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ABSTRACT
In this article, we introduce a flexible model-free approach to sufficient dimension reduction
analysis using the expectation of conditional difference measure. Without any strict conditions,
such as linearity condition or constant covariance condition, the method estimates the central
subspace exhaustively and efficiently under linear or nonlinear relationships between response
and predictors. The method is especially meaningful when the response is categorical. We also
studied the

√
n-consistencyandasymptotic normality of theestimate. Theefficacyof ourmethod

is demonstrated through both simulations and a real data analysis.
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1. Introduction

With the increase of dimensionality, the volume of the space increases so fast that the available data become sparse
(Bellman, 1961). The sparsity is a problem tomany statisticalmethods since not enough data is available to domodel
fitting ormake inference. Because of the situations discussed above,many classicalmodels derived fromoversimpli-
fied assumptions and nonparametric methods are no longer reliable. Therefore, dimension reduction that reduces
the data dimension but retains (sufficient) important information can play a critical role in high-dimensional data
analysis. With dimension reduction as a pre-process, often the number of reduced dimensions is small. Hence,
parametric and nonparametric modelling methods can then be readily applied to the reduced data.

Sufficient dimension reduction is one approach to do dimension reduction, which focuses on finding a lin-
ear transformation of the predictor matrix, so that given that transformation, the response and the predictor are
independent (Cook, 1994, 1996; Li, 1991). For the past 25 years, sufficient dimension reduction is a hot topic
and many methods have been developed to estimate the central subspace (Cook, 1996). These methods can be
classified into three groups: inverse, forward and joint regression methods. Inverse regression methods use the
regression ofX|Y, and require certain conditions onX, such as linearity condition and/or constant covariance con-
dition. Specific methods include sliced inverse regression (SIR; Li, 1991), sliced average variance estimation (SAVE;
Cook & Weisberg, 1991) and directional regression (DR; Li & Wang, 2007). Also see (Cook & Ni, 2005; Cook
& Zhang, 2014; Dong & Li, 2010; Fung et al., 2002; Zhu & Fang, 1996). The forward regression methods include
the minimum average variance estimation (MAVE; Xia et al., 2002), its variants, (Xia, 2007; Wang & Xia, 2008),
average derivative estimate (Härdle & Stoker, 1989; Powell et al., 1989), and structure adaptive method (Hristache
et al., 2001; Ma & Zhu, 2013). The forward methods require nonparametric approaches such as kernel smoothing.
Joint regression methods require the joint distribution of (Y,X), and methods include principal hessian direction
(PHD; Cook, 1998; Li, 1992), and the Fourier method (Zeng & Zhu, 2010; Zhu & Zeng, 2006). They require either
smoothing techniques or stronger conditions.

In this article, we develop a new sufficient dimension reduction method based on the measure proposed in Yin
and Yuan (2020) to estimate the central subspace. It involves the technique of slicing the range of Y into several
intervals, which is similar to the classical inverse approaches, such as SIR and SAVE, but it does not require any
linearity or constant covariance condition and can exhaustively recover the central subspace without smoothing
requirement. On the other hand, comparing to other sufficient dimension reduction methods using distance mea-
sures, such as Sheng and Yin (2016), our method makes more sense when the response Y is categorical with no
numerical meaning because the measure used in this article is properly defined for categorical variables.

This article is organized as follows: Section 2 introduces the new sufficient dimension reduction method, the
algorithm, theoretical properties and the method of estimating the structural dimension d. In Section 3, we show
the simulation studies, while Section 4 presents the real data analysis and a brief discussion is followed in Section 5.
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2. Methodology

2.1. Ameasure of divergence

In Yin and Yuan (2020), they proposed a newmeasure of divergence for testing independence between two random
vectors. LetX ∈ Rp andY ∈ Rq, where p and q are positive integers. Then the measure betweenX andYwith finite
first moments is a nonnegative number, C(X|Y), defined by

C2(X|Y) =
∫

Rp
|fX|Y(t) − fX(t)|2w(t) dt, (1)

where fX|Y and fX stand for the characteristic functions of X|Y and X, respectively. Let |f |2 = f f̄ for a complex-
valued function f, with f̄ being the conjugate of f. The weight function w(t) is a specially chosen positive function.
More details of w(t) can be found in Yin and Yuan (2020). They also give an equivalent formula as

C2(X|Y) = E|X − X′
Y| − E|XY − X′

Y| = E|X − X′| − E|XY − X′
Y|, (2)

where the expectation is over all random vectors. For instance, the last expectation is first taking the conditional
expectation given Y, then over Y. (X′,Y′) is an independent and identically distributed copy of (X,Y). XY denotes
a random variable distributed asX|Y,X′

Y′ denotes a random variable distributed asX′|Y′ andX′
Y denotes a random

variable distributed as X′|Y′ with Y′ = Y.
One property of C2(X|Y) is that it equals 0 if and only if the two random vectors are independent (Yin

& Yuan, 2020). This property makes it possible that C2(X|Y) can be used as a sufficient dimension reduction tool.
What’s more, the measure works well for both continuous and categorical Y and because C2(X|Y) is well defined
for categorical Y, our method is particularly meaningful when the class index of dataset does not have numerical
meaning, where other measures do not attain similar advantage.

2.2. Review of sufficient dimension reduction

Let γ be a p × q matrix with q ≤ p, and be the independence notation. The following conditional independence
leads to the definition of sufficient dimension reduction:

Y X|γ �X, (3)

where (3) indicates that the regression information ofY givenX is completely contained in the linear combinations
of X, γ �X. The column space of γ in (3), denoted by S(γ ), is called a dimension reduction subspace.

If the intersection of all dimension reduction subspace is itself a dimension reduction subspace, then it is called
the central subspace (CS), and it is denoted by SY|X (Cook, 1994, 1996; Li, 1991)). Under mild conditions, CS
exists (Cook, 1998; Yin et al., 2008). Throughout the article, we assume CS exists, which is unique. Furthermore,
let d denote the structural dimension of the CS, and let �X be the covariance matrix of X, which is assumed to be
nonsingular. Our primary goal is to identify the CS by estimating d and a p × d basis matrix of CS.

Here we introduce some notations needed in the following sections. Let β be a matrix and S(β) be the subspace
spanned by the column vectors of β . dim(S(β)) is the dimension of S(β). Pβ(�X) denotes the projection operator,
which projects ontoS(β)with respect to the inner product 〈a, b〉 = a��Xb, that is, Pβ(�X) = β(β��Xβ)−1β��X.
Let Qβ(�X) = I − Pβ(�X), where I is the identity matrix.

2.3. The new sufficient dimension reductionmethod

Let β be a p × d0 arbitrary matrix, where 1 ≤ d0 ≤ p. Under mild conditions, it can be proved that solving (4) will
yield a basis of the central subspace.

max
β :β��Xβ=Id0

1≤d0≤p

C2(β�X|Y). (4)

Here the squared divergence between β�X and Y is defined as

C2(β�X|Y) = EY
[∫

Rd0+1
|fβ�X|Y(t) − fβ�X(t)|2w(t) dt

]
.

The conditions E|X| < ∞, E|Y| < ∞ and E|XY| < ∞ in Yin and Yuan (2020) guarantee that the C2(β�X|Y) is
finite. Thus throughout the article, we assume they hold. The constraint β��Xβ = Id0 in (4) is needed due to the
property C2(cβ�X|Y) = |c|C2(β�X|Y) for any constant c (Yin & Yuan, 2020).
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The following propositions justify our estimator. They ensure that if we maximize C2(β�X|Y) with respect to β

under the constraint and some mild conditions, the solution indeed spans the CS.

Proposition 2.1: Let η be a p × d basis matrix of the CS, β be a p × d1 matrix with d1 ≤ d, dim(S(β)) = d1,
η��Xη = Id and β��Xβ = Id1 . If S(β) ⊆ S(η), then C2(β�X|Y) ≤ C2(η�X|Y). The equality holds if and only if
S(β) = S(η).

Proposition 2.2: Let η be a p × d basis matrix of the CS, β be a p × d2 matrix with η��Xη = Id and β��Xβ =
Id2 . Here d2 could be bigger, less or equal to d. Suppose P�

η(�X)X Q�
η(�X)X and S(β) � S(η). Then C2(β�X|Y) <

C2(η�X|Y).

Proposition 2.1 indicates that ifS(β) is a subspace of the CS, then C2(β�X|Y) is less than or equal to C2(η�X|Y)

and the equality holds if and only if β is a basis matrix of the CS, i. e., S(β) = S(η). Proposition 2.2 implies that if
S(β) is not a subspace of the CS, then C2(β�X|Y) is less than C2(η�X|Y) under a mild condition. The above two
propositions show that we can identify the CS by maximizing C2(β�X|Y) with respect to β under the quadratic
constraint. The condition in Proposition 2.2, P�

η(�X)X Q�
η(�X)X, was discussed in Sheng and Yin (2013), where

they showed the condition is not very strict and can be satisfied asymptotically when p is reasonably large. Proofs
for Propositions 2.1 and 2.2 are in the Appendix A.

2.4. Estimating the CSwhen d is specified

In this section, we develop an algorithm for estimating the CS when the structural dimension d is known. Let
(X,Y) = {(Xi,Yi), i = 1, . . . , n} be a random sample from (X,Y) and let β be a p × d matrix. For the purpose of
slicing, these n observations can be equivalently written as Xy,ky ,Yy,ky , where y = 1, . . . ,H, ky = 1, . . . , ny, where
ny is the number of observations for slice y. The empirical version of C2(β�X|Y) denoted by C2

n(β
�X|Y) is defined

as:

C2
n(X|Y) = 1

n2

n,n∑
k,l=1

|Xk − Xl| − 1
n

H∑
y=1

1
ny

ny,ny∑
ky,ly=1

|Xy,ky − Xy,ly |. (5)

Here | · | is the Euclidean norm in the respective dimension. Let �̂X be the estimate of�X. Then an estimated basis
matrix of the CS, say ηn, is

ηn = argmax
β :β��̂Xβ=Id

C2
n(β

�X|Y). (6)

An outline of the algorithm is as follows.

(1) Obtain the initials η(0): any existing sufficient dimension reduction method, such as SIR (Li, 1991) or SAVE
(Cook &Weisberg, 1991) can be used to obtain the initial.

(2) Iterations: let η(k) be the estimate of η in the kth iteration. In order to search for the η(k+1), the interior-point
approach is applied. In the interior-point approach, the original optimization problem in (6) is replaced by a
sequence of barrier subproblems, which are solved approximately by two powerful tools: sequential quadratic
programming and trust region techniques. In this process, one of two main types of steps is used at each itera-
tion: a direct step or a conjugate gradient step. By default, the algorithm tries a direct step first. If a direct step
fails, it attempts a conjugate gradient step. More extensive descriptions of the interior-point approach are in
Byrd et al. (2000, 1999) and Waltz et al. (2006).

(3) Check convergence: if the difference between η(k) and η(k+1) is smaller than the preset tolerance value, such as
10−6, then stop the iteration and set ηn = η(k+1); otherwise, set k: = k+ 1 and go to step 2.

In the above algorithm, we assume the structural dimension d is known, which is not true in practice. We will
propose an approach to estimate d in Section 2.6.

2.5. Theoretical properties

Proposition 2.3: Let ηn = argmax
β��̂Xβ=Id

C2
n(β

�X|Y), and η be a basismatrix of the CSwith η��Xη = Id. Under
the condition P�

η(�X)X Q�
η(�X)X, ηn is a consistent estimator of a basis of the CS, that is, there exists a rotationmatrix

Q: Q�Q = Id, such that ηn
P−→ ηQ.
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Table 1. Estimation accuracy report for Model 1.

(n, p) �m ECD DCOV SIR SAVE LAD

(200,6) average 0.102 0.119 0.884 0.322 0.173
SE 0.032 0.035 0.159 0.156 0.052

(300,6) average 0.078 0.093 0.879 0.203 0.138
SE 0.025 0.028 0.152 0.076 0.041

(400,6) average 0.061 0.077 0.881 0.156 0.113
SE 0.018 0.021 0.156 0.044 0.032

(500,6) average 0.054 0.078 0.872 0.135 0.105
SE 0.015 0.022 0.159 0.040 0.028

Furthermore, we can prove the
√
n-consistency and asymptotic normality of the estimator as stated below.

Proposition 2.4: Let ηn = argmax
β��̂Xβ=Id

C2
n(β

�X|Y), and η be a basismatrix of the CSwith η��Xη = Id. Under
the regularity conditions in the supplementary file, there exists a rotationmatrixQ:Q�Q = Id such that

√
n[vec(ηn) −

vec(ηQ)] D−→ N(0,V11(ηQ)), where V11(ηQ) is the covariance matrix given in the supplementary file.

Proofs of Propositions 2.3 and 2.4 are in Appendices B and C, respectively.

2.6. Estimating structural dimension d

There is a rich literature of discussing determining d in sufficient dimension reduction, for example, some non-
parametric methods such as Wang and Xia (2008), Ye and Weiss (2003) and Luo and Li (2016) and some
eigen-decomposition-based methods, for examples, Luo et al. (2009), and Wang et al. (2015). Here we apply the
kNN method proposed in Wang et al. (2015).

Given a sample {(Xi,Yi), 1 ≤ i ≤ n}, d can be estimated by the following kNN procedure.

(1) Find the k-nearest neighbours for each data point (Xi,Yi) using Euclidean distance. Denote the k-nearest
neighbours of (Xi,Yi) as (X(j)

i ,Y(j)
i ), 1 ≤ j ≤ k.

(2) For each data point (Xi,Yi), apply the method proposed in this article to its k-nearest neighbours and estimate
β̂i. Here the dimension of β̂i is set as 1.

(3) Calculate the eigenvalues of the matrix
∑n

i=1 β̂iβ̂
�
i . Denote and order them as λ1 ≥ λ2 ≥ · · · ≥ λp.

(4) Calculate the ratios ri = λi/λi+1, 1 ≤ i ≤ p − 1. The dimension d is estimated as the largest ri happens in the
sequence.

In the last step, this maximal eigenvalue ratio criterion was suggested by Luo et al. (2009) and was also used by
Li and Yin (2009) and Sheng and Yuan (2020).

3. Simulation studies

Estimation accuracy is measured by the distance �m(Ŝ ,S) =‖ PŜ − PS ‖ (Li et al., 2005), where S is the real d-
dimensional CS ofRp, Ŝ is the estimate, PS , PŜ are the orthogonal projections onto S and Ŝ , respectively and ‖ · ‖
is the maximum singular value of a matrix. The smaller the �m is, the better the estimate is. Also a method works
better if it has a smaller standard error of �m. In the following, the first three examples show the nice performance
of the proposed method in terms of both continuous and categorical response, assuming we already know the
dimension d. The last example illustrates the performance of estimating dimension d using the kNN procedure in
Section 2.6.

Example 3.1: Consider the Model 1

Y = (β�
1 X)2 + (β�

2 X) + 0.1ε,

whereX ∼ N(0, Ip), ε ∼ N(0, 1) and ε is independent ofX. β1 = (1, 0, . . . , 0)�, and β2 = (0, 1, . . . , 0)�. We com-
pare DCOV (Sheng & Yin, 2016), SIR (Li, 1991), SAVE (Cook &Weisberg, 1991) and LAD (Cook & Forzani, 2009)
with our method ECD with 10 slices.

Table 1 shows the average estimation accuracy (�̄m) and its standard error (SE) under different (n, p) combina-
tions and 500 replications. Note that ECD performs consistently better than other methods, under all the different
(n, p) combinations.
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Table 2. Estimation accuracy report for Model 2.

(n, p) �m ECD DCOV SIR SAVE LAD

(200,6) average 0.122 0.121 0.140 0.142 0.128
SE 0.045 0.041 0.045 0.049 0.040

(300,6) average 0.098 0.098 0.112 0.110 0.104
SE 0.036 0.032 0.036 0.036 0.033

(400,6) average 0.084 0.085 0.098 0.095 0.090
SE 0.028 0.030 0.032 0.031 0.028

(500,6) average 0.076 0.075 0.087 0.083 0.080
SE 0.027 0.026 0.029 0.028 0.026

Table 3. Estimation accuracy report for Model 3.

(n, p) �m ECD DCOV SIR SAVE LAD

(200,6) average 0.156 0.150 0.976 0.164 0.165
SE 0.114 0.041 0.065 0.042 0.042

(300,6) average 0.113 0.110 0.975 0.134 0.133
SE 0.049 0.030 0.062 0.035 0.036

(400,6) average 0.094 0.094 0.974 0.115 0.115
SE 0.026 0.025 0.061 0.030 0.030

(500,6) average 0.085 0.085 0.977 0.103 0.103
SE 0.024 0.025 0.060 0.029 0.029

Table 4. Accuracy of estimating d with kNN procedure.

(200,6) (300,6) (400,6) (500,6)

Model 1 98% 100% 100% 100%
Model 2 100% 100% 100% 100%

Example 3.2: Thismodel was studied by Cui et al. (2011). It has binary responses 1 and 0, which have no numerical
meaning. Model 2 is

P(Y = 1|X) = exp(g(β�
3 X))

1 + exp(g(β�
3 X))

,

where g(β�
3 X) = exp(5β�

3 X − 2)/{1 + exp(5β�
3 X − 3)} − 1.5, X ∼ N(0, Ip) and β�

3 = (2, 1, 0, . . . , 0)/
√
5. The

simulation results are reported in Table 2.

Example 3.3: Consider another binary-response model, Model 3:

Y = sign

(
sin(β�

4 X)

β�
5 X

+ 0.2ε

)
,

where X follows the multivariate uniform distribution unif(−2, 2)p, ε ∼ N(0, 1), and ε is independent of X, β4 =
(1, 0, . . . , 0)�, and β5 = (0, 1, 0, . . . , 0)�. The simulation results are reported in Table 3.

From the simulation results, we find ECDmethod outperforms other methods when the response is continuous.
When the response is categorical, it also performs better than SIR, SAVE and LAD and its performance is compa-
rable to DCOV. To be more specific, the accuracy of ECD and DCOV is very close as sample size n gets large when
the response Y is categorical. On the other hand, the computation speed of ECD is faster than that of DCOV due to
its slicing technique in calculating C2

n(β
�X|Y). For example, when (n, p) = (200, 6), ECD is about 2.7 times faster

than DCOV under Model 1 and 2, and about 3.6 times faster under Model 3. Overall, ECD is superior to other
methods.

Example 3.4: Estimating d. We test the performance of the kNN procedure in Section 2.6 based on Model 1 and
Model 2. Table 4 shows that the kNN procedure can estimate dimension d very precisely, no matter the response is
continuous or categorical.

4. Real data analysis

To further investigate the performance of our method, we apply it to the Pen Digit database from the UCImachine-
learning repository. The data contains 10,992 samples of hand-written digits {0, 1, . . . , 9}. The digits were collected
from44writers and everywriterwas asked towrite 250 randomdigits. Every digit is represented as a 16-dimensional
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Figure 1. 2D-plot for the two predictors estimated by SIR.

Figure 2. 3D-plots for the three predictors estimated by SAVE, DCOV and ECD.

feature vector. The 44writers are divided into two groups, in which 30 are used for training, while others are used for
testing. The data set andmore details are available at archive.ics.uci.edu/ml/machine-learning-databases/pendigits/.

We choose the 0’s, 6’s and 9’s, three hardly classified digits, as an illustration. In this subset of the database, there
are 2,219 cases in the training data and 1,035 cases in the test data. We apply the dimension reduction methods
to the 16-dimensional predictor vector for the training set, which serves as a preparatory step for the three-group
classification problem. Because the response has three slices, SIR estimates only two directions in the dimension
reduction subspace. The othermethods, SAVE, DCOV and ECD, all estimate three directions. Figure 1 presents the
two-dimensional plot of (SIR1, SIR2) and Figure 2 shows the three dimensional plots of (SAVE1, SAVE2, SAVE3),
(DCOV1, DCOV2, DCOV3) and (ECD1, ECD2, ECD3). SIR provides only location separation of the three groups.
SAVE implies there are covariance differences among three groups, but no clear location separation is provided.
Both DCOV and ECD get the location separation and covariance differences, but ECD presents a more clear
separation among the three groups.The three-dimensional plot of (ECD1, ECD2, ECD3) gives a comprehensive
demonstration of the different features of the three groups.

5. Discussion

In this article, we proposed a new sufficient dimension reduction method. We studied its asymptotic properties
and introduced the kNN procedure to estimate the structural dimension d. The numerical studies show that our
method can estimate the CS accurately and efficiently. In the future, we consider to develop a variable selection
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method by combining our method with the penalized method such as LASSO (Tibshirani, 1996). Furthermore, it
can be extended to large p small n problems by using the framework of Yin and Hilafu (2015).
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Appendix A. Proofs of Propositions 2.1 and 2.2

In order to prove Propositions 2.1 and 2.2 in Section 2.3 in the article, we first provide and prove the following Lemma A.1.

Lemma A.1: Suppose η is a basis of the central subspace. Let (η1, η2) be any partition of η, where η��Xη = Id. We have
C2(η�

i X|Y) < C2(η�X|Y), i = 1, 2.

Proof: Let X̃1 = η�
1 X, X̃2 = η�

2 X, F(a, b) = C2
((

aX̃1
bX̃2

)∣∣∣∣Y), a ∈ R and b ∈ R, and G1(a, b) = ∂F(a, b)/∂a, G2(a, b) =
∂F(a, b)/∂b. A simple calculation shows that aG1(a, b) + bG2(a, b) = F(a, b).

If (η1, η2) ∈ S(η), then F(0,1), F(1,0) > 0; otherwise, the conclusion automatically holds.
Claim, if 0 ≤ λ < 1, then F(1, λ) < F(1, 1) and F(λ, 1) < F(1, 1).
If not, then there exists a 0 ≤ λ0 < 1 such that F(1, λ0) ≥ F(1, 1) or F(λ0, 1) ≥ F(1, 1).Without loss of generality, we assume

there exists a 0 ≤ λ0 < 1 such that F(1, λ0) ≥ F(1, 1).
But F(1, λ) = λF

( 1
λ
, 1
)
, and as λ → ∞, F

( 1
λ
, 1
) → F(0, 1) > 0. Thus F(1, λ) → ∞, as λ → ∞. That means, there exists

a λ1 ∈ (λ0,∞) such that F(1, λ1) achieves a minimum in (λ0,∞). Hence, G2(1, λ1) = 0. Note that function F(a, b) is a ‘ray’
function, i. e. F(ca, cb) = cF(a, b). Thus using the fact that F(1, λ) = λF

( 1
λ
, 1
)
, we can have G1

(
1
λ1
, 1
)

= 0. And it is easy to

calculate that G1(1, λ1) = G1

(
1
λ1
, 1
)

= 0.

But 0 = 1G1(1, λ1) + λ1G2(1, λ1) = F(1, λ1). F(1, λ1) = 0 means that
(

X̃1
λ1X̃2

)
Y, which conflicts with our assump-

tion. �

Proof of Proposition 2.1: Since S(β) ⊆ S(η) = SY|X, d1 ≤ d, there exists a matrix A, which satisfies β = ηA. Therefore,
C2(β�X|Y) = C2(A�η�X|Y).

Assume the single value decomposition ofA isU�V�, whereU is a d × d orthogonalmatrix,V is a d1×d1 orthogonalmatrix
and � is a d×d1 diagonal matrix with nonnegative numbers on the diagonal, and it is easy to prove that all nonnegative num-
bers on the diagonal of � are 1. Based on Theorem 3, part (2) of Yin and Yuan (2020), C2(β�X|Y) = C2(V��U�η�X|Y) =
C2(��U�η�X|Y).

LetU�η�X = (X̃1, . . . , X̃d)
�. Since all nonnegative numbers on the diagonal of� are 1 and��U�η�X = (X̃1, . . . , X̃d1)

�,
by Lemma A.1, we get C2(��U�η�X|Y) ≤ C2(U�η�X|Y). The equality holds if and only if d = d1. And again based on
Theorem 3, part (2) of Yin and Yuan (2020), C2(U�η�X|Y) = C2(η�X|Y). Thus, C2(β�X|Y) ≤ C2(η�X|Y), and equality
holds if and only if S(β) = S(η). �
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Proof of Proposition 2.2: For theβ and η described in Proposition 2.2, there exists a rotationmatrixQ such thatβQ = (ηa, ηb),
and S(ηa) ⊆ S(η), S(ηb) ⊆ S(η)⊥, where S(η)⊥ is the orthogonal space of S(η).

Since Y η�
b X|η�X and P�

η(�X)X Q�
η(�X)X,

(
Y

η�X

)
η�
b X, and according to Proposition 4.3 (Cook, 1998),(

Y
η�
a X

)
η�
b X. Let W1 =

(
η�
a X
0

)
, V1 = Y, W2 =

(
0

η�
b X

)
, and V2 = 0. Then (W1,V1) (W2,V2). According

to Yin and Yuan (2020) Theorem 1, part (2), C(W1 + W2|V1 + V2) < C(W1|V1) + C(W2|V2), that is C2(Q�β�X|Y) =
C2(β�X|Y) < C2(η�

a X|Y) ≤ C2(η�X|Y). �

Appendix B. Proof of Proposition 2.3

In order to prove Proposition 2.3 in Section 2.5 of this article, we provide and prove the following Lemma B.1 first.

Lemma B.1: If the support of X, say S, is compact and furthermore, ηn
P−→ η, then C2

n(η
�
n X|Y) − C2

n(η
�X|Y)

P−→ 0.

Proof: Based on Yin and Yuan (2020) Corollary 1, we have that

C2
n(η

�
n X|Y) = 1

n2

n,n∑
k,l=1

|η�
n Xk − η�

n Xl| − 1
n

H∑
y=1

1
ny

ny ,ny∑
k,l=1

|η�
n Xy,ky − η�

n Xy,ly |,

C2
n(η

�X|Y) = 1
n2

n,n∑
k,l=1

|η�Xk − η�Xl| − 1
n

H∑
y=1

1
ny

ny ,ny∑
k,l=1

|η�Xy,ky − η�Xy,ly |.

Because ηn → η in probability, let ηn = η + εn. Then for any ε > 0, ||εn|| < ε, when n → ∞, where || · || is the Frobenius
norm. Hence, by the condition on X, we have that for a positive constant cx, and large n, |C2

n(η
�
n X|Y) − C2

n(η
�X|Y)| ≤ εcx.

Hence the conclusion follows. �

Proof of Proposition 2.3: To simplify the proof, we restrict the support of X to be a compact set, and it can be shown that
SY|X = SY|XS (Yin et al., 2008, Proposition 10), where XS is X restricted onto S. Without loss of generality, we assume Q = Id.
Suppose ηn is not a consistent estimator of SY|X. Then there exists a subsequence, still to be indexed by n, and an η∗ satisfying
η∗��̂Xη∗ = Id such that ηn

P−→ η∗ but Span(η∗) �= Span(η).
By Lemma B.1, we have C2

n(η
�
n X|Y) − C2

n(η
∗�X|Y)

P−→ 0 and by Lemma 3 in Yin and Yuan (2020), we have
C2
n(η

∗�X,Y)
a.s.−→ C2(η∗�X|Y). Therefore, C2

n(η
�
n X|Y)

P−→ C2(η∗�X|Y).
On the other hand, because ηn = argmax

β��̂Xβ=Id
C2
n(β

�X|Y), we have C2
n(η

�
n X|Y) ≥ C2

n(η
�X|Y). If we take the limit on

both sides of the above inequality, we get C2(η∗�X|Y) ≥ C2(η�X|Y). However, we have proved that under the assumption
P�

η(�X)X Q�
η(�X)X, η = argmaxβ��Xβ=IdC2(β�X|Y), and we also assume that the central subspace is unique. Therefore,

C2(η∗�X|Y) ≥ C2(η�X|Y) conflicts with the above assumption, so ηn is a consistent estimator of a basis of the central subspace.
�

Appendix C. Proof of Proposition 2.4

Lagrangemultiplier technique is used to prove the
√
n-consistency of vec(ηn) in the Proposition 2.4 in Section 2.5 of the article.

First, we introduce the following notations and conditions and we also give a new definition.
For a random sample (X,Y) = {(Xk,Yk) : k = 1, . . . , n} from the joint distribution of random vectors X in Rp and Y

in R, let L(ζ ) = C2(β�X|Y) + λ�(vec(β��Xβ) − vec(Id)) and Ln(ζ ) = C2
n(β

�X|Y) + λ�(vec(β��̂Xβ) − vec(Id)). Here

ζ =
(

(β)

λ

)
∈ Rpd+d2 , β ∈ Rp×d, λ ∈ Rd2 , �X is the covariance matrix of X, and �̂X is the sample estimate for �X. Let ηn =

argmax
β��̂Xβ=Id

C2
n(β

�X|Y). Then there exists a λn such that
(
vec(ηn)

λn

)
is a stationary point forLn(ζ ). Let θn =

(
vec(ηn)

λn

)
.

Then L′
n(θn) = 0. Let η be a basis of CS. Then under the assumption P�

η(�X)X Q�
η(�X)X, there exists a rotation matrix

Q : Q�Q = Id, such that ηQ = argmaxβ��Xβ=Id C2(β�X|Y). Without loss of generality, we assume Q = Id here. Therefore,

there exists a λ0 such that
(
vec(η)

λ0

)
is a stationary point for L(ζ ). Let θ =

(
vec(η)

λ0

)
.

In the proof, we need to take derivatives of C2(η�X|Y) and C2
n(η

�X|Y) with respect to vec(η), so for the simplicity of
notation, when we consider the derivatives of C2(η�X|Y) and C2

n(η
�X|Y), we use C(η) and Cn(η) to denote C2(η�X|Y) and

C2
n(η

�X|Y), respectively.
Here are additional notations, which will be used later in the following proof. I(d,d) is the vec-permutation matrix. Im is a

identity matrix with rank m, and Im(:, i) denotes the ith column of Im. A ⊗ B denotes the Kronecker product between matrix
A and B. vec(·) is a vec operator.

Furthermore, we give the following definition and assumptions.
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Definition C.1: Let �(η) = {α : ||α − η|| ≤ c}, where α is a p × dmatrix, α��Xα = Id, c is a fixed small constant, and || · ||
is the Frobenius norm. We define an indicator function

ρ(X,X′) =
{
0, if |α�(X − X′)| ≤ ε0, for α ∈ �(η),
1, if |α�(X − X′)| > ε0, for α ∈ �(η),

whereX′ is an i.i.d. copy ofX and ε0 is a small number.We define the second and third derivatives of C(η)with respect to vec(η)
as C ′′

(η)ρ(X,X′) and C ′′′
(η)ρ(X,X′). For the simplicity of notation, we will still use C ′′

(η) and C ′′′
(η) to denote C ′′

(η)ρ(X,X′)
and C ′′′

(η)ρ(X,X′), respectively.

The reason we use this definition is that under Definition C.1, the second and third derivatives of C(η) and Cn(η) are
bounded, near the neighbourhood of the central subspace.

Assumption C.1: Var
[
φ(1)(X,X′)

]
, Var

[
φ(2Y)(Xy,X′

y)
]
, y = 1, . . . ,H, Var

[
φ(3)(X)

]
, Var

[
φ(4)((X,X′))

]
, Var

[
φ(5)(X)

]
,

Var
[
φ(6)((X,X′))

]
, Var

[
φ(7)(X)

]
are all < ∞. Here

φ(1)(X,X′) = (Id ⊗ (X − X′))(Id ⊗ (X − X′)�)vec(η)

|(Id ⊗ (X − X′)�)vec(η)| ,

φ(2y)(Xy,X′
y) = (Id ⊗ (Xy − X′

y))(Id ⊗ (Xy − X′
y)

�)vec(η)

|(Id ⊗ (Xy − X′
y)

�)vec(η)| , y = 1, . . . ,H,

φ(3)(X) = (Id ⊗ XX�η)(Id2 + I�d,d)λ0,

φ(4)(X,X′) = 1
2
(Id ⊗ (XX′� + X′X�)η)(Id2 + I�d,d)λ0,

φ(5)(X) = vec(η�XX�η),

φ(6)(X,X′) = 1
2
vec(η�(XX′� + X′X�)η),

φ(7)(X) = vec(X − EX)(X − EX)�.

Here (X,Y), (X′,Y′) are i.i.d copies and (Xy,Yy), (X′
y,Y′

y) are i.i.d copies in the yth slice.

Assumption C.2:
( C ′′

(η) + L (Id ⊗ �Xη)(Id2 + I(d,d))
(Id2 + I�

(d,d))(Id ⊗ η��X) 0

)
is nonsingular.

Assumption C.1 is needed for Proposition 2.4 in the main article and Lemma C.1 in the next section, which is similar to
the assumed conditions of Theorem 6.1.6 (Lehmann, 1999, Ch. 6). This assumption is required by the asymptotic properties of
U-statistics.

Assumption C.2 is in the spirit of vonMises proposition (Serfling, 1980, Section 6.1). In this proposition, it claims that if the
first nonvanishing term of Taylor expansion is the linear term, then the

√
n-consistency of the differentiable statistical function

can be achieved. In our case, we assume the corresponding matrix is nonsingular, which guarantees the
√
n-consistency. If the

matrix is singular, then n or higher order consistency of some parts of our estimates can be proved.
In order to prove Proposition 2.4 in Section 2.5 of the paper, we provide and prove the following Lemma C.1 first.

Lemma C.1: Under Assumptions C.1, C.2 and the assumptions in Proposition 2.4, then
√
n(θn − θ)

D−→ N(0,V). The explicit
expression for V is in the proof.

Proof: TheTaylor expansion ofL′
n(θn) at θ is 0 = L′

n(θn) = L′
n(θ) + L′′

n(θ)(θn − θ) + R1(θ
∗
n ), where ||θ∗

n − θ || ≤ ||θn − θ ||,
where || · || is the Frobenius norm and θ∗

n =
(
vec(η∗

n)
λ∗
n

)
. Next, we will give explicit expressions of L′

n(θ), L′′
n(θ) and R1(θ

∗
n ).

With simple calculation, L′
n(θ) = (C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0vec(η��̂Xη) − vec(Id)
)
,

L′′
n(θ) =

(
C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)
,

where L̂ = (vec(L̂11), vec(L̂21), . . . , vec(L̂p1), . . . , vec(L̂1d), vec(L̂2d), . . . , vec(L̂pd))� and L̂ij = �̂�
X Ip(:, i)λ

�
0 (Id2 + I�

(d,d))

(Id(:, j) ⊗ Id). It is obvious that L̂
a.s.−→ L, where L = (vec(L11), vec(L21), . . . , vec(Lp1), . . . , vec(L1d), vec(L2d), . . . , vec(Lpd))�

and Lij = ��
X Ip(:, i)λ

�
0 (Id2 + I�

(d,d))(Id(:, j) ⊗ Id). Here i = 1, . . . , p and j = 1, . . . , d.
The remainder termR1(θ

∗
n ) involves the third derivative ofL(ζ ) at θ∗

n . Let Tn = L′′′
n (θ∗

n ), where Tn is a (pd + d2) × (pd +
d2) × (pd + d2) array and each Tn(j, :, :), j = 1, . . . , pd + d2, is a (pd + d2) × (pd + d2) matrix. Therefore, the form ofR1(θ

∗
n )



198 W. SHENG AND Q. YUAN

can be written as

R1(θ
∗
n ) = 1

2

⎛⎜⎜⎜⎝
(θn − θ)�Tn(1, :, :)(θn − θ)

(θn − θ)�Tn(2, :, :)(θn − θ)
...

(θn − θ)�Tn(pd + d2, :, :)(θn − θ)

⎞⎟⎟⎟⎠ .

Based on the above explicit expression of L′
n(θ), L′′

n(θ) andR1(θ
∗
n ), the Taylor expansion of L′

n(θn) at θ can be written as

0 =
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d)λ0)
vec(η��̂Xη) − vec(Id)

)

+
(

C′′
n (η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂Xη) 0

)
(θn − θ)

+ 1
2

⎛⎜⎜⎜⎝
(θn − θ)�Tn(1, :, :)(θn − θ)

(θn − θ)�Tn(2, :, :)(θn − θ)
...

(θn − θ)�Tn(pd + d2, :, :)(θn − θ)

⎞⎟⎟⎟⎠ .

From the above Taylor expansion of L′
n(θn) at θ , we get

−
(

C′′
n (η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂Xη) 0

)−1

× √
n
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d)λ0)
vec(η��̂Xη) − vec(Id)

)

=
⎡⎣Ipd+d2 + 1

2

(
C′′
n (η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂Xη) 0

)−1

×

⎛⎜⎜⎜⎝
(θn − θ)�Tn(1, :, :)
(θn − θ)�Tn(2, :, :)

...
(θn − θ)�Tn(pd + d2, :, :)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦√

n(θn − θ).

Next, we will prove two parts.
Part 1:

−
(

C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)−1

× √
n
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0
vec(η��̂Xη)−vec(Id)

)
−→N(0,V).

Part 2:

√
n(θn − θ)

D=
⎡⎣Ipd+d2 + 1

2

(
C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)−1

×

⎛⎜⎜⎜⎝
(θn − θ)�Tn(1, :, :)
(θn − θ)�Tn(2, :, :)

...
(θn − θ)�Tn(pd + d2, :, :)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦√

n(θn − θ).

�

Proof of part 1: We will show that both C ′
n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0 and vec(η��̂Xη) − vec(Id) are linear combina-

tions of U-statistics and the asymptotic distribution can be achieved by the asymptotic property of U-statistics.
Based on Corollary 1 in Yin and Yuan (2020),

Cn(η) = 1
n2

n,n∑
k,l=1

|η�(Xk − Xl)| − 1
n

H∑
y=1

1
ny

ny ,ny∑
k,l=1

|η�(Xy,ky − Xy,ly)|.

With some calculation, we can get

C′
n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0 = n − 1

n
U1n − 1

n

H∑
y=1

(ny − 1)U2y + n − 1
n

U3n − n − 1
n

U4n,
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where

U1n =
(
n
2

)−1 ∑
1≤k<l≤n

(Id ⊗ (Xk − Xl))(Id ⊗ (Xk − Xl)
�)vec(η)

|(Id ⊗ (Xk − Xl)�)vec(η)| ,

U2y =
(
ny
2

)−1 ∑
1≤ky<ly≤ny

(Id ⊗ (Xy,ky − Xy,ly))(Id ⊗ (Xy,ky − Xy,ly)
�)vec(η)

|(Id ⊗ (Xy,ky − Xy,ly)
�)vec(η)| , y = 1, . . . ,H,

U3n = 1
n

n∑
i=1

(Id ⊗ XiX�
i η)(Id2 + I�d,d)λ0,

U4n =
(
n
2

)−1∑
i<j

1
2
(Id ⊗ (XiX�

j + XjX�
i )η)(Id2 + I�d,d)λ0.

Here U1n, U2y(y = 1, . . . ,H), U3n, U4n are U-statistics. In the notation U2y, y = 1, . . . ,H, ky, ly = 1, . . . , ny, where H denotes
the number of slices and ny is the number of samples in the yth slice.

Considering the term vec(η��̂Xη), which is also a linear combination of U-statistics, let

U5n = 1
n

n∑
i=1

vec(η�XiX�
i η),

U6n =
(
n
2

)−1∑
i<j

1
2
vec(η�(XiX�

j + XjX�
i )η),

and then vec(η��̂Xη) = n−1
n U5n − n−1

n U6n.
Let

μ1 = E
(Id ⊗ (X − X′))(Id ⊗ (X − X′)�)vec(η)

|(Id ⊗ (X − X′)�)vec(η)| ,

μ2y = E
(Id ⊗ (Xy − X′

y))(Id ⊗ (Xy − X′
y)

�)vec(η)

|(Id ⊗ (Xy − X′
y)

�)vec(η)| , y = 1, . . . ,H,

μ3 = E(Id ⊗ XX�η)(Id2 + I�(d,d))λ0,

μ4 = (Id ⊗ (EX)(EX)�η)(Id2 + I�(d,d))λ0,

μ5 = vec(η�(EXX�)η),

μ6 = vec(η�(EX)(EX)�η).

Here (X,Y), (X′,Y′) are i.i.d copies and (Xy,Yy)(X′
y,Y′

y) are i.i.d copies in the yth slice.
According to Theorem 6.1.6 (Lehmann, 1999, Ch.6),

√
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1n − μ1
U21 − μ21

...
U2H − μ2H
U3n − μ3
U4n − μ4
U5n − μ5
U6n − μ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
D−→ N(0,�),

where

� =

⎛⎜⎝ �11 · · · �1(H+5)
...

. . .
...

�(H+5)1 · · · �(H+5)(H+5)

⎞⎟⎠ .

Let B =
(
Ipd (− 1

H )Ipd · · · (− 1
H )Ipd Ipd −Ipd 0 0

0� 0� · · · 0� 0� 0� Id2×d2 −Id2×d2

)
, where 0 is a pd × d2 zero matrix. Then

√
nB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1n − μ1
U21 − μ21

...
U2H − μ2H
U3n − μ3
U4n − μ4
U5n − μ5
U6n − μ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= √

n
(
U1n − 1

H
∑H

y=1 U2y + U3n − U4n
U5n − U6n − vec(Id)

)
.
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Note that

√
n
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0
vec(η��̂Xη) − vec(Id)

)
= √

n

(
n−1
n U1n − 1

n
∑H

y=1(ny − 1)U2y + n−1
n U3n − n−1

n U4n
n−1
n U5n − n−1

n U6n − vec(Id)

)
,

and under Assumption C.1,

√
n

(
(n−1)

n U1n − 1
n
∑H

y=1(ny − 1)U2y + n−1
n U3n − n−1

n U4n
n−1
n U5n − n−1

n U6n − vec(Id)

)

− √
n
(
U1n − 1

H
∑H

y=1U2y + U3n + U4n
U5n − U6n − vec(Id)

)
P−→ 0.

Therefore, according to Slutsky’s theorem,

√
n
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0
vec(η��̂Xη) − vec(Id)

)
D= √

nB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1n − μ1
U21 − μ21

...
U2H − μ2H
U3n − μ3
U4n − μ4
U5n − μ5
U6n − μ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

An =
(

C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)−1

,

A =
( C ′′

(η) + L (Id ⊗ �Xη)(Id2 + I(d,d))
(Id2 + I�

(d,d))(Id ⊗ η��X) 0

)−1

.

Under Assumption C.2 and our definition of second derivative of Cn(η), by SLLN of U-statistics, An
a.s.−→ A. Therefore,(

C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)−1

× √
n
(C′

n(η) + (Id ⊗ �̂Xη)(Id2 + I(d,d))λ0
vec(η��̂Xη) − vec(Id)

)
D= √

nAB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1n − μ1
U21 − μ21

...
U2H − μ2H
U3n − μ3
U4n − μ4
U5n − μ5
U6n − μ6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−→N(0,V),

where V = AB�B�A�. �

Proof of part 2: Under Assumption C.2 and Definition C.1,

Ipd+d2 + 1
2

(
C ′′
n(η) + L̂ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

)−1

⎛⎜⎜⎜⎝
(θn − θ)�Tn(1, :, :)
(θn − θ)�Tn(2, :, :)

...
(θn − θ)�Tn(pd + d2, :, :)

⎞⎟⎟⎟⎠ P−→ Ipd+d2 .

Therefore, by Slutsky’s theorem,

√
n(θn − θ)

D=

⎡⎢⎢⎢⎢⎣Ipd+d2 + 1
2

⎛⎜⎜⎜⎝ C ′′
n(η) +

⎛⎜⎝vec�(L̂11)
...

vec�(L̂pd)

⎞⎟⎠ (Id ⊗ �̂Xη)(Id2 + I(d,d))

(Id2 + I�
(d,d))(Id ⊗ η��̂X) 0

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

(θn − θ)�Tn(1, :, :)
(θn − θ)�Tn(2, :, :)

...
(θn − θ)�Tn(pd + d2, :, :)

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

× √
n(θn − θ).

Therefore,
√
n(θn − θ)

D−→ N(0,V), or in other words, θn is
√
n-consistent estimation of θ .

In the above proof, without loss of generality, we assume that Q = Id. Note that with an orthogonal matrix Q,
C2
n(Q�β�X,Y) = C2

n(β
�X,Y) and C2(Q�β�X,Y) = C2(β�X,Y) (Yin & Yuan, 2020). If define ηQ = ηQ, without assum-

ing Q = Id, then Lemma C.1 holds by using C(ηQ) which is obtained by replacing every η in C(η) with ηQ. (Of course, then
C(ηId) = C(η) in the proof). �
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Proof of Proposition 2.4: Let G = (Ipd, 0) be a pd × (pd + d2) matrix, where Ipd is a pd × pd identity matrix. Then vec(ηn) =
Gθn and vec(ηQ) = Gθ . By Lemma C.1, we have

√
n(vec(ηn) − vec(ηQ)) = √

nG(θn − θ)
D−→ N(0,V11(ηQ)), or in other

word,
√
n[vec(ηn) − vec(ηQ)] D−→ N(0,V11(ηQ)), where V11(ηQ) = GV(ηQ)G�. �
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