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ABSTRACT
The Waring distribution is an important two-parameter discrete distribution, commonly used in
fields such as ecology, linguistics, and information science, where heavy tails are often observed.
In this paper, we propose a new goodness-of-fit test for the Waring distribution, which is estab-
lished through the hazard rate and a linear equivalent definition of the Waring distribution. We
establish an asymptotic Chi-square null distribution for the proposed test and show that it is
more powerful than classical methods in simulation studies. Finally, we apply the test to analyze
the authorships of published papers on computer science.
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1. Introduction

The Waring distribution is an important two-parameter long-tailed discrete distribution, which can be used
to describe the cumulative advantage distribution of the ‘success breeds success’ mechanism. For exam-
ple, Price (1965, 1976) connected the published literature with the cited literature to form a directed network,
and found that the number of citations of the literature follows a special Waring distribution. Huete-Morales
and Marmolejo-Martín (2020) fitted the number of organic livestock farms to a Waring distribution. Recently,
there have been some works on theWaring distribution, such as the EM algorithm (Cueva-López et al., 2019), gen-
eralizations of the distribution (Cueva-López et al., 2021; Rivas & Campos, 2021) and the MLE (Tang et al., 2023).
However, most of the current literature focuses on parameter estimation, while the literature on inference is quite
limited. In this paper, we propose a goodness-of-fit test for the Waring distribution.

A commonly used goodness-of-fit test is the Pearson’s Chi-square test. However, we need to group the empirical
data for the Chi-square test, while different grouping methods may lead to different conclusions, making the infer-
ences less convincing. Under certain conditions for the expected frequency of each group, Haberman (1988), Rem-
pała and Wesołowski (2016) and Chang et al. (2023) explored the performance of Pearson’s Chi-square, but these
conditions are not always satisfied. Another commonly used distribution test is the Kolmogorov-Smirnov (KS) test.
However, the standard table for the KS test is no longer valid if there are unknown parameters that must be esti-
mated from the sample. Lilliefors (1967, 1969), Goldstein et al. (2004), and Clauset et al. (2009) constructed new
tables of KS statistics for specified distributions with unknown parameters. Other literature focuses on applications
of the KS test, such as mixed-censored life data (Banerjee & Pradhan, 2018), grouped data (Okamura &Dohi, 2019)
and homogeneity generated variables (Otsu & Taniguchi, 2020). The Pearson’s and KS tests are nonparametric and
widely applicable, but they can also lead to inefficiencies for specified distributions. Our proposed test is specifically
designed for the Waring distribution and thus more accurate.

Our motivation lies in the following points. Firstly, a heavy tailed distribution implies that extreme events occur
more frequently than with a standard normal distribution. Therefore, we hope to accurately identify heavy-tailed
distributions, which can help to assess the probability and impact of extreme events. Secondly, non-parametric tests
may not accurately capture information related to specific distributions. Therefore, we specially design a goodness-
of-fit test for theWaring distribution, which has stronger interpretability in certain application scenarios and higher
statistical efficiency in small sample sizes. In practice, the choice of parametric and nonparametric tests should be
comprehensively considered based on the research objectives and the nature of the data. Thirdly, although the
Waring distribution has been applied in different fields, there is relatively little research on its goodness-of-fit tests.
Our objective is to fill the gaps in existing literature.
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In this paper, we first reformulate the goodness-of-fit problem as a multiple linear test problem, and then
construct an approximate Chi-square statistic. The proposed test faces two challenges. First, we need to find an
equivalent definition of the Waring distribution, which requires appropriate modification of the Waring’s hazard
rate. Second, we need to find the orthogonal matrix to construct mutually independent and approximately standard
normal statistics in order to establish the Chi-square statistic.

The rest of the paper is organized as follows. In Section 2, we describe the theoretical properties of the Waring
distribution, which help us to propose a new goodness-of-fit test in Section 3. In Section 4, we conduct simula-
tion studies to compare the performance of the proposed and classical tests in terms of size and power studies. In
Section 5, we apply the proposed goodness-of-fit test to analyze the authorships of published papers on computer
science. All technical proofs are provided in the online Supplementary Materials.

2. A characterization of theWaring distribution

In this section, we present the characteristics of the Waring distribution, including its tail probabilities and an
equivalent definition.

A discrete random variable X has a Waring distribution if its probability mass function is

pk := P(X = k) = α
�(α + β)�(β + k − 1)

�(β)�(α + β + k)
, α > 0, β > 0, k = 1, 2, . . . , (1)

where �(·) is the Gamma function. The Waring distribution is a highly skewed distribution with a long right tail
whose tail probabilities have the following properties.

Lemma 2.1: For the Waring probability distribution (1), its right tail probability is
∞∑
i=k

pi = �(α + β)�(β + k − 1)
�(β)�(α + β + k − 1)

.

To further understand the tail properties of the Waring distribution, we characterize its convergence speed
through the hazard rate. In discrete distributions, the hazard rate (Barlow et al., 1963) is defined as the conditional
probability of X = k given X ≥ k, that is,

qk := P(X = k |X ≥ k) = pk/

( ∞∑
i=k

pi

)
,

with integers k satisfying
∑∞

i=k pi > 0. It refers to the conditional probability that an event, which has not yet
occurred, will occur at the next moment, under certain time or conditions. Therefore, the risk rate can be used to
measure the risk of future events occurring. According to Lemma 2.1, we can calculate the hazard rate of the War-
ing distribution as qk = α/(α + β + k − 1), which decreases as k increases. This implies that although both pk and∑∞

i=k pi decrease with k,
∑∞

i=k pi decreases more slowly than pk. This is not surprising in long-tailed distributions.
Another key role of the hazard ratio is that itmotivates our goodness-of-fit tests. In order to transform theWaring

distribution into a valid and easily testable form, we define a transformation of the hazard rate as

ak =
⎛⎝ ∞∑

i=k+1

pi

⎞⎠ /pk, k = 1, 2, . . . . (2)

Then, under the Waring distribution, we can calculate qk = 1/(1 + ak) and ak = (β + k − 1)/α. Therefore, a dis-
tribution over the positive integer is a Waring distribution only if ak = bk + c, k = 1, 2, . . ., where b = 1/α and
c = (β − 1)/α. In the following Theorem 2.1, the key feature of the Waring distribution tells us that the converse
is also true.

Theorem 2.1 (Equivalent definition of the Waring distribution): A distribution over the positive integers is a
Waring distribution if and only if

ak = bk + c, k = 1, 2, . . . , (3)

where b and c are constants satisfying b>0, b+ c>0.

Similar to qk, ak increases with k, which indicates that
∑∞

i=k+1 pi decreases more slowly than pk, reflecting the
long-tailed characteristics of the Waring distribution.
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3. A test of fit for theWaring distribution

3.1. Reformulation of hypothesis testing

Let X be a random variable distributed over positive integers. According to Theorem 2.1, the hypothesis

H0 : X is distributed as a Waring distribution

is equivalent to the multiple comparison test with two hypotheses

H01 : ak = bk + c, k = 1, 2, . . . , (4)

H02 : b > 0. (5)

If these two hypotheses are accepted, then b+ c>0 can be deduced from a1 = (1 − p1)/p1 = b + c. Next, we use
Lemma 3.1 to show that hypothesis (4) does not imply (5), so it is necessary to test hypothesis (5).

Lemma3.1: There exist discrete random variables whose distribution satisfies (4) but b ≤ 0. The details are as follows.

• When b = 0, a distribution on positive integers is a geometric distribution pk = 1
c+1 · ( c

c+1 )
k−1 if and only if ak =

c, k = 1, 2, . . ., where c>0.
• Whenb<0 and there is a positive integer k′ such that bk′ + c = 0, then there is a randomvariable Xwith probability

masses

p1 = 1
b + c + 1

, pi = b(i − 1) + c
bi + c + 1

pi−1, i = 2, 3, . . . , k′,

pi = 0, i = k′ + 1, . . . ,

so that (4) holds.
• When b<0 and there is no positive integer k′ satisfying bk′ + c = 0, then there is no random variable X on the

positive integers, which makes Equation (4) hold.

3.2. Asymptotic Chi-square test

Suppose that X1, . . . ,Xn is a random sample from the discrete random variable X, whose value range is {1, 2, . . .}.
Let m = max{X1, . . . ,Xn} be the largest observed value, nk be the number of sample observations equal to k =
1, 2, . . . ,m, such that

∑m
k=1 nk = n. Therefore, the probability pk can be consistently estimated by frequency nk/n,

and ak can be consistently estimated by

âk = 1 − ∑k
i=1 ni/n

nk/n
= n − ∑k

i=1 ni
nk

, k = 1, 2, . . . ,m, (6)

for nk > 0. If the sample comes from a Waring distribution, a scatterplot of {(k, âk), k = 1, 2, . . . ,m} can be fitted
to a straight line with a positive slope. This step can be used as a preliminary data check. Next, we construct the
asymptotic Chi-square statistic for the hypotheses.

Without losing generality, we assume that nk ≥ 1 for k = 1, 2, . . . ,m. Since
∑m

k=1 nk = n makes âm =
0, we give k ≤ m − 1 and construct a statistic in the form of Tn(̂a1, â2, . . . , âk) based on the data
{n1, . . . , nk, nk+1} with nk+1 = n − ∑k

i=1 ni. Note that {n1, . . . , nk, nk+1} is distributed as the multinomial distri-
bution Multi(p1, . . . , pk, pk+1) with pk+1 = 1 − ∑k

i=1 pi, then (̂a1, â2, . . . , âk) can be derived to be asymptotically
normal, as shown in Lemma 3.2.

Lemma 3.2: For every 1 ≤ k ≤ m − 1, let a = (a1, a2, . . . , ak)� and â = (̂a1, â2, . . . , âk)� be defined in (2) and (6),
respectively. Then we have

√
n(̂a − a) D→ Nk(0,�k), (7)

where �k = diag(σ11, . . . , σkk) is a diagonal matrix with

σ11 = 1 − p1
p31

, σii = (1 − ∑i−1
j=1 pj)(1 − ∑i

j=1 pj)

p3i
, i = 2, 3, . . . , k.
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Table 1. Type I errors for 1000 MC simulations at a significance level of 0.05, for α
= 0.5 and 1.

(α,β) n 50 100 200 500 1000 2000

(0.5, 0.5) T 0.001 0.000 0.005 0.080 0.038 0.032
PS 0.035 0.030 0.032 0.025 0.037 0.046
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(0.5, 1) T 0.038 0.005 0.012 0.044 0.018 0.030
PS 0.024 0.019 0.027 0.040 0.044 0.056
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(0.5, 1.5) T 0.092 0.047 0.018 0.033 0.020 0.022
PS 0.018 0.019 0.024 0.039 0.046 0.056
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(0.5, 2) T 0.156 0.099 0.053 0.033 0.021 0.027
PS 0.016 0.019 0.035 0.038 0.048 0.042
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1, 0.5) T 0.002 0.000 0.006 0.022 0.025 0.029
PS 0.054 0.059 0.043 0.038 0.033 0.034
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1, 1) T 0.007 0.000 0.003 0.016 0.020 0.030
PS 0.039 0.043 0.030 0.033 0.038 0.042
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1, 1.5) T 0.037 0.009 0.006 0.024 0.018 0.012
PS 0.028 0.044 0.031 0.031 0.038 0.051
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1, 2) T 0.104 0.058 0.025 0.015 0.019 0.021
PS 0.023 0.024 0.025 0.023 0.038 0.058
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

The proof steps are similar to Theorem 3.1 of Wang et al. (2023). By normalizing (7), we can get
√
n(�̂ − �)

D→ Nk(0, Ik),

where �̂ = (̂a1/
√

σ11, . . . , âk/
√

σkk)
�, and� = (a1/

√
σ11, . . . , ak/

√
σkk)

�. Now we construct the Chi-square test
statistic based on the orthogonal transformation of �̂, whose explicit form and asymptotic distribution are given
by the following Theorem 3.1.

Theorem 3.1: For every k = 3, 4, . . . ,m − 1, the statistic

T(̂a) = n

{ k∑
i=1

â2i /σ̂ii − (̂y21k + ŷ22k)

}
D→ χ2(k − 2),

under the null hypothesis (4), where

σ̂11 = n2(n − n1)
n31

,

σ̂ii = n(n − ∑i−1
j=1 nj)(n − ∑i

j=1 nj)

n3i
, i = 2, 3, . . . , k,

ŷ1k = 1
ŝ1k

k∑
i=1

âi
σ̂ii

, ŷ2k = 1
ŝ3k

k∑
i=1

âi
σ̂ii

(
i − ŝ22k

ŝ21k

)
,

ŝ21k =
k∑

i=1

1
σ̂ii

, ŝ22k =
k∑

i=1

i
σ̂ii

, ŝ23k =
k∑

i=1

i2

σ̂ii
− ŝ42k

ŝ21k
.

Furthermore, under the null hypothesis (4), ŷ1k and ŷ2k asymptotically converge to the standard normal distribution:
√
n{̂y1k − (c · ŝ1k + b · ŝ22k/̂s1k)} D→ N(0, 1),

√
n(̂y2k − b · ŝ3k) D→ N(0, 1).
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Table 2. Type I errors for 1000 MC simulations at a significance level of 0.05, for α
= 1.5 and 2.

(α,β) n 50 100 200 500 1000 2000

(1.5, 0.5) T 0.019 0.001 0.003 0.012 0.015 0.017
PS 0.074 0.067 0.053 0.048 0.040 0.055
KS 0.999 1.000 1.000 1.000 1.000 1.000
CVM 0.999 1.000 1.000 1.000 1.000 1.000

(1.5, 1) T 0.002 0.000 0.005 0.010 0.017 0.022
PS 0.053 0.054 0.039 0.031 0.032 0.040
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1.5, 1.5) T 0.023 0.006 0.002 0.009 0.026 0.029
PS 0.046 0.046 0.034 0.023 0.029 0.041
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(1.5, 2) T 0.050 0.020 0.007 0.017 0.016 0.022
PS 0.039 0.032 0.029 0.031 0.031 0.042
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(2, 0.5) T 0.069 0.004 0.001 0.010 0.012 0.018
PS 0.079 0.070 0.064 0.052 0.051 0.048
KS 0.989 1.000 1.000 1.000 1.000 1.000
CVM 0.989 1.000 1.000 1.000 1.000 1.000

(2, 1) T 0.007 0.000 0.003 0.006 0.018 0.024
PS 0.063 0.063 0.056 0.048 0.040 0.044
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(2, 1.5) T 0.012 0.003 0.006 0.009 0.020 0.020
PS 0.055 0.055 0.055 0.042 0.042 0.049
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

(2, 2) T 0.040 0.014 0.003 0.006 0.030 0.030
PS 0.050 0.047 0.033 0.039 0.030 0.033
KS 1.000 1.000 1.000 1.000 1.000 1.000
CVM 1.000 1.000 1.000 1.000 1.000 1.000

It is easy to see that, a larger T(̂a) indicates a larger deviation from (4), and a smaller ŷ2 indicates a larger
deviation from (5). For the multiple comparison test with two hypotheses, we take the significance level γ . Then
according to the Bonferroni inequality, the hypotheses (4) and (5) are accepted when T(̂a) < χ2

1−γ /2(k − 2) and
ŷ2k > −Z1−γ /2/

√
n. Furthermore, the 1 − γ confidence intervals for b and parameter α = 1/b can be taken as

(
ŷ2k − Z1−γ /2/

√
n

ŝ3k
,
ŷ2k + Z1−γ /2/

√
n

ŝ3k

)
,(

ŝ3k
ŷ2k + Z1−γ /2/

√
n
,

ŝ3k
ŷ2k − Z1−γ /2/

√
n

)
.

It can be seen that the test statistic T(̂a) is actually used to test the hypothesis

H01 : ai = bi + c, i = 1, 2, . . . , k, (8)

which is weaker than hypothesis (4). Therefore, the rejection of (8) implies the rejection of (4). Theoretically, the
choice of k can be any value between 3 and m−1. However, in practice, the choice of k will be affected by tail
outliers. This is because the right tail of the Waring distribution has a smaller probability mass, and outliers can
introduce significant bias to the test. Therefore, in practice, we usually first roughly determine the position of the
outliers in the tail. The value of k should then be chosen before this position to ensure that the test is not influenced
by tail outliers. Another simpler approach is to let k take different values between 3 and m−1, comprehensively
analyze the results of this series of tests, and then decide whether to reject or accept the hypothesis of the Waring
distribution. For instance, in Section 5, we initially set k to range from 3 to 60 for a series of tests. However, we finally
set k = 3 ∼ 24 and deleted the tail, because the presence of outliers in the tail at k>24 caused a reversal of the test
results.
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Figure 1. Powers of 1000 MC simulations at a significance level of 0.05 for the proposed (T) and Pearson’s Chi-square (PS) tests.

4. Simulation studies

In this section,we compare the proposed testwith thewell-knownPearson’sChi-square (PS), Kolmogorov-Smirnov
(KS), Cramér-von Mises (CVM) defined as follows,

PS =
k∑

i=1

(
ni − npi

)2
npi

,

KS = √
nmax

{
max
1≤i≤n

∣∣∣∣ in − F0(x(i))

∣∣∣∣ , max
1≤i≤n

∣∣∣∣F0(x(i)) − i − 1
n

∣∣∣∣} ,
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CVM =
n∑

i=1

{
F0(x(i)) − 2i − 1

2n

}2
+ 1

12n
,

where ni is the observed frequency of point i, pi is the probability of theWaring distribution at i, x(i) is the ith order
statistic of the observed value, and F0 is the distribution function of theWaring distribution. The null distributions
of PS, KS, and CVMare χ2(k − 1), Kolmogorov-Smirnov distribution, and Cramer-vonMises distribution, respec-
tively.We compare the Type I error probability and power for the four statistics under 1000Monte Carlo repetitions
at a critical value γ = 0.05 and different sample sizes n.

For the Type I error, we generate data from the Waring distribution, where the parameters α and β are taken
from the set (0.5, 1, 1, 5, 2), and themaximum observed value is 30. Let k in the proposed test T(̂a) bemax(3, 0.5m),
where m is the maximum value of the generated data. Under the sample size of n = 50 ∼ 2000, the results of the
Type I errors of the four methods are shown in Tables 1 and 2, in which T is the proposed method. PS, KS and
CVM are Pearson’s Chi-square, Kolmogorov-Smirnov, Cramér-von Mises tests respectively. The two tables show
the results for different (α,β), and it can be seen that the proposed testT and PS test can guarantee a reasonable Type
I error probability. However, the KS and CVM tests are invalid with results exceeding 0.99, because their statistics
are constructed based on continuous distribution function.

For the power, we generate data from four discrete distributions: (i) Geometric distribution with success
probabilities p = (0.1, 0.3, 0.5, 0.7); (ii) Poisson distribution with parameters λ = (0.5, 1.0, 1.5, 2.0); (iii) Binomial
distribution with total number of trials 5 and success probabilities p = (0.1, 0.3, 0.5, 0.7); (iv) Discrete uniform dis-
tribution over [L,R], that is, generating integer points on [L,R] with equal probability, where we set L = 1 and
R = (3, 4, 5, 6). Under the sample size of n = 50 ∼ 2000, the power results are shown in Figures 1 and B.1 of the
online Supplementary Materials. The powers of KS and CVM are not included due to their highly inflated Type
I errors. It can be seen that the proposed test T is more powerful than PS under small samples. For example, in
Geometric distribution data, when p = 0.7, n = 50, the power of the proposed test is 0.848, while that of PS is only
0.035. Therefore, the proposed test is the most powerful method while guaranteeing a reasonable Type I error.

5. A real data application

Kang et al. (2007) conducted an extensive analysis of five core Chinese computer science journals between 1993 and
2002, and extracted the empirical data in Table B.1 in the online Supplementary Material. A total of 12,509 papers
were published by 5798 authors. The scatter plot of (k, α̂k) is roughly a straight line, as shown in Figure B.2 of the
supplementary materials. It is preliminarily judged that the Waring distribution may be a good fit for the empirical
data.

The results of goodness-of-fit are shown in Table 3, in which k is the number of papers; T is the proposed test;
χ2
0.025 is the critical value. It can be seen that the data of papers published from 1 to 24 can be fitted with theWaring

distribution, but the rest parts are not. We speculate that the reversal of the statistical inference conclusions may
be due to the presence of outliers at the right tails, such as n27 = 3, n60 = n62 = 1, or excessively large gaps, such
as n32 = · · · = n41 = 0 and n53 = · · · = n59 = 0. We generally do not use these outlier data to make statistical
inferences. In short, according to the specific analysis of specific problems, we think that the assumption (4) is
acceptable in terms of the value of T on k = 3 ∼ 24.

Table 3. Waring distribution test for hypothesis (4).

k T χ2
0.025 p-value k T χ2

0.025 p-value

3 0.007 5.024 0.936 19 16.178 30.191 0.511
4 1.570 7.378 0.456 20 16.342 31.526 0.569
5 4.724 9.348 0.193 22 23.574 34.170 0.213
6 5.180 11.143 0.269 23 23.811 35.479 0.251
7 6.183 12.833 0.289 24 25.537 36.781 0.225
8 6.761 14.449 0.349 25 39.777 38.076 0.011
9 7.576 16.013 0.371 26 40.982 39.364 0.012
10 8.214 17.535 0.413 27 56.925 40.646 0.000
11 8.267 19.023 0.508 28 57.044 41.923 0.000
12 8.308 20.483 0.599 29 67.406 43.195 0.000
13 9.131 21.920 0.610 31 68.631 45.722 0.000
14 10.588 23.337 0.565 42 73.927 59.342 0.000
15 10.698 24.736 0.636 44 83.815 61.777 0.000
16 10.948 26.117 0.690 47 103.979 65.410 0.000
17 10.950 27.488 0.765 52 151.135 71.420 0.000
18 12.261 28.845 0.726 60 276.173 80.936 0.000
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Table 4. Waring distribution test for hypothesis (5).
k 97.5% interval for b k 97.5% interval for b

3 (1.585, 2.077) 14 (1.839, 2.199)
4 (1.692, 2.138) 15 (1.844, 2.201)
5 (1.796, 2.229) 16 (1.849, 2.206)
6 (1.787, 2.192) 17 (1.850, 2.206)
7 (1.772, 2.159) 18 (1.864, 2.221)
8 (1.794, 2.174) 19 (1.893, 2.256)
9 (1.784, 2.155) 20 (1.892, 2.254)
10 (1.802, 2.169) 22 (1.936, 2.308)
11 (1.801, 2.163) 23 (1.935, 2.307)
12 (1.806, 2.164) 24 (1.949, 2.324)
13 (1.820, 2.178)

Next, we test the hypothesis (5), and the 97.5% confidence intervals of b corresponding to the data of published
papers from 1 to 3 ∼ 24 are shown in Table 4, in which k is the number of papers. These interval estimates suggest
that the empirical data from the distribution of authors can be better fitted to the Waring distribution.
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