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ABSTRACT
Unmeasured confounding is a key challenge for causal inference. In this paper, we establish a
framework for unmeasured confounding adjustmentwith negative control variables. A negative
control outcome is associated with the confounder but not causally affected by the exposure in
view, and a negative control exposure is correlatedwith the primary exposure or the confounder
but does not causally affect the outcome of interest. We introduce an outcome confounding
bridge function that depicts the relationship between the confounding effects on the primary
outcome and the negative control outcome, and we incorporate a negative control exposure to
identify the bridge function and the average causal effect. We also consider the extension to the
positive control setting by allowing for the nonzero causal effect of the primary exposure on the
control outcome. We illustrate our approach with simulations and apply it to a study about the
short-term effect of air pollution on mortality. Although a standard analysis shows a significant
acute effect of PM2.5 onmortality, our analysis indicates that this effectmay be confounded, and
after double negative control adjustment, the effect is attenuated toward zero.
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1. Introduction

Observational studies offer an important source of data for causal inference in socioeconomic, biomedical, and
epidemiological research. A major challenge for observational studies is the potential for confounding factors of
the exposure-outcome relationship in view. The impact of observed confounders on causal inference can be allevi-
ated by direct adjustment methods such as inverse probability weighting, matching, regression, and doubly robust
methods (Bang & Robins, 2005; Rosenbaum & Rubin, 1983b; Rubin, 1973; Stuart, 2010). However, unmeasured
confounding is present in many observational studies. In this case, causal effects cannot be uniquely determined by
the observed data without extra assumptions. As a result, the aforementioned adjustment methods may be biased
and potentially misleading in the presence of unmeasured confounding. Sensitivity analysis methods (Cornfield
et al., 1959; Rosenbaum & Rubin, 1983a) are widely used to evaluate the impact of unmeasured confounding
and to assess the robustness of causal inferences, but in general they cannot completely correct for confounding
bias. Auxiliary variables are particularly useful to adjust for unmeasured confounding in observational studies. The
instrumental variable (IV) approach (Angrist et al., 1996; Baker & Lindeman, 1994; Goldberger, 1972; Robins, 1994;
Wright, 1928), rests on an auxiliary covariate that (i) has no direct effect on the outcome, (ii) is independent of the
unmeasured confounder, and (iii) is associated with the exposure. In addition, a structural outcome model or a
monotone effect of the IV on the treatment, is typically required to identify a causal effect. Although the IV approach
has gained popularity in causal inference literature in recent years, particularly in health and social sciences, the
approach is highly sensitive to violation of any of assumptions (i)–(iii).

A more recent framework that leverages both negative control exposures and negative control outcomes to miti-
gate confounding bias is known as proximal (or negative control) inference (e.g., Miao, Geng, et al., 2018; Tchetgen
Tchetgen et al., 2020), where a negative control outcome is an outcome variable that is associated with the con-
founder but not causally affected by the primary exposure, and a negative control exposure is an exposure variable
that is correlated with the primary exposure or the confounder but does not causally affect the outcome of inter-
est. Starting from an earlier version of this paper (Miao, Shi, et al., 2018), we develop an outcome confounding
bridge framework for identification and inference about causal effects by using a pair of negative control expo-
sure and outcome to account for unmeasured confounding bias. This line of work contributes to the literature by
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providing an alternative identification assumption, proposing practical inference methods, and establishing con-
nections to conventional approaches for confounding bias adjustment. A subsequence of relatedmethods have been
developed for categorical cases (Shi et al., 2020), dynamic treatment regime (Qi et al., 2022), heterogeneous treat-
ment effect (Sverdrup & Cui, 2023), longitudinal studies (Ying et al., 2023), mediation analysis (Dukes et al., 2021),
outcome-dependent sampling (Li et al., 2022), reinforcement learning (Bennett & Kallus, 2021), semiparametric
theory (Cui et al., 2023), survival analysis (Ying et al., 2022), and synthetic control (Shi et al., 2021).

In this paper, we illustrate the outcome confounding bridge framework for identification and inference about
causal effects. Our approach is based on a key assumption that the confounding effect on the primary outcome
matches that on a transformation of the negative control outcome; throughout, this transformation is referred to as
an outcome confounding bridge function, which is formally introduced in Section 3. Although in practice the bridge
function is unknown, it can be identified by using a negative control exposure under certain completeness condi-
tion. Consistent and asymptotically normal estimation of the average causal effect can be achieved by the generalized
method of moments described in Section 4. In Section 5, we generalize the negative control approach by allowing
for a positive control outcome, which can be causally affected by the primary exposure. We also develop a sensi-
tivity analysis approach for checking the robustness of causal inference against the negative control assumptions.
In Section 6, we conduct simulation studies to evaluate the performance of the double negative control approach
and compare it to competing methods. In Section 7, we apply our approach to a time-series study about the effect
of air pollution on mortality. We conclude in Section 8 with a discussion about the implications of our approach in
observational studies and modern data science.

2. Definition and examples of negative control outcomes

Throughout, we letX,Y , andV denote the primary exposure, outcome, and a vector of observed covariates, respec-
tively. Vectors are assumed to be column vectors, unless explicitly transposed. Following the convention in causal
inference, we use Y(x) to denote the potential outcome under an intervention that sets X to x, and maintain the
consistency assumption that the observed outcome is a realization of the potential outcome under the exposure
actually received: Y = Y(x) when X = x. We focus on the average causal effect (ACE) of X on Y, which is a con-
trast of the potential outcome mean between two exposure levels, for instance, ACEXY = E{Y(1) − Y(0)} for a
binary exposure.

The ignorability assumption stating that Y(x)⊥⊥ X | V is conventionally made in causal inference, but it does
not hold when unmeasured confounding is present. In this case, latent ignorability that states Y(x)⊥⊥ X | (U,V)

is more reasonable, allowing for an unobserved confounder U. For notational convenience, we present results
conditionally on observed covariates and suppress V unless otherwise stated.

Assumption 2.1 (Latent ignorability): Y(x)⊥⊥ X | U for all x.

Given latent ignorability, we have that for all x,

E{Y(x)} = E{E(Y | U,X = x)}. (1)

The crucial difficulty of implementing (1) is thatU is not observed and both the conditional mean E(Y | U,X = x)
and the density function f (U) are not identified.

We introduce negative control variables to mitigate the problem of unmeasured confounding. Suppose an
auxiliary outcomeW is available and satisfies the following assumption.

Assumption 2.2 (Negative control outcome): W⊥⊥ X | U and W �⊥⊥ U.

The assumption realizes the notion of a negative control outcome that it is associated with the confounder but not
causally affected by the primary exposure. Moreover, the sets of unmeasured confounders for (X,W) and (X,Y)

are the same, which corresponds to the U-comparable assumption of Lipsitch et al. (2010). Assumption 2.2 does
not impose restrictions on the association of W–Y. A special case is the nondifferential assumption of Lipsitch
et al. (2010) and Tchetgen Tchetgen (2014), which further requiresW⊥⊥ Y | U and does not allow for extra con-
founders ofW–Y association. Justification of Assumption 2.2 and choice of negative controls require subject matter
knowledge.

Example 2.1: In a study about the effect of acute stress on mortality from heart disease, Trichopoulos et al. (1983)
found increasingmortality from cardiac and external causes during the days immediately after the 1981 earthquake
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in Athens. However, acute stress due to the earthquake is unlikely to quickly cause deaths from cancer. In a par-
allel analysis, they found no increase in risk of cancer mortality, which is evidence in favour of no confounding
and reinforces their claim that acute stress increases mortality from heart diseases. In this study, the exposure is
the psychological stress post-earthquake, and the outcome of interest is deaths from cardiac events. The unmea-
sured confounder can be the nutritional level or economic status which influences both the exposure and outcome.
However, the exposure does not directly influence other causes of death such as cancer. The cancer mortality is
the negative control outcome, and they are used to test whether confounding bias is present and to evaluate the
plausibility of a causal association.

However, it is far more challenging to identify a causal effect with a single negative control outcome. In the Supple-
mentary Material, we provide two distinct parameter values of a fully parametric model that lead to the identical
distribution of (X,Y ,W). In the next section, we explore more realistic conditions under which identification can
be achieved.

3. Identification of causal effects with a negative control pair

The literature on proximal causal inference indicates it is possible to identify the average treatment effect with
both a negative control outcome and a negative control exposure, by invoking an outcome confounding bridge
function (Cui et al., 2023; Miao, Geng, et al., 2018) to characterize relationship between the confounding effects on
both the primary outcome and the negative control outcome.

Assumption 3.1 (Outcome confounding bridge): There exists some function b(W,X) such that for all x,

E(Y | U,X = x) = E{b(W, x) | U,X = x}. (2)

When covariates V are observed, (2) becomes E{Y | U,V ,X = x} = E{b(W,V , x) | U,V ,X = x}. Assump-
tion 3.1 states that the confounding effect of U on Y at exposure level x, is equal to the confounding effect of U
on the variable b(W, x), a transformation ofW; it goes beyond U–comparability by characterizing the relationship
between the confounding effects of U on Y andW. We illustrate the assumption with an example of the linear out-
come confounding bridge. Assuming that E(Y | U,X) = (1,X,U,XU)β and that E(W | U) is linear inU, then (2)
holds with b(W,X; γ ) = (1,X,W,XW)γ , for an appropriate value of γ . Linearity in W in this bridge function,
corresponds to a proportional relationship between the confounding effects of U on Y andW.

The average causal effect can be recovered by integrating the outcome confounding bridge overW.

Proposition 3.1: Given Assumptions 2.1–3.1, we have that for all x,

E{Y(x)} = E{b(W, x)}. (3)

The proposition reveals the role of the negative control outcome and the outcome confounding bridge b(w, x).
Given b(w, x), the potential outcomes mean and the average causal effect can be identified without an additional
assumption.We emphasize that without knowledge of such bridge function, identification is not possible in general,
even under a fully parametric model and full knowledge of the confounder distribution. However, in practice, the
outcome confounding bridge is unknown. In order to identify the confounding bridge, we introduce an auxiliary
exposure variable named negative control exposure Z that satisfies the following exclusion restrictions.

Assumption 3.2 (Negative control exposure): Z⊥⊥ Y | (U,X) and Z⊥⊥ W | (U,X).

The assumption states that upon conditioning on the primary exposure and the confounder, Z does not affect either
the primary outcome Y nor the negative control outcomeW. This assumption does not impose restrictions on the
association between Z and X and allows Z to be confounded. A special case is the instrumental variable (Gold-
berger, 1972; Wright, 1928) that is independent of the confounder, in addition to the exclusion restrictions. Below
we provide an empirical example for negative control exposures.

Example 3.2: In a time-series study about air pollution, Flanders et al. (2017) used air pollution level in future days
as negative control exposures to test and reduce confounding bias. For day i, let Xi,Yi,Ui denote the air pollution
level (e.g., PM2.5), a public health outcome (e.g.,mortality), and the unmeasured confounder, respectively; although
Yi is possibly affected by air pollution in the current and past days, it is not affected by future days air pollution,
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Xi+1 for instance; moreover, public health outcomes in general do not affect air pollution in the immediate future.
Thus, it is reasonable to use Xi+1 as a negative control exposure.

Just as negative control outcomes, a negative control exposure can also be used to test whether confounding bias
occurs by checking ifZ is independent ofY orW after conditioning onX. Alternatively, we propose to use a negative
control exposure to identify the outcome confounding bridge. Taking expectation ofU with respect to f (U | Z,X)

on both sides of E(Y | U,X) = E{b(W,X) | U,X}, we obtain
E(Y | Z,X) = E{b(W,X) | Z,X}. (4)

The equation suggests that the outcome confounding bridge also captures the relationship between the crude effects
of Z on Y and W. This is because conditional on X, the crude effects of Z on (Y ,W) are completely driven by the
association with the confounder U. Equation (4) offers a feasible strategy to identify the outcome confounding
bridge with a negative control exposure. Because E(Y | Z,X) and f (W | Z,X) can be obtained from the observed
data, one can solve the equation for the bridge function. This type of integral equation is known as the Fredholm
integral equation of the first kind. Consider the casewhere bothW andZ are binary, and then (4) becomes two linear
equations with two unknown parameters. The following condition concerning the completeness of f (W | Z,X)

guarantees the uniqueness of the solution.

Assumption 3.3 (Completeness of f (W | Z,X)): For all x, W �⊥⊥ Z | X = x; and for any square-integrable
function g, if E{g(W) | Z = z,X = x} = 0 for almost all z, then g(W) = 0 almost surely.

Completeness is a commonly-made assumption in identification problems, such as instrumental variable identifi-
cation discussed by Newey and Powell (2003), D’Haultfœuille (2011), Darolles et al. (2011) and Andrews (2017).
These previous results about completeness can equally be applied here. For a binary confounder, completeness
holds as long as W �⊥⊥ Z | X = x for all x; completeness also holds for many widely-used distributions such as
exponential families (Newey & Powell, 2003) and location-scale families (Hu & Shiu, 2018). However, if ACE is of
primary interest, the uniqueness assumption is not a prerequisite for estimation and inference, as indicated in Zhang
et al. (2023).

Theorem 3.3: Under Assumptions 2.1–3.3, Equation (4) has a unique solution, and the potential outcome mean is
identified by plugging such solution into Equation (3).

So far, under the completeness condition, we have identified the potential outcome mean without imposing
any model restriction on the outcome confounding bridge. If the bridge function belongs to a parametric or
semiparametric model, the completeness condition can be weakened.

Theorem3.4: Under Assumptions 2.1–3.2 and given amodel b(W,X; γ ) for the bridge function indexed by a finite or
infinite dimensional parameter γ , if for all x, E{b(W, x; γ ) − b(W, x; γ ′) | Z,X = x} �= 0 with a positive probability
for any γ �= γ ′, then γ is identified by solving E{Y − b(W,X; γ ) | Z,X} = 0, and thus the potential outcome mean
is identified.

For instance, the linearmodel b(W,X; γ ) = (1,X,W,XW)γ is identified as long asE(W | Z,X) �= E(W | X)with
a positive probability, i.e.,W is not mean independent of Z after conditioning on X. Under the linear outcome con-
founding bridge, the relationship between the causal effect, the confounding bias, and crude effects has an explicit
form, as shown in the following example.

Example 3.5: Consider binary exposures (X,Z) and the linear confounding bridge function, b(W,X; γ ) = γ0 +
γ1X + γ2W + γ3XW, and let RDXY |Z = E(Y | X = 1,Z) − E(Y | X = 0,Z) denote the risk difference of X on Y
conditional on Z; then (γ2, γ3) are identified by

γ2 = RDZY |X=0

RDZW |X=0
, γ3 = RDZY |X=1

RDZW |X=1
− γ2.

The average causal effect of X on Y is identified by

ACEXY = E(RDXY |Z) − (γ2 + γ3)E(RDXW |Z)

+ γ3

1∑
z=0

{RDXW |Z=z × f (Z = z,X = 1)}.
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If the bridge function is additive, i.e., assuming that γ3 = 0, then γ2 = E(RDZY |X)/E(RDZW |X) and

ACEXY = E(RDXY |Z) − E(RDZY |X)

E(RDZW |X)
× E(RDXW |Z). (5)

This example offers a convenient adjustment when only summary data about crude effects are available. In the
Supplementary Material, we extend this example by allowing for exposures of arbitrary type and a nonparamet-
ric outcome confounding bridge. Identification of causal effect is also possible without completeness condition,
see (Zhang et al., 2023).

So far, we have identified the average causal effect with a pair of negative control exposure and outcome. If the
treatment effect on the treated, E{Y(1) − Y(0) | X = 1}, is of interest instead, one only needs a weakened outcome
confounding bridge assumption imposed on the control group, i.e., E(Y | U,X = 0) = E{b(W) | U,X = 0} for
some function b(W), and then a negative control exposure can be used to identify b(W). Our confounding bridge
approach clarifies the roles of negative control exposure and outcome in confounding bias adjustment. A negative
control outcome is used tomimic unobserved potential outcomes via the outcome confounding bridge that captures
the relationship between the effects of confounding. The confounding bridge approach unifies previous bias adjust-
ment methods in the negative control design. The approaches of Tchetgen Tchetgen (2014) and Sofer et al. (2016)
are special cases of our outcome confounding bridge approach by assuming rank preservation of individual poten-
tial outcomes or monotonicity about the confounding effects. The factor analysis approach of Gagnon-Bartsch
et al. (2013) and Wang et al. (2017) in fact identifies the outcome confounding bridge via factor loadings on the
confounder. Therefore, these previous approaches reinforce the key role of the confounding bridge in the nega-
tive control design. Confounder proxies used by Miao, Geng, et al. (2018) and Kuroki and Pearl (2014) can be
viewed as special negative controls in our framework. The identification strategy of Miao, Geng, et al. (2018) rests
on a completeness condition involving the unmeasured confounder; however, our completeness condition depends
only on observed variables. Our identification strategy rests on the outcome confounding bridge; alternatively, Cui
et al. (2023) propose an identification approach that rests on an exposure confounding bridge e(Z,X) defined by the
solution to E{e(Z,X) | W,X = x} = {p(X = x | W)}−1, connecting the negative control exposure to the inverse
propensity score. Their identification is guaranteed by a completeness condition of p(U | W,X).

4. Estimation

We focus on the estimation of the average causal effect � = E{Y(x1) − Y(x0)} that contrasts potential outcomes
mean under two exposure levels x1 and x0. We first consider estimation with i.i.d. data samples and then gener-
alize to time-series data. Suppose that one has specified a parametric model for the outcome confounding bridge,
b(W,V ,X; γ ). Practically, we recommend users start with a linear additive b(W,X) = γ1W + γ2X or exponential
multiplicative b(W,X) = exp(γ1W + γ2X). However, a misspecified low dimensional model b(W,X) can poten-
tially lead to a biased result. The users can use a variety of more flexible approaches such as semiparametric (e.g.,
partially linearmodel, single indexmodel) or nonparametric (e.g., generalized additive, reproducing kernels, neural
networks, see Cui et al., 2023; Kallus et al., 2021), to check the robustness of the estimated causal effect on b(W,X),
thus further alleviating concerns about misspecification bias. A standard approach to estimate θ = (γ ,�) is the
generalized method of moments (Hall, 2005; Hansen, 1982). We let Di = (Xi,Zi,Yi,Wi,Vi), 1 ≤ i ≤ n denote the
observed data samples. Define the vector of moment restrictions

h(Di; θ) =
{{Yi − b(Wi,Vi,Xi; γ )} × q(Xi,Vi,Zi),
� − {b(Wi,Vi, x1; γ ) − b(Wi,Vi, x0; γ )}, (6)

with a user-specified vector function q, and letmn(θ) = 1/n
∑n

i=1 h(Di; θ); the GMM solves θ̂ = argminθ m�
n (θ)

� mn(θ), with a user-specified positive-definite weight matrix �.
Typically, the dimension of q must be at least as large as that of γ . For instance, if b(W,V ,X; γ ) =

(1,X,V�,W)γ , one can use q(X,V ,Z) = (1,X,V�,Z)� for the GMM. Cui et al. (2023) develop the semipara-
metric theory for double negative controls by assuming the existence of both the negative control outcome bridge
function b(W,X) and negative control exposure bridge function e(Z,X). Their semiparametric efficient estimator
is partially based on the above negative control estimator (6) from an unpublished initial draft of the current paper.

The GMM can equally be applied to time-series data for parameter estimation (Hamilton, 1994, chapter 14).
Consider a typical time-series model,

Yi = γ0 + γ1Xi + Ui + ε1i, Xi = α0 + α1Ui + ε2i, Ui = ξUi−1 + (1 − ξ2)1/2ε3i,

with normal white noise ε1i, ε2i, ε3i. As suggested by Flanders et al. (2017), Zi = Xi+1 can be used as a negative
control exposure; in addition, we use Wi = Yi−1 as a negative control outcome, which satisfies Zi ⊥⊥ (Wi,Yi) |
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(Xi,Ui) and Wi⊥⊥ Xi | Ui. To estimate γ1 via the GMM, we specify a linear outcome confounding bridge model
b(Wi,Xi,Xi−1; γ ) = (1,Xi,Xi−1,Wi)γ and use q(Xi,Xi−1,Zi) = (1,Xi,Xi−1,Zi)� to construct themoment restric-
tions. It seems surprising that we can consistently estimate γ1 when we only observe X and Y but not U. However,
this is achieved by selecting appropriate negative control exposure and outcome variables from the observed data
for each observation. This approach benefits from the serial correlation of the confounder, but does not apply to
independent observations.

Consistency and asymptotic normality of the GMM estimator have been established under appropriate condi-
tions in Hansen (1982) and Hall (2005). Standard errors and confidence intervals can be constructed based on the
normal approximation,

n1/2(θ̂ − θ0)
d→ N(0,
1
0


�
1 ),

where θ0 denotes the true value of θ , and


1 = (M��M)−1M��, M = lim
n→+∞

∂mn(θ)

∂θ�

∣∣∣∣
θ=θ0

, 
0 = lim
n→+∞Var{n1/2mn(θ0)}.

For i.i.d. data, a consistent estimator of the asymptotic variance can be constructed by using


̂1 = (M̂��M̂)−1M̂��, M̂ = 1
n

n∑
i=1

∂h(Di; θ)

∂θ�

∣∣∣∣
θ=θ̂

,


̂0 = 1
n

n∑
i=1

h(Di; θ̂ )h�(Di; θ̂ );

(7)

and a 95% confidence interval for the elements of θ in large samples is θ̂ ± 1.96 × {diag(
̂1
̂0
̂
�
1 )/n}1/2, where

diag denotes the diagonal elements of a matrix. Variance estimation in the time-series setting is more complicated
due to the serial correlation.When the observed data are serially correlated, 
̂0 in (7) is no longer consistent for
0,
and one should use heteroscedasticity and autocorrelation covariance (HAC) estimators that are consistent under
relatively weak assumptions (Andrews, 1991; Newey &West, 1987). In this paper, we use the Newey-West estimate
of 
0:


HAC
0 = 
̂0 +

bn∑
i=1

{
1 − i

1 + bn

}
(
̂i + 
̂�

i ), bn = c × n1/3 for some constant c,


̂i = 1
n

n∑
j=i+1

h(Dj; θ̂ )h�(Dj−i; θ̂ ),

where bn is the bandwidth parameter controlling the number of auto-covariances included in the HAC estimator;
for practical guidance for the choice of bn, see (Andrews, 1991) and (Hall, 2005, Section 3.5.3). In contrast to the
i.i.d. setting, the HAC estimator includes extra covariance terms {̂
i, i �= 0} to account for the serial correlation.

5. Positive control outcome

The negative control outcome assumption, W⊥⊥ X | U, is not met when the auxiliary outcome W is causally
affected by X. In this case, we call W a positive control outcome. Let W(x) denote the potential outcome of W
when X is set to x; the following assumption preserves U-comparability but accommodates a nonzero causal effect
of X onW, see Figure 1 for a DAG model.

Assumption 5.1 (Positive control outcome): W(x)⊥⊥ X | U for all x.

Proposition 5.1: Given the latent ignorability Assumption 2.1, the outcome confounding bridge Assumption 3.1, and
the positive control Assumption 5.1, then E{Y(x)} = E{b(W(x), x)} for all x.

The potential outcome mean E{Y(x)} depends on the distribution of W(x) rather than the observed distribu-
tion of W. Given a positive control outcome and a negative control exposure, (4) still holds, and thus can be
used to identify the outcome confounding bridge. As a consequence, the causal effect of X on Y can be identi-
fied if both a positive control outcome and a negative control exposure are available and the causal effect of X on
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W is known a priori. Suppose the bridge function has an additive form b(W(X),X; γ ) = b1(X; γ1) + b2(W(X))

where the structural parameter γ1 is unknown. Then, the potential outcome mean can be rewritten as E{Y(x)} =
E{b1(X; γ1) + b2(W(X))}. We let γ2(x) = E{b2(W(x))} be a specified functional form of x in a sensitivity analysis
measuring the mean ofW(x) transformed by some function b2. The estimation is analogous to the GMMmethod
in Section 4. Define the vector of moment restrictions

h(Xi,Yi; γ1, γ2(x),�) =
{
[Yi − b1(Xi; γ1) − γ2(Xi)] × q(Xi),
� − [b1(x1; γ1) − b1(x0; γ1) + γ2(x1) − γ2(x0)],

(8)

with a user-specified vector function q. The first component in (8) consists of unbiased estimating equations for γ1
because E{Y − b1(X) − γ2(X) | X} = 0, and the second one for�. In practice, the users can make use of auxiliary
information of γ2(x) if possible or specify a functional form based on expert knowledge to test the robustness of
the estimation method against the effect size on the positive control. We further illustrate this with the following
examples.

Example 5.2: Consider binary exposures (X,Z) and the linear outcome confounding bridge b(W(X),X) =
γ0 + γ1X + γ2W(X) for a positive control outcome W. Then E{Y(x)} = γ0 + γ1x + γ2E{W(x)} and ACEXY =
γ1 + γ2 × ACEXW . Identification of (γ1, γ2) is identical as in the negative control outcome case, with γ2 =
E(RDZY |X)/E(RDZW |X) and γ1 = E(RDXY |Z) − γ2 × E(RDXW |Z). In contrast with the negative control setting
in Example 3.5, identification with a positive control outcome involves the average causal effect of X onW. Using
ACEXW as a sensitivity parameter, sensitivity analysis can be performed to evaluate the plausibility of a causal effect
of X on Y ; if ACEXW is known to belong to the interval [a, b], then the bound for ACEXY is [γ1 + γ2a, γ1 + γ2b];
given the sign of γ2, the sign of E(RDXY |Z) − ACEXY , i.e., the confounding bias, can be inferred from the sign of
E(RDXW |Z) − ACEXW .

Example 5.3: In studies assessing the effect of intrauterine smoking (X) on offspring birthweight (Y) and seven
years old body mass index (W), Davey Smith (2008) and Davey Smith (2012) used paternal smoking (Z) as a
negative control exposure, and observed that

E(RDXY |Z) = −150 g, E(RDXW |Z) = 0.15 kg/m2,

E(RDZY |X) = −10 g, E(RDZW |X) = 0.11 kg/m2.

Following the analysis in Example 5.2, we obtain γ2 = −91, γ1 = −136, and thus ACEXY = −136 − 91 ×
ACEXWg. A necessary condition to explain away the observed impact of intrauterine smoking on birthweight
(i.e., to make ACEXY ≥ 0) is ACEXW ≤ −1.5 kg/m2, a protective effect of intrauterine smoking on later-life body
mass index. However, intrauterine smoking is unlikely to have such a considerable protective effect against obesity,
and in fact, researchers have hypothesized although not definitely established that intrauterine smoking is likely to
increase not decrease the risk of offspring obesity (Mamun et al., 2006). Therefore, the most plausible explanation
is that intrauterine smoking decreases offspring birthweight, at least −136 g on average if one believes intrauterine
smoking can also cause offspring adiposity.

6. Simulation studies

6.1. Simulations for a binary exposure

We provide two simulation examples in this and the next section. In the first simulation, we generate two vari-
ables V ,U ∼ N(0, 1) with correlation σuv = 0.5. Then we generate the negative control exposure, negative control
outcome based on the following models Z = 0.5 + 0.5V + U + ε1,W = 1 − V + ξU + ε2 with ε1, ε2 ∼ N(0, 1).

Figure 1. DAGmodels for negative and positive controls. The dashed arrow indicates a possibly nonzero causal effect of X onW. (a)
Negative control and (b) Positive control.
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Figure 2. Boxplots for estimators of the average causal effect.
Note: For NC, b = (1, X , V ,W , XV , XW)γ and q = (1, X , V , Z, XV , XZ)� are used for theGMM; for IPW, a logisticmodel for f (X = 1 | V)
is used; for OLS, a linear outcomemodel is used. White boxes are for a sample size 500 and grey ones 1500; the horizontal line marks
the true value of the average causal effect.

Table 1. Coverage probability of 95% negative control confidence interval for the average causal effect.

η = 0.5 0.3 0

n = 500 1500 500 1500 500 1500

ξ = 0.6 0.945 0.936 0.958 0.953 0.954 0.935
0.4 0.958 0.957 0.968 0.955 0.964 0.956
0.2 0.953 0.963 0.970 0.963 0.978 0.979

The exposure and the potential outcome are generated based on logit{f (X = 1 | Z,V ,U)} = −0.5 + Z + 0.5V +
ηU,Y(x) = 1 + 0.5x + 2V + U + 1.5xU + 2ε2 with η encoding the magnitude of confounding and ξ the associa-
tion between the negative control outcome and the confounder.We analyse data with the negative control approach
(NC), standard inverse probability weighting (IPW), and ordinary least square (OLS).

For each choice of η = 0, 0.3, 0.5 and ξ = 0.2, 0.4, 0.6, we replicate 1000 simulations at sample size 500 and 1500,
respectively, and summarize results as boxplots in Figure 2. From Figure 2, the negative control estimator has a
small bias in all settings; in contrast, ordinary least square and inverse probability weighted estimators are biased
except under no unmeasured confounding (η = 0). When the association between the negative control outcome
and the confounder is moderate to strong (ξ = 0.4, 0.6), the negative control estimator is more efficient than the
other two, but has greater variability otherwise (ξ = 0.2). Table 1 presents coverage probabilities of 95% negative
control confidence intervals based on a normal approximation, which generally approximate the nominal level of
0.95. But, when the association between the negative control outcome and the confounder is weak (ξ = 0.2), the
coverage probabilities are slightly inflated. Therefore, we recommend the negative control approach to remove the
confounding bias in observational studies, and to enhance efficiency, we recommendwhen possible using a negative
control outcome that is strongly associated with the confounder.

6.2. Simulations for time series data

We generate time-dependent data according to

Ui = ξUi−1 + (1 − ξ2)1/2ε1i, Vi = 0.6Ui + ε2i, Xi = 0.4 + 1.5Vi + ηUi + ε3i,

Yi = 0.5 + 0.7Xi + 1.5Vi + 0.9Ui + ε4i, ε1i, ε2i, ε3i, ε4i ∼ N(0, 1),

where Ui is a stationary autoregressive process with autocorrelation coefficient ξ , and η controls the magnitude
of confounding. We analyse data with the negative control approach (NC), ordinary least square (OLS) without
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Figure 3. Boxplots for time series data analysis.
Note: For NC, b = (1, Xi , Xi−1, Vi , Vi−1,Wi)γ and q = (1, Xi , Xi−1, Vi , Vi−1, Zi)� are used for the GMM. White boxes are for a sample
size 500 and grey ones 1500; the horizontal line marks the true value of the structural parameter.

Table 2. Coverage probability of 95% negative control confidence interval for the time-series model.

η = 0 0.3 0.5

n = 500 1500 500 1500 500 1500

ξ = 0.9 0.953 0.947 0.948 0.950 0.950 0.947
0.8 0.979 0.952 0.952 0.943 0.933 0.946
0.7 0.982 0.974 0.937 0.942 0.912 0.940

controlling lagged exposures, and lagged-OLS by controlling one-day lagged exposure. For the negative control
approach, we useWi = Yi−1 and Zi = Xi+1 as negative controls, and do not need auxiliary data.

For each choice of ξ = 0.7, 0.8, 0.9 and η = 0, 0.3, 0.5, we replicate 1000 simulations at sample size 500 and 1500,
respectively. Figure 3 presents boxplots of the estimators. The negative control estimator has a small bias in all
nine scenarios, and its variability becomes smaller as the autocorrelation of the confounder process increases. The
95% negative control confidence intervals based on the Newey and West (1987) variance estimator have coverage
probability approximating 0.95, as shown in Table 2. The ordinary least square estimator is biased except under no
unmeasured confounding (η = 0), inwhich case, it ismore efficient than the negative control estimator. Controlling
lagged exposures in ordinary least squares can reduce confounding bias, but cannot eliminate it. Therefore, we
recommend the negative control approach for the estimation of a linear time-series regressionmodel in the presence
of unmeasured confounding.

7. Evaluation of the effect of air pollution onmortality

While there are many long-term threats posed by air pollution, its acute effects on mortality also pose an important
public health concern. We apply the negative control approach to evaluate the short-term effect of air pollution
on mortality using datasets from a time-series study in Philadelphia, New York, and Boston. Here we present the
analysis results for Philadelphia and relegate those for the other two cities to the Supplementary Material. The
dataset for Philadelphia contains n = 2621 daily records of PM2.5, temperature, ozone, date, and number of deaths
in Philadelphia from 1999 to 2006. With accidental deaths excluded, the number of deaths ranges from 73 to 179,
which is often assumed to have a Poisson distribution. In our analysis, we use the square root of the number of
deaths for the purpose of normalization and variance stabilization (Freeman & Tukey, 1950).

For a given day i, we let Yi denote the square root of number of deaths, Xi be the PM2.5 concentration mea-
surement, Vi consist of temperature and its square, ozone, and Xi−1 to control lagged effects, and Ti consist of
polynomial and Fourier bases of time to account for both secular and seasonal trends:

Ti = {i/n, i2/n2, sin(2π i/365), cos(2π i/365), . . . , sin(8π i/365), cos(8π i/365)}.
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Table 3. Estimates and 95% confidence intervals (×10,000) of the effect of air pollution in Philadelphia.

Number of lagged exposures controlled

One day Two days Three days

Estimate p-value Estimate p-value Estimate p-value

Ordinary least square
β1 84 (48, 120) 0 78 (41, 115) 0 79 (43, 116) 0

Confounding test
α1 −40 (−73,−7) 0.0167 −39 (−71,−7) 0.0174 −40 (−72,−7) 0.0158
α2 41 (11, 71) 0.0072 40 (10, 69) 0.0080 39 (10, 69) 0.0083

Negative control estimation
β1 45 (−6, 97) 0.0854 46 (−6, 98) 0.0844 46 (−7, 99) 0.0915

We assume a linear outcome model, Yi = β1Xi + (1,Vi,Ti)β2 + Ui, and we are interested in the regression coef-
ficient β1 that encodes the immediate effect of current day PM2.5 on mortality. All results are summarized in
Table 3, where confidence intervals and p-values are obtained from the normal approximation and the Newey
and West (1987) variance estimator is used to account for serial correlation. A standard regression analysis shows
that short-term exposure to PM2.5 can significantly increase mortality, with point estimate 0.0084 and 95%
confidence interval (0.0048, 0.0120) for β1. However, a confounding test by fitting the model

Wi = α1Xi + α2Zi + (1,Xi−1,Vi−1,Ti−1)α3 + Ui−1,

withWi = Yi−1, results in point estimate −0.0040 of α1 with 95% confidence interval (−0.0073,−0.0007) and p-
value 0.0167, and point estimate 0.0041 of α2 with 95% confidence interval (0.0011, 0.0071) and p-value 0.0072.
These results suggest the presence of unmeasured confounding becauseWi occurs before Xi and Zi, and should not
be affected by them. Thus, the ordinary least squares method appears not entirely appropriate in this setting. We
apply the proposed negative control approach and use Zi = Xi+1 andWi = Yi−1 as the negative control exposure
and outcome, respectively. We assume a linear outcome confounding bridge b = (1,Xi,Vi,Vi−1,Ti,Wi)β , and use
q = (1,Xi,Vi,Vi−1,Ti,Zi)� for the GMM. Compared to the standard regression, the negative control estimate of
β1 is attenuated toward zero a lot, although it still has some significance with point estimate 0.0045 and 95% confi-
dence interval (−0.0006, 0.0097). Further analyses controlling longer lagged exposures by including Xi−2 and Xi−3
in Vi lead to analogous results as those obtained when only Xi−1 is controlled. Our analyses indicate the presence
of unmeasured confounding in the air pollution study in Philadelphia. In parallel analyses we provide in the Sup-
plemental Materials, unmeasured confounding is also detected in the dataset for New York via the negative control
approach, but not detected in the dataset for Boston. After accounting for unmeasured confounding, our negative
control inference shows a significant acute effect of PM2.5 on mortality in Philadelphia, but such an effect is not
detected in New York or Boston.

8. Discussion

We propose an outcome confounding bridge approach for negative control/proximal inference on causal effects.
We clarify the key assumptions and the roles of negative control outcome and exposure, and discuss robustness and
sensitivity of the approach. In the supplementarymaterial, we provide some insights on the connection between the
negative control and the instrumental variable approaches, focussing on the estimation of a structural model. As we
illustrate, an invalid instrumental variable that fails to be independent of the unmeasured confounder can be viewed
as a negative control exposure, and a negative control outcome can be used to repair such an invalid IV by applying
our double negative control adjustment. Under a linear structuralmodel, we show the double robustness property of
the negative control estimator, in the sense that it is consistent if either the confounding bridge is correctly specified
or the negative control exposure is a valid IV.

Besides causal effect evaluation, our approach has important implications for the design of observational studies.
Even if an exposure or response factor is not directly relevant to the study variables in view, it is useful to collect
them and use them as negative controls for the purpose of confounding diagnostic and bias adjustment. Time-
series studies, such as the air pollution example we consider, are particularly well-suited for the proposed negative
control approach, because negative controls can be constructed from observations of the exposure and outcome
themselves. However, in general, our approach requires one to collect extra data about negative control variables.

The negative control assumptions we present in this paper describe the general principles for selecting negative
control variables, and the examples we give provide guidance for certain specific studies; but in general, subject
matter knowledge about the data-generating mechanism and the potentially unmeasured confounders, such as
the specificity of the exposure-outcome relation (Hill, 1965; Lipsitch et al., 2010), is indispensable to choose an
appropriate negative control.
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Our approach has promising application in modern big and multi-source data analyses. Identification of the
outcome confounding bridge and the average causal effect depends only on f (Y ,Z,X) and f (W,Z,X) but not the
joint distribution of (Y ,W), and thus enjoys the convenience of data integration and two-sample inference. For
certain outcome confounding bridge models such as the linear one, estimation of the average causal effect requires
only summary but not individual-level data, and thus allows for synthetic analysis by using results from multiple
studies. Such extensions will be carefully developed in the future.
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