W = N(0, 1) and Vr = N(10 + r, 1). To intuitively gain
some understanding of our simulation setting, set p = 0.8. We draw the conditional distributions ofX given Y = 1
and Y = 5, respectively in Figure 2. It is easy to see that the conditional distributions differ from each other only at
their right tails. We choose the sample size n = 400, and p = 0.7, 0.75, 0.8, 0.85, 0.9. We apply the IPC test and the
MV test, and compute the p-values for these two tests by using their approximated normal distributions. The empir-
ical powers of these two tests based on 500 replicates at the significance level α = 0.05 are presented in Table 3. To
further validate the robustness of the IPC test against heavy-tails, we further consider W ∼ t(1) in the above set-
ting. The empirical powers are also shown in Table 3. A larger p indicates that the differences among the conditional
distributions occur in amore extreme right tail end, and thus are more difficult to detect the dependence betweenX
andY.We can see fromTable 3 that the IPC test is significantlymore powerful than theMV test when p<0.9.When
p = 0.9, neither the IPC nor theMV has sufficient statistical power to detect the dependence betweenX and Y. The
simulation validates that the IPC test has a better power to tail differences among the conditional distributions. In
Example 4.1 we will compare with other existing methods to further validate the IPC test’s sensitivity towards tail
differences.

2. Testing independence between continuous random variables. We follow the notation in Section 3.2. Let X and Z
be two continuous random variables. It is natural to expect that the IPC test will be more powerful than theMV test
to detect the tail differences among the conditional distribution of X given Z. Consider a straightforward extension
of the IPC index in (5) and define the following index between X and Z:

IPC (X,Z) =
∫ ∫

[F (x | Z = z) − F (x)]2

F (x) (1 − F (x))
dF (x) dFZ (z) , (12)

Figure 2. Panel (a) shows the pair of conditional distributions. The blue solid line represents the conditional distribution of X given
Y = 1, that is, BN(0, 1) + (1 − B)N(11, 1)where B ∼ Binomial(1, 0.8); and the red dot-dash line represents the conditional distribu-
tion of X given Y = 5, that is, BN(0, 1) + (1 − B)N(15, 1)where B ∼ Binomial(1, 0.8). Panel (b) shows the corresponding conditional
density functions.
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Table 3. Test of independence between a continuous variable and a categorical variable with R = 20 classes.

W ∼ N(0, 1) W ∼ t(1)

p 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

IPC 0.984 0.838 0.498 0.226 0.096 0.972 0.816 0.440 0.230 0.102
MV 0.654 0.338 0.166 0.074 0.062 0.692 0.370 0.176 0.118 0.064

Notes: The empirical powers of the IPC and MV tests at significance level α = 0.05 against different p are computed based on 500 replications. A larger p
indicates that the differences among the conditional distributions occur in a more extreme tail end.

Table 4. Test of independence between two continuous random variables.

W ∼ N(0, 1) W ∼ t(1)

p 0.70 0.75 0.80 0.85 0.90 0.70 0.75 0.80 0.85 0.90

IPC 0.996 0.912 0.624 0.266 0.126 0.992 0.828 0.560 0.238 0.106
MV 0.762 0.430 0.202 0.110 0.060 0.794 0.400 0.190 0.082 0.074

Notes: The empirical powers of the IPC and MV tests at significance level α = 0.05 against different p are computed based on 500 replications. A larger p
indicates that the differences among the conditional distributions occur in a more extreme tail end.

where F(· | Z = z) is the conditional distribution of X given Z = z, and F(x) and FZ(z) are the distributions of X
and Z, respectively. Given a positive integer R and a corresponding uniform slicing scheme S defined as in (11) with
qr = F−1

Z (r/R) for r = 1, . . . ,R, recall that YS = r if and only if qr−1 ≤ Z < qr. Under certain mild conditions, Ma
et al. (2022) has shown that IPC(X,YS) → IPC(X,Z), as R → ∞.

From (12), again, we have some insights that the IPC test of independence emphasizes more on the difference
between F(x | Z = z) and F(x) near the tail of F(x). We use a toy sample to further illustrate this issue. Generate
Z ∼ Unif(4, 6), and generateX = BW + 5(1 − B)Z, whereB ∼ Binomial(1, p).We still consider two settings ofW:
(i)W ∼ N(0, 1) and (ii)W ∼ t(1). Choose the sample size n = 400, and p = 0.7, 0.75, 0.8, 0.85, 0.9. We follow the
step in Section 3.2 and choose R = 20 to conduct the test of independence. Table 4 presents the empirical powers
of IPC andMV tests based on 500 replicates at the significance level α = 0.05. IPC test outperforms the MV test in
these settings. Note that when p = 0.8, the MV test is almost invalid. However, the IPC test still has a reasonably
acceptable power.

4. Numerical studies and data application

4.1. Numerical studies

In this section, we assess the finite-sample performance of the IPC test by comparing with some powerful methods
proposed in recent years: the MV test (Cui & Zhong, 2019), the distance correlation (DC) test (Székely et al., 2007),
the HHG test (Heller et al., 2012, 2016) and the Hilbert-Schmidt independence criterion (HSIC) test (Gretton et al.,
2005, 2007; Pfister et al., 2018). The R packages energy, HHG, and dHSIC are used to implement the DC test, the
HHG test and the HSIC test, respectively. Note that the DC test can not be directly applied to a categorical variable,
so in our simulations we will transfer a categorical variable with R categories into a random vector with R−1 binary
dummy variables and apply dcov.test to this dummy vector instead of the original data. For the DC,HHG, andHSIC
tests, the permutation test with K = 200 is used to calculate the p-value.

Example 4.1: In this example, we evaluate the performance of IPC test for the large-R case. Let R = 15, and we
consider the following two cases.

Model 1.1. Generate Y ∈ {1, . . . , 15} with equal probabilities. And let μ = (μ1, . . . ,μ15), where μ5j+l = l + 1
for 1 ≤ l ≤ 3, and μ5j+l = l + 2 for l = 4, 5, j = 0, 1, 2. For Y = r, generate X = BU + (1 − B)(Vμr + 20), where
B ∼ Binomial(1, p), U ∼ Unif(−20, 20), Vμr ∼ Beta(3,μr).

Model 1.2. GenerateY ∼ Unif(0, 4). And letX ∼ BU + (1 − B)W, whereW ∼ Unif(cos(Yπ) + 21, cos(Yπ) +
24). B, U are the same as in Model 1.1.

Let n = 400. In Model 1.2, we uniformly slice Y into a categorical variable with R = 15 classes in order to apply
the IPC and MV tests. Let p vary from 0 to 1 in both two models. We compute the p-value for the IPC test by
using the asymptotic distribution in Theorem 3.1. The empirical power of each test based on 500 simulations at the
significance level α = 0.05 is shown in Figure 3. Note that, when p = 1, X is independent with Y in both models.
We deliberately report the results, i.e., the type I error rates of each test, in Table 5. The type I error rates of the
IPC test (and other tests) are close to the nominal significance level α = 0.05, which further supports Theorem 3.1.
Figure 3 clearly shows that the IPC test outperforms other competitors. And the power differences between IPC
test and MV test exceed 0.25 when p = 0.6 for both models.
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Figure 3. Comparison of powers of several tests of independence against different p in Example 4.1. In each case, 500 simulations
are used to estimate the power. (a) Model 1.1 and (b) Model 1.2.

Table 5. Empirical type I error rates at the significance level α = 0.05 in Example 4.1.

Model 1.1 Model 1.2

n IPC MV DC HHG HSIC IPC MV DC HHG HSIC

400 0.050 0.042 0.048 0.056 0.044 0.054 0.058 0.054 0.046 0.05

Looking further into the models considered in this example. In both Model 1.1 and Model 1.2, the conditional
distributions of X given Y differ from each other only in their right tails when p>0.5. A larger p indicates that
the conditional distribution functions differ from each other in a more extreme tail end. And when p = 1, X and
Y are independent. Thus it could be more difficult to detect the dependence between X and Y for a larger p<1.
As a result, we can see from Figure 3 that the power of each test decreases with the growth of p. Among the tests
considered, the DC test and the HSIC test perform the worst in both models. Their powers rapidly decrease to near
0 when p increases to 0.4. It can be seen that the IPC test and the MV test have a better performance compared to
other tests. Furthermore, the IPC test has a significant higher power than the MV test when p is between 0.6 and
0.8 in both models. This further supports our observation in Section 3.3 that the IPC test is more sensitive to tail
differences.

Example 4.2: This example considers a Poisson regression model. Let Z ∼ Poisson(u), where u = exp(0.8X1 −
0.8X2 + log 4), (X1,X2) ∼ N((0, 1)�,	), 	 = (0.5|i−j|)1≤i,j≤2. Let Y = Z if Y ≤ 8; otherwise Y = 9. As a con-
sequence, Y is a 10-categories variable. Consider n = 100, 150, . . . , 300. We apply the testing methods to test
independence between Y and X1, Y and X2, respectively. And the asymptotic normal distribution in Theorem 3.1
is used to compute p-value for the IPC test. The empirical powers of each test based on 500 replications are summa-
rized in Table 6. The IPC test has most excellent power performances in all settings. The HHG test and the HSIC
test perform poorly when the sample size n ≤ 150.

The power of the IPC test is only slightly higher than that of the MV test. However, it is significantly higher than
that of HHG and HSIC. The DC test has moderate performance, inferior to the MV test, but better than HSIC.

Example 4.3: In this example, we evaluate the power of the IPC test in testing independence between continuous
variables. Simulations are carried out with sample size n = 400. We choose R = 15 to implement the IPC test.
Generating Z ∼ Unif(−2, 2), the following alternatives are considered.

Table 6. Empirical powers of each test at the significance level α = 0.05 against the sample sizes in Example 4.2.

X1 X2

n IPC MV DC HHG HSIC IPC MV DC HHG HSIC

100 0.708 0.686 0.626 0.342 0.422 0.724 0.714 0.648 0.350 0.452
150 0.918 0.910 0.856 0.536 0.652 0.918 0.908 0.860 0.556 0.664
200 0.990 0.988 0.968 0.746 0.840 0.986 0.978 0.964 0.718 0.830
250 0.998 0.992 0.992 0.872 0.932 0.996 0.990 0.990 0.880 0.928
300 1.000 0.998 0.992 0.908 0.954 0.998 0.998 0.994 0.918 0.968
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(a) Linear: X = Z/2 + 12γ ε, where γ is a noise parameter ranging from 0 to 1, and ε ∼ Unif(−2, 2) is indepen-
dent of Z.

(b) Quadratic: X = ( 12Z)2 + 4.5γ ε.
(c) Step function: X = f (Z) + 25γ ε, where f takes value 2 in interval [−2,−1) ∪ [0, 1) and value −2 in [−1, 0) ∪

[1, 2].
(d) W-shaped: X = |Z + 1|I(Z < 0) + |Z − 1|I(Z ≥ 0) + 4γ ε.
(e) Sinusoid: X = cos(4πZ) + 5γ ε.
(f) Ellipse: X =

√
1 − (Z/2)2 + 1.5γ ε.

To conduct the IPC test and the MV test, we uniformly slice Z into a categorical variable Y with R = 15 classes.
The choices of the coefficients in all of the above are to make sure that a full range of powers can be observed
when γ varies from 0 to 1. In addition to the test methods mentioned before, in this example, we further consider
a comparison with a new test, the modified Blum-Kiefer-Rosenblatt (MBKR) test (Zhou & Zhu, 2018) which is
applied for testing independence between continuous variables. Figure 4 presents the empirical power of each test
based on 500 simulations at the significance level α = 0.05. We see from the figure that the IPC test performs quite
excellent when the relationship has an oscillatory nature (theW-shaped and the sinusoid). It is also better than other
competitors for the step function, and comparably well to the MBKR test for the quadratic function. However, the
IPC test has poor performance compared to other tests for some smooth alternatives: the linear and the ellipse. For
the linear function, the MBKR test has the highest performance. IPC test has comparable performance to HSIC.
For the ellipse function, HHG test has the highest power and DC test performs the poorest. The performance of
the IPC test, on the other hand, is moderate.

We give an intuitive explanation here for the excellent performance of the IPC test in detecting oscillatory
relationships. Denote X | Y = r as the random variable which follows the conditional distribution of X given
Y = r. By simple calculation, we find that if X and Z have an oscillatory relationship, then the variances of
X | Y = r differ from each other more significantly. As a comparison, if X and Z have a linear relationship, then
Var{X | Y = 1} = · · · = Var{X | Y = 15}. Consequently, the IPC test has a higher test power when there is an
oscillatory relationship between X and Z.

4.2. Real data application

Example 4.4: We consider a data set from AIDS Clinical Trials Group Protocol 175 (ACTG175), which is avail-
able from the R package speff2trial. Many researchers have studied this data set, such as Tsiatis et al. (2008), Zhang
et al. (2008), Lu et al. (2013) and Zhou et al. (2020). The data set contains 2139 HIV-infected subjects. And all the
subjects were randomized to four different treatment groups with equal probability: zidovudine (ZDV) monother-
apy, ZDV+didanosine (ddI), ZDV+zalcitabine, and ddI monotherapy. In addition to the treatment indicators
indicating which group each subject was assigned to, the data contains many other important variables, such as the
CD4 count at 20 ± 5 weeks post-baseline (CD420), the CD4 count at baseline (CD40), the history of intravenous
drug use, et al.

In this study, in order to get more elaborated results, we only consider the subjects under ZDV+zalcitabine
groups (524 subjects) in the following analysis. The goal of our study is to check whether the treatment effect under
ZDV + zalcitabine groups is dependent on some other covariates. Following Hammer et al. (1996) and Tsiatis
et al. (2008), we use the change from baseline to 20 ± 5 weeks in CD4 cell count, i.e., CD420−CD40, to measure
the treatment effect. And the covariates of interest are listed below: history of intravenous drug use (0 =no, 1 =yes),
gender (0 =female, 1 =male), antiretroviral history (0 =naive, 1 =experienced), age, and CD8 count at baseline
(CD80). Thus the first three covariates are categorical, and the last two are continuous covariates. LetX = CD420 −
CD40, and then there are 5 candidates Y. The null hypotheses are listed as follows.

• H1
0 : X is independent of Y with Y = history of intravenous drug use;

• H2
0 : X is independent of Y with Y = gender;

• H3
0 : X is independent of Y with Y = antiretroviral history;

• H4
0 : X is independent of Y with Y = age;

• H5
0 : X is independent of Y with Y = CD8 count at baseline.

We apply the IPC, MV, DC, HHG and HSIC tests to these five hypotheses. The permutation test with K = 1000
permutated times is used for DC, HHG and HSIC tests to compute the p-values. And forH4

0 andH
5
0 , we follow the

approach in Section 3.2 to slice Y into a categorical variable with 15 classes to implement the IPC test and MV test.
Table 7 summarizes the p-values of each test. If we only consider the significance level α = 0.05, then we observe
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Figure 4. Comparison of powers of several tests of independence in Example 4.3. The noise level increases from left to right. In each
case, 500 simulations are used to estimate thepower of each test. (a) Linear. (b)Quadratic. (c) Step function. (d)W-shaped. (e) Sinusoid
and (f ) Ellipse.

that all the tests rejectH3
0 ,H

4
0 andH

5
0 , and acceptH

2
0 . That is, the treatment effect under the ZDV+zalcitabine group

depends on antiretroviral history, age and CD80, but not on gender. Regarding the history of intravenous drug use,
the IPC,DC,HHGandHSIC tests declare statistical dependence between this and the treatment effect.However, the
MV test has a p-value larger than 0.05, and thus it can not rejectH1

0 .We draw the empirical conditional distributions
ofX given Y = 0 and 1 as well as the side-by-side boxplots in Figure 5, where Y = history of intravenous drug use.
We see that the conditional distributions of X are different across different Y. However, the difference is relatively
small andmainly occurs in the right tails. According to the discussion in Section 3.3, IPC test will be more powerful
in such case. Also, the categories of Y are very unbalanced with #{Y = 0} = 448 and #{Y = 1} = 76, making the
MV test more difficult to detect the dependence between X and Y.
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Table 7. The p-values of each test in Example 4.4.

Y IPC MV DC HHG HSIC

history of intravenous drug use 0.0387 0.0580 0.0330 0.0060 0.0070
gender 0.8914 0.8832 0.8751 0.8232 0.7223
antiretroviral history 0.0007 0.0007 0.0020 0.0020 0.0060
age 0.0420 0.0210 0.0030 0.0120 0.0140
CD80 0.0040 0.0030 0.0060 0.0240 0.0100

Figure 5. The left panel shows the empirical conditional distributions of CD420 − CD40 given Y = 0 and Y = 1. And the right panel
shows the side-by-side boxplots of CD420 − CD40 against Y = 0 and Y = 1. Here Y = history of intravenous drug use.

5. Discussion

In this paper, we studied the IPC test of independence between a continuous variable X and a categorical variable
Y. When the number of categories of Y is fixed, the IPC test statistic is in essence the k-sample Anderson Darling
test statistic, and its theoretical properties were studied in Scholz and Stephens (1987). Our work mainly focused
on two aspects. First, we derived the convergence rate of the IPC statistic to the IPC index and thus a lower bound
of the power of the test at a given significance level with a finite sample size could be derived. Second, we showed
that the standardized test statistic has an asymptotic normal distribution when the number of categories R diverges
to infinity with the sample size. A distinguished merit is thereby shared by the IPC test, that is, its critical values
can be easily obtained by using an approximated normal distribution when R is relatively large. As an application,
we extended the IPC test to test independence between two continuous random variables. We uniformly slice a
continuous variable into a discrete variable in order to apply the IPC test. And by allowingmore slices as the sample
size increases, the IPC test is allowed to gainmore test power. The proposed test was compared to the DC test, HHG
test, HSIC test and MV test on many simulation experiments. The results showed that the IPC test has a better
performance in many scenarios. It is also possible to consider more different slicing schemes for independence
testing of continuous variables. We left it for further research.
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Appendix. Proof of theorems

This appendix contains the technical proofs of Lemma 2.2 and Theorem 3.1. Lemma 2.1 and Theorem 2.4 are direct corollaries
of Theorem 3.2, and the proof of Theorem 3.2 follows from Lemma 4 in Ma et al. (2022), and thus their proofs are omitted.

A.1 Notations and preliminaries

Recall that the IPC index of (X,Y), whereX is a continuous random variable with supportRX andY ∈ {1, . . . ,R} is a categorical
variable with R categories is defined as

IPC (X,Y) =
R∑

r=1
pr
∫

[F (x) − Fr (x)]2

F (x) (1 − F (x))
dF (x)

=
R∑

r=1

∫ [
prF (x) − F (x, r)

]2
F (x) F (x) pr

dF (x) ,

where F(x) is the distribution function of X, Fr(x) = P(X ≤ x | Y = r), F(x) = 1 − F(x), pr = P(Y = r) and F(x, r) = P(X ≤
x,Y = r), r = 1, . . . ,R. And given i.i.d. samples Zi = (Xi,Yi) for i = 1, . . . , n, the IPC statistic is defined as

ÎPCn (X,Y) =
R∑

r=1
p̂r
∫

(Fn (x) − Frn (x))2

Fn (x) Fn (x)
dFn (x)

=
R∑

r=1

∫ (
p̂rFn (x) − Fn (x, r)

)2
Fn (x) Fn (x) p̂r

dFn (x)

= 1
n

R∑
r=1

n∑
i=1

(
p̂rFn (Xi) − Fn (Xi, r)

)2
Fn (Xi) Fn (Xi) p̂r

,

where Fn(x) = 1
n
∑n

i=1 I(Xi ≤ x), Fn(x) = 1 − Fn(x), p̂r = 1
n
∑n

i=1 I(Yi = r), Fn(x, r) = 1
n
∑n

i=1 I(Xi ≤ x,Yi = r), and Frn(x)
= Fn(x, r)/p̂r for r = 1, . . . ,R.

We first provide a proof of Lemma 2.2.

Proof of Lemma 2.2.: It is obvious that IPC(X,Y) = 0 if and only if X and Y are independent. By noticing that
∑R

r=1 pr = 1
and

∑R
r=1 F(x, r) = F(x), we have

1
F (x) F (x)

R∑
r=1

(
prF (x) − F (x, r)

)2
pr

= 1
F (x) F (x)

( R∑
r=1

F2 (x, r)
pr

− F2 (x)

)

<
1

F (x) F (x)

( R∑
r=1

F (x, r) pr
pr

− F2 (x)

)

= 1
F (x) F (x)

( R∑
r=1

F (x, r) − F2 (x)

)
= 1.

Hence we have IPC(X,Y) < 1. �

Next, we give some preparations for the proof of Theorem 3.1. For given constant C> 0, let Fn,C(x) = F(x) ∨ n− 1
2+C ,

Fn,C(x) = F(x) ∨ n− 1
2+C , FCn (x) = Fn(x) ∨ n− 1

2+C and FCn (x) = Fn(x) ∨ n− 1
2+C . Then we have the following lemmas.

Lemma A.1: Let 
1F(x) = Fn,C(x) − FCn (x) and 
2F = Fn,C(x) − FCn (x). Then

sup
x∈R

|
1F (x)| = Op
(
n−1/2) , and sup

x∈R

|
2F (x)| = Op
(
n−1/2) .

Proof: It is easy to show that ∣∣∣Fn,C (x) − FCn (x)
∣∣∣ ≤ |F (x) − Fn (x)| .

Hence by Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al., 1956),

sup
x

|
1F (x)| ≤ sup
x

|F (x) − Fn (x)| = Op
(
n−1/2) .

Similarly, we have supx |
2F(x)| = Op(n−1/2). �
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Lemma A.2: supx

∣∣∣∣ Fn,C(x)Fn,C(x)−FCn (x)FCn (x)
FCn (x)FCn (x)

∣∣∣∣ = Op(n− C
4+2C ) = op(1).

Proof: Note that

Fn,C (x) Fn,C (x) =
(
FCn (x) + 
1F (x)

) (
FCn (x) + 
2F (x)

)
= FCn (x) FCn (x) + FCn (x) 
1F (x) + FCn (x) 
2F (x) + 
1F (x) 
2F (x) .

Then,

sup
x

∣∣∣∣∣FCn (x) FCn (x) − Fn,C (x) Fn,C (x)

FCn (x) FCn (x)

∣∣∣∣∣ ≤ sup
x

∣∣∣∣
1F (x)
FCn (x)

∣∣∣∣+ sup
x

∣∣∣∣∣
2F (x)

FCn (x)

∣∣∣∣∣+ sup
x

∣∣∣∣∣
1F (x) 
2F (x)

FCn (x) FCn (x)

∣∣∣∣∣
= Op

(
n−1/2+ 1

2+C
)

+ Op

(
n−1/2+ 1

2+C
)

+ Op

(
n−1+ 1

2+C
)

= Op

(
n− C

4+2C
)
.

�

A.2 Proof of Theorem 3.1

To avoid any ambiguity, Theorem 3.1 considers a sequence of problems indexed by (nk,Rk, p1,k, . . . , pRk,k), k = 1, 2, . . . , where
the sample size nk → ∞, the number of categories Rk → ∞, and let Yk = Y(Rk) denote the categorical variable with Rk
categories and pr,k = P(Y(Rk) = r), r = 1, . . . ,Rk. From now on, we shall omit the subscript unless specifically mentioned.
Moreover, in Section A.2, we should keep in mind that X and Y are independent.

A.2.1 Architecture of the proof
Our aim here is to provide a general overview of the proof of Theorem 3.1. At a high level, the general structure is fairly simple.
And to make the structure clear, we divide the proof into three parts.

(1) First, given a positive constant C, we substitute Fn,C(x), Fn,C and pr for Fn(x), Fn(x) and p̂r in the denominator of the IPC
statistic, and thereby obtain

ÎPCn,C (X,Y) :=
R∑

r=1

∫
1
pr

[
p̂rFn (x) − Fn (x, r)

]2
Fn,C (x) Fn,C (x)

dFn (x) .

And then prove that the difference between nÎPCn(X,Y)/
√
R and nÎPCn,C(X,Y)/

√
R is bounded by nÎPCn,C(X,Y)/

√
R ×

Op(n− C
4+2C +

√
R

min1≤r≤R pr n
−1/2) + Op(n− 1

2+C
√
R), provided that

√
R

min1≤r≤R pr = o(n1/2).
(2) Fixing C = 6, let

fi (x, r) = [I (Xi ≤ x) − F (x)]
[
I (Yi = r) − pr

]
,

and

fi,n (x, r) = fi (x, r)√
Fn,6 (x) Fn,6 (x)

,

and define

ĨPCn (X,Y) =
R∑

r=1

1
pr

∫ [
1
n

n∑
i=1

fi,n (x, r)

]2
dF (x) .

Under the condition
√
R

min1≤r≤R pr = o(n3/8), showing that nÎPCn,6(X,Y)/
√
R is close to nĨPCn(X,Y)/

√
R and combined

with the first part of the proof, we can derive that

nÎPCn (X,Y) − nĨPCn (X,Y) = op
(√

R
)
.

(3) Finally, consider
nĨPCn (X,Y) = J1n + J2n,

where

J1n = 1
n

n∑
i=1

R∑
r=1

1
pr

∫
f 2i,n (x, r) dF (x) ,

and

J2n = 1
n

∑
i�=j

R∑
r=1

1
pr

∫
fi,n (x, r) fj,n (x, r) dF (x) .
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We show that
J1n − (R − 1)√
2(π2

3 − 3)(R − 1)

P→ 0, and
J2n√

2(π2

3 − 3)(R − 1)

can be viewed as a martingale difference sequence. Then by the well-developed theory of central limit theorem of the
martingale difference (Hall & Heyde, 1980), we can complete the proof.

Combined with Lemmas A.1 and A.2, the proof in part 1 is not difficult. And the proofs in part 2 and part 3 follow from Cui
and Zhong (2018) and Cui and Zhong (2019) with a small modification.

A.2.2 Part 1
We summarize the conclusion we want to prove in part 1 into the following lemma.

Lemma A.3: For a fixed constant C, let

ÎPCn,C (X,Y) =
R∑

r=1

∫
1
pr

[
p̂rFn (x) − Fn (x, r)

]2
Fn,C (x) Fn,C (x)

dFn (x) .

For simplicity, write ÎPCn = ÎPCn(X,Y), and ÎPCn,C = ÎPCn,C(X,Y). Then if
√
R

min1≤r≤R pr = o(n1/2), and under condition that X
and Y are independent, we have

∣∣ÎPCn − ÎPCn,C
∣∣ = Op

(
n− 3+C

2+C R
)

+ ÎPCn,C

(
Op

(
n− C

4+2C
)

+ Op

( √
R

min1≤r≤R pr
n−1/2

))
.

Proof: Let

ÎPC′
n = 1

n

n∑
i=1

R∑
r=1

[
Fn (Xi, r) − p̂rFn (Xi)

]2
Fn (Xi) Fn (Xi) pr

.

Then ∣∣∣ÎPCn − ÎPC′
n

∣∣∣ ≤ max
1≤r≤R

∣∣∣∣1 − pr
p̂r

∣∣∣∣ 1n
n∑
i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn (Xi) Fn (Xi) pr

= ÎPC′
n max
1≤r≤R

∣∣∣∣1 − p̂r
pr

∣∣∣∣ .
Since

E
(√

n
(
p̂r − pr

))2 = pr
(
1 − pr

)
,

we have

E
(
max
1≤r≤R

∣∣p̂r − pr
∣∣)2

≤ E

( R∑
r=1

∣∣p̂r − pr
∣∣)2

≤ R
R∑

r=1
E
(
p̂r − pr

)2
= R

R∑
r=1

pr
(
1 − pr

)
n

≤ R
n
.

So, max1≤r≤R |p̂r − pr| = Op(
√
R/n). Then

max
1≤r≤R

∣∣∣∣ p̂r − pr
p̂r

∣∣∣∣ = max
1≤r≤R

∣∣∣∣ p̂r − pr
pr + p̂r − pr

∣∣∣∣ ≤ max
1≤r≤R

∣∣p̂r − pr
∣∣ max
1≤r≤R

1
pr + p̂r − pr

.

Since p̂r − pr = Op(
√

R
n ) = op(min1≤r≤R pr), we have

max
1≤r≤R

∣∣∣∣ p̂r − pr
p̂r

∣∣∣∣ = Op

( √
R

min1≤r≤R pr
n−1/2

)
= op (1) .

Hence, ÎPCn = (1 + Op(
√
R

min1≤r≤R pr n
−1/2))ÎPC′

n. Next, let

ÎPC∗
n = 1

n

R∑
r=1

n∑
i=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
FCn (Xi) F

C
n (Xi) pr

.
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Let X(1) ≤ X(2) ≤ · · · ≤ X(n) be the ordered statistics of X1, . . . ,Xn. Since X is continuous, there are no ties among X1, . . . ,Xn.
We can assume that X(1) < · · · < X(n). Let An = �n1− 1

2+C �, and define

Sn1 = 1
n

n∑
i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn (Xi) Fn (Xi) pr

I
(
Xi ≤ X(An)

)
,

Sn2 = 1
n

n∑
i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn (Xi) Fn (Xi) pr

I
(
Xi ≥ X(n−An)

)
.

Indeed, we have 0 ≤ ÎPC′
n − ÎPC∗

n ≤ Sn1 + Sn2. And

ESn1 = 1
n

n∑
i=1

R∑
r=1

n∑
j=1

E

{[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn (Xi) Fn (Xi) pr

I
(
Xi ≤ X(An)

)
I
(
Xi = X(j)

)}

= 1
n

n∑
i=1

R∑
r=1

An∑
j=1

E

{[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn (Xi) Fn (Xi) pr

I
(
Xi = X(j)

)}

= 1
n

n∑
i=1

An∑
j=1

R∑
r=1

1
j

{(
n − j

) [
(n − 1) pr + 1

]
n2

− 2
(
n − j

)
n2

[
(n − 1) pr + 1

]+
(
n − j − 1

)
pr + 1

n

}

= 1
n

n∑
i=1

An∑
j=1

R − 1
n2

= An (R − 1)
n2

.

Similarly, we also have ESn2 = An
n2 (R − 1). Therefore,

ÎPC′
n − ÎPC∗

n = Op

(
n− 3+C

2+C R
)
.

Finally, according to Lemma A.2,∣∣∣ÎPC∗
n − ÎPCn,C

∣∣∣ = 1
n

∣∣∣∣∣
n∑

i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn,C (Xi) F

n,C
(Xi) pr

−
n∑

i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
FCn (Xi) F

C
n (Xi) pr

∣∣∣∣∣
= 1

n

∣∣∣∣∣
n∑

i=1

R∑
r=1

[
p̂rFn (Xi) − Fn (Xi, r)

]2
Fn,C (Xi) F

n,C
(Xi) pr

×
(
Fn,C (Xi) F

n,C
(Xi)

FCn (Xi) F
C
n (Xi)

− 1

)∣∣∣∣∣
≤ ÎPCn,C × sup

x

∣∣∣∣∣Fn,C (x) Fn,C (x)

FCn (x) FCn (x)
− 1

∣∣∣∣∣
= ÎPCn,COp

(
n− C

4+2C
)
.

Hence ∣∣ÎPCn − ÎPCn,C
∣∣ = Op

(
n− 3+C

2+C R
)

+ ÎPCn,C

(
Op

(
n− C

4+2C
)

+ Op

( √
R

min1≤r≤R pr
n−1/2

))
.

�

A.2.3 Part 2
Recall that

fi (x, r) = [I (Xi ≤ x) − F (x)]
[
I (Yi = r) − pr

]
, fi,n (x, r) = fi (x, r)√

Fn,6 (x) Fn,6 (x)
,

and

ĨPCn (X,Y) =
R∑

r=1

1
pr

∫ [
1
n

n∑
i=1

fi,n (x, r)

]2
dF (x) .

The following lemma is what we want to prove in part 2.

Lemma A.4: If
√
R

min1≤r≤R pr = o(n3/8), and Under H0: X and Y are independent, then

ÎPCn (X,Y) − ĨPCn (X,Y) = Op
(
Rn−9/8)+ Op

(
Rn−5/4

min1≤r≤R pr

)
+ ĨPCn (X,Y) op

(
n−1/8) .



STATISTICAL THEORY AND RELATED FIELDS 253

Proof: For simplicity, write ĨPCn = ĨPCn(X,Y). Given C = 6, according to Lemma A.3, and under the condition that√
R

min1≤r≤R pr = o(n3/8), we have

ÎPCn − ÎPCn,6 = Op
(
n−9/8R

)+ ÎPCn,6
[
Op

(
n−3/8)+ op

(
n−1/8)]

= Op
(
n−9/8R

)+ ÎPCn,6op
(
n−1/8) . (A1)

Let

ĨPC1n =
R∑

r=1

1
pr

∫ [
1
n

n∑
i=1

fi,n (x, r)

]2
dFn (x) .

Next, we follow the proof of Lemma A.1 in Cui and Zhong (2019), and show that

ÎPCn,6 − ĨPC1n =
R∑

r=1

1
pr

∫
1

Fn,6 (x) Fn,6 (x)

⎧⎨⎩[p̂rFn (x) − Fn (x, r)
]2 −

[
1
n

n∑
i=1

fi (x, r)

]2⎫⎬⎭ dFn (x)

= O
(
n

1
8

) R∑
r=1

1
pr

∫ ⎧⎨⎩[p̂rFn (x) − Fn (x, r)
]2 −

[
1
n

n∑
i=1

fi (x, r)

]2⎫⎬⎭ dFn (x) .

Let f̄n(x, r) = 1
n
∑n

i=1 fi(x, r). By the DKW inequality, we have

sup
x

∣∣∣∣∣∣[p̂rFn (x) − Fn (x, r)
]2 −

[
1
n

n∑
i=1

fi (x, r)

]2∣∣∣∣∣∣ = sup
x

∣∣p̂rFn (x) − Fn (x, r) − f̄n (x, r)
∣∣ ∣∣p̂rFn (x) − Fn (x, r) + f̄n (x, r)

∣∣
= sup

x
|Fn (x) − F (x)| ∣∣p̂r − pr

∣∣ {sup
x

∣∣p̂rFn (x) − Fn (x, r)
∣∣+ sup

x

∣∣f̄n (x, r)
∣∣}

= Op
(
n−1/2)Op

(
n−1/2)Op

(
n−1/2) = Op

(
n−3/2) .

Here, the second equality follows by

p̂rFn (x) − Fn (x, r) − f̄n (x, r) =
{
1
n

n∑
i=1

I (Xi ≤ x,Yi = r) − Fn (x) p̂r

}

−
{
1
n

n∑
i=1

I (Xi ≤ x,Yi = r) − F (x) p̂r − prFn (x) + prF (x)

}
= − [Fn (x) − F (x)]

[
p̂r − pr

]
,

and the last equality follows by

sup
x

∣∣p̂rFn (x) − Fn (x, r)
∣∣ = Op

(
n−1/2) ,

sup
x

∣∣f̄n (x, r)
∣∣ = Op

(
n−1/2) .

Indeed,

sup
x

∣∣p̂rFn (x) − Fn (x, r)
∣∣ ≤ sup

x

∣∣∣∣∣ 1n
n∑
i=1

[I (Xi ≤ x) − F (x)] I (Yi = r)

∣∣∣∣∣
+ sup

x

∣∣∣∣∣F (x)
1
n

n∑
i=1

[
I (Yi = r) − pr

]∣∣∣∣∣+ ∣∣p̂r − pr
∣∣+ sup

x
|Fn (x) − F (x)|

= sup
x

∣∣∣∣∣ 1n
n∑

i=1
[I (Xi ≤ x) − F (x)] I (Yi = r)

∣∣∣∣∣+ sup
x

F (x)
∣∣p̂r − pr

∣∣+ Op
(
n−1/2)

= sup
x

∣∣∣∣∣ 1n
n∑

i=1
[I (Xi ≤ x) − F (x)] I (Yi = r)

∣∣∣∣∣+ Op
(
n−1/2) ,

and

E

[
sup
x

∣∣∣∣∣ 1n
n∑

i=1
[I (Xi ≤ x) − F (x)] I (Yi = r)

∣∣∣∣∣
]

=
n∑

m=1
E

[
sup
x

∣∣∣∣∣ 1n
n∑
i=1

[I (Xi ≤ x) − F (x)] I (Yi = r)

∣∣∣∣∣ , m Y ′
i s = r

]

=
n∑

m=1

(
n
m

)
pmr

(
1 − pr

)n−m
√
m
n

E

[
sup
x

∣∣∣∣∣ 1√
m

m∑
i=1

[I (Xi ≤ x) − F (x)]

∣∣∣∣∣
]
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≤ 4
n∑

m=1

(
n
m

)
pmr

(
1 − pr

)n−m
√
m
n

≤ 4n−1/2,

where the first inequality follows by the DKW inequality. Hence, supx |p̂rFn(x) − Fn(x, r)| = Op(n−1/2) and similarly
supx |f̄n(x, r)| = Op(n−1/2). Therefore, we have

ÎPCn,6 − ĨPC1n = R
min1≤r≤R pr

Op
(
n−11/8) . (A2)

Combining (A1) and (A2), we have

ÎPCn − ĨPC1n = Op
(
Rn−9/8)+ R

min1≤r≤R pr
Op

(
n−11/8)+ ĨPC1nop

(
n−1/8) .

To complete the proof, we only need to show that

ĨPC1n − ĨPCn =
R∑

r=1

1
pr

∫ [
1
n

n∑
i=1

fi,n (x, r)

]2
d [Fn (x) − F (x)]

= R
min1≤r≤R pr

Op
(
n−11/8) .

It is enough to show that

In (r) :=
∫ [

1
n

n∑
i=1

fi,n (x, r)

]2
d [Fn (x) − F (x)] = Op

(
n−11/8) .

Without loss of generality, let F(x) be the uniform distribution function, since we can make the transformation X′ = F(X) for
the continuous random variable X. And

In (r) = 1
n

n∑
j=1

[
1
n

n∑
i=1

fi,n
(
Xj, r

)]2 −
∫ 1

0

[
1
n

n∑
i=1

fi,n (x, r)

]2
dx.

For any x, y ∈ (0, 1), it can be easily proved that

Efi,n (x, r) fj,n
(
y, r
) = x ∧ y − xy√

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) (pr − p2r
)
I
(
i = j

)
,

where x(n) = x ∨ n−1/8 and (1 − x)(n) = (1 − x) ∨ n−1/8. Then

EI2n (r) = E

⎧⎨⎩
∫ 1

0

⎡⎣ 1
n

n∑
j=1

[
f̄n
(
Xj
)2 − f̄n (x)2

]⎤⎦ dx

⎫⎬⎭
2

= E

⎧⎨⎩
∫ 1

0

∫ 1

0

⎡⎣ 1
n

n∑
j=1

[
f̄n
(
Xj
)2 − f̄n (x)2

]⎤⎦⎡⎣ 1
n

n∑
j=1

[
f̄n
(
Xj
)2 − f̄n

(
y
)2]⎤⎦ dx dy

⎫⎬⎭
= 1

n

∫ 1

0

∫ 1

0
E
{[
f̄n (X1)

2 − f̄n (x)2
] [

f̄n (X1)
2 − f̄n

(
y
)2]} dx dy

+ n − 1
n

∫ 1

0

∫ 1

0
E
{[
f̄n (X1)

2 − f̄n (x)2
] [

f̄n (X2)
2 − f̄n

(
y
)2]} dx dy

=
∫ 1

0

∫ 1

0
E
{[
f̄n (X1)

2 − f̄n (x)2
] [

f̄n (X2)
2 − f̄n

(
y
)2]} dx dy

+ 1
n
[
E
[
f̄n (X1)

2 f̄n (X1)
2]− E

[
f̄n (X1)

2 f̄n (X2)
2]] ,

where f̄n(x) = n−1∑n
i=1 fi,n(x, r). And be careful here that f̄n(x) is different from f̄n(x, r) defined above.

Since Efi,n(x, r) = 0 under H0, we have

E
[
fi,n (x, r) fj,n (x, r) fk,n

(
y, r
)
fl,n

(
y, r
)] = 0

under H0 if one of {i, j, k, l} is different from the other three. Then we have

E
[
f̄n (x)2 f̄n

(
y
)2] = 1

n4
∑
i,j

∑
k,l

E
[
fi,n (x, r) fj,n (x, r) fk,n

(
y, r
)
fl,n

(
y, r
)]

= 1
n3

E
[
f1,n (x, r)2 f1,n

(
y, r
)2]+ n − 1

n3
E
[
f 21,n (x, r)

]
E
[
f 22,n

(
y, r
)]
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+ 2 (n − 1)
n3

{
E
[
f1,n (x, r) f1,n

(
y, r
)]}2

= 1
n3

1

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) E [f1 (x, r)2 f1
(
y, r
)2]

+ n − 1
n3

1

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) E [f 21 (x, r)
]
E
[
f 22
(
y, r
)]

+ 2 (n − 1)
n3

1

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) {E [f1 (x, r) f1
(
y, r
)]}2

= O
(
n−11/4)+

(
pr − p2r

)2
n2

[
xy (1 − x)

(
1 − y

)+ 2
(
x ∧ y − xy

)2]
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) .

And also, we have

E
[
f̄n (X1)

2 f̄n
(
y
)2] = 1

n4
∑
i,j

∑
k,l

E
[
fi,n (X1, r) fj,n (X1, r) fk,n

(
y, r
)
fl,n

(
y, r
)]

= O
(
n−11/4)+

(
pr − p2r

)2
n2

∫ 1

0

xy (1 − x)
(
1 − y

)+ 2
(
x ∧ y − xy

)2
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) dx,

E
[
f̄n (x)2 f̄n (X2)

2] = 1
n4
∑
i,j

∑
k,l

E
[
fi,n (x, r) fj,n (x, r) fk,n (X2, r) fl,n (X2, r)

]

= O
(
n−11/4)+

(
pr − p2r

)2
n2

∫ 1

0

xy (1 − x)
(
1 − y

)+ 2
(
x ∧ y − xy

)2
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) dy,

E
[
f̄n (X1)

2 f̄n (X2)
2] = 1

n4
∑
i,j

∑
k,l

E
[
fi,n (X1, r) fj,n (X1, r) fk,n (X2, r) fl,n (X2, r)

]

= O
(
n−11/4)+

(
pr − p2r

)2
n2

∫ 1

0

xy (1 − x)
(
1 − y

)+ 2
(
x ∧ y − xy

)2
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) dx dy,

and

E
[
f̄n (X1)

2 f̄n (X1)
2] = 1

n4
∑
i,j

∑
k,l

E
[
fi,n (X1, r) fj,n (X1, r) fk,n (X1, r) fl,n (X1, r)

]

= O
(
n−11/4)+

(
pr − p2r

)2
n2

∫ 1

0

x2 (1 − x)2 + 2
(
x − x2

)2(
x(n) (1 − x)(n)

)2 dx.

Hence,

E
[
In (r)2

] =
∫ 1

0

∫ 1

0
E
[
f̄n (X1)

2 f̄n (X2)
2] dx dy −

∫ 1

0

∫ 1

0
E
[
f̄n (X1)

2 f̄n
(
y
)2] dx dy

−
∫ 1

0

∫ 1

0
E
[
f̄n (x)2 f̄n (X1)

2] dx dy +
∫ 1

0

∫ 1

0
E
[
f̄n (x)2 f̄n

(
y
)2] dx dy

+ 1
n
[
E
[
f̄n (X1)

2 f̄n (X1)
2]− E

[
f̄n (X1)

2 f̄n (X2)
2]]

= O
(
n−11/4) .

So,

ÎPCn − ĨPCn = ÎPCn − ĨPC1n + ĨPC1n − ĨPCn

= Op
(
Rn−9/8)+ R

min1≤r≤R pr
Op

(
n−11/8)+ ĨPCnop

(
n−1/8) .

�

A.2.4 Part 3
Now, we will complete the proof of Theorem 3.1.
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Proof of Theorem 3.1.: Let T̃n = nĨPCn. Without loss of generality, we assume that X ∼ Unif(0, 1). Then F(x) = x for 0 ≤
x ≤ 1. According to Lemma A.4, we have

Tn − T̃n = Op
(
Rn−1/8)+ Op

(
Rn−3/8

min1≤r≤R pr

)
+ op

(
T̃nn−1/8) .

Then under the condition
√
R/min1≤r≤R pr = o(n3/8), we have R = o(n1/4), and thus Tn − T̃n = op(

√
R) + T̃nop(n−1/8), i.e.,

Tn − (R − 1)√
2
(

π2

3 − 3
)

(R − 1)
− T̃n − (R − 1)√

2
(

π2

3 − 3
)

(R − 1)
= op (1) + T̃n − (R − 1)√

2
(

π2

3 − 3
)

(R − 1)
op
(
n−1/8)+ op

(√
Rn−1/8

)

= T̃n − (R − 1)√
2
(

π2

3 − 3
)

(R − 1)
op
(
n−1/8)+ op (1) .

Hence, we only need to prove that
T̃n − (R − 1)√

2
(

π2

3 − 3
)

(R − 1)

d→ N (0, 1) ,

as n → ∞.
Recall that fi,n(x, r) = (I(Xi≤x)−x)(I(Yi=r)−pr)√

x(n)(1−x)(n)
, where x(n) = x ∨ n−1/8 and (1 − x)(n) = (1 − x) ∨ n−1/8. We first give some

important facts:

(i) E[fi,n(x, r)fi,n(y, s)] = (x∧y−xy)(prδrs−prps)√
x(n)(1−x)(n)y(n)(1−y)(n)

;

(ii) E[f 2i,n(x, r)f
2
i,n(y, s)] ≤ Cn1/8(prδrs + prps(pr + ps)),

for all 1 ≤ i ≤ n, 1 ≤ r, s ≤ R, where C is a constant and δrs = 1 if r = s and δrs = 0, otherwise.
We prove (ii). Without loss of generality, we assume that x ≤ y.

E
[
f 2i,n (x, r) f 2i,n

(
y, s
)] = [

prδrs + prps
(
pr + ps

)]
E
[I (Xi ≤ x) − x]2

[
I
(
Xi ≤ y

)− y
]2

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) .

And

E
[I (Xi ≤ x) − x]2

[
I
(
Xi ≤ y

)− y
]2

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) = E
[
I (Xi ≤ x) − 2xI (Xi ≤ x) + x2

] [
I
(
Xi ≤ y

)− 2yI
(
Xi ≤ y

)+ y2
]

x(n) (1 − x)(n) y(n)
(
1 − y

)(n)
= x

(
1 − y

) (
1 − y − 2x + 3xy

)
x(n) (1 − x)(n) y(n)

(
1 − y

)(n)
≤ x

(
1 − y

)
x(n) (1 − x)(n) y(n)

(
1 − y

)(n)
≤ 4n1/8.

The last inequality is because, if 1/2 ≤ x ≤ y, then x(1−y)
x(n)(1−x)(n)y(n)(1−y)(n) ≤ 4 x

(1−x)(n) ≤ 4n1/8; if x ≤ y ≤ 1/2, then
x(1−y)

x(n)(1−x)(n)y(n)(1−y)(n) ≤ 41−y
y(n) ≤ 4n1/8; if x ≤ 1/2 ≤ y, then x(1−y)

x(n)(1−x)(n)y(n)(1−y)(n) ≤ 4.

(iii)
∑R

r,s,t,q=1
(prδrs−prps)(prδrt−prpt)(ptδtq−ptpq)(psδsq−pspq)

prpsptpq = O(R). This result can be found in Cui and Zhong (2018) and Cui
and Zhong (2019).

Write

T̃n = 1
n

R∑
r=1

1
pr

∫ 1

0

[ n∑
i=1

fi,n (x, r)

]2
dx =: J1n + J2n,

where

J1n = 1
n

n∑
i=1

R∑
r=1

1
pr

∫
f 2i,n (x, r) dx,

and

J2n = 1
n

∑
i�=j

R∑
r=1

1
pr

∫
fi,n (x, r) fj,n (x, r) dx.

Note that,

EJ1n =
R∑

r=1

1
pr

∫
E

(I (Xi ≤ x) − x)2
(
I (Yi = r) − pr

)2
x(n) (1 − x)(n)

dx
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=
R∑

r=1

(
1 − pr

) ∫ 1

0

x (1 − x)
x(n) (1 − x)(n)

dx

= (R − 1)
(
1 − n−1/8) ,

and

Var (J1n) = 1
n
Var

( R∑
r=1

1
pr

∫
f 21,n (x, r) dx

)
≤ 1

n
E

( R∑
r=1

1
pr

∫
f 21,n (x, r) dx

)2

= 1
n

(∑
r,s

1
prps

∫
E
[
f 21,n (x, r) f 21,n

(
y, s
)]
dx dy

)

≤ Cn1/8

n

R∑
r,s

prδrs + prps
(
pr + ps

)
prps

≤ C
n7/8

(
R

min pr
+ R

)
= O

(
n−3/8) = o (1) .

Hence,

E

⎛⎜⎜⎝ J1n − (R − 1)√
2
(

π2

3 − 3
)

(R − 1)

⎞⎟⎟⎠
2

= C
{
Var (J1n) / (R − 1) + [EJ1n − (R − 1)]2 / (R − 1)

}

= CVar (J1n) / (R − 1) + C (R − 1) n−1/4 = o (1) ,

where C is a constant. Next, we only need to show that

J2n√
2
(
π2/3 − 3

)
(R − 1)

d→ N (0, 1) .

Note that EJ2n = 0, and

Var (J2n) = E
(
J22n
)

= 1
n2
∑
i�=j

∑
k�=l

R∑
r,s

1
prps

∫
E
[
fi,n (x, r) fj,n (x, r) fk,n

(
y, s
)
fl,n

(
y, s
)]
dx dy

= 2n (n − 1)
n2

R∑
r,s

1
prps

∫ {
E
[
f1,n (x, r) f1,n

(
y, s
)]}2 dx dy

= 2n (n − 1)
n2

R∑
r,s

(
prδrs − prps

)2
prps

∫ (
x ∧ y − xy

)2
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) dx dy
=
(
1 − 1

n

)
(R − 1)

[
2
∫ (

x ∧ y − xy
)2

x (1 − x) y
(
1 − y

) dx dy + O
(
n−1/8)]

=
(
1 − 1

n

)
(R − 1)

[
2
(
π2/3 − 3

)+ O
(
n−1/8)] .

The last equality holds because ∫ 1

0

∫ 1

0

(
x ∧ y − xy

)2
x (1 − x) y

(
1 − y

) dx dy = π2

3
− 3.

Let Fi = σ {(X1,Y1), . . . , (Xi,Yi)} be the σ -field generated by a set of random variables {(X1,Y1), . . . , (Xi,Yi)}, i = 1, . . . , n.
We see that

J2n√
2
(
π2/3 − 3

)
(R − 1)

=
∑n

i=2

[
2
n
∑i−1

j=1
∑R

r=1
1
pr

∫
fi,n (x, r) fj,n (x, r) dx

]
√
2
(
π2/3 − 3

)
(R − 1)

=:
n∑
i=2

Zni
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is the summation of a martingale difference sequence with E(Zni) = 0 and Var(
∑n

i=2 Zni) = (1 − 1
n )(1 + O(n−1/8)) → 1.

According to Hall and Heyde (1980), we need to prove
∑n

i=2 E[Z
2
ni | Fi−1]

P→ 1.

E
[
Z2
ni | Fi

] = 1
2
(
π2/3 − 3

)
(R − 1)

(
2
n

)2
×

i−1∑
j,k

R∑
r,s

1
prps

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fk,n

(
y, s
)
dx dy.

Thus we have
n∑
i=2

E
[
Z2
ni | Fi−1

] = J3n + J4n,

where

J3n = 1
2
(
π2/3 − 3

)
(R − 1)

(
2
n

)2
×

n−1∑
j=1

(
n − j

) R∑
r,s

1
prps

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fj,n

(
y, s
)
dx dy,

and

J4n = 2
2
(
π2/3 − 3

)
(R − 1)

(
2
n

)2
×

∑
j<k≤n

(n − k)
R∑
r,s

1
prps

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fk,n

(
y, s
)
dx dy.

Since E(J3n) → 1, and

Var (J3n) = C
(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 × Var

( R∑
r,s

1
prps

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fj,n

(
y, s
)
dx dy

)

≤ C
(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 × E

( R∑
r,s

1
prps

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fj,n

(
y, s
)
dx dy

)2

= C
(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 × E

⎛⎝ R∑
r,s

prδrs − prps
prps

∫ ∫
x ∧ y − xy√

x(n) (1 − x)(n) y(n)
(
1 − y

)(n) fj,n (x, r) fj,n
(
y, s
)
dx dy

⎞⎠2

≤ C
(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 R2

× E

⎧⎨⎩
R∑
r,s

(
prδrs − prps

prps

)2
⎛⎝∫ ∫

x ∧ y − xy√
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) fj,n (x, r) fj,n
(
y, s
)
dx dy

⎞⎠2⎫⎬⎭
≤ C

(R − 1)2 n4

n−1∑
j=1

(
n − j

)2
× R2E

{ R∑
r,s

(
prδrs − prps

prps

)2 ∫ ∫ (
x ∧ y − xy

)2
x(n) (1 − x)(n) y(n)

(
1 − y

)(n) f 2j,n (x, r) f 2j,n
(
y, s
)
dx dy

}

≤ C
(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 R2 R∑
r,s

(
prδrs − prps

prps

)2 ∫ ∫
E
[
f 2j,n (x, r) f 2j,n

(
y, s
)]

dx dy

≤ C′

(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 R2 R∑
r,s

(
prδrs − prps

prps

)2
n1/8

(
prδrs + prps

(
pr + ps

))

≤ C′

(R − 1)2 n4

n−1∑
j=1

(
n − j

)2 R2n1/8 R
min pr

= O
(
n−7/8 R

min pr

)
= O

(
n−3/8) ,

where C and C′ are constants. Thus J3n → 1. And E(J4n) = 0, and

Var (J4n) = C
R2n4

∑
j<k,l<m

(n − k) (n − m)

×
R∑
r,s

R∑
t,q

E
{

1
prpsptpq

∫ ∫
E
[
fi,n (x, r) fi,n

(
y, s
)]
fj,n (x, r) fk,n

(
y, s
)
dx dy
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×
∫ ∫

E
[
fi,n

(
x′, t

)
fi,n

(
y′, q

)]
fl,n

(
x′, t

)
fm,n

(
y′, q

)
dx′ dy′

}

= C
R2n4

∑
j<k,l<m

(n − k) (n − m)

R∑
r,s

R∑
t,q

(
prδrs − prps

) (
ptδtq − ptpq

)
prpsptpq

×
∫ (

x ∧ y − xy
) (
x′ ∧ y′ − x′y′)√

x(n) (1 − x)(n) y(n)
(
1 − y

)(n)
(x′)(n) (1 − x′)(n)

(
y′)(n) (1 − y′)(n)

× E
[
fj,n (x, r) fk,n

(
y, s
)
fl,n

(
x′, t

)
fm,n

(
y′, q

)]
dx dy dx′ dy′

= C
R2n4

∑
j<k

(n − k) (n − k)
R∑
r,s

R∑
t,q

(
prδrs − prps

) (
ptδtq − ptpq

)
prpsptpq

×
∫ (

x ∧ y − xy
) (
x′ ∧ y′ − x′y′)√

x(n) (1 − x)(n) y(n)
(
1 − y

)(n)
(x′)(n) (1 − x′)(n)

(
y′)(n) (1 − y′)(n)

× E
[
fj,n (x, r) fk,n

(
y, s
)
fj,n

(
x′, t

)
fk,n

(
y′, q

)]
dx dy dx′ dy′

≤ C
R2n4

∑
j<k

(n − k) (n − k) ×
R∑
r,s

R∑
t,q

(
prδrs − prps

) (
ptδtq − ptpq

) (
prδrt − prpt

) (
psδsq − pspq

)
prpsptpq

= C
R2n4

n∑
k=2

(k − 1) (n − k)2 O (R) = O (1/R) .

Thus, J4n
P→ 0. On the other hand

n∑
i=2

E
(
Z4
ni
) ≤

n∑
i=2

C
n4R2

E

⎡⎣ i−1∑
j=1

R∑
r=1

1
pr

∫
fi,n (x, r) fj,n (x, r) dx

⎤⎦4

≤
n∑

i=2

C
n4R2

(
6
(
i − 1
2

)
+ i − 1

)
E

[ R∑
r=1

1
pr

∫
f1,n (x, r) f2,n (x, r) dx

]4

≤ C′

nR2
E

[ R∑
r=1

1
pr

∫
f1,n (x, r) f2,n (x, r) dx

]4

= C′

nR2
E

[ R∑
r,s

1
prps

∫
f1,n (x, r) f1,n

(
y, s
)
f2,n (x, r) f2,n

(
y, s
)
dx dy

]2

≤ C′

nR2
E

[ R∑
r,s

1
prps

(∫
f 21,n (x, r) f 21,n

(
y, s
)
dx dy

)1/2 (∫
f 22,n (x, r) f 22,n

(
y, s
)
dx dy

)1/2
]2

≤ C′

nR2

( R∑
r,s

1
prps

∫
E
[
f 21,n (x, r) f 21,n

(
y, s
)]
dx dy

)2

≤ C′′

nR2

( R∑
r,s

prδrs + prps
(
pr + ps

)
prps

n1/8
)2

= C′′

n3/4R2

(
R

min pr
+ R + 2

)2
= O

(
1

n3/4
(
min pr

)2
)

= o (1/R) ,

where C, C′ and C′′ are constants. By the central limit theorem of the martingale difference (Hall & Heyde, 1980), we have

T̃n − (R − 1)√
2
(
π2/3 − 3

)
(R − 1)

d→ N (0, 1) ,

as n → ∞. This completes the proof. �
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