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ABSTRACT
This paper deals with the Monte Carlo Simulation in a Bayesian framework. It shows the impor-
tance of the use of Monte Carlo experiments through refined descriptive sampling within the
autoregressive model Xt = ρXt−1 + Yt , where 0 < ρ < 1 and the errors Yt are independent ran-
dom variables following an exponential distribution of parameter θ . To achieve this, a Bayesian
Autoregressive Adaptive Refined Descriptive Sampling (B2ARDS) algorithm is proposed to esti-
mate the parameters ρ and θ of such a model by a Bayesian method. We have used the same
prior as the one already used by some authors, and computed their properties when the Nor-
mality error assumption is released to an exponential distribution. The results show that B2ARDS
algorithm provides accurate and efficient point estimates.
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1. Introduction

Time series are often used to model data in different areas of life. We can think of economic forecasts, the evolution
of a biological system, time-stamped data from social media, E-commerce and sensor systems. The AutoRegressive
(AR) model is the most widely used class of time series models, and particularly the first order AutoRegressive
process denoted as AR(1).

On the other hand, the use of Bayesian inference has developed rapidly over the last decade in several
fields including medicine (Ashby, 2006), genetics (Beaumont & Rannala, 2004), bioinformatics (Corander, 2006),
econometrics (Geweke, 1999), etc.

Several works related to time series models have been treated by the Bayesian approach. Box et al. (1976),
Monahan (1984) and Marriot and Smith (1992) discussed the Bayesian approach to analyse the AR models. Diaz
and Farah (1981) devoted their work to a Bayesian technique for computing posterior analysis of an AR process
in any arbitrary order. Amaral Turkmann (1990) considered a Bayesian study of an AR(1) model with exponen-
tial white noise based on a noninformative prior. Ghosh and Heo (2003) introduced a comparative study to some
selected noninformative priors for the AR(1) model. Pereira and Amaral-Turkman (2004) developed a Bayesian
analysis of a threshold AR model with exponential white noise.

Several Bayesian methods for estimating autoregressive parameters have been proposed by different authors;
for instance, Albert and Chib (1993) and Barnett et al. (1996) proposed a Bayesian method via Gibbs sampling to
estimate the parameters in an AR model. Ibazizen and Fellag (2003) proposed a Bayesian estimation of an AR(1)
process with exponential white noise by using a noninformative prior, whereas Suparman and Rusiman (2018)
proposed a hierarchical Bayesian estimation for stationary AR models using a reversible jump MCMC algorithm.
However, Kumar andAgiwal (2019) proposed a Bayesian estimation for a full shifted Panel AR(1) time seriesmodel.

Bayesian inference is based on the posterior distribution, which can be interpreted as the result of the com-
bination of two information sources: the information provided by the parameter which is contained in the prior
distribution, and the information provided by the data which formalizes the likelihood function through the use of
a given statistical model.

Posterior inference can be undertaken by applying classical Monte Carlo (MC) methods, which provide itera-
tive algorithms that can generate approximate samples from the posterior distribution. These methods fall into two
categories: the Markov Chain Monte Carlo (MCMC) methods such as Metropolis-Hastings and Gibbs algorithms
(Smith & Robert, 1993), and the Monte Carlo (MC) method also known as Simple Random Sampling (SRS), for
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Table 1. Subsets of prime numbers size for a Gumbel distribution with
mean E(X) = 0.577, p1 = 7, p2 = 11 and p3 = 13.

i r1i x1i i r2i x2i i r3i x3i

1 0.071 −0.970 1 0.045 −1.129 1 0.038 −1.181
2 0.214 −0.432 2 0.136 −0.689 2 0.115 −0.770
3 0.357 −0.029 3 0.227 −0.393 3 0.192 −0.501
4 0.500 0.367 4 0.318 −0.136 4 0.269 −0.272
5 0.643 0.817 5 0.409 0.112 5 0.346 −0.059
6 0.786 1.422 6 0.500 0.367 6 0.423 0.151
7 0.929 2.602 7 0.591 0.642 7 0.500 0.367

θ̂1 0.539 8 0.682 0.960 8 0.577 0.601
9 0.773 1.355 9 0.654 0.856
10 0.864 1.920 10 0.731 1.159
11 0.955 3.068 11 0.808 1.544

θ̂2 0.553 12 0.885 2.099
13 0.962 3.239

θ̂3 0.556

Table 2. The observed mean of a Gumbel distribution using three reg-
ular subsets of prime number size.

j 1 2 3 Overall mean (TRDS)

θ̂j 0.539 0.553 0.556 0.551

instance, Quasi Monte Carlo (Keller et al., 2008), Latin hypercube sampling (LHS) (Loh, 1996; Mckay et al., 1979;
Stein, 1987), Descriptive Sampling (DS) (Saliby, 1990) as well as Refined Descriptive Sampling (RDS) (Tari & Dah-
mani, 2006). In the non-Bayesian estimation, the SRS is a widely usedmethod inMC simulation. But unfortunately,
the sampling method generates estimation errors, so it is not accurate enough. However, the RDS method (Aloui
et al., 2015) has shown its effectiveness for severalmodels and in various fields. For instance, in the field ofmedicine,
Ourbih-Tari and Azzal (2017) proposed an RDS algorithm for a nonparametric estimation of the survival function
using KaplanMeier and FlemingHarrington estimators in a case study. In the field of engineering, Baghdali-Ourbih
et al. (2017) have estimated the performance measures of the aggregate quarry of Bejaia city in Algeria, using a
discrete-event simulation model. In the field of M/G/1 queuing models, M/M/1 retrial queues and M/G/1 retrial
queues, simulation results using RDS outperform those obtained using the MC method (Idjis et al., 2017; Ourbih-
Tari et al., 2017; Tamiti et al., 2018). Also, a comparison betweenRDS and LHS carried out onM/G/1 queues showed
the efficiency of RDS over LHS (Boubalou et al., 2019). Since it is important to choose a sampling scheme that allows
for a better parameter estimate while keeping the number of repetitions to a minimum, the RDS method is chosen
for further work.

This paper will therefore explore the RDSmethod in a Bayesian sense by considering theAR(1)model, which has
already been studied by Amaral Turkmann (1990) and, later on, by Ibazizen and Fellag (2003). For this purpose, we
assume the noninformative prior given in Ibazizen and Fellag (2003) for the AR(1) process with exponential white
noise. Then, we develop an algorithm for the estimation of AR(1) model parameters in a Bayesian context by using
the most accurate sampling method as the RDSmethod. The proposed algorithm is called Bayesian Autoregressive
Adaptive Refined Descriptive Sampling (B2ARDS).

Some details of the RDS method are given in Section 2. Then, in Section 3, the methodology from Bayesian
perspective is explained. Section 4 is concerned with the Bayesian estimates of the AR(1) model parameters and
their variances using the RDS method through the B2ARDS algorithm. Section 5 presents simulation experiments
performed by using the R Package and corresponding results are summarized in Tables 1 and 2, and Figures 1 and 2.
Finally, Section 6 concludes this paper.

2. The use of RDS

DS is known to have two problems. From a theoretical perspective, DS can be biased. More practically, its strict
operation requires a prior knowledge of the required sample size. Based on this, RDS has been proposed to make
DS safe, efficient and convenient. RDS makes DS safe by reducing substantially the risk of sampling bias, efficient
by producing estimates with lower variances and convenient by removing the need to determine in advance the
sample size. Not only this, but RDS beats DS in several comparisons and such is the case, on a flow shop system
(Tari &Dahmani, 2005a) and a production system (Tari &Dahmani, 2005b). So, RDS is the preferredmethodwhen
it comes to performing MC simulation.
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Figure 1. Sequences of ρ̂j estimates for different true values of ρ. (a) ρ = 0.1. (b) ρ = 0.3. (c) ρ = 0.6.

2.1. Description of themethod

RDS is based on a block of sub-samples of randomly generated prime number sizes, so it distributes RDS sample
values from sub-samples at the request of the simulation. We stop the process of the generation of sample values
when the simulation terminates, say when m prime numbers pj, j = 1, 2, . . . ,m, have been used, which derives m
sub-runs.

The choice of primes in the RDS method as sub-sample sizes is motivated by the definition of primes since we
must avoid integers having multiples, whether they are even or odd numbers. Indeed, if the underlying frequency
is different from the sampling frequency (the product of primes) or a multiple of it, then the bias of the estimates
will be insignificant as demonstrated in Tari and Dahmani (2006). This should ensure that the method reduces the
sampling bias.

Remark: In the case of M replicated simulation runs, the RDS method will distribute M blocks defined by
m1,m2, . . . ,mM primes which are not the same for all replicated simulation runs.

2.2. RDS sample values

Formally, in an RDS run defined by a sample of size n = ∑m
j=1 pj, the sample values drawn from the input real-

valued random variable X having F as the cumulative distribution are given by the following formulas:

xji = F−1
(
Rji

)
for i = 1, 2, . . . , pj and j = 1, 2, . . . ,m, (1)

where for any j = 1, 2, . . . ,m, the values of each sub-sample (Rj
i, i = 1, 2, . . . , pj) are randomly selected without

replacement from the regular numbers of the following sub-set(
rji = (i − 0.5)

pj
, i = 1, 2, . . . , pj

)
(2)
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Figure 2. Sequences of θ̂j estimates for θ = 2.5 and different values of ρ. (a) ρ = 0.1. (b) ρ = 0.3. (c) ρ = 0.6.

and such rji is the midpoint of the pj subintervals in which the interval [0, 1] is subdivided. The primes pj, j =
1, 2, . . . ,m, are randomly generated between 7 and a given value fixed by the user.

2.3. The estimator of RDS

The j-th sub-run generating pj values of the input random variable X leads to the following estimate of the
parameter θ

θ̂j = 1
pj

pj∑
i=1

h(xji). (3)

Therefore, in a given run, the use of refined descriptive sample of size n = ∑m
j=1 pj leads to the following sampling

estimate of θ defined by the average of those estimates observed on different sub-runs:

TRDS = 1
n

m∑
j=1

pj∑
i=1

h(xji), (4)

where h is the simulation function.

2.4. Example

We illustrate the method by taking the Gumbel distribution and the prime numbers p1 = 7, p2 = 11 and p3 = 13.
The values of the variable are simulated by the formula xi = − ln(− ln(ri)), i = 1, 2, . . . , pj and j = 1, 2, . . . ,m.
Whenm = 3, the obtained sub-sets and sub-samples are given inTable 1 using the formulas (2) and (1), respectively,
together with the observed mean (θ̂j) in each sub-run using the formula (3), while the overall mean computed at
the end of the run is given in Table 2 using the formula (4).
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3. Monte Carlo methods from a Bayesian perspective

We consider a random vector Y having a probability density function f (y | θ), where θ is a vector of unknown
parameters. The Bayesian statistic considers θ as a random vector of density π(θ) called prior law of θ .

In a Bayesian sense, any inference is based on the computation of the posterior distribution which is the condi-
tional distribution of the random vector θ knowing y and is denoted by its probability density π(θ | y). Bayesian
estimator of the parameter θ is constructed from the posterior distribution π(θ | y) by minimizing an appropriate
loss function.Most Bayesian estimators have the form of Eπ [h(θ)], where Eπ denotes themathematical expectation
of the posterior distribution π(θ | y).

A major difficulty in an estimation by the Bayesian approach, is the explicit computation of the posterior dis-
tribution as soon as the number of parameters exceeds two. Also computing Eπ [h(θ)] can be very difficult even
if the law is known. Thus, several approximation methods such as the MC and MCMC methods are proposed in
the literature. The latter allows for the estimation of moments of any order of random variables, too complex to be
studied analytically, using iterative generation algorithms.

The Monte Carlo method is a numerical method of solving problems using random numbers. It is one of the
most popular mathematical tools with a very wide scope, like differential equation integration, fluid mechanics
equations, financial mathematics, particles transport and matrix inversion.

In a Bayesian sense, the Monte Carlo method consists in estimating

Ih = Eπ [h(θ)] =
∫
θ

h(θ)π(θ | y)dθ

by

Îh = 1
n

n∑
i=1

h(θi),

where θ1, θ2, . . . , θn are independent and identically distributed i.i.d. random variables according to π(θ | y). The
strong law of large numbers ensures that Îh converges almost surely to Ih when n tends to infinity.

4. The use of RDS for the simulation of the proposedmodel

4.1. Presentation of themodel

Consider the first order autoregressive process defined by

Xt = ρXt−1 + Yt , t = . . . ,−1, 0, 1, . . . , (5)

where 0 < ρ < 1 and the Yt ’s are i.i.d. random variables with the exponential distribution exp(θ) of parameter θ

having a density

f (y) = θ exp(−θy)I(0, ∞)(y), θ > 0.

X1 is assumed to be distributed according to exp((1 − ρ)θ) such that the process is mean stationary.
The likelihood function based on the observations x = {x1, x2, . . . , xn} is

f (x | θ , ρ) = (1 − ρ)θne−θ(nx−ρS)IA(x),

where

A = {x : x1 > 0, xt − ρxt−1 ≥ 0, t = 2, . . . , n}, nx =
n∑
i=1

xt

and

S = nx − (xn − x1). (6)

The Maximum Likelihood Estimators (MLE) of ρ and θ are introduced by Andel (1988) , respectively as follows:

ρ0 = min
(
1,
x2
x1
, . . . ,

xn
x1

)
, (7)

θ0 = n
nx − ρ0S

. (8)
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The model given by (5) was processed using a Bayesian approach by Amaral Turkmann (1990). The author’s study
is based on a noninformative prior defined as follows:

π(θ , ρ) ∝ 1
θ(1 − ρ)

I[0, ∞]×[0, 1)(θ , ρ). (9)

The author derived the Bayes estimators of the independent parameters ρ and θ as follows:

ρB = ρ0

n − 2

(
n − 1

1 − rn−1 − 1
1 − r

)
,

and

θB = n − 1
nxr

1 − rn

1 − rn−1 ,

where r = 1 − ρ0(
S
nx ) such that 0< r<1.

Ibazizen and Fellag (2003) proposed a Bayesian analysis of themodel (5) by using amore general noninformative
prior defined by

π(θ , ρ,β) ∝ 1
θ

ρβ−1

1 − ρ
I[0, ∞]×[0, 1)(θ , ρ), β > 0 (10)

which includes the formula (9) as a special case (β = 1). For θ , the prior (7) is proportional to the scale parameter
1/θ and for ρ, it is a special case of the beta distribution.

The authors have derived Bayesian estimators given below, but their formulas are complicated for computation.
So, simulation experiments were carried out and the obtained results were compared to the MLE.

ρ̂B(β) = 2F1(β + 1, n,β + 2; 1 − r)ρ0β
2F1(β , n,β + 1; 1 − r)(β + 1)

,

θ̂B(β) = 2F1(β , n + 1,β + 1; 1 − r)
x 2F1(β , n,β + 1; 1 − r)

,

where

2F1(a, b, c; x) =
∞∑

m=0

(a,m)(b,m)xm

(c,m)m!

=
∫ 1

0

ua−1(1 − u)c−a−1(1 − xu)−b

B(a, c − a)
du for |x| < 1

is the Gauss hypergeometric function of parameters (a, b, c).
We note that to compute the latter, the Pochhammer coefficients (t,m) for t = a, b and c are defined as follows

(t,m) = �(t + m)/�(t) for m � 1 and (t, 0) = 1,

where � and B represent symbols of the usual functions Gamma and Beta, respectively.
This paper focuses on the Bayesian estimation of ρ and θ using the most accurate RDS method to generate

numbers for the simulation, where the prior distribution of ρ and θ is the one given in (10) because it is the most
general noninformative prior.

4.2. Bayesian estimation of ρ and θ using the RDSmethod

Suppose that our data consists of the first n observations x = (x1, x2, . . . , xn).
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By using the prior in (10) and the Bayes theorem, we get the following posterior:

π(θ , ρ | x) = ρβ−1θn−1e−θ(nx−ρS)I(0, ∞)×[0, ρ0](θ , ρ)

�(n)
∫ ρ0
0 ρβ−1(nx − ρS)−ndρ

, (11)

which is proportional to

ρβ−1θn−1e−θ(nx−ρS)I(0, ∞)×[0, ρ0](θ , ρ). (12)

Knowing that the parameters ρ and θ are independent, the conditional posterior distributions of ρ and θ are
respectively

F(ρ) = π(ρ | x, θ) ∝ ρβ−1eθρS (13)

and

H(θ) = π(θ | x, ρ) ∝ θn−1e−θ(nx−ρS). (14)

The use of RDS method requires the computation of the inverse cumulative distribution functions F−1 and H−1,
so we put

R1 = F(ρ) = ρβ−1eθρS,

R2 = H(θ) = θn−1e−θ(nx−ρS).

The inversion method leads to the following ρ and θ values of the conditional posterior distributions which will be
used for the generation of observations:

ρ = F−1(R1) = 1
θS

ln
(

R1
ρβ−1

)
(15)

and

θ = H−1(R2) = 1
nx − ρS

ln
(

θn−1

R2

)
, (16)

where the variables R1 and R2 following U[0, 1] are generated using the RDS algorithm given in subsection 4.3 (see
Appendix 1 for the generation of the ρ values and Appendix 2 for the generation of the θ values).

4.3. Adaptive RDS algorithm to AR(1)model from the Bayesian perspective by using the R language

In this section, we present a new Bayesian Adaptive AR(1) RDS (B2ARDS) algorithm to estimate the parameters of
the model given in (2).

Data structure

For each input random variable, we define a record with the following structure.
N: an integer defining the number of replications.
n: an integer defining the sample size.
p: a prime number defining the size of the sub-sample.
P: an array of generated primes.
r: an array [1, . . . , p] of real numbers containing the sub-set of regular numbers.
R: an array of mixed values of r.
xi, i = 1, . . . , n: simulated observations from the AR(1) model.
ρ: an array [1, . . . , p] containing the generated RDS sub-sample values, issued from the ρ distribution.
θ : an array [1, . . . , p] containing the generated RDS sub-sample values, issued from the θ distribution.

Algorithm

(a) Initialization for the experiment of N replicated runs.
(b) Initialization of the run defined by the sample size n.
(c) Simulate samples of n observations x1, x2, . . . , xn from the model (5) by using the command : > x =

arima.sim(list(ar = ρ), n, innov = rexp(n, rate = θ)).
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(d) Compute the values x and S, using formula (6) and nx − ρS.
(e) Before each simulation run, generate a vector of prime numbers smaller than the sample size n and store them

in a vector P.
(f) Randomize the vector P.
(g) Compute the sum of primes successively and stop when the sum is � n and collect the number of primesm.
(h) Initialization of the sub-run defined by the prime p.
(i) For each prime number pj, j = 1, . . . ,m, we do the following sub-run.

(f1) Compute the regular numbers ri, i = 1, . . . , pj using the formula (2) and store them in an array r.
(f2) Randomize the ri by the command: > R = sample(r) and store them in an array R.
(f3) Generate the observations ρi = F−1(Ri) and θi = H−1(Ri), i = 1, . . . , pj and store them respectively in

arrays ρ and θ .
(f4) Compute the simulation estimates ρ̂j and θ̂j in the j-th sub-run such that

ρ̂j = 1
pj

pj∑
i=1

ρi , θ̂j = 1
pj

pj∑
i=1

θi.

(j) Compute the final RDS estimates of ρ and θ using the output sample of size
∑m

j=1 pj respectively as

ρ̂RDS =

m∑
j=1

pjρ̂j

m∑
j=1

pj
, θ̂RDS =

m∑
j=1

pjθ̂j

m∑
j=1

pj
.

5. Results and discussion

5.1. Simulation study

In the following, we present a simulation study using the R language. We generate samples of n observations
x1, x2, . . . , xn from the AR(1) model given in (5) which provides the values of x, S and nx − ρS. Three simulation
experiments were carried out with different sample sizes such as n = 20, 30, 40 for each selected ρ value such as 0.1,
0.3, 0.6, respectively. The proposed B2ARDS algorithm is used to compute the RDS estimates ρ̂ and θ̂ together with
their variances. Note that, in the estimation of ρ, different values of β are taken from one experiment to another in
order to study the effect of varying β on the Bayesian estimates ρ̂ and θ̂ . A summary of results is given in Tables 1
and 2, together with ρ0 and θ0, computed using formulas (7) and (8), respectively (see Appendix 3 for details).

At the end of the simulation, we collect the sequences of ρ̂j and θ̂j estimates resulting from step (f4) of the pro-
posed algorithm. For N=10,000 replications, sequences of ρ̂j estimates for initial values of ρ = 0.1, 0.3, 0.6 are
represented in Figure 1 while Figure 2 represents sequences of θ̂j estimates for the same ρ values as in Figure 1.

5.2. Interpretation of tables

According to the simulation results given in Tables 3 and 4, we have very small variances (given in parentheses). So,
we can say that the sequences of RDS values ρi and θi, generated by the proposed B2ARDS algorithm are homoge-
neous. Also, in each case ρ̂RDS is too close to the true value of ρ while, for some values of β , ρ̂RDS is closer to the
true value than ρ0. It can be seen in Figure 1 that when ρ is close to 0, the best values of ρ̂RDS are obtained when
β ∈ [2.5, 16]; while, when ρ is close to 1, the best values of ρ̂RDS are obtained for high values of β (β ∈ [50, 111]).
So, there are some values for ρ and β for which the resulting Bayesian estimate is ideal in accuracy.

For θ̂BRDS, the results in Table 4 and Figure 2 also prove that, for each case, the Bayesian estimate of θ is very close
to the true value of θ and for some cases (n=20 and ρ = 0.6), it is a better estimate than θ0. We notice here that
the best values of θ̂BRDS are obtained when ρ is close to 1.

5.3. Interpretation of figures

In each figure, the red line represents the true value of the parameter, while the green line represents the value of
the resulting ρ̂RDS and θ̂RDS estimators for the j-th sub-run.We notice that the points which represent the estimates
ρ̂j and θ̂j are concentrated in a given band for all figures and nearly all points are concentrated around their mean,
which represents in a Bayesian sense the resulting ρ̂RDS and θ̂RDS estimators of the parameters ρ and θ , respectively.
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Table 3. The simulatedestimator ρ̂RDS and its variance for θ = 2.5 and for various values
of ρ, n and β . Variances in parentheses.

ρ = 0.1

ρ̂RDS

n ρ0 β = 2 β = 2.5 β = 3 β = 3.5

20 0.1067 0.0798 (0.0032) 0.1188 (0.0009) 0.1886 (0.0021) 0.2284 (0.0032)
30 0.1075 0.0445 (0.00008) 0.0812 (0.0002) 0.1144 (0.0005) 0.1499 (0.0009)
40 0.1062 0.0306 (0.00002) 0.0581 (0.00009) 0.0846 (0.0002) 0.1107 (0.0003)

ρ = 0.3

ρ̂RDS

n ρ0 β = 7.5 β = 8 β = 8.5 β = 9
20 0.3035 0.2815 (0.0078) 0.3047 (0.0084) 0.3009 (0.0056) 0.3232 (0.0063)

n ρ0 β = 10.5 β = 11 β = 11.5 β = 12
30 0.3030 0.2633 (0.0030) 0.2736 (0.0032) 0.2947 (0.0034) 0.3034 (0.0036)

n ρ0 β = 15 β = 15.5 β = 16.0 β = 16.5
40 0.3080 0.2926 (0.0026) 0.3006 (0.0026) 0.3125 (0.0028) 0.3236 (0.0031)

ρ = 0.6

ρ̂RDS

n ρ0 β = 50 β = 50.5 β = 55 β = 55.5
20 0.6435 0.5980(0.0559) 0.6017 (0.0516) 0.6191 (0.0487) 0.6365 (0.0423)

n ρ0 β = 75.5 β = 80 β = 80.5 β = 85.5
30 0.6204 0.5600 (0.0199) 0.5960 (0.0051) 0.6057 (0.0209) 0.6283 (0.0201)

n ρ0 β = 110 β = 110.5 β = 111 β = 111.5
40 0.6136 0.6002 (0.0124) 0.6009 (0.0127) 0.6014 (0.0123) 0.6013 (0.0121)

Table 4. The simulated estimator θ̂RDS and its vari-
ance for θ = 2.5 and for different values of ρ and n.
Variances are given in parentheses.

n ρ θ0 θ̂RDS

20 0.1 2.5252 2.4405 (0.3438)
0.3 2.5216 2.4534 (0.3347)
0.6 2.5140 2.4970 (0.3742)

30 0.1 2.5063 2.3841 (0.2141)
0.3 2.5551 2.4140 (0.2073)
0.6 2.5840 2.4293 (0.2189)

40 0.1 2.4949 2.3522 (0.1453)
0.3 2.6455 2.3609 (0.1588)
0.6 2.4982 2.3906 (0.1608)

We can see from all figures that the resulting estimate is not only very close to the true value of the parameter in
each case, but it coincides with it in some cases (Figure 1 (c) and Figure 2 (c)).

6. Conclusion

The proposed algorithm B2ARDS has allowed us to generate refined descriptive samples from input random vari-
ables for Bayesian estimation of AR(1) parameter inMonte Carlo simulation using the R software. As a consequence
and apart from its already proved efficiency in the classical sense, we argue that the RDSmethod performs well even
in a Bayesian context and allows the estimation of the AR(1) parameter using the Bayesian approach.
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Appendices

Appendix 1 Computation of the ρ values

According to formula (13), we have
π(ρ | x, θ) ∝ ρβ−1eθρS.

By applying the inversion method, we get F−1(R1) = inf{ρ : F(ρ) ≥ R1} where R1 ∼ U [0, 1].
We put R1 = F(ρ) = ρβ−1eθρS, such that R1 ∼ U [0, 1].
Then

lnR1 = ln(ρβ−1eθρS)

= ln(ρβ−1) + ln(eθρS)

= ln(ρβ−1) + θρS

and

θρS = lnR1 − ln(ρβ−1) = ln
(

R1
ρβ−1

)
,

where

ρ = F−1(R1) = 1
θS

ln
(

R1
ρβ−1

)
.

Appendix 2 Computation of the θ values

According to formula (14), we have

π(θ | x, ρ) ∝ θn−1e−θ(nx−ρS).
We put R2 = H(θ) = θn−1e−θ(nx−ρS), such that R2 ∼ U [0, 1].

Then

lnR2 = ln(θn−1e−θ(nx−ρS))

= ln(θn−1) + ln(e−θ(nx−ρS))

= ln(θn−1) − θ(nx − ρS)

and

θ(nx − ρS) = ln(θn−1) − lnR2 = ln
(

θn−1

R2

)
,

where

θ = 1
nx − ρS

ln
(

θn−1

R2

)
,

so

θ = H−1(R2) = 1
nx − ρS

ln
(

θn−1

R2

)
.

Appendix 3 Computation of theMLE ρ0 and θ0 by using the R language

We used the following programme to compute the MLE ρ0 and θ0.
Program

> n = 30; ρ = 0.6; θ = 2.5
> x = arima.sim(list(ar = ρ), n, innov = rexp(n, rate = θ))

> mx = mean(x)
> S = n ∗ mx − (x[n] − x[1])
> for(i in 2 : n) s[i] = x[i]/x[i − 1]
> s
> ρ = min(1, s)
> ρ

> θ = n/(n ∗ mx − ρ ∗ S)
> θ
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