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ABSTRACT
Based on the stochastic uncertainty of the system’s operating environment, this research
presents statistical inferences on the mean time to failure (MTTF) of a K-out-of-N: G non-
repairable system model with switching failure under Poisson shocks. The standby component
is switched to the operating component when an operating component fails, with a switching
failure probability of p. The MTTF of the system is derived by using the Markov process theory
and the Laplace transform for two cases where the shock threshold is a constant value or a ran-
dom variable. The maximum likelihood estimator (MLE) of the MTTF is obtained, and based on
this estimator, asymptotic confidence interval estimation and hypothesis testing are performed.
Based on the setting of the basic parameter values, the MTTF under two different cases of the
shock threshold is compared. The effect of each parameter on the MTTF is analyzed in numer-
ical simulation. The effectiveness of the above statistical inference methods is also verified by
numerical simulation.
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1. Introduction

The redundancy technology of standby components can improve system reliability. In reliability research and
engineering, the k-out-of-n: G system with standby components is a general redundant system, where n denotes
the number of components in the system, and the system can operate normally when the number of operating
components in the system is not less than k. Generally speaking, the kinds of standby can be divided into cold
standby, warm standby and hot standby. The k-out-of-n: G system with mixed cold and warm standby components
is considered in this paper. Based on the different standby types of standby components, some scholars have used
diverse methods to model and analyze the reliability of k-out-of-n: G non-repairable systems. By using the Markov
model, Pham and Pham (1991) deduced a closed-form solution of the instantaneous probability for a k-out-of-n: G
non-repairable system with two failure modes. For a k-out-of-n: G non-repairable warm standby system with com-
pletely reliable switching, She and Pecht (1992) developed a general closed-form equation of the system reliability.
Amari and Dill (2009) proposed an approach of k logical locations, which can effectively analyze the reliability of
non-repairable systems with cold or warm standby and general failure time distributions. Boddu and Xing (2012)
proposed a systemmodel composed of s-independent k-out-of-n: Gmixed standby subsystems connected in series.
Baek and Jeon (2013) considered the optimization problem for a k-out-of-n: G system with mixed redundancy.

For redundant standby systems, the standby component may fail during the switchover process. For example, a
standby generator in a plant power supply system may fail during switching from the standby to the operating one
due to some complex physical reasons. Lewis (1996) introduced standby switching failure into the study of system
reliability for the first time. Ke et al. (2008) focused on reliability and sensitivity for a repairable system with switch-
ing failure. Wang and Chen (2009) studied a repairable system with general repair time, reboot delay and switching
failure. Hsu et al. (2014) investigated the maintenance of a warm standby machine and considered the switch-
ing failure of standby components and maintenance stress coefficient. Ke et al. (2016) analyzed the performance
metrics and optimization of a machine maintenance system with standby switching failure. Shekhar et al. (2020)
performed the reliability analysis for warm standby nodes provisioning computing network system with switching
failure, vacation interruption and common cause failure. Yang and Wu (2021) performed some reliability research
for a standby repairable system with working breakdown and switching failure. In Liu et al. (2022), a cost-benefit
analysis of standby retrial systems with unreliable servers and switching failure was carried out. Given that the study
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for k-out-of-n: G non-repairable systems withmixed standby components rarely involves standby switching failure,
and this failure situation does exist in engineering, the possibility of switching failure is considered in this paper.

In practical engineering, system components fail not only due to their lifetime, but also due to the impact of
external random environment which is usually regarded as a shock.With the increasing requirements for evaluating
the operation of system equipment in a stochastic environment, shock models are becoming more widely studied
in the field of reliability. Barlow and Proschan (1975) elaborated on the problem of the lifetime distribution of
single-component systems under Poisson shocks. Shanthikumar and Sumita (1983, 1984) proposed a class of shock
model which is usually used to study seismic and inventory problems, and considered two cases where the system
fails when the cumulative shock magnitude or a single shock magnitude exceeds the threshold, respectively. Wu
and Wu (2011) studied a two-unit cold standby repairable system under Poisson shocks. The external shocks only
affect the operating unit and the failure of the unit is only caused by external shocks. In addition to the failure of
the unit caused by external shocks, Wu (2012) also considered the failure of the unit caused by the unit’s lifetime,
and then obtained optimal replacement strategies for a two-unit cold standby system. Wu et al. (2015) conducted
the reliability analysis of a multi-unit cold standby system in which both the operating unit and the transfer switch
are affected by external shocks. El-Sherbeny and Elshoubary (2020) investigated the reliability of a parallel system
which consists of two different components and a repairer, in which the failure of the system is caused by external
shocks. Ge et al. (2021) considered a cold standby repairable system model under a stepped Poisson shock whose
strength varies with the number of failures of operating components. El-Sherbeny and Hussien (2022) studied
the reliability of a parallel system under Poisson shocks where the repairer has an optional vacation. Based on the
failuremechanism of components in a stochastic environment, in this paper, the failure of the operating component
is caused by its lifetime or Poisson shocks.

In the evaluation of system reliability, the parameters in some distribution functions involved and various sys-
tem reliability indices are generally not directly available. Therefore, many scholars have used statistical methods to
infer the system reliability such as Kızılaslan (2018), Wang et al. (2020) and Rasekhi et al. (2020). Statistical infer-
ence is always used to estimate the parameters/characteristics of a system by using experimental data or simulated
data. Patawa et al. (2022) analyzed the reliability of cold standby systems whose repair time follows the Lindley dis-
tribution, and estimated unknown parameters by using two methods of maximum likelihood and Bayesian. Kang
et al. (2023) studied the availability of a repairable retrial system with warm standby and priority, and estimated the
system parameters using the Bayesian method. In previous studies on the statistical inference of the reliability of
standby systems, most scholars considered the standby systems whose switching is completely reliable. For the sta-
tistical inference for the system availability/reliability with switching failure mechanism, Hsu et al. (2011) derived
the expression for the steady-state availability of three-component systems with unreliable repairer and switching
failure, and carried out maximum likelihood estimation and hypothesis testing. However, Hsu et al. (2011) did not
consider using the Bayesian method to infer the reliability of this system. After that, Ke et al. (2018) carried out
Bayesian inference on the system model studied in the literature (Hsu et al., 2011) based on two different types
of repair time distributions respectively. For the problem of statistical inference for k-out-of-n systems, based on
Weibull and Burr-III distributions, Ali et al. (2018) performed reliability inference for a s-out-of-k: G system stress-
strength model using two methods, namely, maximum likelihood and Bayesian. Jana and Bera (2022) carried out a
study for constructing various estimation intervals of the stress-strength reliability of k-out-of-n: G systems. Chien
et al. (2006) estimated the asymptotic confidence interval of the steady-state availability and the MTTF of a k-
out-of-m+ s: G repairable system with an imperfectly reliable server. However, no literature has investigated the
problem of statistical inference on the reliability of k-out-of-n systems with switching failure and mixed standby
components.

The influence of the external environment on the operating components and the switching failure of standby
components in actual engineering are considered in this paper. Hence, Poisson shock and switching failure are
introduced into k-out-of-n: G non-repairable systems, and then a new reliability model of the k-out-of-n: G system
with mixed standby components is constructed. In practical engineering, system reliability index is always a func-
tion containing component parameters. The analysis of system reliability is essentially an inference of the system
reliability index by using statistical methods. No statistical inference has been made about the reliability charac-
teristics of k-out-of-n: G systems with switching failure, which motivates us to explore the problem of statistical
inference for the reliability of k-out-of-n: G systems with switching failure. Therefore, this work intends to investi-
gate the statistical inference of the reliability of a k-out-of-n: G system with switching failure under Poisson shocks.
The used methods are classical statistics andMonte Carlo simulation. This work can provide a scientific theory and
a method for reliability assessment and quality management of k-out-of-n: G systems.

The rest of this paper is structured as follows. The considered system model is described in detail and some
assumptions are given in Section 2. Furthermore, themodel is analyzed and the recursive expression of theMTTF is
obtained. Section 3 is devoted to the statistical inference of the MTTF. Numerical simulation studies are presented
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to verify the performance of the statistical inference method in Section 4. In addition, the influence of system
parameters on the MTTF is analyzed, and the MTTF under two different threshold conditions is compared. The
conclusions and some suggestions for future research are given in Section 5.

2. Systemmodeling and analysis

2.1. Model description

The considered system operates in an environment with Poisson shocks. The system is composed ofN components,
includingM identical operating components,W identical warm standby components, and C identical cold standby
components. The failed components cannot be repaired. Once the number of operating components in the system
is less thanK, the system fails. The system is noted as aK-out-of-N: G non-repairable system. After the system fails,
the components in the system will not continue to fail. The specific assumptions of this system model are given as
follows.

(1) All components fail independently.
(2) At time t = 0,M components are operating and all components are new.
(3) The operating component in the system is affected by the lifetime of the component itself or external shocks.

The lifetime X of each operating component and the standby lifetime Y of each warm standby component are
assumed to be exponentially distributed with parameters λa and β(0 < β < λa), respectively. The system is
subjected to the shock from a homogeneous Poisson flow with the shock intensity of λb. In other words, the
arrival interval U of the shocks follows the exponential distribution with parameter λb.

(4) Each shock affects the components independently of each other, only the operating components are affected by
the shock, and the shock does not affect the standby components. Themagnitude Ẑ of each shock follows a dis-
tributionwith the cumulative distribution function F. The threshold is the same for each operating component.
If the magnitude Ẑ of each shock exceeds the threshold, the component will fail.

(5) If an operating component fails, a standby component is switched to an operating component instantly, and
the warm standby component is switched preferentially. The switching time is negligible.

(6) In the process of component switching, the standby components may fail with a failure probability of p(0 ≤
p ≤ 1). As long as there are standby components when the switching fails, the switching will continue until it
is successful.

(7) All the random variables in this model are independent of each other.

For different working environments of the system, the following two cases are considered, where the threshold is a
constant value or a random variable.

Case 1: The threshold is a constant value υ.
From assumptions (3) and (4), the failure probability of a single component due to a shock is

PẐ = P(̂Z > υ) = 1 − P(̂Z ≤ υ) = 1 − F(υ) = F(υ). (1)

The event Ars represents that a shock causes the specified s−r components among the M−r operating compo-
nents in the system to fail, and the remainingM−s operating components are normal. We note that r and s (s ≥ r)
represent the numbers of failed operating components before and after shock, respectively. The ars represents the
probability of occurrence of Ars, and then

ars = P(Ars) = F(υ)M−sF(υ)s−r . (2)

Assuming that the distribution of the shock magnitude Ẑ is an exponential one with the parameter u, then
Equation (2) can be expressed as

ars = (1 − e−uυ)M−s(e−uυ)s−r. (3)

Case 2: The threshold is a random variable V, which follows a distribution with the cumulative distribution
function ϕ.

From assumptions (3) and (4), the failure probability of a single component is P̂z = P(V ≤ ẑ) = ϕ(̂z) when the
value of the shock magnitude is ẑ. Let H = ϕ(̂Z), and then

P(H ≤ h) = P(ϕ(̂Z) ≤ h) = P(̂Z ≤ ϕ−1(h)) = F(ϕ−1(h)) = Fϕ−1(h). (4)
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Let D(h) = Fϕ−1(h) be the distribution function of H, and then we have

ars =
∫ 1

0
P(Ars|H = h)dD(h) =

∫ 1

0
(1 − h)M−shs−rdD(h). (5)

Assuming that the distribution function F is the same as the distribution function ϕ, then the distribution of H is
a uniform distribution on the interval (0, 1). Then, Equation (5) can be expressed as

ars =
∫ 1

0
(1 − h)M−shs−rdh = Beta(M − s + 1, s − r + 1). (6)

2.2. System state analysis

At time t, let N(t) = i(i = 0, 1, . . . ,N) represent the number of failed components in the system. According to the
model description, the state of the system at time t is denoted by {N(t), t ≥ 0}, which constitutes a continuous-time
homogeneous Markov process with the state space � = T ∪ � , where T = {0, 1, . . . ,N − K} and � = {N − K +
1,N − K + 2, . . . ,N} are the set of working states and the set of failure states, respectively.

The state probability of the system at time t is defined as follows.

Pi(t) = P{N(t) = i}, i = 0, 1, . . . ,N.

Therefore, the vector of the state probability of the system is

P(t) = (P0(t),P1(t), . . . ,PN(t)).

Let λi,j, φi,j, θi,j, δi,j and γi,j represent the transition rates of the number of failed components in the system from i to
j under different conditions, respectively. The transition rates between the states of the system are given as follows.

(1) When the number of failed components in the system is i, one component fails due to shock or its lifetime.
Then the transition rate is given by

λi,i+1 =

⎧⎪⎪⎨⎪⎪⎩
Mλa(1 − p) + (W − i)β + Ma01λb(1 − p), 0 ≤ i ≤ W − 1,
Mλa(1 − p) + Ma01λb(1 − p), W ≤ i ≤ W + C − 1,
(N − i)λa + (N − i)ai−(W+C),i−(W+C)+1λb, W + C ≤ i ≤ N − K,
0, otherwise.

(2) When the number of failed components in the system is i and there are standby components, that is 0 ≤ i ≤
W + C − 1, multiple components fail due to shock and switching failure. Then the transition rate is given as
follows.
• When 2 + i ≤ j ≤ W + C,

φi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mλapj−i−1(1 − p) +

j−i∑
d=1

(M
d
)
a0dλbpj−i−d(1 − p)d, j − i ≤ M,

Mλapj−i−1(1 − p) +
M∑
d=1

(M
d
)
a0dλbpj−i−d(1 − p)d, j − i > M.

• When j = W +C+ 1,

θi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Mλapj−i−1 +

j−i∑
d=1

(M
d
)
a0dλbpj−i−d(1 − p)d−1, j − i ≤ M,

Mλapj−i−1 +
M∑
d=1

(M
d
)
a0dλbpj−i−d(1 − p)d−1, j − i > M.

• WhenW + C + 1 < j ≤ N,

δi,j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

j−i∑
d=j−(W+C)

(M
d
)
a0dλbpj−i−d(1 − p)W+C−j+d, j − i ≤ M,

M∑
d=j−(W+C)

(M
d
)
a0dλbpj−i−d(1 − p)W+C−j+d, j − i > M.
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(3) When the number of failed components in the system is i and there are no standby components, that isW +
C ≤ i ≤ N − K, multiple components fail due to shock. Then the transition rate is given by

γi,j = (N−i
j−i
)
ai−(W+C),j−(W+C)λb, 2 + i ≤ j ≤ N.

2.3. State transition ratematrix of the system

The state transition rate matrix Q of the system can be divided into block matrices according to the existence situ-
ation of standby components, the situation of standby switching, and the system working state, soQ is represented
as follows:

Q =

⎛⎜⎜⎝
Q11 Q12 Q13 Q14
Q21 Q22 Q23 Q24
Q31 Q32 Q33 Q34
Q41 Q42 Q43 Q44

⎞⎟⎟⎠ ,

where Q is a square matrix of order N + 1.
The subblocks in the matrix Q are as follows:

Q11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0,0 λ0,1 φ0,2 φ0,3 · · · φ0,W+C−1 φ0,W+C
0 λ1,1 λ1,2 φ1,3 · · · φ1,W+C−1 φ1,W+C
0 0 λ2,2 λ2,3 · · · φ2,W+C−1 φ2,W+C
0 0 0 λ3,3 · · · φ3,W+C−1 φ3,W+C
...

...
...

...
. . .

...
...

0 0 0 0 · · · λW+C−1,W+C−1 λW+C−1,W+C
0 0 0 0 · · · 0 λW+C,W+C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(W+C+1)×(W+C+1)

,

Q12 = (
θ0,W+C+1, . . . , θW+C−1,W+C+1, λW+C,W+C+1

)�
(W+C+1)×1 ,

Q13 =

⎛⎜⎜⎜⎜⎜⎝
δ0,W+C+2 δ0,W+C+3 · · · δ0,N−K
δ1,W+C+2 δ1,W+C+3 · · · δ1,N−K

...
...

. . .
...

δW+C−1,W+C+2 δW+C−1,W+C+3 · · · δW+C−1,N−K
γW+C,W+C+2 γW+C,W+C+3 · · · γW+C,N−K

⎞⎟⎟⎟⎟⎟⎠
(W+C+1)×(M−K−1)

,

Q14 =

⎛⎜⎜⎜⎜⎜⎝
δ0,N−K+1 δ0,N−K+2 · · · δ0,N
δ1,N−K+1 δ1,N−K+2 · · · δ1,N

...
...

. . .
...

δW+C−1,N−K+1 δW+C−1,N−K+2 · · · δW+C−1,N
γW+C,N−K+1 γW+C,N−K+2 · · · γW+C,N

⎞⎟⎟⎟⎟⎟⎠
(W+C+1)×K

,

Q21 = 01×(W+C+1), Q22 = (
λW+C+1,W+C+1

)
,

Q23 = (
λW+C+1,W+C+2, γW+C+1,W+C+3, . . . , γW+C+1,N−K

)
1×(M−K−1) ,

Q24 = (
γW+C+1,N−K+1, γW+C+1,N−K+2, . . . , γW+C+1,N

)
1×K ,

Q31 = 0(M−K−1)×(W+C+1), Q32 = 0(M−K−1)×1,

Q33 =

⎛⎜⎜⎜⎜⎜⎝
λW+C+2,W+C+2 λW+C+2,W+C+3 · · · γW+C+2,N−K

0 λW+C+3,W+C+3 · · · γW+C+3,N−K
...

...
. . .

...
0 0 · · · λN−K−1,N−K
0 0 · · · λN−K,N−K

⎞⎟⎟⎟⎟⎟⎠
(M−K−1)×(M−K−1)

,

Q34 =

⎛⎜⎜⎜⎜⎜⎝
γW+C+2,N−K+1 γW+C+2,N−K+2 · · · γW+C+2,N
γW+C+3,N−K+1 γW+C+3,N−K+2 · · · γW+C+3,N

...
...

. . .
...

γN−K−1,N−K+1 γN−K−1,N−K+2 · · · γN−K−1,N
λN−K,N−K+1 γN−K,N−K+2 · · · γN−K,N

⎞⎟⎟⎟⎟⎟⎠
(M−K−1)×K

,
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Q41 = 0K×(W+C+1), Q42 = 0K×1, Q43 = 0K×(M−K−1), Q44 = 0K×K ,

where

− λi,i = λi,i+1 +
W+C∑
j=i+2

φi,j + θi,W+C+1 +
N∑

j=W+C+2

δi,j, 0 ≤ i ≤ W + C − 2,

− λW+C−1,W+C−1 = λW+C−1,W+C + θW+C−1,W+C+1 +
N∑

j=W+C+2

δW+C−1,j,

− λi,i = (N − i)λa +
N∑

j=i+1

(N−i
j−i
)
ai−(W+C),j−(W+C)λb,W + C ≤ i ≤ N − K.

2.4. The analysis of system reliability index

TheMTTF of the system can be interpreted as the mean time required for the system from the initial startup to the
failure states (i.e., absorbing states). If thematrixQ is used directly to calculate theMTTF, it will be very complicated.
Therefore, we can consider only the working states of the system and obtain a matrix Q̃ that removes the rows and
columns of Q corresponding to the absorbing states as follows:

Q̃ =
⎛⎝Q11 Q12 Q13
Q21 Q22 Q23
Q31 Q32 Q33

⎞⎠ .

The vector of the working state probability of the system at time t is P̃(t) = (̃P1(t), P̃2(t), P̃3(t)), where

P̃1(t) = (P0(t),P1(t), . . . ,PW+C(t)),

P̃2(t) = (PW+C+1(t)),

P̃3(t) = (PW+C+2(t),PW+C+3(t), . . . ,PN−K(t)).

According to the forward Kolmogorov’s equations and the initial condition of state probability, we have⎧⎨⎩
d
dt
P̃(t) = P̃(t)Q̃,

P̃(0) = (1, 0, . . . , 0)1×(N−K+1).
(7)

Using the partitioned state transition rate matrix Q̃ and the vector P̃(t) of the working state probability, we have

d
dt
P̃1(t) = P̃1(t)Q11, (8)

d
dt
P̃2(t) = (̃P1(t), P̃2(t))

(
Q12
Q22

)
, (9)

d
dt
P̃3(t) = (̃P1(t), P̃2(t), P̃3(t))

⎛⎝Q13
Q23
Q33

⎞⎠ . (10)

The differential Equations (8)–(10) are expanded, then the Laplace transform is performed. Thus, one can get the
algebraic equations are as follows:

sP∗
0(s) = λ0,0P∗

0(s) + 1, (11)

sP∗
1(s) = λ0,1P∗

0(s) + λ1,1P∗
1(s), (12)

sP∗
i (s) =

i−2∑
k=0

φk,iP∗
k(s) + λi−1,iP∗

i−1(s) + λi,iP∗
i (s), 2 ≤ i ≤ W + C, (13)
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sP∗
W+C+1(s) =

W+C−1∑
k=0

θk,W+C+1P∗
k(s) + λW+C,W+C+1P∗

W+C(s)

+ λW+C+1,W+C+1P∗
W+C+1(s), (14)

sP∗
i (s) =

W+C−1∑
k=0

δk,iP∗
k(s) +

i−2∑
k=W+C

γk,iP∗
k(s) + λi−1,iP∗

i−1(s)

+ λi,iP∗
i (s),W + C + 2 ≤ i ≤ N − K, (15)

where P∗
i (s) = ∫∞

0 e−stPi(t)dt, 0 ≤ i ≤ N − K.
By solving the algebraic Equations (11)–(15) recursively, one can obtain

P∗
0(s) = 1

−λ0,0 + s
, (16)

P∗
i (s) = fi(s)P∗

0(s)
−λi,i + s

, 1 ≤ i ≤ N − K, (17)

where

f1(s) = λ0,1,

f2(s) = φ0,2 + λ1,2f1(s)
−λ1,1 + s

,

fi(s) = φ0,i +
i−2∑
k=1

φk,ifk(s)
−λk,k + s

+ λi−1,ifi−1(s)
−λi−1,i−1 + s

, 3 ≤ i ≤ W + C,

fW+C+1(s) = θ0,W+C+1 +
W+C−1∑
k=1

θk,W+C+1fk(s)
−λk,k + s

+ λW+C,W+C+1fW+C(s)
−λW+C,W+C + s

,

fi(s) = δ0,i +
W+C−1∑
k=1

δk,ifk(s)
−λk,k + s

+
i−2∑

k=W+C

γk,ifk(s)
−λk,k + s

+ λi−1,ifi−1(s)
−λi−1,i−1 + s

,

W + C + 2 ≤ i ≤ N − K.

Based on the above calculation results and system reliability function R(t) = ∑N−K
i=0 Pi(t), the Laplace transform of

R(t) is obtained by

R∗(s) =
N−K∑
i=0

P∗
i (s) = P∗

0(s) +
N−K∑
i=1

fi(s)P∗
0(s)

−λi,i + s
=

1 +∑N−K
i=1

fi(s)
−λi,i+s

−λ0,0 + s
. (18)

The MTTF of the system can be obtained from the relationship between the MTTF and reliability function, and is
expressed as

MTTF = lim
s→0

R∗(s) =
1 +∑N−K

i=1
fi(0)
−λi,i

−λ0,0
. (19)

3. Statistical inference of theMTTF

3.1. Maximum likelihood estimation

Let X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) and U = (U1, . . . ,Un) be random samples with sample size n from the
operating component’s lifetime X, the standby lifetime Y of the warm standby component and the arrival interval
U of the shocks, respectively. Given each sample, the likelihood functions concerning each parameter respectively
are as follows:

L(λa|X1, . . . ,Xn) =
n∏

i=1
L(λa|Xi) = λa

nexp

(
−λa

n∑
i=1

Xi

)
, (20)
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L(β|Y1, . . . ,Yn) =
n∏

i=1
L(β|Yi) = βnexp

(
−β

n∑
i=1

Yi

)
, (21)

L(λb|U1, . . . ,Un) =
n∏

i=1
L(λb|Ui) = λb

nexp

(
−λb

n∑
i=1

Ui

)
. (22)

Thus, given samples X, Y and U , the likelihood function of parameters λa, β and λb is

L = L (λa,β , λb|X1, . . . ,Xn,Y1, . . . ,Yn,U1, . . . ,Un)

= (λaβλb)
n exp

(
−λa

n∑
i=1

Xi − β

n∑
i=1

Yi − λb

n∑
i=1

Ui

)
, (23)

and then, its log-likelihood function is

l = lnL = nlnλa + nlnβ + nlnλb −
(

λa

n∑
i=1

Xi + β

n∑
i=1

Yi + λb

n∑
i=1

Ui

)
. (24)

Let λ̂a, β̂ and λ̂b be the MLEs of parameters λa, β and λb, respectively. Then λ̂a = X−1 is obtained by ∂ l
∂λa

= n
λa

−∑n
i=1Xi = 0. Similarly, β̂ = Y−1 and λ̂b = U−1 can be obtained. Thereinto, X, Y and U are the sample means of

X, Y and U , respectively.
Based on the invariance ofMLE, the λ̂a, β̂ and λ̂b are brought into Equation (19) to obtain theMLE of theMTTF,

which is noted as ̂MTTF.

3.2. Asymptotic confidence interval estimation

The distribution of ̂MTTF is difficult to derive exactly. However, the asymptotic likelihood theory can be used to
obtain the asymptotic distribution of ̂MTTF. So, the asymptotic confidence interval of the MTTF for the system
can be constructed. The Fisher information matrix of Θ = (λa,β , λb) is given by

I(Θ) = −

⎡⎢⎢⎢⎣
E
(

∂2l
∂λa

2

)
E
(

∂2l
∂λa∂β

)
E
(

∂2l
∂λa∂λb

)
E
(

∂2l
∂β∂λa

)
E
(

∂2l
∂β2

)
E
(

∂2l
∂β∂λb

)
E
(

∂2l
∂λb∂λa

)
E
(

∂2l
∂λb∂β

)
E
(

∂2l
∂λb

2

)
⎤⎥⎥⎥⎦ , (25)

where

E
(

∂2l
∂λa

2

)
= − n

λa
2 , E

(
∂2l
∂β2

)
= − n

β2 , E
(

∂2l
∂λb

2

)
= − n

λb
2 ,

E
(

∂2l
∂λa∂β

)
= E

(
∂2l

∂λa∂λb

)
= E

(
∂2l

∂β∂λb

)
= 0.

The inverse matrix of the Fisher information matrix is

I−1(Θ) = diag
(

λa
2

n
,
β2

n
,
λb

2

n

)
, (26)

and thus Θ̂ − Θ follows a 3-dimensional asymptotic normal distribution with mean value vector 0 and covariance
matrix I−1(Θ), i.e., (Θ̂ − Θ)

D−→ N(0, I−1(Θ)).
According to the multivariate Delta method, ̂MTTF follows an asymptotic normal distribution with mean value

MTTF (see Equation (19)) and variance σ 2 = GI−1(Θ)G�, i.e.,

̂MTTF D−→ N
(
MTTF, σ 2) , (27)

where G = ( ∂MTTF
∂λa

, ∂MTTF
∂β , ∂MTTF

∂λb
), and then

̂MTTF − MTTF√
σ 2

D−→ N(0, 1). (28)
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From P(−zα/2 ≤ ̂MTTF−MTTF√
σ̂ 2 ≤ zα/2) ≈ 1 − α, the asymptotic confidence interval of a confidence level of

100(1-α)% for the MTTF is obtained as(
̂MTTF − zα/2

√
σ̂ 2, ̂MTTF + zα/2

√
σ̂ 2
)
, (29)

where zα/2 is the α/2th quantile of the standard normal distribution and σ̂ 2 can be computed at Θ = Θ̂ .

3.3. Hypothesis testing

Aside from the estimations mentioned above, hypothesis testing about the MTTF is also a statistical inference
issue. The significance test, which first makes a hypothesis about the characteristics of the population, and then a
sampling study is conducted to determine whether the hypothesis should be rejected. In Section 3.2, ̂MTTF D−→
N(MTTF, σ 2) can be known. Based on hypothesis testing of mean value, the null hypothesis and alternative
hypothesis for the MTTF, using an upper-tail test in one-tail tests, are as follows:

H0 : MTTF ≤ MTTF∗ vs H1 : MTTF > MTTF∗, (30)

where MTTF∗ is the MTTF at a constant level. Testing is implemented with the asymptotic distribution and the
Z-test, and then the rejection region of the test at the significance level α is{

̂MTTF :
̂MTTF − MTTF∗

√
σ̂ 2

> zα

}
. (31)

The power function of this test represents the probability of the sample observations falling within the rejection
region and is expressed by:

g(MTTF) = P
(
Z > zα + MTTF∗ − MTTF√

σ 2

)
, (32)

where Z = ̂MTTF−MTTF√
σ 2 is a standard normal random variable.

Hypothesis testing can make two types of errors: false positive and false negative. In significance testing, the
focus is generally on controlling the probability of Type I error. That is also known as false positive, where sam-
ple observations fall within the rejection region when the null hypothesis is true. Type I error rate is denoted as
α(MTTF). Let �0 = {MTTF|MTTF ≤ MTTF∗}, and then α(MTTF) = g(MTTF), where MTTF ∈ �0.

4. Numerical simulation

Based on the system reliability model and evaluation method proposed in this paper, the 2-out-of-7: G system
consisting of 3 operating components, 2 warm standby components and 2 cold standby components is taken as
an example for numerical simulation and analysis. Assuming that in Case 1, u = 0.5 and υ = 1. Let λa = 0.04,
β = 0.002, λb = 0.04 and p = 0.005 be the basic parameter values. First, the estimated results of the MTTF are
obtained under different parameters λa and λb. Further, the parameter values are fixed, asymptotic confidence
interval simulations are performed, and the simulation results are evaluated. To evaluate the performance of the
asymptotic confidence interval of the MTTF, the coverage rate (I), mean length (ML) and standard deviation (SD)
of the confidence interval are considered. Finally, the power function and Type I error rate in hypothesis testing are
simulated.

4.1. Basic steps of estimation

In this section, the basic steps for performing maximum likelihood estimation and asymptotic confidence interval
estimation for the MTTF are given as follows.

Step 1: Given specific parameter values, then determine the specific distributions of X, Y and U.
Step 2: Generate random samples with sample size n based on Step 1, denoted as X = (X1, . . . ,Xn), Y =

(Y1, . . . ,Yn) and U = (U1, . . . ,Un), respectively.
Step 3: Calculate λ̂a, β̂ and λ̂b in accordance with Section 3.1, respectively.
Step 4: Substitute λ̂a, β̂ and λ̂b into Equation (19) to obtain ̂MTTF.
Step 5: Substitute λ̂a, β̂ and λ̂b into the expression of σ 2 to obtain σ̂ 2.
Step 6: Calculate the asymptotic confidence interval according to Equation (29) in Section 3.2.
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Table 1. Case 1: MTTF with different parameters λa and λb.

n λa λb = 0.02 λb = 0.04 λb = 0.06 λb = 0.08 λb = 0.10

0.02 66.3193 48.2686 38.2834 31.4065 27.0813
0.04 40.5532 33.4304 27.9653 24.3838 21.3521

20 0.06 29.3949 25.6585 22.3474 19.8548 17.7616
0.08 23.3466 20.5124 18.4310 16.4604 15.3443
0.10 19.2287 17.3226 15.5825 14.5111 13.4224
0.02 66.4891 49.1402 38.8552 31.9187 27.2536
0.04 41.2020 33.7399 28.2266 24.6389 21.6927

40 0.06 29.8685 25.6951 22.5258 19.9999 18.0393
0.08 23.4344 20.8934 18.5713 16.9197 15.4005
0.10 19.2233 17.3667 15.8467 14.5965 13.5127
0.02 66.7041 49.5959 38.8698 32.0381 27.3628
0.04 41.5149 33.8023 28.5466 24.6800 21.7475

60 0.06 30.0807 25.7095 22.4824 19.9928 18.0856
0.08 23.2127 20.7820 18.6734 16.9283 15.4993
0.10 19.2724 17.3828 15.8293 14.6386 13.6491
0.02 67.4707 49.2862 38.8542 32.1585 27.2466
0.04 41.4846 33.8371 28.6121 24.8947 21.8146

80 0.06 29.9387 25.7964 22.5858 20.1215 18.1356
0.08 23.3843 20.8197 18.6243 16.9655 15.5668
0.10 19.3325 17.4879 15.9302 14.6666 13.5851
0.02 67.6106 49.4471 38.9872 32.2813 27.4572
0.04 41.4937 33.7832 28.6858 24.8080 21.8087

100 0.06 30.0497 25.8933 22.6619 20.1709 18.2224
0.08 23.4872 20.8553 18.7317 16.9989 15.5638
0.10 19.2998 17.4309 15.8992 14.6278 13.6277
0.02 67.7838 49.6576 39.1625 32.3239 27.5165
0.04 41.6785 34.0674 28.7946 24.9293 21.9758

True 0.06 30.0802 25.9123 22.7516 20.2740 18.2805
0.08 23.5298 20.9037 18.8004 17.0789 15.6443
0.10 19.3215 17.5164 16.0168 14.7517 13.6704

Table 2. Case 2: MTTF with different parameters λa and λb.

n λa λb = 0.02 λb = 0.04 λb = 0.06 λb = 0.08 λb = 0.10

0.02 71.3434 53.5257 43.0248 36.1888 31.1768
0.04 42.8080 35.6201 30.7101 26.8521 23.9329

20 0.06 30.5650 26.8527 23.6848 21.5014 19.4837
0.08 23.6452 21.4061 19.5342 17.9598 16.6084
0.10 19.6389 17.9654 16.4747 15.2320 14.3036
0.02 72.1648 54.4767 43.9479 36.6323 31.4713
0.04 43.1231 36.0099 31.0028 27.4702 24.3018

40 0.06 30.6741 27.1006 24.2454 21.8293 19.7547
0.08 24.0802 21.5858 19.7146 18.0369 16.6627
0.10 19.4457 18.0438 16.7400 15.4423 14.5115
0.02 72.0168 54.8743 43.9760 36.9447 31.8516
0.04 43.5128 36.2425 31.2593 27.3968 24.4605

60 0.06 31.0299 27.1933 24.2945 21.8526 19.9589
0.08 24.0722 21.6064 19.7824 18.2767 16.9305
0.10 19.7927 18.0215 16.7331 15.5846 14.5762
0.02 72.6431 54.6920 44.0991 36.6622 31.7637
0.04 43.1634 36.4578 31.3398 27.4294 24.6660

80 0.06 31.0303 27.2206 24.2918 21.9129 20.0724
0.08 24.1279 21.6639 19.7943 18.2275 16.8500
0.10 19.7152 18.1301 16.7525 15.6053 14.5848
0.02 72.6174 54.8024 44.1801 36.9918 31.7781
0.04 43.2944 36.3479 31.4296 27.5397 24.6135

100 0.06 30.9124 27.1658 24.2275 21.8587 20.0653
0.08 24.0407 21.8375 19.8635 18.2533 16.8307
0.10 19.6664 18.0385 16.7538 15.6131 14.6210
0.02 72.7120 55.1405 44.3826 37.1256 31.9026
0.04 43.4849 36.5550 31.5171 27.6923 24.6909

True 0.06 31.0083 27.3242 24.4155 22.0620 20.1195
0.08 24.0934 21.8119 19.9209 18.3288 16.9704
0.10 19.6997 18.1491 16.8221 15.6741 14.6714

4.2. Results of themaximum likelihood estimation

Let n = 20, 40, 60, 80, 100. Then X, Y and U are random samples with sample size n from the exponential dis-
tributions of the corresponding parameters, respectively. For Cases 1 and 2, the mean values of 1000 simulated
estimation results for the MTTF with different parameters λa and λb are given in Tables 1 and 2, respectively.

Tables 1 and 2 show that theMTTF decreases with increasing λa and λb. Also, it is observed that the component’s
failure rate λa has a greater effect on the MTTF than the intensity of the shocks λb. The reason is that although the
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Figure 1. Case 1: Coverage rate of the 95% confidence interval of the MTTF.

arrival of a shock flow can affect more than one operating component, the arrival of the shock does not necessarily
cause the failure of the component. Based on the given distributions and parameters of the shock magnitude and
threshold, the probability of the component failure caused by the shock is small. By comparing the numerical results
in Tables 1 and 2, it can be found that the MTTF in Case 2 is larger than that in Case 1, under the same parameters.
The reason is that the probability of the component failure caused by the shock in Case 2 is smaller than that in
Case 1. In Tables 1 and 2, the estimated results under different sample sizes n are compared with the true values,
respectively. It is discovered that simulation results fluctuate around the true values and these results become closer
to the true values as n increases.

4.3. Simulation and evaluation of asymptotic confidence interval

Based on the basic parameter values, the asymptotic confidence interval of the MTTF is simulated when n =
1, 2, . . . , 1000. Taking the significance level α = 0.05, the 95% confidence interval of the MTTF is indicated by
the following formula: (

̂MTTF − 1.96
√

σ̂ 2, ̂MTTF + 1.96
√

σ̂ 2
)
.

For a fixed sample size n, the number of simulations is 1000. Let Iq be the indicator function that the true value of
the MTTF falls within the confidence interval of the qth simulation, which follows a two-point distribution with a
parameter of 0.95. Then the number of simulated confidence intervals covering the true value follows the binomial
distribution B(1000, 0.95). According to the central limit theorem (CLT), one can get∑1000

q=1 Iq − 1000 × 0.95√
1000 × 0.95 × 0.05

= I − 0.95√
0.95 × 0.05/1000

∼ N(0, 1),

where I = ∑1000
q=1 Iq/1000. Thus, the probability of the coverage rate I falling into the following interval is 99%.(
0.95 − 2.576

√
0.95 × 0.05/1000, 0.95 + 2.576

√
0.95 × 0.05/1000

)
= (0.932, 0.968).

For different n, Figures 1 and 2 display the coverage rate of the 95% confidence interval of the MTTF. It is observed
that the coverage rate of the 95% confidence interval of theMTTF basically fluctuates within the theoretical interval
of (0.932, 0.968) when the sample size n is large enough.

For different thresholds, the simulated ML and SD of the 95% confidence interval for the MTTF are given in
Tables 3 and 4. In Tables 3 and 4, it is observed that the SD gradually decreases and approaches 0 as n increases.
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Figure 2. Case 2: Coverage rate of the 95% confidence interval of the MTTF.

Table 3. Case 1: ML and SD.

n 20 30 50 100 300 500 700 1000

ML 21.1661 17.5473 13.6808 9.6781 5.6018 4.3411 3.6751 3.0714
SD 3.4699 2.1647 1.4283 0.6667 0.2193 0.1347 0.0970 0.0677

Table 4. Case 2: ML and SD.

n 20 30 50 100 300 500 700 1000

ML 23.3519 19.2591 15.0537 10.6336 6.1703 4.7861 4.0379 3.3802
SD 3.5426 2.4887 1.4983 0.7956 0.2484 0.1523 0.1102 0.0738

For the proposed confidence level, the interval estimation with the smallest mean length of the interval is the best.
As n increases, the ML of the interval becomes progressively shorter, and the confidence interval performs better.
Combining the coverage rate, ML and SD of the confidence interval, it is discovered that the simulation of the
asymptotic confidence interval of the MTTF is optimistic, and the larger the sample size n, the better the result.

4.4. Power function and Type I error rate for hypothesis testing

For a given n, after constructing the asymptotic confidence interval of the MTTF, the power function is calculated
by taking the significance level α = 0.05, considering MTTF∗ = 32. In Section 4.3, and the simulations are run
1000 times, and the results are recorded as ( ̂MTTF(1), σ̂ 2

(1)), ( ̂MTTF(2), σ̂ 2
(2)), . . . , ( ̂MTTF(1000), σ̂ 2

(1000)). Let Ic be
the indicator function that the cth simulated estimation result of the MTTF falls within the rejection region, and
the simulated value of the power function is ĝ(MTTF) = ∑1000

c=1 Ic/1000.
Figures 3 and 4 show the simulated power function values of the test for different sample sizes n. As can be

seen, ĝ(MTTF) increases as n increases for any given MTTF > MTTF∗ and converges to a maximum value of 1.
The probability of ̂MTTF falling within the rejection region approaches 1, which is clearly in line with the actual
situation. Comparing Figures 3 and 4, it is observed that the speed of the power function value tending to 1 in
Case 2 is faster than that in Case 1. In Section 4.2, the MTTF of Case 2 is larger than that of Case 1 under the same
parameters. Therefore the distance betweenMTTF andMTTF∗ is positively correlated with the speed of the power
function value tending to 1.

By considering the case of MTTF = MTTF∗, Type I error rate is simulated to evaluate the performance of the
rejection rule. In Cases 1 and 2, let MTTF∗ = 34.0674 and MTTF∗ = 36.5550, respectively. Type I error rate is the
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Figure 3. Case 1: Power function value of the test.

Figure 4. Case 2: Power function value of the test.

probability of ̂MTTF falling within the rejection region when MTTF = MTTF∗. So the simulated Type I error rate
is α̂(MTTF) = ∑1000

c=1 Ic/1000.
∑1000

c=1 Ic follows the binomial distribution B(1000, 0.05),

∑1000
c=1 Ic − 50√

1000 × 0.05 × 0.95
= α̂(MTTF) − 0.05√

0.05 × 0.95/1000
∼ N(0, 1),
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Figure 5. Case 1: Type I error rate of the test.

Figure 6. Case 2: Type I error rate of the test.

which is obtained by the CLT. Thus, the probability of α̂(MTTF) falling into the following interval is 99%.

(
0.05 − 2.576

√
0.05 × 0.95/1000, 0.05 + 2.576

√
0.05 × 0.95/1000

)
= (0.0322, 0.0678).

Figures 5 and 6 show the simulated Type I error rate of the test for Cases 1 and 2, respectively. It is observed that
the Type I error rate basically fluctuates within the theoretical interval of (0.0322, 0.0678) when the sample size n
is large enough.
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5. Conclusion

Thiswork investigates a statistical inference problem about theMTTFof aK-out-of-N: G system in a shock environ-
ment, which is modeled by considering switching failure, mixed standby and Poisson shocks. Based on the Markov
process theory, the state transition rate matrix of the system and state probability equations are constructed to
deduce the analytical expression of the MTTF. The MLE and the asymptotic confidence interval of the MTTF are
obtained by using sample data generated from random simulations. As the sample size increases, the simulation
results demonstrate that the MLE of the MTTF is closer to the true value, the ML and SD of the asymptotic confi-
dence interval gradually decrease, and the performance of the power function for the hypothesis testing becomes
better. Based on the basic values of system parameters, the MTTF for two different cases of the shock threshold are
compared. It is observed that the MTTF under Case 2 is larger than that under Case 1. The effect of each parameter
on theMTTF is analyzed, which indicates that the component’s failure rate λa has a greater effect on theMTTF than
the intensity of the shocks λb. In the systemmodel of this paper, the lifetime of all components follows an exponen-
tial distribution. While it would be more general to study a situation where the lifetime of components follows a
general distribution. Therefore, Poisson shocks and switching failure can be introduced into complex systems with
general distribution in the future, which has important theoretical significance and reference value for the analysis
and evaluation of system reliability index.
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