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ABSTRACT
We consider maximum likelihood estimation with two or more datasets sampled from differ-
ent populations with shared parameters. Although more datasets with shared parameters can
increase statistical accuracy, this paper shows how to handle heterogeneity among different
populations for correctness of estimation and inference. Asymptotic distributions of maximum
likelihood estimators are derived under either regular caseswhere regularity conditions are satis-
fied or some non-regular situations. A bootstrap variance estimator for assessing performance of
estimators and/ormaking large sample inference is also introducedandevaluated in a simulation
study.
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1. Introduction

With advanced technologies in data collection and storage, in modern statistical analyses we often have multiple
datasets as independent samples from different populations having shared parameters. Typically, one of these mul-
tiple datasets is primary with carefully collected data from a population of interest. The other datasets are from
external sources, such as data from other studies, administrative records and publicly available information from
internet.

On one hand, the fact that populations share common parameters provides a great opportunity for increasing
statistical accuracy by utilizingmultiple datasets instead of a single dataset. On the other hand, because of the differ-
ence in data collection, study purpose and/or time of investigation, heterogeneity often exists among populations
so that we cannot simply combine all datasets into a single large dataset to run analysis, but must develop or modify
statisticalmethodology to correctly utilizemultiple datasets. The research on analysis withmultiple datasets fits into
a general framework of data integration (Kim et al., 2021; Lohr & Raghunathan, 2017; Merkouris, 2004; Rao, 2021;
Yang & Kim, 2020; Zhang et al., 2017; Zieschang, 1990).

In this article, we study maximum likelihood estimation (MLE) for independent datasets with parametric pop-
ulations sharing some (not necessarily all) parameters. For simplicity of presentation, we focus on the case of two
independent datasets. The main idea and result can be extended to multiple datasets. Our research can also be
extended to semi-parametric estimation, such as empirical likelihood or Cox regression for survival data.

Throughout, we consider two independent random samples. One random sample of size n, resulting a dataset
{X1, . . . ,Xn}, is sampled from a parametric population with probability density f (x, θ ,φ) (for either continuous or
discrete x), where f is a known function and θ and φ are unknown parameter vectors. Another random sample of
size m, resulting a dataset {Y1, . . . ,Ym}, is sampled from a population with probability density g(y, θ ,ϕ), where g
is a known function and θ and ϕ are unknown parameter vectors. Note that Xi and Yj can be vectors. The shared
parameter θ can be either the main parameter vector of interest or a nuisance parameter vector, and φ and ϕ are
other parameter vectors in two populations.

Letϑ denote the vectorwith θ ,φ, andϕ as sub-vectors. In Section 2, we derive themaximum likelihood estimator
(MLE) of ϑ based on two datasets, which is expected to be asymptotically more efficient than eachMLE based on a
single dataset, since more data are used for estimating the shared parameter θ , a component of ϑ . The asymptotic
normality of MLE of ϑ is established when densities f and g satisfy regularity conditions that are typically assumed
for MLE. Applications to location-scale problems are discussed in Section 3, where we also present a situation in
which f or g does not satisfy the regularity conditions. Section 4 contains an example in which regularity conditions
do not hold and MLE is not asymptotically normal. The common mean of a discrete data problem is considered in
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Section 5. Section 6 is devoted to the scenario where an additional uncertainty exists in the second population den-
sity g. To handle the situation where asymptotic normality of theMLE of ϑ is not available, we introduce a bootstrap
variance estimator in Section 7 and provide some simulation results to examine finite sample performances.

2. MLEs with two datasets

The following are regularity conditions for probability density p(x,ϑ) (with a fixed ϑ) of a continuous or discrete
random variable/vector X, typically assumed for MLEs in parametric populations (Shao, 2003).

(R1) For every x in the range of X, p(x,ϑ) is twice continuously differentiable with respect to ϑ in an open set of
the Euclidean space with a fixed dimension.

(R2) ∂
∂ϑ

∫
p(x,ϑ)dx = ∫

∂
∂ϑ

p(x,ϑ)dx and ∂
∂ϑ

∫
∂

∂ϑ
p(x,ϑ)dx = ∫

∂2

∂ϑ ∂ϑ� p(x,ϑ)dx, where C� denotes the trans-
pose of a vector or matrix C and the integral should be replaced by an appropriate summation when X is
discrete.

(R3) The Fisher information matrix −E{ ∂2

∂ϑ∂ϑ� log p(X,ϑ)} exists and is positive definite,
(R4) For any given ϑ , there exists a positive number cϑ and a positive function hϑ such that E{hϑ(X)} < ∞ and

supγ :‖γ−ϑ‖<cϑ ‖ ∂2 log p(x,γ )

∂γ ∂γ � ‖ ≤ hϑ(x) for all x in the range of X, where ‖A‖ =
√
trace(A�A) for any matrix A.

In this section, we assume that both f and g satisfy regularity conditions (R1) –(R4). When some regularity
conditions are not satisfied, we have to deal with the problem case by case. See, for example, the problem of normal
and Laplace distributions in Section 3.2 and the problem of two truncation distributions in Section 4.

The log likelihood function of ϑ is

�(ϑ) =
n∑

i=1
log f (Xi, θ ,φ) +

m∑
j=1

log g(Yj, θ ,ϕ)

and the score function is

s(ϑ) = ∂�(ϑ)

∂ϑ
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

∂ log f (Xi, θ ,φ)

∂θ
+

m∑
j=1

∂ log g(Yj, θ ,ϕ)

∂θ

n∑
i=1

∂ log f (Xi, θ ,φ)

∂φ
m∑
j=1

∂ log g(Yj, θ ,ϕ)

∂ϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If ϑ̂ is a solution to the score equation s(ϑ) = 0, then we call ϑ̂ an MLE of ϑ , although traditionally an MLE is
defined as a maximizer of �(ϑ) over the range of ϑ and ϑ̂ satisfying s( ϑ̂ ) = 0 may not be a maximizer.

A solution to the score equation often does not have an explicit form, even when eachMLE of a single population
has an explicit solution.

Under regularity conditions (R1)-(R4), E{s(ϑ)} = 0 and

Var{s(ϑ)} = −E
{

∂s(ϑ)

∂ϑ�

}
= nI (ϑ)

is the Fisher information matrix of information contained in two samples. Let

Iθθ (θ ,φ) = −E
{

∂2 log f (Xi, θ ,φ)

∂θ∂θ�

}
, Iθθ (θ ,ϕ) = −E

{
∂2 log g(Yj, θ ,ϕ)

∂θ∂θ�

}
,

Iθφ(θ ,φ) = −E
{

∂2 log f (Xi, θ ,φ)

∂θ∂φ�

}
, Iθϕ(θ ,ϕ) = −E

{
∂2 log g(Yj, θ ,ϕ)

∂θ∂ϕ�

}
,

Iφφ(θ ,φ) = −E
{

∂2 log f (Xi, θ ,φ)

∂φ∂φ�

}
, Iϕϕ(θ ,ϕ) = −E

{
∂2 log g(Yj, θ ,ϕ)

∂ϕ∂ϕ�

}
.
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Then

I (ϑ) =
⎛⎝Iθθ (θ ,φ) + aIθθ (θ ,ϕ) Iθφ(θ ,φ) aIθϕ(θ ,ϕ)

Iθφ(θ ,φ)� Iφφ(θ ,φ) 0
aIθϕ(θ ,ϕ)� 0 aIϕϕ(θ ,ϕ)

⎞⎠
is positive definite, where a = m/n and without loss of generality we assume that m = an for a fixed a>0. It can
be seen that I (ϑ) is increasing in a in the sense that A ≥ B for two non-negative definite matrices A and B if and
only if A−B is non-negative definite.

Using the standard argument in asymptotic theory, e.g., Theorem 4.17 in Shao (2003), we obtain the following
result.

Theorem 2.1: Assume (R1)–(R4) and that m = an with a remaining fixed as n increases. Then, with probability
tending to 1 as n → ∞, there exists ϑ̂ (depending on n) such that P{s(ϑ̂) = 0} → 1 and

√
n(ϑ̂ − ϑ)

d−→ N
(
0, {I (ϑ)}−1) , (1)

where d−→ denotes convergence in distribution and N(C,D) is the normal distribution with mean C and covariance
matrix D.

The asymptotic result (1) enables us to assess performance of ϑ̂ and to carry out large sample statistical infer-
ence on parameter ϑ or any of its components θ , φ, and ϕ. When some of regularity conditions (R1) –(R4) are
not satisfied, however, we may apply the bootstrap method (see Section 3.2 and Section 7 for the normal and
Laplace problem) or directly derive the asymptotic distribution of ϑ̂ (see Section 4 for the problemof two truncation
distributions).

3. Application to location-Scale problems

An application of our general result in Section 2 is to the case where f (x, θ ,φ) = 1
σ
f ( x−μ

σ
) and g(y, θ ,ϕ) = 1

τ
g( x−ν

τ
)

for two continuous probability density functions f and g on real line, i.e., both populations are in location-scale
families. We have several scenarios.

(1) Two location-scale families sharing the same location and scale parameters: μ = ν, σ = τ , θ = (μ, σ)�, and
both φ and ϕ are constants.

(2) Two location-scale families sharing the same location parameter but having different scale parameters: μ = ν,
θ = μ, φ = σ , and ϕ = τ .

(3) Two location-scale families sharing the same scale parameter but having different location parameters: σ = τ ,
θ = σ , φ = μ, and ϕ = ν.

Under any location-scale problem, it is often true thatIθφ(θ ,φ) = 0 andIθϕ(θ ,ϕ) = 0 and, hence, the inverse
of I (ϑ) can be easily obtained. For example, if both f and g are continuously differentiable functions symmetric
about 0, then it follows from Example 3.9 in Shao (2003) that both Iθφ(θ ,φ) and Iθϕ(θ ,ϕ) varnish.

In the following we consider a special case in details.

3.1. Normal and Laplace densities with a single scale parameter

Suppose that f (x, θ) = 1√
2πθ

e−x2/(2θ2), x ∈ (−∞,∞), which is the normal distributionN(0, θ2), and that g(y, θ) =
1
2θ e

−|y|/θ , y ∈ (−∞,∞), which is the Laplace distribution (also called double exponential distribution) with mean
zero and standard deviation

√
2θ . The two densities share the common scale parameter θ > 0.

The MLEs of θ based on data from f and g, respectively, are

θ̂N =
√√√√1

n

n∑
i=1

X2
i and θ̂E = 1

m

m∑
j=1

|Yj|.

In this particular case, we can obtain an explicit form of the MLE θ̂ of θ based on all data from two samples. The
log likelihood based on two samples is

�(θ) = −
n∑
i=1

X2
i

2θ2
−

m∑
j=1

|Yj|
θ

− log{(2π)n/22mθn+m}.
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The score function is

s(θ) = 1
θ3

n∑
i=1

X2
i + 1

θ2

m∑
j=1

|Yj| − n + m
θ

.

Setting s(θ) = 0 and using the form of MLE from each sample, we obtain that

θ2 −
(

mθ̂E

n + m

)
θ −

(
nθ̂2N
n + m

)
= 0.

Since θ > 0 and only one root is positive, we obtain that the MLE of θ is

θ̂ = 1
2

⎧⎨⎩ aθ̂E
a + 1

+
√(

aθ̂E
a + 1

)2

+ 4θ̂ 2
N

a + 1

⎫⎬⎭ , where a = m/n. (2)

Note that θ̂ is a nonlinear function of θ̂N and θ̂E. In general, theMLE of the shared parameter based on two datasets
is not a simple function of separate MLEs based on each single dataset.

To derive the asymptotic distribution of θ̂ , we can use the general result (1), because regularity conditions (R1)
–(R4) are satisfied for f and g. Since θ̂ has an explicit form, we can also simply derive it. Because Xi’s and Yj’s are
independent and a = m/n,

√
n
(

θ̂N − θ√
aθ̂E − √

aθ

)
d−→ N

(
0,
(

θ2/2 0
0 θ2

))
.

Define

g(t, s) = 1
2

⎧⎨⎩
√
as

a + 1
+

√
as2

(a + 1)2
+ 4t2

a + 1

⎫⎬⎭ .

Then,

g
(
θ̂N ,

√
aθ̂E

) = θ̂ and g
(
θ ,

√
aθ

) = θ .

Hence, by the delta method, e.g., Theorem 1.12 in Shao (2003),

√
n(θ̂ − θ)

d−→ N
(
0, ∇g�

(
θ2/2 0
0 θ2

)
∇g

)
,

where ∇g is the derivative vector of g at (t, s) = (θ ,
√
aθ), i.e.,

∂g
∂t

= 2t
a + 1

/√
as2

(a + 1)2
+ 4t2

a + 1
,

∂g
∂s

= 1
2

⎧⎨⎩
√
a

a + 1
+ as

(a + 1)2

/√
as2

(a + 1)2
+ 4t2

a + 1

⎫⎬⎭ ,

∇g =
(

2
a + 2

,
√
a

a + 2

)�
.

This leads to the following result.

Corollary 3.1: Assume that m = an with a remaining fixed as n increases. Then, as n → ∞,

√
n(θ̂ − θ)

d−→ N
(
0,

θ2

a + 2

)
.

The asymptotic relative efficiency of θ̂N with respect to θ̂ is 2/(a + 2), which is decreasing in a and bounded
between 0 and 1. The asymptotic relative efficiency of θ̂E with respect to θ̂ is a/(a + 2), which is increasing in a and
bounded between 0 and 1.
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3.2. Normal and Laplace densities with shared scale and location parameters

Consider a more general case where f and g share a scale parameter and a location parameter. That is, f (x, θ ,μ) =
1√
2πθ

e−(x−μ)2/(2θ2), x ∈ (−∞,∞), which is the normal distribution N(μ, θ2), and g(y, θ ,μ) = 1
2θ e

−|y−μ|/θ , y ∈
(−∞,∞), which is the Laplace distribution with mean μ and standard deviation

√
2θ . Note that regularity

conditions (R1) –(R4) are not satisfied for g, since g is not always differentiable in μ.
For parameter vector ϑ = (μ, θ)�, the log likelihood is

�(ϑ) = −
n∑

i=1

(Xi − μ)2

2θ2
−

m∑
j=1

|Yj − μ|
θ

− log{(2π)n/22mθn+m}.

Although �(ϑ) is not always differentiable in μ, it is concave in μ and, hence, the MLE μ̂ of μ exists though it does
not have an explicit form. The MLE of θ is given by (2) with θ̂N and θ̂E replaced by, respectively,√√√√1

n

n∑
i=1

(Xi − μ̂)2 and
1
m

m∑
j=1

|Yj − μ̂|.

The asymptotic distribution of ϑ̂ = ( μ̂, θ̂ )� cannot be obtained from (1), since g does not satisfy conditions (R1)
–(R4). For assessing performance of ϑ̂ and/or making inference, we recommend a bootstrap method, which is
discussed in Section 7 and studied by simulation.

4. Application to two truncation distributions

Let f (x, θ) and g(y, θ) be positive density functions on the interval (0, θ) and zero outside (0, θ), where θ > 0 is an
unknown scale parameter common for both populations, and f and g are known when θ is known. The likelihood
is

n∏
i=1

f (Xi, θ)I{Xi<θ}
m∏
j=1

g(Yj, θ)I{Yj<θ} =
⎧⎨⎩

n∏
i=1

f (Xi, θ)

m∏
j=1

g(Yj, θ)

⎫⎬⎭ I{X(n)<θ}I{Y(m)<θ},

where IA is the indicator of event A, X(n) = max(X1, . . . ,Xn) and Y(m) = max(Y1, . . . ,Ym). This likelihood is not
always differentiable in θ , but it can be seen that theMLE of θ is θ̂ = max(X(n),Y(m)), a maximizer of the likelihood.

This is an example in which regularity conditions (R1) –(R4) in Section 2 are not satisfied so that result (1)
does not hold. The MLE θ̂ is not even asymptotically normal. In the following we directly derive the asymptotic
distribution of θ̂ .

It follows from the result in Example 2.34 of Shao (2003), the independence of Xi’s and Yj’s, andm = an that

n
(

θ − X(n)
θ − Y(m)

)
d−→

⎛⎜⎝
ε1

f (θ , θ)
ε2

a g(θ , θ)

⎞⎟⎠ ,

where ε1 and ε2 are independent randomvariables with the same exponential distribution having density e−x, x>0.
Because

min
{
n(θ − X(n)), n(θ − Y(m))

} = n
{
θ − max(X(n), Y(m))

} = n(θ − θ̂ ),

we obtain that

n(θ − θ̂ )
d−→ min

{
ε1

f (θ , θ)
,

ε2

a g(θ , θ)

}
.

From the independence of ε1 and ε2, for any t>0,

P
{
min

{
ε1

f (θ , θ)
,

ε2

ag(θ , θ)

}
> t

}
= P

{
ε1

f (θ , θ)
> t

}
P
{

ε2

ag(θ , θ)
> t

}
= exp

{− t{f (θ , θ) + ag(θ , θ)}} .
This leads to the following result.
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Theorem 4.1: Under the assumed conditions on f and g in this section,

n(θ − θ̂ )
d−→ E(θ , a),

where E(θ , a) is the exponential distribution with scale parameter 1/{f (θ , θ) + ag(θ , θ)}.

Inference on θ can be made using this asymptotic result.
The asymptotic relative efficiency of the MLE X(n) based on the first dataset with respect to the MLE θ̂ based on

two datasets is {1 + ag(θ , θ)/f (θ , θ)}−2, which is increasing in a and bounded between 0 and 1. The asymptotic
relative efficiency of the MLE Y(m) based on the second dataset with respect to the MLE θ̂ based on two datasets is
{1 + a−1f (θ , θ)/g(θ , θ)}−2, which is decreasing in a and bounded between 0 and 1.

5. Application to Poisson and binomial samples

Here we consider a discrete data problem, where Xi has the Poisson distribution with mean θ , Yj is binary with
P(Yj = 1) = θ , and θ ∈ (0, 1) is the shared parameter. Let X be the sample mean of Xi’s and Y be the sample mean
of Yj’s. The score function based on two samples is

s(θ) = n
(
X
θ

− 1 + aY
θ

− 1 − aY
1 − θ

)
, where a = m/n.

Setting s(θ) = 0, we obtain the score equation

θ2 − (1 + a + X)θ + X + aY = 0.

Since the score equation is a quadratic equation, it has two solutions if and only if

(1 + a + X)2 − 4(X + aY) > 0.

By the law of large numbers, as n → ∞, both X and Y converge to θ almost surely and

(1 + a + X)2 − 4(X + aY) → (1 + a + θ)2 − 4(1 + a)θ = (1 + a − θ)2 > 0

almost surely. This shows that, with probability tending to 1 as n → ∞, the score equation has two real solutions,{
1 + a + X ±

√
(1 + a + X)2 − 4(X + aY)

}
/2.

The solution with + sign in front of the squared root is always larger than 1, out of the range (0, 1) for θ in this
problem. Hence, we conclude that the MLE of θ is

θ̂ = min

⎧⎨⎩1,
1 + a + X −

√(
1 + a + X

)2 − 4(X + aY)

2

⎫⎬⎭ .

The minimum is taken because 0 < θ < 1. Again, the MLE θ̂ is a nonlinear function of the separate MLEs, X and
Y .

The asymptotic distribution of θ̂ can be derived using the delta-method, but because regularity conditions (R1)
–(R4) are satisfied, it is a corollary of Theorem 2.1 in Section 2.

Corollary 5.1: Under the Poisson and binary assumptions for two datasets and m = an, as n → ∞,

√
n(θ̂ − θ)

d−→ N
(
0,

θ(1 − θ)

1 − θ + a

)
.

The asymptotic relative efficiency of the MLE X based on the first dataset with respect to the MLE θ̂ based
on two datasets is (1 − θ)/(1 − θ + a), which is decreasing in a and bounded between 0 and 1. The asymptotic
relative efficiency of the MLE Y based on the second dataset with respect to the MLE θ̂ based on two datasets is
a/(1 − θ + a), which is increasing in a and bounded between 0 and 1.
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6. MLEs with two samples and an additional uncertainty

In this section, we consider a scenario in which the first sample is obtained under a controlled study so that we
know the form of probability density f (x, θ ,φ), but the form of g(y, θ ,ϕ) for the second sample has an additional
uncertainty, because the second sample may be obtained through a past study and/or public records. We assume
that the additional uncertainty comes from an unknown parameter ζ taking two possible values, 0 and 1, i.e., the
probability density of the second sample is g(y, θ ,ϕ, ζ ), where ζ = 0 or 1 and g is still a known density when θ , ϕ,
and ζ are known.

How do we derive the MLE of ϑ = (θ�,φ�,ϕ�)�? If ζ is known, then the MLE can be obtained using the
method in Section 2. Since ζ takes only two values, if ζ̂ is a consistent estimator of ζ , i.e.,

lim
n→∞ P

(̂
ζ = ζ

) = 1, (3)

then we obtain the MLE of ϑ as

ϑ̂ =
{

ϑ̂(0), ζ̂ = 0,
ϑ̂(1), ζ̂ = 1,

where ϑ̂(0) and ϑ̂(1) are MLEs under ζ = 0 and ζ = 1, respectively.
A suggested consistent estimator of ζ is the MLE of ζ based on the second sample, Yj’s. Let θ̂ (ζ ) and ϕ̂(ζ ) be the

MLEs of θ and ϕ, respectively, based on Yj’s, when the value of ζ is fixed. Then the MLE of ζ is

ζ̂ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

m∏
j=1

g(Yj, θ̂ (0), ϕ̂(0), 0) ≥
m∏
j=1

g(Yj, θ̂ (1), ϕ̂(1), 1),

1,
m∏
j=1

g(Yj, θ̂ (0), ϕ̂(0), 0) <

m∏
j=1

g(Yj, θ̂ (1), ϕ̂(1), 1).

The following result gives the asymptotic distribution of the MLE ϑ̂ .

Theorem 6.1: If (3) holds and regularity conditions (R1)–(R4) are satisfied when ζ = 0 or 1, and if m = an with a
remaining fixed as n increases, then

√
n(ϑ̂ − ϑ)

d−→ N
(
0, {I (ϑ , ζ )}−1

)
,

where I (ϑ , ζ ) is the Fisher information as defined in Section 2 under the true value of ζ .

Condition (3) has to be checked for each particular problem. The following is an example.
Suppose that f (x, θ) is the density of N(0, θ2), g(y, θ , 0) is the same normal density for N(0, θ2) but g(y, θ , 1) is

the Laplace distribution with zero mean and standard deviation
√
2θ given in Section 3.1. In other words, sample

one is from the main study whereas sample two is from an external source in which the data may follow the same
distribution as sample one but may deviate from sample one. The parameters φ and ϕ are constant (non-existing).

In this example, when ζ̂ = 0, we can simply combine the two samples and the MLE of θ is√
(
∑n

i=1 X
2
i + ∑m

j=1 Y
2
j )/(n + m); on the other hand, when ζ̂ = 1, the MLE of θ is given by (2). To check (3),

note that

θ̂ (0) =
√√√√ 1

m

m∑
j=1

Y2
j and θ̂ (1) = 1

m

m∑
j=1

|Yj|.

Then,

log

⎧⎨⎩
m∏
j=1

g(θ̂ (0), 0)

⎫⎬⎭ = −m
2

− m log θ̂ (0) − m log(2π)

2
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and

log

⎧⎨⎩
m∏
j=1

g(θ̂ (1), 1)

⎫⎬⎭ = −m − m log θ̂ (1) − m log 2.

When ζ = 0, θ̂ (0)
p−→ θ and θ̂ (1)

p−→ (2/π)1/2θ , where
p−→ denotes convergence in probability as n → ∞. Hence

1
m

log

⎧⎨⎩
m∏
j=1

g(θ̂ (0), 0)

⎫⎬⎭ − 1
m

log

⎧⎨⎩
m∏
j=1

g(θ̂(1), 1)

⎫⎬⎭ p−→ 1
2

+ log
2
π

> 0,

which implies that P(̂ζ = 0) → 1. On the other hand, when ζ = 1, θ̂ (0)
p−→ √

2θ , θ̂ (1)
p−→ θ , and

1
m

log

⎧⎨⎩
m∏
j=1

g(θ̂ (0), 0)

⎫⎬⎭ − 1
m

log

⎧⎨⎩
m∏
j=1

g(θ̂(1), 1)

⎫⎬⎭ p−→ 1
2

− logπ

2
< 0,

which implies that P(̂ζ = 1) → 1. This shows that (3) always holds in this example.
Still in this example, the results here and in Section 3.1 indicate that

√
n(θ̂ − θ)

d−→
⎧⎨⎩N

(
0, θ2

2a+2

)
, ζ = 0,

N
(
0, θ2

a+2

)
, ζ = 1.

The result can obviously be extended to the situation where the second sample is from a population that is one of k
populations with k ≥ 3.

7. Bootstrap variance estimation

In situations where regularity conditions (R1) –(R4) are not satisfied for f or g, the asymptotic distribution of
MLE ϑ̂ may not be available, either it does not exist or it is not established. Here, we introduce a bootstrap
variance estimator which can be used for assessing performance of ϑ̂ or making large sample inference. A descrip-
tion about the general bootstrap methodology can be found, for example, in Efron and Tibshirani (1993) and
Shao (2003).

Let {X∗b
1 , . . . ,X∗b

n } and {Y∗b
1 , . . . ,Y∗b

m } be two independent simple random samples with replacement from
{X1, . . . ,Xn} and {Y1, . . . ,Ym}, respectively, and let ϑ̂∗b be the MLE of ϑ based on dataset {X∗b

1 , . . . ,X∗b
n ,Y∗b

1 , . . . ,
Y∗b
m }. If we independently repeat this for b = 1, . . . ,B, whereB is called the bootstrap replication size and is typically

large, then the bootstrap variance estimator for ϑ̂ is the sample covariance matrix of ϑ̂∗b, b = 1, . . . ,B.
We carry out a simulation study to examine the performance of this bootstrap variance estimator in the normal-

Laplace problem considered in Section 3.2. At the same time, we also check the performance of MLE ( μ̂, θ̂ ) based
on two datasets, Xi’s and Yi’s, and compare it with (X, θ̂X ) and ( Ỹ , θ̂Y ), which are the MLEs based on the single
dataset of Xi’s and single dataset of Yi’s, respectively, where X = sample mean of Xi’s, Ỹ = sample median of Yj’s,
θ̂X = {∑n

i=1(Xi − X)2/n}1/2, and θ̂Y = ∑m
i=1 |Yi − Ỹ|/m. The bootstrap is applied to obtain ŜD for the standard

deviation (SD) of any fixed point estimator.
The simulation results with 1000 replications are shown in Table 1. A summary is given as follows.

(1) The MLE’s, μ̂, X, and Ỹ , all have almost no bias as estimators of μ (= 1 in simulation). In terms of the SD, The
MLE μ̂ is the best among the three. The sample median based on Yj’s is substantially worse than the other two,
although asymptotically it is as efficient as the sample mean X of Xi’s.

Table 1. Results from 1000 simulations for the normal-Laplace problem with location μ = 1
and scale θ = 1 (n = m = 100, SD = standard deviation, ( μ̂, θ̂ ) = theMLE of ( μ, θ ) based on
Xi ’s and Yi ’s, ( X , θ̂X) = the MLE of ( μ, θ ) based on Xi ’s, ( Ỹ , θ̂Y ) = the MLE of ( μ, θ ) based on
Yj ’s, and ŜD is by bootstrap with B = 500).

μ̂ X Ỹ θ̂ θ̂X θ̂Y

Mean by simulation 1.0024 1.0012 1.0034 1.1397 0.9956 1.3979
SD by simulation 0.0856 0.0969 0.1579 0.0675 0.0721 0.1367
Mean of ŜD by simulation 0.0863 0.0996 0.1593 0.0668 0.0687 0.1378
SD of ŜD 0.0124 0.0079 0.0376 0.0069 0.0094 0.0194
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Figure 1. Histogram and Q–Q plot of 1000 simulated values of μ̂.

(2) The MLE θ̂ of θ does not have a negligible bias, although its performance is acceptable with sample size
n+m = 200 and its SD is slightly smaller than the SD of θ̂X . The large bias of the MLE θ̂ mainly comes from
the large bias of the MLE θ̂Y for the Laplace dataset, as it has large bias and SD.

(3) The bootstrap SD estimator ŜD performs very well for all estimators (see the rows under “SD by simulation”
and “mean of ŜD by simulation” in Table 1), even when the point estimator has non-negligible bias.

The histogram of 1000 values of μ̂ from simulation is shown in Figure 1, together with a Q–Q plot. The result
suggests μ̂ is asymptotically normal, although such a theoretical result has not been established.
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