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ABSTRACT
In a 2k-factorial experiment with limited resources, when practitioners can identify the non-
negligible effects and interactions beforehand, it is common to run an experiment with a satu-
rated design that ensures the unbiased estimation of the non-negligible parameters of interest.
We propose a method for the construction of D-optimal saturated designs for the mean, the
main effects, and the second-order interactions of one factor with the remaining factors. In the
process, we show the problem is just as hard as the Hadamard determinant problem.

ARTICLE HISTORY
Received 24 November 2023
Revised 14 March 2024
Accepted 5 April 2024

KEYWORDS
Saturated designs; D-optimal
designs; hadamard matrices;
maximal determinant
problem

1. Introduction

A saturated design (SD) in a two-level factorial experiment is a design with the minimum number of runs that
ensures the unbiased estimation of the effects and interactions of interest given the remaining parameters are negli-
gible. The number of runs n retained in an SD is equal to the total number of parameters of interest. Thus a saturated
design matrix is a square non-singular matrix of order n with entries from {−1, 1} that is chosen to satisfy the con-
ditions of the parameters of interest. Saturated designs are one of the most important designs in practice. They are
desirable to practitionersmainlywhen the important effects and interactions to be estimated are known beforehand.
In general, the statistical model retained for an SD is the regular linear model Y = Xβ + ε, where Y is the response
variable and ε is the usual error term. The matrix X is a saturated design matrix for the given vector parameter of
interest β . OnceX is chosen, the ordinary least square method (OLS) can be used to obtain the unbiased estimation
of the parameters of interest. That is β̂ = (X�X)−1X�Y = X−1Y . As a result of the estimator β̂ = X−1Y , the deter-
minant of the Fisher informationX�X of an SD is maximal if the absolute value of the determinant ofX is maximal.
Such an SD is known as a D-optimal saturated design. Since the determinant of the Fisher information is inversely
proportional to the volume of the confidence ellipsoid of the vector parameter β , the D-optimality criterion is one
of the key criteria used to search for a design because it guarantees that the volume of the confidence ellipsoid of the
vector parameter β is minimized. See (Wald, 1943) and Kiefer (1959). However, it turns out that the construction
of a D-optimal SD is not a trivial problem. There has been a vast literature as well as ongoing investigation about
the construction of SD under certain conditions. Hedayat and Pesotan in Hedayat and Pesotan (1992) and Hedayat
and Pesotan (2007) have discussed how to construct a saturated design that includes the estimation of themean, the
main effects, and a selected number of second-order interactions. Furthermore, various computer algorithms have
been developed to search for SDs for two-level factorial experiments, some of which are SPAN, and DETMAX. As
a case in point, see Hedayat and Zhu (2011).

In this paper, we propose methods for the construction of D-optimal saturated design matrices for the esti-
mation of the mean, the main effects, and the second-order interaction(s) of one factor with the remaining factors.
Specifically, we consider a two-level factorial experiment with k factors F1, . . . , Fk andwe develop algorithms for the
construction of a saturated designmatrix as well as aD-optimal saturated designmatrix that includes the estimation
of the main effects F1, . . . , Fk, the second-order interactions of factor F1 with each of the remaining factors namely
F1F2, F1F2, . . . , F1Fk, and themean that we denote by F0. For simplicity, in the rest of the paper, F1F2, F1F2, . . . , F1Fk
will be called F1-two-factor interactions and we write them as F12, . . . , F1k. We also define D(k, 1) as the set of all
saturated designs that ensure the unbiased estimation of the mean, k main effects, and the F1-interactions for a
given k.
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Table 1. Experiment reported by Vander Heyden et al. (1999).

Run A B C D E F G H I J K MC

1 + + + − + + − + − − − 101.6
2 + + − + − − − + + + − 101.7
3 + − + + − + − − − + + 101.6
4 + − − − + + + − + + − 101.9
5 + − + − − − + + + − + 101.8
6 − + + + − + + − + − − 101.1
7 − + − − − + + + − + + 101.1
8 − − − + + + − + + − + 101.6
9 − − + + + − + + − + − 98.4
10 − + + − + − − − + + + 99.7
11 + + − + + − + − − − + 99.7
12 − − − − − − − − − − − 102.3

2. Construction of D-optimal saturated designs inD(k, 1)

2.1. Motivation

In Table 1, Vander Heyden et al. (1999) used high-performance liquid chromatography (HPLC) to conduct an
experiment that studied the assay of ridogrel and its related compounds in ridogrel oral film-coated tablet simu-
lations. In the original experiment, multiple responses were of interest. One of the responses was the percentage
recovery of the main compound. For scientific reasons, only eight factors were considered in the experiment that
assessed the importance of the factors on the response which in this case is the percentage recovery of the main
compound (MC). The eight factors retained were pH of the buffer (A), column manufacturer (B), column temper-
ature (D), percent of organic solvent in the mobile phase at the start of the gradient (E), percent of organic solvent
in the mobile phase at the end of the gradient (F), the flow of the mobile phase (H), the detection wavelength (I),
and the concentration of the buffer(J). For this specific experiment factors C, G, and K in Table 1 were not used in
the experiment. It is worth pointing out that in Table 1, each factor has two levels coded as+1 and −1 that are rep-
resented by+ and− respectively. The 12-run Plackett-Burman design in Table 1 was used to assess the importance
of the eight factors on the response variable. Fitting a main effects model to the data yields

ŷ = 101.04 + 0.34A − 0.22B − 0.36D − 0.56E + 0.44F − 0.01H + 0.26I − 0.31J. (1)

This model has an R2 = 0.78 with σ̂ = 1.045 on 3 degrees of freedom. Themost significant factors are E and F with
p-values of 0.16 and 0.24 respectively. The experimenters decided the test was not significant and concluded there
was no significant relationship between any of the factors and the response variable because, at the 10% significance
level, none of the effects is significant. Phoa et al. (2009) reanalyzed the experiment in Table 1 taking into account
interactions, and found the following model

ŷ = 101.04 − 0.56E + 0.44F − 0.30H + 0.88EF. (2)

This model has an R2 = 0.96 which indicates a good fit. Furthermore, factor H is significant at the 5% level (p-value
= 0.012) and E, F, and EF are significant at the 1% level. Here, the takeaway message is that in Plackett-Burman
designs, the main effects are partially aliased with second-order interactions. Thus, since one or more second-order
interactions are not negligible, some effects in the main-effect model in Equation (1) are biased. This misled the
experimenters to draw the wrong conclusion that none of the effects is important. On the other hand, by taking
into account second-order interactions, the experimenters were able to identify the important main effects and
the second-order interaction given by the model in Equation (2). In general, if for scientific reasons, the experi-
menter can identify the potential main effects and interactions, he may cut down the number of runs and conduct
a saturated design for the experiment. That is the main purpose of the remainder of this paper.

2.2. Preliminaries

In the rest of this paper, we consider a two-level factorial experiment with k factors F1, . . . , Fk. We investigate the
class of saturated design matrices for a vector parameter β that includes the mean, the k main effects, and the
second-order interactions of factor F1 with the remaining factors F2, . . . , Fk. More precisely, for such a problem
there are kmain effects F1, . . . , Fk, the mean F0 and k−1 second-order interactions F12, . . . , F1k. The total number
of parameters to estimate is 2k. A saturated designwould therefore require 2k runs. The corresponding linearmodel
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is on the form

Yi = β0(F0)i + β1(F1)i + · · · + βk(Fk)i + β12(F12)i + · · · + β1k(F1k)i + εi (3)

where i ∈ {1, . . . , 2k}, εi,Yi and (F..)i are respectively the ith error term, the response variable and the corresponding
runs. β = [β0,β1, . . . ,βk,β12, . . . ,β1k]� is the vector parameter of interest.

To gain more intuition about the problem, we give an example of the particular case of k = 3 as follows. For
k = 3 the number of parameters to estimate is 6, namely, F0, F1, F2, F3, F12, F13. It follows that a saturated design
would require 6 runs. Suppose we choose the candidate design with the runs {(+ + +), (+ − −), (+ − +), (− −
+), (− + +), (− + −)}. Then the candidate saturated design matrix would be a square matrix of order 6 that is
obtained by converting the runs into the underlying design matrix. As illustrated below, the first matrix underlies
the main effects plus mean F1, F2, F3 and F0. The second matrix underlies the second order interactions F12 and
F13 and is obtained by taking the Schür product of F1 with F2 and F3 respectively. The third matrix is the candidate
saturated design matrix obtained by combining the first and second matrices. It is worth pointing out that for
convenience we set the factors in the order F1, F2, F3, F0 so that the first and last entries of each run correspond to
F1 and F0 respectively.

F1 F2 F3 F0⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

+ + + +
+ − − +
+ − + +
− − + +
− + + +
− + − +

⇒

F12 F13⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

+ +
− −
− +
+ +
− −
− +

⇒

F1 F2 F3 F0 F12 F13⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

+ + + + + +
+ − − + − −
+ − + + − +
− − + + + −
− + + + − −
− + − + − +

It is important to observe that for the given candidate design matrix given above, F1 is of the form F1 =
[

13−13

]
,

where the Schür product of F1 by itself (F11) yields

F11 =
[

13∗13−13∗(−13)

]
=

⎡
⎣

1
1
1
1
1
1

⎤
⎦ = F0 F12 =

[
13−13

]
∗ F2 =

[
13−13

]
∗

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦

and F13 =
[
13

−13

]
∗ F3 =

[
13

−13

]
⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
−1
−1
−1
−1
−1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Furthermore, the Schür product of F1 with F2 and F3 leaves the first 3 entries of F2 and F3 unchanged and negates
the last 3 entries. It turns out from the above observations that the candidate saturated design can be written as:

F1 F2 F3 F11 F12 F13⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

+ + + + + +
+ − − + − −
+ − + + − +
− − + + + −
− + + + − −
− + − + − +

=
[
M M
−N N

]

whereM =
[ + + +

+ − −
+ − +

]
and N =

[ + + −
+ − −
+ − +

]
.

Remark 2.1: A few remarks can be made as follows.

(1) The mean F0 can be written as the Schür product of F1 by itself. This simple fact will be crucial in the theorems
we develop in the upcoming section.
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(2) For any choice of candidate saturated design the corresponding candidate saturated designmatrix is necessarily
of the form

[ M M−N N
]
as shown above. In the example F1 has as many +1 entries as −1 entries which means F1

is balanced. ThereforeM and N are square matrices of order k.
(3) The candidate design matrix as displayed above will be a valid design matrix if it is a non-singular matrix. We

shall see in the remainder of this paper that in general, a candidate design matrix is a valid design matrix if and
only if the design is chosen so that F1 is balanced and thatM and N are non-singular matrices.

2.3. Construction of saturated andD-optimal saturated designmatrices inD(k, 1)

In the remainder of this section, we explore the construction of a D-optimal design matrix for mean, main effects,
and the F1-second-order interactions from a general perspective.We assume without loss of generality that the vec-
tor parameter of interest is of the form β = [β1, . . . ,βk,β0,β12, . . . ,β1k]�. For convenience, wemake the following
definitions.

Definition 2.1: Wemake the following definitions:

(1) We define D(k, 1) to be the set of all the saturated design matrices that ensure the unbiased estimation of the
vector parameter of interest β . We purposely use the notationD(k, 1) to indicate that the vector parameter of
interest β includes the kmain effects, the mean, and all the F1-second-order interactions.

(2) We define Mk{−1, 1} as the set of non-singular matrices of order k with entries from {−1, 1} for which the
first column is the vector 1k.

(3) We define �k to be the maximal value of the absolute value of the determinant of matrices inMk{−1,+1}.

The factor F1 plays a key role in the construction of a saturated design for the vector parameter β as specified above
because it is the only factor that interactswith all the remaining factors. Therefore, we define the factorF1 as the pivot
factor. Since the entries of F1 takes values from {−1, 1} we assume without loss of generality that F1 is of the form

F1 =
[
1�
f+ −1�

f−

]�
, where f+ and f− are respectively the frequencies of 1 and −1 entries in the vector F1 with

f+ + f− = 2k. For convenience we write F2, . . . , Fk as block vectors F2 = [
m�

2 n�
2
]� , . . . , Fk = [

m�
k n�

k
]�,

where m2, . . . ,mk are vectors of length f+ and n2, . . . , nk are vectors of length f− with entries from {−1, 1}. We
enumerate the following key observations.

(1) The F1-second-order interactions F12, . . . , F1k are obtained by the Schür product of F1 with F2, . . . , Fk as
follows.
F12 = [

(1f+ ∗ m2)
� (−1f− ∗ n2)�

]� = [
m�

2 −n�
2
]�

...
...

...
F1k = [

(1f+ ∗ mk)
� (−1f− ∗ nk)�

]� = [
m�

k −n�
k
]�.

(2) The mean F0 which is a 12k column vector can be written as

F0 =
[
1�
f+ 1�

f−

]� = [
(1f+ ∗ 1f+)� (−1f− ∗ (−1f−)�

]� = F1 ∗ F1. That is the mean F0 can be obtained by
the Schür product of F1 with itself.

By preserving the order in which the parameters in the vector β = [β1, . . . ,βk,β0,β12, . . . ,β1k]� appear, each
element ofD(k, 1) can be written as[

1f+ m2 · · · mk 1f+ m2 · · · mk
−1f− n2 · · · nk 1f− −n2 · · · −nk

]
=

[
M M
−N N

]
,

whereM = [
1f+ m2 · · · mk

]
and N = [

1f− n2 · · · nk
]
with dimensions f+ × k and f− × k respectively.

Thus each element of D(k, 1) is necessarily on the block matrix form
[
M M
−N N

]
. Now just because we have the

block matrix form
[
M M
−N N

]
doesn’t mean that we have obtained an element of D(k, 1). The question one may

ask is “ What are the necessary and sufficient conditions on the matrix
[
M M
−N N

]
to be an element ofD(k, 1) ? ”.

Our goal in what follows is to provide necessary and sufficient conditions to construct an element ofD(k, 1). In
the theorem below we provide the necessary and sufficient conditions to construct an element ofD(k, 1).



190 F. K. DOMAGNI ET AL.

Theorem 2.1: A square matrix D of order 2k is a design matrix in D(k, 1) if and only if it is in the form D =[
M M
−N N

]
where M and N are elements ofMk{−1, 1}.

Proof: We have seen that any element of D(k, 1) is necessarily on the form F =
[
M M
−N N

]
, where M and N are

{−1, 1}-matrices of dimensions f+ × k and f− × k respectively. We will first show that if f+ �= f− then the matrix
F is a singular matrix. In that case, F is not an element of D(k, 1). We then show that M and N have to be both
non-singular matrices of order k for F to be an element ofD(k, 1).

(1) Assume without loss of generality that f+ > k. Then, since M is of dimensions f+ × k we have rank(M) is at
most k. Therefore, the rows ofM that we define asm�

1 , . . . ,m
�
f+ are linearly dependent.Wemay assumewithout

loss of generality that m�
1 is linearly dependent on m�

2 , . . . ,m
�
f+ , so that m1 = ∑f+

i=2 cimi with some ci �= 0,

2 ≤ i ≤ f+. This implies that
[
m1
m1

]
= ∑f+

i=2 ci
[
mi
mi

]
. It means that the rows

[
m�

1 m�
1
]
, . . . ,

[
m�

f+ m�
f+

]
of F

are linearly dependent, which wouldmake F a singular matrix. In a similar manner, one can show that if f− > k
then F is a singular matrix. Thus, it turns out that f− = f+ = k is a necessary condition for F to be non-singular.

It follows that any element F of D(k, 1) is on the form F =
[
M M
−N N

]
, where M and N are {−1, 1}-matrices

of order k.
Now, if the matrix M is singular the rows of F would be linearly dependent and F would be a singular matrix
by the analogy of the argument above. By the same argument, if N is singular, F would be a singular matrix.

(2) Now suppose both M and N are non-singular matrices, that is M and N are elements of Mk{−1, 1}. Then,
det(F) = det

[
M M
−N N

]
= det(N)det(M + MN−1N) = 2kdet(N)det(M) �= 0. It follows that F is an element

ofD(k, 1) if and only if F =
[
M M
−N N

]
, whereM and N are elements ofMk{−1, 1}.

�

Corollary 2.1: A design matrix D∗ is a D-optimal saturated design inD(k, 1) if and only if it can be written as D∗ =[
M∗ M∗
−N∗ N∗

]
where M∗ and N∗ are elements ofMk{−1, 1} with maximal absolute value determinant. Furthermore

|det(D∗)| = 2k�2
k.

Proof: By Theorem 2.1 for any element D of D(k, 1), det(D) = 2kdet(N)det(M) for some N and M elements
Mk{−1, 1}. This determinant is maximal in absolute value when both M and N have maximal absolute value
determinants inMk{−1, 1}. �

2.4. Algorithm for the construction of an element ofD(k, 1)

We use Theorem 2.1 and Corollary 2.1 to develop an algorithm for the construction of a saturated and a D-optimal
saturated design matrix ofD(k, 1).

• Step 1: Select two matricesM andN fromMk{−1, 1} (For a D-optimal design select the matricesM andN with
maximal absolute value of determinant).

• Step 2: The design matrices D1 =
[
M M

−M M

]
and D2 =

[
M M
−N N

]
obtained through the above steps are sat-

urated design matrices for the estimation of the mean F0, the k main effects F1, . . . , Fk and the interactions
F12, . . . , F1k.D1 is a D-optimal design matrix inD(k, 1) if |det(M)| is maximal inMk{−1, 1}.D2 is a D-optimal
design matrix inD(k, 1) if both |det(M)| and |det(N)| have maximal determinant inMk{−1, 1}.

In the appendix we give two examples of D-optimal design matrices inD(15, 1) andD(16, 1).
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3. Concluding remarks

The construction of saturated design matrices for two-level factorial experiments has gained a lot of interest over a
long period of time by both mathematicians and statisticians. In general, mathematicians are interested in finding a
matrix with maximal determinant inMk{−1, 1}, as well as investigating the spectrum of the determinant function
which is the set of the value(s) taken by the |det(Dk)|/2k−1 for Dk element ofMk{−1, 1}. Thus, numerous papers
have been written about the classification of saturated design matrices of fixed order via the spectrum of the deter-
minant function. The spectra of the determinant function Sk for {−1,+1}-matrices of order k are well known in the
literature for orders up to 11. The spectrum of order k = 8 is due to Metropolis (1969). For k = 9 and k = 10, the
spectra were computed by Živković (2006) and the spectrum for k = 11 is due toOrrick (2005). Furthermore,many
other papers have investigated D-optimal saturated design matrices for a fixed order. Orrick (2005) constructed a
D-optimal design matrix of order 15. Chadjipantelis et al. (1987) came up with a D-optimal design of order 21. The
D-optimal design matrix discussed by these papers is a matrix with the maximal absolute value of the determinant
in Mk{−1, 1}. Statisticians on the other hand are not only interested in the global D-optimal design matrices in
Mk{−1, 1} but also they are interested in the local D-optimal designmatrices that satisfy certain restrictions on the
columns ofmatrices inMk{−1, 1}. In fact, more than often it is desirable for design statisticians to find aD-optimal
design matrix to estimate the mean, the main effects, and a selected number of two-factor interactions. The restric-
tion imposed by the interactions on the columns of saturated design matrices makes it impossible to construct a
saturated design matrix that achieves the maximal determinant inMk{−1, 1} under certain conditions. The work
we did in the current paper is a good illustration. We showed that the construction of saturated D-optimal design
matrices inD(k, 1) is equivalent to finding matrices with maximal determinant inMk{−1, 1}. Thus, this problem
is just as hard as the Hadamard determinant problem discussed in the introduction.
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Appendix

Figure A1. Maximal determinant matrix in M15{−1, 1}. A result of the work of Smith (1988), Cohn (1989), Cohn. (2000) and
Orrick (2005).

Figure A2. Normalized maximal determinant matrix inM15{−1, 1} obtained fromM∗
15.

Figure A3. The opposite matrix ofM∗+
15 .
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Figure A4. Hadamard matrix of order 16.

Figure A5. Saturated D-optimal design matrix for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F0, F1,2, F1,3, F1,4, F1,5, F1,6,
F1,7, F1,8, F1,9, F1,10, F1,11, F1,12, F1,13, F1,14, andF1,15.
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Figure A6. Saturated D-optimal design matrix for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16F0, F1,2, F1,3, F1,4, F1,5,
F1,6, F1,7, F1,8, F1,9, F1,10, F1,11, F1,12, F1,13, F1,14, F1,15, and F1,16.
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