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ABSTRACT
When the historical data of the early phase trial and the interim data of the Phase III trial are avail-
able, we should use them to give amore accurate prediction in both futility and efficacy analysis.
The predictive power is an important measure of the practical utility of a proposed trial, and it is
better than the classical statistical power in giving a good indication of the probability that the
trial will demonstrate a positive or statistically significant outcome. In addition to the four predic-
tive powerswith historical and interim data available in the literature and summarized in Table 1,
we discover and calculate another four predictive powers also summarized in Table 1, for one-
sided hypotheses.Moreover, we calculate eight predictive powers summarized in Table 2, for the
reversed hypotheses. The combination of the two tables gives us a complete picture of the pre-
dictive powers with historical and interim data for futility and efficacy analysis. Furthermore, the
eight predictive powers with historical and interim data are utilized to guide the futility analysis
in the tamoxifen example. Finally, extensive simulations have been conducted to investigate the
sensitivity analysis of priors, sample sizes, interim result and interim time on different predictive
powers.
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1. Introduction

The predictive power, which is the prior expectation
of the power and averaged over the prior distribution
for the unknown true treatment effect, is an impor-
tant measure of the practical utility of a proposed trial,
and it is better than the power in giving a good indi-
cation of the probability that the trial will demonstrate
a positive or statistically significant outcome. As we
know, the power may have very different values at
different treatment effects (for instance, a treatment
effect under the alternative hypothesis or an observed
treatment effect in the interim analysis), and that
may cause difficulty for interpretation. The predictive
power has been investigated intensively in the literature
(Choi et al., 1985; Schmidli et al., 2007; Spiegelhalter
et al., 1986; Zhang & Ting, 2018). Moreover, the predic-
tive power is also known as assurance (Kirby et al., 2012;
O’Hagan et al., 2005; Wang et al., 2006), Probability
Of Success (POS) (Ibrahim et al., 2015; Jiang, 2011;
Trzaskoma & Sashegyi, 2007), Average Success Proba-
bility (ASP) (Chuang-Stein, 2006; Zhang & Ting, 2020)
or Contemplated Average Success Probability (CASP)
(Zhang et al., 2020a).

The ‘predictive power’ is the central matter of our
methodological development. Therefore, we present a
general formal expression of it. The predictive power is
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an average power with respect to some prior, that is,

predictive power =
∫ ∞

−∞
power (δ) × prior (δ) dδ,

where δ is the true treatment effect of the early phase
and Phase III trials. There are eight predictive powers
with historical and interim data, because we have four
choices for power(δ), that is, the classical power that
does not use any data, the classical conditional power
that uses the interim data once, the Bayesian power that
uses the historical data once, and the Bayesian condi-
tional power that uses the historical data once and the
interim data once; andwe have two choices for prior(δ),
that is, π(δ|d0) that uses the historical data once, and
π(δ|d0, d1) that uses the historical data once and the
interim data once, where d0 is the historical data, and
d1 is the interim data.

Spiegelhalter et al. (2004) have calculated the rejec-
tion region, the power or the conditional power, and the
predictive power or the conditional predictive power of
the hypothesesH0 : δ ≤ 0 versusH1 : δ > 0 for five dif-
ferent scenarios, which are non-sequential trials with
classical power and Bayesian power, and sequential tri-
als with hybrid predictions, Bayesian predictions, and
classical predictions in Sections 6.5 and 6.6. They also
gave the adjusting formulae, which include nonzero
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threshold and reversal of hypotheses, for different
hypotheses in Section 6.5.4. In their book, they did not
explicitly mention that the predictive powers of the five
different scenarios use different combination of histor-
ical and interim data. In this article, we explicitly men-
tion that different predictive powers will use different
combination of historical and interim data. Moreover,
we expand the four predictive powers (the predictive
power corresponding to the sequential trialswith classi-
cal predictions is excluded) in Spiegelhalter et al. (2004)
to eight predictive powers for the hypotheses H0 : δ ≤
δ0 versus H1 : δ > δ0 and the reversed hypotheses H0 :
δ ≥ δ0 versusH1 : δ < δ0, which can be seen in Tables 1

and 2,where δ0 is a threshold value for δ. In otherwords,
we have discovered four predictive powers with histori-
cal and interim data for the hypotheses and the reversed
hypotheses. Finally, the eight predictive powers are uti-
lized to guide the futility analysis in the tamoxifen
example, in which a long-term tamoxifen therapy is
used for the prevention of recurrence of breast can-
cer. The tamoxifen example is a Phase III trial and the
predictive powers suggest us to stop the trial for futility.

The rest of the paper is organized as follows. In
Section 2, we provide two tables. The eight predictive
powers with historical and interim data, their analytical
expressions, the predictive distributions, the data used,

Table 1. The eight predictive powers with historical and interim data, their analytical expressions, the predictive distributions, the
data used, and the references for the hypotheses H0 : δ ≤ δ0 versus H1 : δ > δ0.

No. Predictive power Analytical expression Predictive distribution Data used References

1
I1 = CPP = P(SC,d2α,δ0

|d0)
= ∫∞

−∞ P(SC,d2α,δ0
|δ)π(δ|d0) dδ

E1 π(d2|d0) H (6.4) in Spiegelhalter et al. (2004);
(6) in O’Hagan et al. (2005);
(2) in Chuang-Stein (2006)

2
I2 = CIPP = P(SC,d2α,δ0

|d0, d1)
= ∫∞

−∞ P(SC,d2α,δ0
|δ)π(δ|d0, d1) dδ

E2 π(d2|d0, d1) HI

3
I3 = CCPP = P(SC,d1,d2α,δ0

|d0)
= ∫∞

−∞ P(SC,d1,d2α,δ0
|δ, d1)π(δ|d0) dδ

E3 π(d2|d0) HI

4
I4 = CCIPP = P(SC,d1,d2α,δ0

|d0, d1)
= ∫∞

−∞ P(SC,d1,d2α,δ0
|δ, d1)π(δ|d0, d1) dδ

E4 π(d2|d0, d1) HI2 (6.15) in Spiegelhalter et al. (2004)

5
I5 = BPP = P(SB,d0,d2α,δ0

|d0)
= ∫∞

−∞ P(SB,d0,d2α,δ0
|δ, d0)π(δ|d0) dδ

E5 π(d2|d0) H2 (6.7) in Spiegelhalter et al. (2004)

6
I6 = BIPP = P(SB,d0,d2α,δ0

|d0, d1)
= ∫∞

−∞ P(SB,d0,d2α,δ0
|δ, d0)π(δ|d0, d1) dδ

E6 π(d2|d0, d1) H2I

7
I7 = BCPP = P(SB,d0,d1,d2α,δ0

|d0)
= ∫∞

−∞ P(SB,d0,d1,d2α,δ0
|δ, d0, d1)π(δ|d0) dδ

E7 π(d2|d0) H2I

8
I8 = BCIPP = P(SB,d0,d1,d2α,δ0

|d0, d1)
= ∫∞

−∞ P(SB,d0,d1,d2α,δ0
|δ, d0, d1)π(δ|d0, d1) dδ

E8 π(d2|d0, d1) H2I2 (6.18) in Spiegelhalter et al. (2004)

Table 2. The eight predictive powers with historical and interim data, their analytical expressions, the predictive distributions, and
the data used for the reversed hypotheses H0 : δ ≥ δ0 versus H1 : δ < δ0.

No. Predictive power Analytical expression Predictive distribution Data used

1
I−1 = CPP− = P(SC−,d2

α,δ0
|d0)

= ∫∞
−∞ P(SC−,d2

α,δ0
|δ)π(δ|d0) dδ

E−
1 π(d2|d0) H

2
I−2 = CIPP− = P(SC−,d2

α,δ0
|d0, d1)

= ∫∞
−∞ P(SC−,d2

α,δ0
|δ)π(δ|d0, d1) dδ

E−
2 π(d2|d0, d1) HI

3
I−3 = CCPP− = P(SC−,d1,d2

α,δ0
|d0)

= ∫∞
−∞ P(SC−,d1,d2

α,δ0
|δ, d1)π(δ|d0) dδ

E−
3 π(d2|d0) HI

4
I−4 = CCIPP− = P(SC−,d1,d2

α,δ0
|d0, d1)

= ∫∞
−∞ P(SC−,d1,d2

α,δ0
|δ, d1)π(δ|d0, d1) dδ

E−
4 π(d2|d0, d1) HI2

5
I−5 = BPP− = P(SB−,d0,d2

α,δ0
|d0)

= ∫∞
−∞ P(SB−,d0,d2

α,δ0
|δ, d0)π(δ|d0) dδ

E−
5 π(d2|d0) H2

6
I−6 = BIPP− = P(SB−,d0,d2

α,δ0
|d0, d1)

= ∫∞
−∞ P(SB−,d0,d2

α,δ0
|δ, d0)π(δ|d0, d1) dδ

E−
6 π(d2|d0, d1) H2I

7
I−7 = BCPP− = P(SB−,d0,d1,d2

α,δ0
|d0)

= ∫∞
−∞ P(SB−,d0,d1,d2

α,δ0
|δ, d0, d1)π(δ|d0) dδ

E−
7 π(d2|d0) H2I

8
I−8 = BCIPP− = P(SB−,d0,d1,d2

α,δ0
|d0, d1)

= ∫∞
−∞ P(SB−,d0,d1,d2

α,δ0
|δ, d0, d1)π(δ|d0, d1) dδ

E−
8 π(d2|d0, d1) H2I2
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Figure 1. Thedata structures of the historical data, interimdata
and future data.

and the references for the hypotheses H0 : δ ≤ δ0 ver-
susH1 : δ > δ0 are given inTable 1. Those quantities for
the reversed hypothesesH0 : δ ≥ δ0 versusH1 : δ < δ0
are given in Table 2. The data structures of the his-
torical data, interim data and future data described in
Figure 1 can also be found in this section. Section 3
illustrates the calculations of the eight predictive pow-
ers through the tamoxifen example. Section 4 conducts
extensive simulations to investigate the sensitivity anal-
ysis of priors, sample sizes, interim result and interim
time on different predictive powers. Some conclusions
and discussions are provided in Section 5.

2. Eight predictive powers with historical and
interim data

Similar toDmitrienko andWang (2006) and Jiang (2011),
a go/no-go decision rule can be defined at the end of the
early phase trial or at the interim of the Phase III trial.
In our notation,

Decision criteria

=

⎧⎪⎪⎨
⎪⎪⎩
Stop for efficacy, if γe ≤ PP,
Go, if γg ≤ PP < γe,
Conditional − Go, if γf < PP < γg ,
Stop for futility, if PP ≤ γf ,

(1)

where PP is the predictive power, while γf , γg and γe
are pre-specified thresholds for futility, go and efficacy,
respectively. The thresholds should satisfy the following
constraints:

0 < γf < γg < γe < 1.

Jiang (2011) suggests γf ≥ 0.5, with γf = 0.5 meaning
that a stop for futility decision is taken if

1 − PP ≥ 0.5 ≥ PP,

that is, the risk of failure is greater than or equal to
the chance of success. The threshold γe can be set at
a relatively high value such as 0.9, so that when the
PP exceeds this threshold, a stop for efficacy decision
can be made. Finally, the threshold γg can be set at a
value such as 0.8, so that if γg ≤ PP < γe, a go decision
can be made, where ‘Go’ means moving on without the
need of adjustment to the sample size of the future data
m2; if γf < PP < γg , a conditional-go decision can be
made, where ‘Conditional-Go’ means moving on with
the condition thatm2 is either increased to improve the
PP (so it is equal or close to γg) or staying unchanged
while acknowledging a reduced PP or increased risk of
failure. Note that there are two no-go decisions in our
decision criteria (1), that is, stop for futility and stop for
efficacy.

The data structures of the historical data, interim
data and future data are described in Figure 1. In the
figure, H means historical data, I means interim data
and F means future data. The historical data could be
the Phase II data, or the previous Phase III data, as long
as the outcome variable and patient populations are
the same between the historical data and the upcom-
ing Phase III data. Moreover, the historical data could
also be a fictitious data corresponding to a sceptical
or optimistic prior, and in this case d0 and m0 of the
historical data are determined to satisfy the require-
ments of the sceptical or optimistic prior. Note that d0,
d1 and d2 are the observed treatment differences in the
treatment group and the control (or placebo) group of
the historical data, interim data and future data respec-
tively, andm0,m1 andm2 are the per group number of
patients of the historical data, interim data and future
data respectively. In the upper plot, only historical data
are available. Furthermore, the upper plot also depicts
the data structure for criterion (7). Note that in the
upper plot, the sample size of the future data m2 is the
whole sample size of the Phase III trial. Note that the
present time of the program (termed now) in the upper
plot is at the end of Early Phase and before the start of
Phase III. At that time, only two predictive powers can
be calculated to facilitate the go/no-go decision accord-
ing to the decision criteria (1), that is, the first and fifth
predictive powers in Tables 1 and 2. If the PP results
in a ‘Go’ or ‘Conditional-Go’ decision according to the
decision criteria (1), then the Phase III trial is launched.
However, if the PP results in a no-go decision (either
stop for futility or stop for efficacy), then the Phase III
trial will not be launched. Furthermore, if the Phase III
trial is launched and the interim data of the Phase III
trial are available, the data structure of the program can
be described in the lower plot of Figure 1. Note that the
present time of the program (termed now) in the lower
plot is at the interimof the Phase III trial. At the interim,
there are six predictive powers which can be calculated
to facilitate the go/no-go decision according to the deci-
sion criteria (1), that is, the second, third, fourth, sixth,
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seventh and eighth predictive powers in Tables 1 and 2.
In the lower plot, both historical data and interim data
are available. Moreover, the lower plot also depicts the
data structure for criterion (4) and (5).

Note that F in the graph could be meaning data after
interim in the lower plot, and full Phase III data in
the upper plot. The justifications of the meaning of F
are given as follows. First, the future data are the data
after the present time (termed now in the upper and
lower plots). Second, in the lower plot, when the infor-
mation time increases, the interim data become more
and more, and the future data become less and less.
Conversely, when the information time decreases, the
future data become more and more, and the interim
data become less and less. When the information time
is 0, the future data is the full Phase III data.

Suppose that the interim analysis of a random-
ized controlled Phase III trial is to be conducted with
patients randomized to one of two treatments, withm1
patients allocated to treatment i (i = 1, 2), where treat-
ment 2 is the test drug and treatment 1 is the control
(or placebo). Moreover, suppose that the j-th patient
receiving treatment i for the interim data will yield a
continuous response xij1 thatwe can assume is normally
distributed with an unknown mean μi1 and a com-
mon known variance σ 2. The third subscript ‘1’ in xij1
means that the responses are for the interimdata.More-
over, assume that the data from the two treatments are
independent. Thus the model of the interim data of the
Phase III trial is that

xij1
independent∼ N

(
μi1, σ 2) , j = 1, . . . ,m1, i = 1, 2.

It is easy to derive the sampling distributions of the
sufficient statistics

x̄i1|μi1 =
⎛
⎝ 1
m1

m1∑
j=1

xij1

⎞
⎠ |μi1

∼ N
(

μi1,
σ 2

m1

)
, i = 1, 2.

More specifically,

x̄21|μ21 ∼ N
(

μ21,
σ 2

m1

)
and

x̄11|μ11 ∼ N
(

μ11,
σ 2

m1

)
.

Therefore,

d1|δ = (x̄21 − x̄11) |δ ∼ N
(

δ,
2σ 2

m1

)
,

where d1 = x̄21 − x̄11 is the sample mean difference
based on the interim data of the Phase III trial, and
δ = μ21 − μ11 is the true treatment effect based on the
interim data of the Phase III trial.

Similarly, suppose that the future data of a random-
ized controlled Phase III trial is to be collected with
patients randomized to one of two treatments, withm2
patients allocated to each treatment. After some similar
derivations for the interim analysis of the Phase III trial,
we have

d2|δ ∼ N
(

δ,
2σ 2

m2

)
,

where d2 = x̄22 − x̄12 is the sample mean difference
based on the future data of the Phase III trial, δ = μ22 −
μ12 is the true treatment effect based on the future data
of the Phase III trial, x̄i2 = 1

m2

∑m2
j=1 xij2 (i = 1, 2) is the

samplemean of xij2 which is the continuous response of
the j-th patient receiving treatment i for the future data,
and μi2 (i = 1, 2) is the unknown mean of xij2. The
third subscript ‘2’ in xij2 means that the responses are
for the future data. Note that we have assumed the true
treatment effects based on the interim data and future
data of the Phase III trial are the same. This assump-
tion has also been used in the literature. See for instance
(Spiegelhalter et al., 2004). Note also that the assump-
tion can be easily violated in the clinical trials, such as
the enrichment design which will change the popula-
tion. Therefore, our discussions are not suitable for the
enrichment design.

Suppose that we have some prior knowledge about
δ through the historical data corresponding to m0
patients per group in two treatments, and the prior
mean of δ is estimated to be d0. We remark that the his-
torical data with m0 patients refer to Phase II patients
specifically, and thus the treatment effect δ in Phase II
could be different than Phase III. However, in many
disease areas where main clinical outcomes can be
observed in relatively short duration – such as acute
pain, allergy, asthma, depression, hypertension, and so
on – Phase II and Phase III trials often have the same
trial design including a same outcome variable and
same patient population. In these disease areas, the
treatment effect δ on Phase II and Phase III trials can be
assumed the same. For simplicity, we assume a normal
model for the prior. That is,

δ|d0 ∼ N
(
d0,

2σ 2

m0

)
. (2)

Note that this prior incorporating the historical data
can be obtained as follows. For the historical data d0,
assume that

d0|δ ∼ N
(

δ,
2σ 2

m0

)
.

Suppose that we have no prior knowledge about δ

before the historical data d0, and thus we assume that
δ has an improper uniform prior over (−∞,∞), that
is, π(δ) ∝ 1. Then the posterior distribution of δ given
d0 is easily found to be given by (2).
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Therefore, when the interim data d1 is available, the
model and the prior are given by

d1|δ ∼ N
(

δ,
2σ 2

m1

)
, d2|δ ∼ N

(
δ,
2σ 2

m2

)
,

× δ|d0 ∼ N
(
d0,

2σ 2

m0

)
. (3)

Let the model and prior be given by (3). Given the like-
lihood d1|δ and the prior δ|d0, standard Bayesian cal-
culus yields the posterior distribution of δ given d0, d1
and the conditional distribution of d1 given d0, that is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d1|δ ∼ N

(
δ,
2σ 2

m1

)
,

δ|d0 ∼ N
(
d0,

2σ 2

m0

)
,

=⇒
⎧⎨
⎩

δ|d0, d1 ∼ N
(
m0d0+m1d1
m0+m1

, 2σ 2

m0+m1

)
,

d1|d0 ∼ N
(
d0, 2σ 2

(
1
m0

+ 1
m1

))
.

(4)

Then using the posterior distribution π(δ|d0, d1) as a
new prior for our future data d2, standard Bayesian
calculus yields the posterior distribution of δ given
d0, d1, d2 and the conditional distribution of d2 given
d0, d1, that is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
d2|δ ∼ N

(
δ,
2σ 2

m2

)
,

δ|d0, d1 ∼ N
(
m0d0 + m1d1
m0 + m1

,
2σ 2

m0 + m1

)
,

=⇒⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ|d0, d1, d2 ∼ N
(
m0d0 + m1d1 + m2d2

m0 + m1 + m2
,

2σ 2

m0 + m1 + m2

)
,

d2|d0, d1 ∼ N
(
m0d0 + m1d1
m0 + m1

, 2σ 2

×
(

1
m2

+ 1
m0 + m1

))
.

(5)

The data structure of (4) and (5) is depicted in the
lower plot of Figure 1. Note that the posterior distri-
bution π(δ|d0, d1, d2) is used in the calculations of the
Bayesian rejection regions with d0, d1, d2,

SB,d0,d1,d2α,δ0 = {P (δ ≤ δ0|d0, d1, d2) < α} and

SB−,d0,d1,d2
α,δ0 = {P (δ ≥ δ0|d0, d1, d2) < α} .

The conditional distribution π(d2|d0, d1) is the predic-
tive distribution used in the calculations of the even-
numbered predictive powers in Table 1.

Similarly, when the interim data d1 is not available,
the model and the prior are given by

d2|δ ∼ N
(

δ,
2σ 2

m2

)
, δ|d0 ∼ N

(
d0,

2σ 2

m0

)
. (6)

Let the model and prior be given by (6). Given the like-
lihood d2|δ and the prior δ|d0, standard Bayesian cal-
culus yields the posterior distribution of δ given d0, d2
and the conditional distribution of d2 given d0, that is,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2|δ ∼ N
(

δ,
2σ 2

m2

)
,

δ|d0 ∼ N
(
d0,

2σ 2

m0

)
,

=⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ|d0, d2 ∼ N
(
m0d0 + m2d2
m0 + m2

,
2σ 2

m0 + m2

)
,

d2|d0 ∼ N
(
d0, 2σ 2

(
1
m0

+ 1
m2

))
.

(7)

The data structure of (7) is depicted in the upper
plot of Figure 1. Note that the posterior distribution
π(δ|d0, d2) is used in the calculations of the Bayesian
rejection regions with d0, d2,

SB,d0,d2α,δ0 = {P (δ ≤ δ0|d0, d2) < α} and

SB−,d0,d2
α,δ0 = {P (δ ≥ δ0|d0, d2) < α} .

The conditional distribution π(d2|d0) is the predic-
tive distribution used in the calculations of the odd-
numbered predictive powers in Table 1.

For clarity, we define the Classical Power (CP), Clas-
sical Conditional Power (CCP), Bayesian Power (BP),
and Bayesian Conditional Power (BCP). The CP is
the probability of the classical rejection region with
d2, SC,d2α,δ0 , given a value for δ, P(SC,d2α,δ0 |δ), where S is
for ‘Success’ and the success region is the rejection
region, C is for ‘Classical’, α is the significance level,
and δ0 is a threshold value for δ. The CCP is the
probability of the classical rejection region with d1
and d2, SC,d1,d2α,δ0 , given values of δ and interim result
d1, P(SC,d1,d2α,δ0 |δ, d1). The BP is the probability of the
Bayesian rejection region with d0, d2, S

B,d0,d2
α,δ0 , given

values of δ and historical result d0, P(SB,d0,d2α,δ0 |δ, d0),
where B is for ‘Bayesian’. The BCP is the probability of
the Bayesian rejection region with d0, d1, d2, S

B,d0,d1,d2
α,δ0 ,

given values of δ, d0, d1, P(SB,d0,d1,d2α,δ0 |δ, d0, d1). Under
normality assumptions for the priors and the likeli-
hoods, it is easy to obtain the expressions of the rejec-
tion regions and the powers as

SC,d2α,δ0 = {d2 > A} ,
SC,d1,d2α,δ0 = {d2 > B (d1)} ,
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SB,d0,d2α,δ0 = {d2 > C (d0)} ,
SB,d0,d1,d2α,δ0 = {d2 > D (d0, d1)} ,

CP = P
(
SC,d2α,δ0 |δ

)
= �

[
δ − A√
2/m2σ

]
,

CCP = P
(
SC,d1,d2α,δ0 |δ, d1

)
= �

[
δ − B (d1)√

2/m2σ

]
,

BP = P
(
SB,d0,d2α,δ0 |δ, d0

)
= �

[
δ − C (d0)√

2/m2σ

]
,

BCP = P
(
SB,d0,d1,d2α,δ0 |δ, d0, d1

)

= �

[
δ − D (d0, d1)√

2/m2σ

]
,

where

A = δ0 + Zασ
√
2/m2, (8)

B (d1) =
[

(m1 + m2) δ0 + Zασ
√
2 (m1 + m2) − m1d1

m2

]
, (9)

C (d0) =
[

(m0 + m2) δ0 + Zασ
√
2 (m0 + m2) − m0d0

m2

]
, (10)

D (d0, d1) =
[

(m0 + m1 + m2) δ0 + Zασ
√
2 (m0 + m1 + m2) − m0d0 − m1d1
m2

]
.

(11)

The detailed derivations of the expressions of the rejec-
tion regions and the powers can be found in the supple-
ment.

Suppose that we are interested in testing the
hypothesesH0 : δ ≤ δ0 versusH1 : δ > δ0. This kind of
hypotheses arise when we assume that a larger value in

the population mean of the normal distribution means
improvement in disease condition. Hence, a positive
value of δ means better. The eight predictive powers
with historical and interim data, their analytical expres-
sions, the predictive distributions, the data used, and
the references for the hypotheses H0 : δ ≤ δ0 versus
H1 : δ > δ0 are given in Table 1. Note that the defini-
tions of the eight predictive powers for the hypotheses
are given in Table 1 under the column name ‘Predictive
Power’. In the table:

• For the predictive power column, I1 is the Classical
Predictive Power (CPP), I2 is the Classical Interim
Predictive Power (CIPP), I3 is the Classical Condi-
tional Predictive Power (CCPP), I4 is the Classical
Conditional Interim Predictive Power (CCIPP), I5
is the Bayesian Predictive Power (BPP), I6 is the
Bayesian Interim Predictive Power (BIPP), I7 is the
Bayesian Conditional Predictive Power (BCPP) and
I8 is the Bayesian Conditional Interim Predictive
Power (BCIPP). Now we explain our nomencla-
tures. Note that P(SC,d2α,δ0 |δ) is the Classical Power
(CP), P(SC,d1,d2α,δ0 |δ, d1) is the Classical Conditional
Power (CCP), P(SB,d0,d2α,δ0 |δ, d0) is the Bayesian Power
(BP) and P(SB,d0,d1,d2α,δ0 |δ, d0, d1) is the Bayesian Con-
ditional Power (BCP).We add a capital letter P (short
for Predictive) to the nomenclatures to indicate that
they are predictive powers. Moreover, we add a cap-
ital letter I (short for Interim) to the nomenclatures
to indicate that the priorπ(δ|d0, d1) uses the interim
data.

• The analytical expressions are given as follows:

E1 = �

[
m2 (d0 − δ0) − Zασ

√
2m2√

2m2σ

√
m0

m0 + m2

]
,

E2 = �

[
m0m2 (d0 − δ0) + m1m2 (d1 − δ0) − Zασ (m0 + m1)

√
2m2√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,

E3 = �

[√
m0

m0 + m2

m1 (d1 − δ0) + m2 (d0 − δ0) − Zασ
√
2 (m1 + m2)√

2m2σ

]
,

E4 = �

[
m0m2 (d0 − δ0) + m1 (m0 + m1 + m2) (d1 − δ0) − Zασ (m0 + m1)

√
2 (m1 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,

E5 = �

[√
m0

m0 + m2

(m0 + m2) (d0 − δ0) − Zασ
√
2 (m0 + m2)√

2m2σ

]
,

E6 = �

[
m0 (m0 + m1 + m2) (d0 − δ0) + m1m2 (d1 − δ0) − Zασ (m0 + m1)

√
2 (m0 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,

E7 = �

[√
m0

m0 + m2

(m0 + m2) (d0 − δ0) + m1 (d1 − δ0) − Zασ
√
2 (m0 + m1 + m2)√

2m2σ

]
,

E8 = �

[
(m0 + m1 + m2) [m0 (d0 − δ0) + m1 (d1 − δ0)] − Zασ (m0 + m1)

√
2 (m0 + m1 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
.
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Note that in the table, for E1, E3, E5, and E7, the
analytical expressions are in the form of

�

[
d0 − Expression√

2/m2σ

√
m0

m0 + m2

]
,

where the Expression is A, B(d1), C(d0) and
D(d0, d1) given by (8), (9), (10) and (11), respec-
tively. Similarly, for E2, E4, E6 and E8, the analytical
expressions are in the form of

�

[
m0
(
d0 − Expression

)+m1
(
d1 − Expression

)
√
2/m2σ

√
m0+m1

√
m0 + m1 + m2

]
,

where the Expression is A, B(d1), C(d0) and
D(d0, d1), respectively. The tedious calculations of
the analytical expressions of the eight predictive
powers in Table 1 can be found in the supplement.
It is worth noting that the calculations of the pre-
dictive powers by directly calculating the expecta-
tions need an important expectation identity (Zhang
et al., 2014, 2020b).

• Note that in the table, there are only two predictive
distributions, that is, π(d2|d0) and π(d2|d0, d1).

• For the data used column, H means that the his-
torical data are used, and I means that the interim
data are used. HI means that the historical data are
used once and the interim data are also used once.
HI2 means that the historical data are used once
and the interim data are used twice. H2 means that
the historical data are used twice. H2I means that
the historical data are used twice and the interim
data are used once. H2I2 means that the historical
data are used twice and the interim data are also
used twice. Now we explain why the eight predic-
tive powers use different combination of historical
and interim data. Note that the predictive power
is an average power with respect to some priors.
Only two priors are exploited for the eight predic-
tive powers, that is, π(δ|d0) and π(δ|d0, d1). The
prior π(δ|d0) uses the historical data (d0) once.
However, the prior π(δ|d0, d1) uses the historical
data (d0) once and the interim data (d1) once.
Four powers are used in the eight predictive pow-
ers, that is, the classical power P(SC,d2α,δ0 |δ) that does
not use any data, the classical conditional power
P(SC,d1,d2α,δ0 |δ, d1) that uses the interim data once, the
Bayesian power P(SB,d0,d2α,δ0 |δ, d0) that uses the histor-
ical data once and the Bayesian conditional power

P(SB,d0,d1,d2α,δ0 |δ, d0, d1) that uses the historical data
once and the interim data once. Therefore, for the
predictive power I1, it uses the historical data once,
since it is an average classical power P(SC,d2α,δ0 |δ) with
respect to the prior π(δ|d0). Moreover, for the pre-
dictive power I8, it uses the historical data twice
and the interim data twice, since it is an average
Bayesian conditional power P(SB,d0,d1,d2α,δ0 |δ, d0, d1)
with respect to the prior π(δ|d0, d1). The data used
for other predictive powers can be explained in the
same way.

• For I1, I4, I5 and I8, we can find a similar formula in
Spiegelhalter et al. (2004). Note that in Spiegelhalter
et al. (2004), the variance is σ 2 which corresponds
to one arm trial, while in our article, the variance is
2σ 2 which corresponds to two arm trials. The other
four predictive powers (I2, I3, I6 and I7) are discov-
ered by us. Consequently, Table 1 gives us a complete
picture of the predictive powers with historical and
interim data for futility and efficacy analysis for the
hypotheses H0 : δ ≤ δ0 versus H1 : δ > δ0. More-
over, Spiegelhalter et al. (2004) use zε which is a
lower ε quantile, that is, P(Z ≤ zε) = ε, while we
use Zα which is an upper α quantile, that is, P(Z ≥
Zα) = α, and they have the simple relationship zα =
−Zα .

Now suppose that we are interested in testing the
reversed hypotheses H0 : δ ≥ δ0 versus H1 : δ < δ0.
This kind of hypotheses arise when we assume that
a smaller value in the population of the normal dis-
tribution means improvement in disease condition.
Hence, a negative value of δ means better. We will use
a ‘−’ sign here to indicate that the respective quan-
tities are calculated for the reversed hypotheses. The
eight predictive powers with historical and interim
data, their analytical expressions, the predictive distri-
butions, and the data used for the reversed hypotheses
H0 : δ ≥ δ0 versus H1 : δ < δ0 are given in Table 2.
Note that the definitions of the eight predictive pow-
ers for the reversed hypotheses are given in Table 2
under the column name ‘Predictive Power’. In the
table:

• For the predictive power column, the nomenclatures
are the same as in Table 1 with a ‘−’ sign here to
indicate that the respective nomenclatures are for the
reversed hypotheses.

• The analytical expressions are given as follows:

E−
1 =�

[−m2 (d0 − δ0)−Zασ
√
2m2√

2m2σ

√
m0

m0 + m2

]
,

E−
2 = �

[
−m0m2 (d0 − δ0) − m1m2 (d1 − δ0) − Zασ (m0 + m1)

√
2m2√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,
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E−
3 = �

[√
m0

m0 + m2

−m1 (d1 − δ0) − m2 (d0 − δ0) − Zασ
√
2 (m1 + m2)√

2m2σ

]
,

E−
4 = �

[
−m0m2 (d0 − δ0) − m1 (m0 + m1 + m2) (d1 − δ0) − Zασ (m0 + m1)

√
2 (m1 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,

E−
5 = �

[√
m0

m0 + m2

− (m0 + m2) (d0 − δ0) − Zασ
√
2 (m0 + m2)√

2m2σ

]
,

E−
6 = �

[
−m0 (m0 + m1 + m2) (d0 − δ0) − m1m2 (d1 − δ0) − Zασ (m0 + m1)

√
2 (m0 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
,

E−
7 =�

[√
m0

m0 + m2

− (m0 + m2) (d0 − δ0) − m1 (d1 − δ0) − Zασ
√
2 (m0 + m1 + m2)√

2m2σ

]
,

E−
8 =�

[
m0 (m0 + m1 + m2) [−m0 (d0 − δ0) − m1 (d1 − δ0)] − Zασ (m0 + m1)

√
2 (m0 + m1 + m2)√

2m2σ
√
m0 + m1

√
m0 + m1 + m2

]
.

Note that in the table, for E−
1 , E

−
3 , E

−
5 and E−

7 , the
analytical expressions are in the form of

�

[
Expression − d0√

2/m2σ

√
m0

m0 + m2

]
,

where the Expression is

A− = δ0 − Zασ
√
2/m2,

B− (d1) =
[
(m1 + m2) δ0 − Zασ

√
2 (m1 + m2) − m1d1

m2

]
,

C− (d0) =
[
(m0 + m2) δ0 − Zασ

√
2 (m0 + m2) − m0d0

m2

]
,

D− (d0, d1) =
[
(m0 + m1 + m2) δ0 − Zασ

√
2 (m0 + m1 + m2) − m0d0 − m1d1
m2

]
,

respectively. Similarly, for E−
2 , E

−
4 , E

−
6 and E−

8 , the
analytical expressions are in the form of

�

[
m0
(
Expression − d0

)+m1
(
Expression − d1

)
√
2/m2σ

√
m0 + m1

√
m0 + m1 + m2

]
,

where the Expression is A−, B−(d1), C−(d0) and
D−(d0, d1), respectively. The tedious calculations of
the analytical expressions of the eight predictive
powers in Table 2 can be found in the supplement.

• Note that in the table, there are only two predictive
distributions, that is, π(d2|d0) and π(d2|d0, d1).

• The data used column can be explained in the same
way as in Table 1.

• There are no references available to the best of our
knowledge for the reversed hypotheses H0 : δ ≥ δ0
versus H1 : δ < δ0.

Comparing Tables 1 and 2, we find that for each
predictive power, the predictive distribution and the

data used are the same. From the two tables we see
that the analytical expressions of the hypotheses H0 :
δ ≥ δ0 versus H1 : δ < δ0 are just the quantities of
the hypotheses H0 : δ ≤ δ0 versus H1 : δ > δ0 with the
terms involving d0 − δ0 and d1 − δ0 adding a negative
sign, and vice versa.

3. A real data example

Long-term tamoxifen therapy is used for the prevention
of recurrence of breast cancer (see Dignam et al., 1998;
Example 6.7 in Spiegelhalter et al., 2004). The aim of the
study is to estimate disease-free survival benefit from
tamoxifen over placebo, in patients who already have
had 5 years of taking tamoxifen without a recurrence.
That means, patients were randomized to either con-
tinuation of tamoxifen therapy or continuation with
placebo after having survived recurrence-free under
tamoxifen for 5 years. To detect a 40% reduction in
annual risk associated with tamoxifen (hazard ratio =
0.6), with 85% power and a one-sided tail area of 5%,
115 events were required. The statistical model is the
proportional hazards regression model, with summary
using the approximate hazard ratio analysis. If there
are OT events on treatment, and OC events on control,
then d1 = 2(OT − OC)/m1 is an approximate estimate
of the log(hazard ratio) δ, with mean δ and variance
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4/m1, as shown in Tsiatis (1981). Prior distributions:
an optimistic prior was centred on a 40% hazard reduc-
tion and a 5% chance of a negative effect (i.e., HR>1),
equivalent on the log(HR) scale to a normal prior with
mean μo = log(0.6) = −0.51 and standard deviation
0.31 (σ = √

2, m0 ≈ 41.4). Note that in Spiegelhalter
et al. (2004), the variance is σ 2 = 4, while in our article,
the variance is 2σ 2 = 4, and thus σ = √

2 in our arti-
cle. Moreover, m0 ≈ 41.4 is used to guarantee that ‘an
optimistic prior was centred on a 40% hazard reduction
and a 5% chance of a negative effect’. Also a sceptical
prior was adopted with the same standard deviation as
the optimistic prior but centred on μs = 0. The esti-
mated log(HR) after the first interim analysis in 1993
is d1 = 0.435. At that time m1 = 46 events have been
observed, and further m2 = 115 − 46 = 69 events are
to be observed.

In the tamoxifen example, let h1 and h2 be the haz-
ard rates corresponding to tamoxifen (treatment) and
placebo (control) respectively. Therefore,

Tamoxifen superior ⇔ h1 < h2 ⇔ HR = h1
h2

< 1 ⇔ δ = log(HR) < 0,

Control superior ⇔ h1 > h2 ⇔ HR = h1
h2

> 1 ⇔ δ = log(HR) > 0.

Consequently, for j = 1, . . . , 8, the j-th predictive
power Ij is for control superior, the j-th predictive
power I−j is for tamoxifen superior, and 1 − Ij − I−j is
for equivocal.

The eight predictive powers with historical and
interim data of eventual conclusions for the B-14 trial
after the first interim analysis in 1993 are reported
in Table 3. In the table, the conclusion is: ‘Tamoxifen
superior’, defined as a 1 − α confidence interval or
credible interval for δ = log(HR) lying wholly below
0; ‘Equivocal’, defined as a 1 − 2α confidence interval
or credible interval for δ = log(HR) including 0; and
‘Control superior’, defined as a 1 − α confidence inter-
val or credible interval for δ = log(HR) lying wholly
above 0. The significance level α is chosen to be 0.025
in all cases. For the first and fifth predictive powers, the
number of events of the future data m2 is the whole
number of events of the Phase III trial 115, not 69 (the
further number of events to be observed). In Table 3,
we observe the following facts.

• The sum of the three predictive powers in each row
corresponding to the sceptical prior (or the opti-
mistic prior) should be equal to 1. However, in some
cases, the sum is equal to 0.999, due to the rounding
error.

• The fourth predictive powers in Table 3 are the same
as those under the column ‘When not using prior

Table 3. Theeightpredictivepowerswithhistorical and interim
data of eventual conclusions for the B-14 trial after the first
interim analysis in 1993. Two prior distributions are considered:
a sceptical prior and an optimistic prior.

Tamoxifen superior Equivocal Control superior

No. Sceptical Optimistic Sceptical Optimistic Sceptical Optimistic

1 0.156 0.656 0.687 0.336 0.156 0.008
2 0.015 0.077 0.760 0.857 0.225 0.066
3 0.011 0.161 0.781 0.821 0.208 0.017
4 0.000 0.003 0.610 0.846 0.389 0.151
5 0.120 0.771 0.761 0.228 0.120 0.001
6 0.005 0.195 0.869 0.803 0.126 0.002
7 0.005 0.321 0.852 0.678 0.142 0.001
8 0.000 0.017 0.724 0.972 0.276 0.011

in analysis’, which can be calculated by (6.15), in
Table 6.7 of Spiegelhalter et al. (2004). Moreover, the
eighth predictive powers in Table 3 are the same as
those under the column ‘When using prior in anal-
ysis’, which can be calculated by (6.18), in Table 6.7
of Spiegelhalter et al. (2004).

• All the predictive powers under the ‘Tamoxifen
superior’ column are less than 0.85, the designed
power. Note that these predictive powers are cal-
culated when the significance level α is chosen to
be 0.025, while the designed power 0.85 is calcu-
lated when α is chosen to be 0.05. When the sig-
nificance level α is risen to 0.05 when calculating
the predictive powers, the predictive powers also
rise, as the predictive powers are increasing func-
tions of α. However, they are still less than 0.85. This
phenomenon has been observed in the literature.
See for instance Chuang-Stein (2006); Chuang-Stein
Kirby (2017); Spiegelhalter et al. (2004).

• For the eight predictive powers, the optimistic prior
has a greater tendency to draw a ‘Tamoxifen supe-
rior’ conclusion than the sceptical prior, and this is
reflected in the predictive powers. In contrast, the
sceptical prior has a greater tendency to draw a ‘Con-
trol superior’ conclusion than the optimistic prior,
and this is also reflected in the predictive powers.

• Now let us focus on the ‘Tamoxifen superior’ col-
umn. The first predictive power under the optimistic
prior is 0.656, which is fairly high, due to the first
predictive power only uses the historical data once
and it does not use the interim data, and the his-
torical data (a fictitious data corresponding to the
optimistic prior) favours the tamoxifen treatment.
The fifth predictive power under the optimistic prior
is 0.771, which is even higher, due to the fifth pre-
dictive power uses the historical data twice and it
does not use the interim data, and the historical
data favours the tamoxifen treatment. Note that the
time point of the first and fifth predictive powers
is before the launch of the Phase III trial. Since
the first and fifth predictive powers are between
γf = 0.5 and γg = 0.8 in the decision criteria (1),
a ‘Conditional-Go’ decision is made and the Phase



286 Y.-Y. ZHANG ET AL.

III trial is launched. When the first interim data are
available in 1993, we can calculate the other six pre-
dictive powerswhich use both the historical data and
the interim data. Intuitively, when the interim data
are available, they should be used to give a more
accurate prediction. The interim data d1 = 0.435 >

0 favours the control treatment. The combination
of the historical data and the interim data produces
the six predictive powers 0.077, 0.161, 0.003, 0.195,
0.321 and 0.017. The largest one of the six predictive
powers is 0.321, corresponding to the seventh pre-
dictive power, which uses the historical data twice
and the interim data once. At the same time, the
seventh predictive power in favour of control and
equivocal is as high as 0.679. The predictive powers
in favour of tamoxifen under the sceptical prior are
much lower than 0.321. Since the six predictive pow-
ers with interim data under the optimistic prior or
the sceptical prior are all less than γf = 0.5, accord-
ing to the decision criteria (1), we should stop the
trial for futility.

4. Numerical simulations

In this section, we will conduct extensive simulations to
investigate the sensitivity analysis of priors (d0), sample
sizes (m0,m1,m2), interim result (d1), and interim time
(t) on the eight predictive powers. We assume that

α = 0.025, δ0 = 0, σ = √
2, μs = 0,

μo = log (0.6) ≈ −0.51,

mr
0 ≈ 41.4, mr

1 = 46,

mr
2 =

{
s = 115, for i = 1, 5,
69, for i = 2, 3, 4, 6, 7, 8,

dr1 = 0.435, s = 115, tr = mr
1
s

= 0.4,

where

mr
0 =

(
�−1 (0.05)

√
2σ

μo

)2

≈ 41.4,

is calculated to ensure that an optimistic prior was cen-
tred on a 40% hazard reduction and a 5% chance of a
negative effect (i.e., HR>1), equivalent on the log(HR)

scale to a normal prior with mean μo = log(0.6) ≈
−0.51 and standard deviation 0.31 (σ = √

2, mr
0 ≈

41.4). We add a superscript ‘r’ in mr
0, m

r
1, m

r
2, d

r
1 and

tr to indicate that they are from the real data.
Now let us explain the special reason for choosing

σ = √
2 in the simulations section. As described in

Section 2.4.2 in Spiegelhalter et al. (2004), suppose that
the first intervention corresponds to an active treatment
T, and the second to a control C. Often the results of a
survival analysis may be given in terms of an observed
log-rank test statistic Lm, which is defined as the excess

of events underT, compared to that expectedwere there
no treatment effect, where m is the total number of
events observed. Lm is often denoted asO−E (observed
minus expected). Assuming proportional hazards, we
have the following approximation in the particular
case of equal allocation and follow-up. If there have
been OT events on treatment, and OC events on con-
trol, then the expected number of events in the treat-
ment group under the null hypothesis is approximately
m/2, and hence the log-rank statistic is Lm = OT −
m/2 = (OT − OC)/2. It can be shown in Tsiatis (1981)
that, for large trials, ym = 4Lm/m = 2(OT − OC)/m
is an approximate estimate of the log(hazard ratio)
θ , and

ym ∼ N
(

θ ,
4
m

)
= N

(
θ ,

σ 2

m

)
.

Hence we can set σ = 2 and adopt a normal likelihood.
Note that in Spiegelhalter et al. (2004), the variance is
σ 2 = 4, while in our article, the variance is 2σ 2 = 4,
and thus σ = √

2 in our article, as

d1 = 2(OT − OC)

m1
∼ N

(
δ,

4
m1

)
= N

(
δ,
2σ 2

m1

)
.

Let us introduce some notations used in this section.
I−i is the i-th predictive power for tamoxifen superior,
Ii is the i-th predictive power for control superior, and
1 − I−i − Ii is the i-th predictive power for equivocal,
for i = 1, . . . , 8. Is−i is the i-th predictive power of the
sceptical prior for tamoxifen superior, Isi is the i-th pre-
dictive power of the sceptical prior for control superior,
Esi = 1 − Is−i − Isi is the i-th predictive power of the
sceptical prior for equivocal, Io−i is the i-th predictive
power of the optimistic prior for tamoxifen superior, Ioi
is the i-th predictive power of the optimistic prior for
control superior, and Eoi = 1 − Io−i − Ioi is the i-th pre-
dictive power of the optimistic prior for equivocal, for
i = 1, . . . , 8. In the notations (Is−i , Isi ,E

s
i = 1 − Is−i − Isi ,

Io−i , Ioi and Eoi = 1 − Io−i − Ioi ), the superscript ‘s’ is
for the sceptical prior which corresponds to d0 = μs,
the superscript ‘o’ is for the optimistic prior which cor-
responds to d0 = μo, the subscript ‘i’ is for the i-th
predictive power, I− is for tamoxifen superior, I is for
control superior, and E is equivocal.

The sensitivity analysis of d0 on the eight predictive
powers is displayed in Figure 2. In the figure, we note
the following issues.
• The first and second predictive powers are related to

the CP, the third and fourth predictive powers are
related to theCCP, the fifth and sixth predictive pow-
ers are related to the BP, and the seventh and eighth
predictive powers are related to the BCP.

• A negative d0 favours tamoxifen, a positive d0
favours control, and a d0 near 0 favours equivocal.

• From the first plot, we see that I−1 is a decreasing
function of d0, I1 is an increasing function of d0, and
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Figure 2. The sensitivity analysis of d0 on the eight predictive powers.

1 − I−1 − I1 is a first increasing and then decreasing
function of d0. The increase–decrease characteris-
tics of I−1 , I1 and 1 − I−1 − I1 are compatible with
the sign of d0, as a negative d0 favours tamoxifen

and I−1 (the predictive power for tamoxifen superior)
has a large value, a positive d0 favours control and
I1 (the predictive power for control superior) has a
large value, and a d0 near 0 favours equivocal and
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1 − I−1 − I1 (the predictive power for equivocal) has
a large value.

• In the first plot, there are six markers labelled °,�
, +, ×, � and

�
, which correspond to (μs, Is−1 ),

(μo, Io−1 ), (μs,Es1), (μo,Eo1), (μs, Is1) and (μo, Io1),
respectively.

• In the first plot, the six values Is−1 , Io−1 , Es1, E
o
1, I

s
1

and Io1 are 0.156, 0.656, 0.687, 0.336, 0.156 and 0.008,
which are the values in the first row of Table 3.
The three values Is−1 = 0.156, Es1 = 0.687 and Is1 =
0.156 corresponding to d0 = μs are for the scep-
tical prior, and the three values sum to 1 (in fact
0.999, due to the rounding error). Moreover, the
three values Io−1 = 0.656,Eo1 = 0.336 and Io1 = 0.008
corresponding to d0 = μo are for the optimistic
prior, and the three values sum to 1.

• The predictive powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i =

1, . . . , 8 in Table 3 are labelled in the figure by the six
markers °,

�
, +, ×, � and

�
.

• In the first plot, a different d0 value corresponds to
a different prior, with d0 = μs corresponding to the
sceptical prior, and d0 = μo corresponding to the
optimistic prior.

• From the first plot, we see that as d0 moves from
μs = 0 to μo = log(0.6) ≈ −0.51 and to below μo,
the d0 values favour tamoxifen more and more, and
the predictive powers for tamoxifen superior (I−1 )
are becoming larger and larger, while the predic-
tive powers for control superior (I1) and equivocal
(1 − I−1 − I1) are getting smaller and smaller. Con-
versely, as d0 moves from μs = 0 to above μs, the d0
values favour control more and more, and the pre-
dictive powers for control superior (I1) are becoming
larger and larger, while the predictive powers for
tamoxifen superior (I−1 ) and equivocal (1 − I−1 − I1)
are getting smaller and smaller.

• The other seven plots can be explained similarly to
the first plot.

• It is interesting to note that for the first and fifth
predictive powers, the predictive powers for equivo-
cal are symmetric around d0 = 0, and thus when d0
moves from μs = 0 to μo = log(0.6) ≈ −0.51, the
predictive powers for equivocal are getting smaller
and smaller. While for the other six predictive
powers, the predictive powers for equivocal are
symmetric around a negative d0, and thus when
d0 moves from μs = 0 to μo = log(0.6) ≈ −0.51,
the predictive powers for equivocal may get big-
ger and bigger (e.g., the second, fourth and eighth
predictive powers), or may get bigger and then
smaller (e.g., the third, sixth and seventh predictive
powers).

The sensitivity analysis ofm0 on the eight predictive
powers is displayed in Figure 3. In the figure, we note
the following issues.

• For the i-th (i = 1, . . . , 8) predictive power, there are
six markers labelled °,

�
,+,×, � and

�
, which cor-

respond to (mr
0, I

s−
i ), (mr

0, I
o−
i ), (mr

0,E
s
i), (mr

0,E
o
i ),

(mr
0, I

s
i ) and (mr

0, I
o
i ), respectively. The predictive

powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i = 1, . . . , 8 in

Table 3 are labelled in the figure by the six markers °,�
, +, ×, � and

�
.

• Note that Var(d0|δ) = 2σ 2/m0, and thus whenm0 is
large, the variance of d0|δ will be small.

• The increase-decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 1, . . . , 8

observed from Figure 3 are summarized in Table 4.
From the table, we observe that as m0 increases, Isi
decrease, 1 − Is−i − Isi increase, and Ioi decrease for
all eight predictive powers. Is−i are decreasing func-
tions ofm0 for the odd-numbered predictive powers,
and they are zero constants for the even-numbered
predictive powers. For Io−i , they are increasing func-
tions of m0 for the first, second, fourth, fifth, sixth
and eighth predictive powers; it is a decreasing func-
tion of m0 for the third predictive power; and it
is a decreasing and then increasing function of m0
for the seventh predictive power. 1 − Io−i − Ioi are
increasing and then decreasing functions of m0 for
the first, second, fifth, sixth, seventh and eighth pre-
dictive powers, and they are increasing functions of
m0 for the third and fourth predictive powers.

The sensitivity analysis of d1 on the eight predictive
powers is displayed in Figure 4. In the figure, we note
the following issues.

• Note that d1 is the observed treatment difference in
the treatment group and the control (or placebo)
group means of the interim data. The first and fifth
predictive powers do not use the interim data, and
thus they are missing in the figure.

• A negative d1 favours tamoxifen, a positive d1
favours control and a d1 near 0 favours equivocal.

• From the figure, we see that Is−i and Io−i are decreas-
ing functions of d1, Isi and I

o
i are increasing functions

of d1, and 1 − Is−i − Isi and 1 − Io−i − Ioi are first
increasing and then decreasing functions of d1, for
i = 2, 3, 4, 6, 7, 8. The increase–decrease character-
istics of Is−i , Io−i , Isi , I

o
i , 1 − Is−i − Isi and 1 − Io−i −

Ioi are compatible with the sign of d1, for i = 2, 3,
4, 6, 7, 8, as a negative d1 favours tamoxifen and
Is−i and Io−i (the predictive powers for tamoxifen
superior) have large values, a positive d1 favours
control and Isi and I

o
i (the predictive powers for con-

trol superior) have large values, and a d1 near 0
favours equivocal and 1 − Is−i − Isi and 1 − Io−i −
Ioi (the predictive powers for equivocal) have large
values.

• The optimistic prior favours tamoxifen, and thus Io−i
are consistently higher than Is−i , for i = 2, 3, 4, 6, 7,
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Figure 3. The sensitivity analysis ofm0 on the eight predictive powers.

8. Additionally, the sceptical prior favours control,
and thus Isi are consistently higher than Ioi , for i = 2,
3, 4, 6, 7, 8.

• For the i-th (i = 2, 3, 4, 6, 7, 8) predictive power,
there are six markers labelled °,

�
, +, ×, � and�

, which correspond to (dr1, I
s−
i ), (dr1, I

o−
i ), (dr1,E

s
i),
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Table 4. The increase–decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 1, . . . , 8 observed from

Figure 3.

No. Is−i Isi 1 − Is−i − Isi Io−i Ioi 1 − Io−i − Ioi

1 ↓ ↓ ↑ ↑ ↓ ↗↘
2 — ↓ ↑ ↑ ↓ ↗↘
3 ↓ ↓ ↑ ↓ ↓ ↑
4 — ↓ ↑ ↑ ↓ ↑
5 ↓ ↓ ↑ ↑ ↓ ↗↘
6 — ↓ ↑ ↑ ↓ ↗↘
7 ↓ ↓ ↑ ↘↗ ↓ ↗↘
8 — ↓ ↑ ↑ ↓ ↗↘

(dr1,E
o
i ), (d

r
1, I

s
i ), and (dr1, I

o
i ), respectively. The pre-

dictive powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i = 2, 3, 4,

6, 7, 8 in Table 3 are labelled in the figure by the six
markers °,

�
, +, ×, � and

�
.

• In each plot, 1 − Is−i − Isi and 1 − Io−i − Ioi are both
bell shaped, with the latter being shifted right by a
certain amount.

The sensitivity analysis ofm1 on the eight predictive
powers are displayed in Figure 5. In the figure, we note
the following issues.

• Note that m1 is the per group number of patients of
the interim data. The first and fifth predictive pow-
ers do not use the interim data, and thus they are
missing in the figure.

• In each plot, s = 115 is fixed, m1 = 0, 1, . . . , s, and
m2 = s − m1 = s, s − 1, . . . , 0.

• For the i-th (i = 2, 3, 4, 6, 7, 8) predictive power,
there are six markers labelled °,

�
, +, ×, � and

�
,

which correspond to (mr
1, I

s−
i ), (mr

1, I
o−
i ), (mr

1,E
s
i),

(mr
1,E

o
i ), (m

r
1, I

s
i ) and (mr

1, I
o
i ), respectively. The pre-

dictive powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i = 2, 3, 4,

6, 7, 8 in Table 3 are labelled in the figure by the six
markers °,

�
, +, ×, � and

�
.

• Note that Var(d1|δ) = 2σ 2/m1, and thus whenm1 is
large, the variance of d1|δ will be small.

• Whenm1 → s = 115, the predictive powers tend to
1 or 0.

• The increase–decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 2, 3, 4, 6, 7,

8 observed from Figure 5 are summarized in Table 5.
From the table, we observe that as m1 increases,
Is−i decrease and Io−i decrease for all eight predic-
tive powers. Isi are increasing and then decreasing
functions of m1 for the second and sixth predic-
tive powers, and they are increasing functions of
m1 for the third, fourth, seventh and eighth pre-
dictive powers. 1 − Is−i − Isi are increasing functions
of m1 for the second and sixth predictive powers,
and they are increasing and then decreasing func-
tions of m1 for the third, fourth, seventh and eighth
predictive powers. The Ioi is an increasing and then
decreasing function of m1 for the second predictive
power, they are increasing functions of m1 for the
third and fourth predictive powers, and they are zero

constants for the sixth, seventh and eighth predictive
powers. 1 − Io−i − Ioi are increasing functions ofm1
for the second, sixth, seventh and eighth predictive
powers, and they are increasing and then decreasing
functions of m1 for the third and fourth predictive
powers.

The sensitivity analysis ofm2 on the eight predictive
powers is displayed in Figure 6. In the figure, we note
the following issues.

• For the i-th (i = 1, . . . , 8) predictive power, there
are six markers labelled °,

�
, +, ×, � and

�
,

which correspond to (mr
2, I

s−
i ), (mr

2, I
o−
i ), (mr

2,E
s
i),

(mr
2,E

o
i ), (mr

2, I
s
i ) and (mr

2, I
o
i ), respectively. The

predictive powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i =

1, . . . , 8 in Table 3 are labelled in the figure by the
six markers °,

�
, +, ×, � and

�
.

• Note that for the first and fifth predictive powers,
the range ofm2 is [50, 200], and s = 115 for the real
data is in this range, where m2 is the whole sample
size of the Phase III trial. For other predictive pow-
ers, the range ofm2 is [0, s] = [0, 115],m1 = s − m2,
and s = 115 is fixed, wherem2 is the per group num-
ber of patients of the future data after interim of the
Phase III trial.

• Note that Var(d2|δ) = 2σ 2/m2, and thus whenm2 is
large, the variance of d2|δ will be small.

• The increase-decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 1, . . . , 8

observed from Figure 6 are summarized in Table 6.
From the table, we observe that as m2 increases,
Is−i increase and Io−i increase for all eight predic-
tive powers. Isi are increasing functions ofm2 for the
first and fifth predictive powers, they are increas-
ing and then decreasing functions of m2 for the
second and sixth predictive powers, and they are
decreasing functions ofm2 for the third, fourth, sev-
enth and eighth predictive powers. 1 − Is−i − Isi are
decreasing functions ofm2 for the first, second, fifth
and sixth predictive powers, and they are increas-
ing and then decreasing functions of m2 for the
third, fourth, seventh and eighth predictive powers.
Ioi are zero constants for the first, fifth, sixth, seventh
and eighth predictive powers, it is an increasing and
then decreasing function of m2 for the second pre-
dictive power, and they are decreasing functions of
m2 for the third and fourth predictive powers. 1 −
Io−i − Ioi are decreasing functions ofm2 for the first,
second, fifth, sixth, seventh and eighth predictive
powers, and they are increasing and then decreasing
functions of m2 for the third and fourth predictive
powers. Note that some predictive powers display
the same increase–decrease characteristics, and they
are the first and fifth predictive powers, the third and
fourth predictive powers, and the seventh and eighth
predictive powers.
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Figure 4. The sensitivity analysis of d1 on the eight predictive powers.

The sensitivity analysis of t on the eight predictive
powers are displayed in Figure 7. In the figure, we note
the following issues.

• Note that t is the information time of the interim
data. The first and fifth predictive powers do not use

the interim data, and thus they are missing in the
figure.

• Figures 5 and 7 are the samewith the only differences
of the x-labels and x-ranges, which are (m1, [0, 115])
and (t, [0, 1]), respectively. Note that

m1 = 0, 1, . . . , s = 115
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Figure 5. The sensitivity analysis ofm1 on the eight predictive powers.

and

t = m1

m1 + m2
= m1

s
∈ [0, 1] .

• For the i-th (i = 2, 3, 4, 6, 7, 8) predictive power,
there are six markers labelled °,

�
, +, ×, �, and

�
, which correspond to (tr, Is−i ), (tr, Io−i ), (tr,Esi),

(tr,Eoi ), (t
r, Isi ) and (tr, Ioi ), respectively. The predic-

tive powers (Is−i , Io−i ,Esi ,E
o
i , I

s
i , I

o
i ) for i = 2, 3, 4, 6,

7, 8 in Table 3 are labelled in the figure by the six
markers °,

�
, +, ×, � and

�
.
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Table 5. The increase–decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 2, 3, 4, 6, 7, 8 observed

from Figure 5.

No. Is−i Isi 1 − Is−i − Isi Io−i Ioi 1 − Io−i − Ioi

2 ↓ ↗↘ ↑ ↓ ↗↘ ↑
3 ↓ ↑ ↗↘ ↓ ↑ ↗↘
4 ↓ ↑ ↗↘ ↓ ↑ ↗↘
6 ↓ ↗↘ ↑ ↓ — ↑
7 ↓ ↑ ↗↘ ↓ — ↑
8 ↓ ↑ ↗↘ ↓ — ↑

• When t → 1, the predictive powers tend to 1 or 0.
• The increase–decrease characteristics of Is−i , Isi , 1 −

Is−i − Isi , I
o−
i , Ioi and 1 − Io−i − Ioi for i = 2, 3, 4, 6,

7, 8 observed from Figure 7 are the same as those
observed from Figure 5, which are summarized in
Table 5.

5. Conclusion and discussion

For the randomized controlled early phase and Phase
III trials, suppose that themodel and the prior are given
by (3). We provide two tables in this article. The eight
predictive powerswith historical and interimdata, their
analytical expressions, the predictive distributions, the
data used, and the references for the hypotheses H0 :
δ ≤ δ0 versusH1 : δ > δ0 are given in Table 1. The eight
predictive powerswith historical and interimdata, their
analytical expressions, the predictive distributions and
the data used for the reversed hypotheses H0 : δ ≥ δ0
versus H1 : δ < δ0 are given in Table 2. Moreover, the
data structures of the historical data, interim data and
future data are described in Figure 1. Furthermore,
the eight predictive powers with historical and interim
data for the hypotheses and the reversed hypotheses are
utilized to guide the futility analysis in the tamoxifen
example. Finally, extensive simulations are conducted
to investigate the sensitivity analysis of priors (d0), sam-
ple sizes (m0, m1, m2), interim result (d1) and interim
time (t) on the eight predictive powers.

In addition to the four predictive powers (I1, I4,
I5, I8) summarized in Table 1, we discover and calcu-
late another four predictive powers (I2, I3, I6, I7) also
summarized in Table 1, for the hypotheses H0 : δ ≤ δ0
versus H1 : δ > δ0. Moreover, we calculate eight pre-
dictive powers (I−1 to I−8 ) summarized in Table 2, for
the reversed hypothesesH0 : δ ≥ δ0 versusH1 : δ < δ0.
The combination of Tables 1 and 2 gives us a com-
plete picture of the predictive powers with historical
and interim data for futility and efficacy analysis, as
illustrated in Table 3.

By comparing these eight predictive power calcula-
tions, one main difference among them is how many
times the historical data and interim data are utilized.
For example, the historical data and the interim data
could be used once or twice in these calculations. It
may be confusing to the reader why the historical data

or interim data could be used twice. For example, if
the predictive power is calculated at the time when the
required interim data are collected, why the authors
incorporate the interim data into the prior specifica-
tion given the interim data have been contributed to the
likelihood? These are the fourth and eighth predictive
powers in Tables 1 and 2.Note that in Table 1, the fourth
predictive power is (6.15) in Spiegelhalter et al. (2004),
and it is the average classical conditional power with
respect to the updated new prior π(δ|d0, d1); the eighth
predictive power is (6.18) in Spiegelhalter et al. (2004),
and it is the average Bayesian conditional power with
respect to the updated new prior π(δ|d0, d1). If one
is willing to use the historical data and interim data
only once, then one could use the second and third
predictive powers in the two tables, and the two pre-
dictive powers are discovered by us. Another possible
solution to use the data twice is to use the external
data.

Two sets of one-sided hypotheses are considered
throughout the paper, and they are both needed. That is,
both Tables 1 and 2 are needed. As discussed in the real
data example, for j = 1, . . . , 8, the j-th predictive power
Ij (see Table 1) is for control superior, the j-th predictive
power I−j (see Table 2) is for tamoxifen superior, and
1 − Ij − I−j is for equivocal.

We have assumed a known variance (σ 2), which is
unrealistic. However, in the literature and real appli-
cations (see for instance Chuang-Stein, 2006; Kirby
et al., 2012; Lan & Wittes, 2012; O’Hagan et al., 2005;
Spiegelhalter et al., 2004; Wang et al., 2006), it is com-
mon practice to assume that the variance σ 2 is known
to obtain analytical solutions, such as �(·) for powers
and average powers. When the variance is unknown,
one might use the historical data to specify a sampling
prior for σ 2 (Chen et al., 2011). Alternatively, onemight
utilize a t statistic. As stated inO’Hagan et al. (2005), the
sampling distribution of t is a non-central t distribution
(which only becomes an ordinary Student t distribution
if δ = 0). Nevertheless, based on previous Phase II trials
or publications, the estimate of σ 2 is good enough, such
that it provides some assurance to the practitioners that
probably there is no need to have a prior for σ 2 when
designing the Phase III trial. Furthermore, in practice
and in publications, it is not common to add a prior
to σ 2 in the calculations in frequentist framework and
mixed frequentist and Bayesian framework. However, it
is very common to include prior on σ 2 in pure Bayesian
framework.

We have assumed equal variances for the normally
distributed responses of two treatments of the Phase III
trial. The equal variances assumption can be reason-
ably met in reality by exploiting the randomized con-
trolled Phase III trial. This statement needs to be further
justified. Consider a well-designed (patient-masked
and outcome observer-blinded) placebo controlled trial
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Figure 6. The sensitivity analysis ofm2 on the eight predictive powers.
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Table 6. The increase–decrease characteristics of Is−i , Isi , 1 −
Is−i − Isi , I

o−
i , Ioi and 1 − Io−i − Ioi for i = 1, . . . , 8 observed from

Figure 6.

No. Is−i Isi 1 − Is−i − Isi Io−i Ioi 1 − Io−i − Ioi

1 ↑ ↑ ↓ ↑ — ↓
2 ↑ ↗↘ ↓ ↑ ↗↘ ↓
3 ↑ ↓ ↗↘ ↑ ↓ ↗↘
4 ↑ ↓ ↗↘ ↑ ↓ ↗↘
5 ↑ ↑ ↓ ↑ — ↓
6 ↑ ↗↘ ↓ ↑ — ↓
7 ↑ ↓ ↗↘ ↑ — ↓
8 ↑ ↓ ↗↘ ↑ — ↓

where patients in the control group will demonstrate
(approximately) the same outcome before and after
treatment exposure. If the study drug is effective in a
certain portion of patients in the treatment arm, the
outcome for these patients will be different (shifted
by a certain magnitude) before and after treatment.
Hence, the variance in the treatment arm is expected
to be higher than that in the control arm, unless
the study drug is similarly effective in every patient
who received it. On the other hand, if the study
drug leads to an elevation (or decrease) of the out-
come to a certain boundary value, the variance in
the treatment group may be even smaller than that
in the control group. Therefore, for simplicity, we
assume equal variances for the normally distributed
responses of two treatments. However, it is not uncom-
mon to assume unequal variances in pure Bayesian
framework.

The method demonstrated in Section 2 assumes
the treatment arms have the same randomization ratio
for illustration purpose, but the method can be easily
adapted when the randomization ratios are not bal-
anced. See the Conclusions and Discussion section in
Deng et al. (2020) for details.

For simplicity, we assume that outcome measure-
ments are available for all individuals in the study and
that everyone in the treatment arm and the control arm
is fully adherent to the treatment they are allocated to,
i.e., no non-compliance or treatment arm cross-over. In
other words, the meaning of the effect parameter we
are going to identify from the observed data is the true
average treatment effect.

For simplicity, we have assumed the true treat-
ment effects based on the historical data of the early
phase trial, the interim data, and the future data of
the Phase III trial are the same. This assumption has
also been used in the literature. For example, Chuang-
Stein (2006) has assumed that the true treatment effects
based on the Phase II trial and the Phase III trial are the
same. Spiegelhalter et al. (2004) have assumed that the
true treatment effects based on the interim data and the
future data of the Phase III trial are the same.

The analytical derivations in Section 2 are based
on normal likelihoods. As explained in Section 2.4 of
Spiegelhalter et al. (2004), normal likelihoods can be

used for binary data, survival data, count responses and
continuous responses. In the real data example, we use
a data example where survival data (disease-free sur-
vival time) is the primary outcome variable. Note that,
in general, effect estimates such as log hazard ratios fol-
low a normal distribution. It is important to stress that
m0, m1 and m2 do represent number of events and are
not sample sizes in this context.

Intuitively, when the historical and interim data are
available, they should be used to give a more accurate
prediction, as the predictive powers shown in Table 3.
Therefore, we recommend reporting all eight predictive
powers in practice to have a complete picture for futility
and efficacy analysis.

If one is interested in evaluating whether the incor-
poration of the historical data or interim data can
improve the estimation of treatment effects for futility
analysis, a real data example is not enough. One may
need to conduct simulation studies to evaluate estima-
tion accuracy or correct stopping rates by using the his-
torical data (or interim data) or not. Alternatively, one
may use the Receiver Operating Characteristic (ROC)
curve as a tool to evaluate and compare operating char-
acteristics by using the historical data (or interim data)
or not. In fact, we are currently working on the analyt-
ical ROC analyses of the eight predictive powers, and
the elaborated version deserves another publication.

Table 3 summarizes the predictive power values
for the example data under three predefined scenarios
(tamoxifen superior, equivocal, and control superior)
considering sceptical and optimistic priors. Note that
the three scenarios are based on the notion of ‘statisti-
cal significance’, i.e. if 0 is included in the 95% posterior
interval for the target parameter δ or not. One could
consider the specification of these scenarios as to con-
sider clinically relevant equivalence margins for δ (say
±5% or ±10%). The statement ‘equivocal’ would then
only hold, if both credible interval limits fall within
these margins.

The way the results are presented right now sug-
gests to stop the trial for futility but this may in fact
be an imprecision issue due to small m2 (or limited
overall number of events). This claim is supported by
the fact that even for very low optimistic predictive
power values under scenario ‘Tamoxifen superior’, the
sceptical predictive power values under scenario ‘Con-
trol superior’ remain relatively low. This means that the
confidence intervals or credible intervals of δ often are
too wide to exclude 0 for the target parameter δ. The
lengths of the confidence intervals or credible intervals
of δ and the lengths of the intervals of d2 of equivocal are
decreasing functions of m2. That is, when m2 is small
(imprecision), the lengths of the intervals of d2 of equiv-
ocal are large. Hence, it is probably that the probabilities
of equivocal for the powers and predictive powers will
be large. It is worth noting that the imprecision issues
due to small m2 (or limited overall number of events)
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Figure 7. The sensitivity analysis of t on the eight predictive powers.
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are related to all four powers (CP, CCP, BP and BCP)
and all eight predictive powers. We are currently work-
ing on the imprecision issue, and the elaborated version
deserves another publication.

Assuming a flat prior with infinite tales (π(δ) ∝ 1)
seems overly conservative, the uniform prior interval
would in practice rather be [a, b] with |b| > |a| and a ≤
0 < b for the hypotheses H0 : δ ≤ 0 versus H1 : δ > 0,
expressing the optimism of the drug-developer as the
drug made it already beyond lab and animal testing.
That is, it is useful to allow for the incorporation of a
proper uniform prior for δ when estimating the poste-
rior δ|d0, into formula (3) and following expressions.
However, in this situation, one may not obtain analyt-
ical solutions. Then one should be able to derive the
predictive powers numerically.
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