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ABSTRACT
Fragmentary data is becoming more and more popular in many areas which brings big chal-
lenges to researchers and data analysts. Most existing methods dealing with fragmentary data
consider a continuous response while in many applications the response variable is discrete. In
this paper, we propose a model averagingmethod for generalized linear models in fragmentary
data prediction. The candidate models are fitted based on different combinations of covariate
availability and sample size. The optimal weight is selected by minimizing the Kullback–Leibler
loss in the completed cases and its asymptotic optimality is established. Empirical evidences from
a simulation study and a real data analysis about Alzheimer disease are presented.
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1. Introduction

Our study is motivated by the study of Alzheimer dis-
ease (AD). Its main clinical features are the decline of
cognitive function, mental symptoms, behaviour disor-
ders, and the gradual decline of activities of daily living.
It is the most common cause of dementia among peo-
ple over age of 65, yet no prevention methods or cures
have been discovered. The Alzheimer’s Disease Neu-
roimaging Initiative (ADNI, http://adni.loni.usc.edu) is
a global research programme that actively supports the
investigation and development of treatments that slow
or stop the progression of AD. The researchers col-
lect multiple sources of data from voluntary subjects
including: cerebrospinal fluid (CSF), positron emis-
sion tomography (PET), magnetic resonance imaging
(MRI) and genetics data (GENE). In addition, mini-
mental state examination (MMSE) score is collected for
each subject, which is an important diagnostic criterion
for AD. Our target is to establish a model focussing on
the AD prediction (the probability of Alzheimer). This
task is relatively easy if the data are fully observed.How-
ever, in ADNI data, not all the data sources are available
for each subject. Aswe can see fromTable 2 in Section 5,
among the total of 1170 subjects, only 409 of them have
all the covariate data available, 368 of them do not have
the GENE data, 40 of them do not have the MRI data,
and so on. Such kind of ‘fragmentary data’ nowadays is
very common in the area of medical studies, risk man-
agement, marketing research and social sciences (Fang
et al., 2019; Lin et al., 2021; Xue & Qu, 2021; Y. Zhang
et al., 2020). But the extremely high missing rate and
complicated missing patterns bring big challenges to
the analysis of fragmentary data.

In this paper we discuss the model averaging meth-
ods for fragmentary data prediction. Model aver-
aging is historically proposed as an alternative to
model selection. The most well-known model selec-
tion methods include AIC (Akaike, 1970), Mallows
Cp (Mallows, 1973), BIC (Schwarz, 1978), lasso (Tib-
shirani, 1996), smoothly clipped absolute deviation
(Fan & Li, 2001), sure independence screening (Fan &
Lv, 2008) and so on.

Model averaging, unlike most variable selection
methods which focus on identifying a single ‘correct
model’, aims to the prediction accuracy given sev-
eral predictors (Ando & Li, 2014). Without ‘putting
all inferential eggs in one unevenly woven basket’
(Longford, 2005), model averaging takes all the can-
didate models into account and makes prediction by a
weighted average, which can be classified into Bayesian
and frequentistmodel averaging. In this paper, we focus
on frequentist model averaging (Buckland et al., 1997;
Hansen, 2007; Hjort & Claeskens, 2003; Leung & Bar-
ron, 2006; Yang, 2001, 2003, among many others)
and refer readers being interested in Bayesian model
averaging to Hoeting et al. (1999) and the references
therein. Researchers have developed many frequestist
model averaging methods over the past two decades.
To just name a few, the smoothed AIC and smoothed
BIC (Buckland et al., 1997), Mallows model averag-
ing (Hansen, 2007), Jackknifemodel averaging (Hansen
& Racine, 2012) and heteroskedasticity-robust Cp (Liu
& Okui, 2013) mainly focus on low dimensional linear
models. Ando and Li (2014) and X. Zhang et al. (2020)
consider least squares model averaging with high
dimensional data. For more complex models, we have
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model averaging for generalized linear models (Ando
& Li, 2017; Zhang et al., 2016), quantile regression (Lu
&Su, 2015), semiparametric ‘model averagingmarginal
regression’ for time series (Chen et al., 2018; D. Li
et al., 2015),model averaging for covariancematrix esti-
mation (Zheng et al., 2017), varying-coefficient models
(C. Li et al., 2018; Zhu et al., 2019), vector autoregres-
sions (Liao et al., 2019), semiparametric model averag-
ing for the dichotomous response (Fang et al., 2022),
and so on.

All the model averaging methods mentioned above
assume that the data are fully observed and can not
be applied to fragmentary data directly. Due to the
extra large missing rate and complex response pat-
terns, the traditional missing data techniques such
as imputation and inverse propensity weighting (Kim
& Shao, 2013; Little & Rubin, 2002) can not be effi-
ciently applied either. Recently, Y. Zhang et al. (2020),
Xue and Qu (2021) and Lin et al. (2021) develop some
methods for block-wise missing or individual-specific
missing data. But they only consider a continuous
response.

On the other hand, Schomaker et al. (2010) and
Dardanoni et al. (2015, 2011) propose model averag-
ing methods based on imputation with no asymptotic
optimality. Zhang (2013) proposes a model averaging
method by imputing themissing data by zeros for linear
models. Liu and Zheng (2020) extends it to general-
ized linear models. In the context of fragmentary data,
Fang et al. (2019) proposes a model averaging method
to select weight by cross-validation on the complete
cases and shows its advantage to the previous model
averaging methods. Ding et al. (2021) extends it to
multiple quantile regression. Asymptotic optimalities
are established for the last four methods but they are
only applicable to a continuous response except Liu
and Zheng (2020).

In this paper, we propose a model averaging method
for fragmentary data prediction in generalized linear
models. The candidate models are fitted based on dif-
ferent combinations of covariate availability and sam-
ple size. The optimal weight is selected by minimiz-
ing the Kullback–Leibler loss in the completed cases
and its asymptotic optimality is established. Unlike
the methods in Fang et al. (2019), our method does
not need to refit the candidate models in the com-
plete cases for weight selection. Empirical results from
a simulation study and a real data analysis about
Alzheimer disease show the superiority of the proposed
method.

The paper is organized as follows. Section 2 discusses
the proposed method in details. Asymptotic optimality
is established in Section 3. Empirical results of a sim-
ulation study and a real data analysis are presented in
Sections 4 and 5, respectively. Section 6 concludes the
paper with some remarks. All the proofs are provided
in the Appendix.

2. The proposedmethod

For illustration, we consider the fragmentary data in
Fang et al. (2019) as presented in Table 1. Assume
we observe n subjects with a response variable Y and
a covariate set V = {Xj: j = 1, . . . , p}. Only a covari-
ate subset Vi ⊆ V for each subject i can be observed.
Note that V1 = V2 = {X1, . . . ,X8}, V3 = {X1,X2,X3}
and so on. All the covariate subsets can be classified
into different response patterns denoted by {�k: k =
1, . . . ,K}. In Table 1, K = 7, �1 = {X1, . . . ,X8}, �2 =
{X1,X2,X3}, . . . , and �7 = {X1,X2,X7,X8}. For nota-
tion simplicity, throughout the paper we also use Vi
or �k to denote the set of indices of the covari-
ates in Vi or �k, e.g., Vi = {X1,X2,X3} = {1, 2, 3}
or�k = {X1,X4,X5,X6} = {1, 4, 5, 6}. Denote Sk = {i :
Vi ⊇ �k} as the subject set with covariates in �k being
available. In Table 1, S1 = {1, 2}, S2 = {1, 2, 3, 4}, . . . ,
and S7 = {1, 2, 4, 9, 10}.

Our target is to make prediction given the frag-
mentary data {(yi, xij): i = 1, . . . , n, j ∈ Vi}, where yi’s
and xij’s are observations of Y and Xj whenever they
are observed. Specifically, consider that Y given X =
(X1, . . . ,Xp)

� has an exponential family distribution

f (Y|X) = exp
{
Yθ(X) − b(θ(X))

φ
+ c(Y ,φ)

}
(1)

for some known functions b(·), c(·, ·) and a known
dispersion parameter φ. The canonical parameter θ(·)
is unknown. For a new subject with available covari-
ate data V∗ ∈ {�k: k = 1, . . . ,K}, we need to estimate
θ(V∗).

Without loss of generality, we assume that �1 =
V = {1, 2, . . . , p}. Then S1 is the CC (complete cases)
sample in themissing data terminology. Similar to Fang
et al. (2019), we mainly focus on prediction of θ(x∗)
with x∗ = (x∗

1, . . . , x
∗
p)

� from pattern �1, i.e., V∗ =
�1 = V . Any x∗ from other pattern�k can be handled
in the same way by ignoring the covariates not in �k,
which will be illustrated in the real data analysis.

As discussed in Fang et al. (2019), there exists a natu-
ral trade-off between the covariates included in the pre-
diction model and available sample size. Taking Table 1
as an example, if we want to include all the 8 covariates
in the model, only subjects 1 and 2 can be used without

Table 1. An illustrative example for fragmentary data.

Subject Y X1 X2 X3 X4 X5 X6 X7 X8

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 ∗ ∗ ∗ ∗
4 ∗ ∗ ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗ ∗
6 ∗ ∗ ∗ ∗ ∗
7 ∗ ∗
8 ∗ ∗ ∗ ∗ ∗
9 ∗ ∗ ∗ ∗ ∗
10 ∗ ∗ ∗ ∗ ∗
∗ Means the datum is available.
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imputation. But if we only include the first covariate in
the model, all the 10 subjects can be used. This trade-
off naturally prepares a sequence of candidate models
for model averaging.

Specifically, we can fit a generalized linear model
Mk on the data {(yi, xij): i ∈ Sk, j ∈ �k} and try to
combine the prediction results from all the candidate
models {Mk: k = 1, . . . ,K}. Denote y = (y1, . . . , yn)�
and xi = (xi1, . . . , xip)�. Besides, the design matrix of
Mk is expressed as Xk = (xij : i ∈ Sk, j ∈ �k) ∈ R

nk×pk ,
where nk = |Sk| and pk = |�k|. We assume n1 ≥ p.
Consequently nk ≥ pk since nk ≥ n1 and pk ≤ p. The
candidate modelMk is expressed as

f (yi|θ(k)
i ,φ)

= exp

{
yiθ

(k)
i − b(θ(k)

i )

φ
+ c(yi,φ)

}
, i ∈ Sk, (2)

where θ
(k)
i is the i-th element of the parameter θ(k) =

(θ
(k)
i , i ∈ Sk)�. It is modelled by a linear model θ(k) =

Xkβ(k). Denote the maximum likelihood estimator of
β(k) by β̂(k). Note that we do not assume that the true
model θ(X) in (1) is indeed a linear function ofX. Thus,
all the candidate models can be misspecified. For a new
x∗ = (x∗

1, . . . , x
∗
p)

�, we predict θ(x∗) by

θ̂∗(w) =
K∑

k=1

wkx∗�
k β̂(k) = x∗�

β̂(w),

where x∗
k = (x∗

j : j ∈ �k)
�, β̂(w) = ∑K

k=1 wk�
�
k β̂(k),

�k is a projection matrix of size pk × p consisting of
0 or 1 such that x∗

k = �kx∗, and the weight vector w =
(w1, . . . ,wK)� belongs to

Hn =
{
w ∈ [0, 1]K :

K∑
k=1

wk = 1

}
.

Let θ{β̂(w)} = (θ1{β̂(w)}, . . . , θn1{β̂(w)})� = X1β̂(w)

be the model averaging estimator of θ(1). Our weight
choice criterion is motivated by the Kullback–Leibler
(KL) loss in Zhang et al. (2016) and is defined as follows.
Denote the true value of θ(1) as θ0 = (θ01 , . . . , θ0n1 )

�.
Let y∗ = (y∗

1, . . . , y
∗
n1)

� be another realization from
f (·|θ0,φ) and independent of y. The KL loss of θ{β̂(w)}
is

KL(w) = 2
∑
i∈S1

Ey∗
{
log{f (y∗

i |θ0i,φ)}

− log(f [y∗
i |θi{β̂(w)},φ])

}
= 2φ−1B{β̂(w)} − 2φ−1μ�

S1θ{β̂(w)}
− 2φ−1B0 + 2φ−1μ�

S1θ0

= 2J(w) − 2φ−1B0 + 2φ−1μ�
S1θ0, (3)

where B0=
∑

i∈S1 b(θ0i), B{β̂(w)}=∑
i∈S1 b[θi{β̂(w)}],

μS1 = (μS1,1, . . . ,μS1,n1)
� = (E(yi|i ∈ S1), i = 1, . . . ,

n1)� and

J(w) = φ−1B{β̂(w)} − φ−1μ�
S1θ{β̂(w)}

= φ−1

⎧⎨
⎩

∑
i∈S1

b[θi{β̂(w)}] −
∑
i∈S1

μS1,iθi{β̂(w)}
⎫⎬
⎭ .

As Zhang et al. (2016) discussed, we would obtain a
weight vector by minimizing J(w) given μS1 . However,
it is infeasible in practice to do so since the parame-
ter μS1 is unknown. Instead, we replace μS1 by yS1 =
(yi, i ∈ S1)� and add an penalty term to J(w) to avoid
overfitting, which gives us the following weight choice
criterion

G(w) = 2φ−1

⎧⎨
⎩

∑
i∈S1

b[θi{β̂(w)}] −
∑
i∈S1

yiθi{β̂(w)}
⎫⎬
⎭

+ λn

K∑
k=1

wkpk,

where λn
∑K

k=1 wkpk is the penalty term, λn is a tuning
parameter that usually takes value 2 or log(n1), and pk
is the number of variables in the k-th candidate model.
The optimal weight vector is defined as

ŵ = argminw∈Hn
G(w). (4)

Remark 2.1: Basically, our idea is to use all available
data to estimate parameters for each candidate model
and use CC data to construct the optimal weights.
This is similar to Fang et al. (2019) that deals with
linear models for fragmentary data. However, unlike
Fang et al. (2019), our proposed method does not
need to refit the candidate models in the CC data to
decide the optimal weight. Similar to Zhang (2013),
Liu and Zheng (2020) selects weights by applying KL
loss to the entire data with unavailable covariate data
replaced by zeros, which does not perform quite well in
the empirical studies.

Remark 2.2: Under the logistic regression model, φ =
1 and b(θ) = log(1 + eθ ). Let θi{β̂(w)} = log p̂i(w)

1−p̂i(w)
.

Then

J(w) =
∑
i∈S1

log
[
1 + eθi{β̂(w)}

]
−

∑
i∈S1

μS1,iθi{β̂(w)}

= −
∑
i∈S1

log
{
1 − p̂i(w)

} −
∑
i∈S1

μS1,i log
p̂i(w)

1 − p̂i(w)

= −
∑
i∈S1

[
μS1,i log p̂i(w) + (1 − μS1,i) log{1 − p̂i(w)}]

(5)

and

G(w) = −2
∑
i∈S1

[
yi log p̂i(w) + (1 − yi) log{1 − p̂i(w)}]
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+ λn

K∑
k=1

wkpk.

3. Asymptotic optimality

Let β∗
(k) be the parameter vector that minimizes the KL

divergence between the true model and the k-th candi-
date model (2). From Theorem 3.2 of White (1982), we
know that, under certain regularity conditions,

β̂(k) − β∗
(k) = Op(n

−1/2
k ) = Op(n

−1/2
1 ). (6)

Let εS1 = (εS1,1, . . . , εS1,n1)� = (y1, . . . , yn1)� − μS1 ,
σ̄ 2 = maxi∈S1 Var(εS1,i), β∗(w) = ∑K

k=1 wk�
�
k β∗

(k),

KL∗(w) = 2φ−1B{β∗(w)} − 2φ−1B0

− 2φ−1μ�
S1 [θ{β∗(w)} − θ0],

and ξn = infw∈Hn KL∗(w). We assume the following
conditions.

(C1) ‖ X�
1 μS1 ‖= O(n1), ‖ X�

1 εS1 ‖= Op(n
1/2
1 ), and

uniformly for w ∈ Hn,

‖ ∂B(β)/∂β�|β=β̃(w) ‖= Op(n1)

for every β̃(w) between β̂(w) and β∗(w).
(C2) Uniformly for k ∈ {1, . . . ,K}, n−1

1 σ̄ 2×
‖ θ(��

k β∗
(k)) ‖2= O(1).

(C3) n1ξ−2
n = o(1).

The following theorem establishes the asymptotic
optimality of the model averaging estimator θ{β̂(ŵ)}.

Theorem 3.1: Under Equation (6), conditions (C1)∼
(C3), and n−1/2

1 λn = O(1), we have

KL(ŵ)

infw∈Hn KL(w)
→p 1,

where KL(w) is defined in (3) and ŵ is defined in (4).

Conditions (C1)–(C3) are similar to Conditions
(C.1)–(C.3) in Zhang et al. (2016). What is slightly
different is the order O(n1) other than O(n). It is ratio-
nal because our weights selection is based on CC (i ∈
S1) data with sample size n1. Condition (C3) requires
that ξn grows at a rate no slower than n1/21 , which
is the same as the third part of Condition (A7) of
Zhang et al. (2014), and is also implied by Condi-
tions (7) and (8) of Ando and Li (2014). Condition
(C3) is imposed in order to obtain the asymptotic opti-
mality, which is slightly stronger than that ξn → ∞.
Note that Theorem 3.1 holds when both λn = 2 and
λn = log(n1). These two versions of model averaging
methods are both applied in Sections 4 and 5.

4. Simulation

In this section, we conduct a simulation study to com-
pare the finite sample performances of the following
methods.

(1) CC: a generalized linear regression using subjects
that all the covariates are available.

(2) SAIC&SBIC: use the smoothedAIC and smoothed
BIC in Buckland et al. (1997) to decide the model
weights.

(3) IMP: the zero imputation method in Liu and
Zheng (2020). We use IMP1 and IMP2 to denote
the IMP method with λn = 2 and log(n1), respec-
tively.

(4) GLASSO: the method using CC data and group
lasso of Meier et al. (2008) to select covariates and
fitting a model with the subjects that have all the
selected covariates available.

(5) OPT: the proposed method. We use OPT1 and
OPT2 to denote the OPTmethod with λn = 2 and
log(n1), respectively.

The data is generated as follows. A binary yi is gen-
erated from model Binomial(1,pi) with

pi = exp

⎛
⎝ p∑

j=1
βjxij

⎞
⎠/ ⎧⎨

⎩1 + exp

⎛
⎝ p∑

j=1
βjxij

⎞
⎠

⎫⎬
⎭ ,

i = 1, . . . , n,

where p = 14, β = 0.4 × (1, 1/2, . . . , 1/p), 0.1 ×
(1, 1, . . . , 1) or 0.2 × (1/p, . . . , 1/2, 1), xi1 = 1, (xi2, . . . ,
xip) is generated from a multivariate normal distribu-
tion with E(xij) = 1, Var(xij) = 1, and Cov(xij1 , xij2) =
ρ for j1 = j2, ρ = 0.3, 0.6 or 0.9, and the sample size
n = 400 or 800.

To mimic the situation that all candidate models are
misspecified, we pretend that the last covariate is not
available for all the candidate models. The remaining
12 covariates other than the intercept are divided into
3 groups. The s-th group consists of X4(s−1)+2 to X4s+1,
s = 1, 2, 3. The covariates in the s-th group are available
if the first covariate of each groupX4(s−1)+2 < 1, which
results in K = 8. The percentages of CC (S1) data are
19%, 25.5% and 38.8%, respectively for ρ = 0.3, 0.6 and
0.9. We consider the prediction when V∗ = V and use
KL loss (divided by n1) defined in (5) for assessment.
The number of simulation runs is 200. Figures 1–3
present the KL loss boxplots for eachmethod under dif-
ferent simulation settings. The main conclusions are as
follows.

(1) The SAIC, SBIC and CC methods perform much
worse than OPT1 and OPT2. In many situations,
these threemethods performquite similar, indicat-
ing that SAIC and SBIC tend to select the model
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Figure 1. The KLs of all the methods in 200 replications when β = 0.4 × (1, 1/2, . . . , 1/p).

Figure 2. The KLs of all the methods in 200 replications when β = 0.1 × (1, 1, . . . , 1).
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Figure 3. The KLs of all the methods in 200 replications when β = 0.2 × (1/p, . . . , 1/2, 1).

with more covariates and smaller sample size (M1
with CC data).

(2) The zero imputation methods IMP1 and IMP2
generally perform not as well as the proposed
methods OPT1 and OPT2. Some exceptions hap-
pen when n and ρ are small (for example, the first
panel in Figure 1), in which the usage of zeros to
replace unavailable covariates has relatively small
effect on the prediction.

(3) The performance of GLASSO is also worse than
the proposed methods, which shows the model
selection method does not work quite well when
the models are misspecified.

(4) The proposed method OPT1 produces the lowest
KL loss in most situations.

5. A real data example

To illustrate the application of our proposed method,
we consider the ADNI data which is available at
http://adni.loni.usc.edu. The ADNI data contains three
different phases: ADNI1, ADNIGO, and ADNI2. In
this paper, we use ADNI2 in which some new model
data are added. For every subject, different visits at
longitudinal time points are recorded and here we
focus on the baseline data. As we have mentioned in
Section 1, the ADNI data mainly includes four differ-
ent sources: CSF, PET, MRI and GENE. The CSF data

includes 3 variables: ABETA, TAU and PTAU. Quan-
titative variables from the PET images are computed
by Helen Wills Neuroscience Institute, UC Berkeley
and Lawrence BerkeleyNational Laboratory containing
241 variables. The MRI is segmented and analysed in
FreeSurfer by the Center for Imaging of Neurodegen-
erative Diseases at the University of California – San
Francisco, which produces 341 variables on volume,
surface area, and thickness of regions of interest. GENE,
which plays an important role in AD, contains 49,386
variables.

The overall sample size is 1170. The K = 8 response
patterns and sample size for each pattern are presented
in Table 2. The total missing rate is about 65%. The
MMSE provides a picture of an individual’s present
cognitive performance based on direct observation of

Table 2. Response patterns and sample sizes for ADNI data.

Data source

k MMSE CSF PET MRI GENE Sample size

1 ∗ ∗ ∗ ∗ ∗ 409
2 ∗ ∗ ∗ ∗ 368
3 ∗ ∗ ∗ ∗ 40
4 ∗ ∗ ∗ ∗ 105
5 ∗ ∗ ∗ 86
6 ∗ ∗ ∗ 53
7 ∗ ∗ 53
8 ∗ ∗ 56

Total 1,170
∗ The datum is available.

http://adni.loni.usc.edu
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Figure 4. The KL loss of all the methods in 100 replications for
ADNI data.

completion of test items. A score of < 28 is the general
cutoff indicating the presence of cognitive impairment.
As a result, we classify the MMSE score into two levels
and consider the binary response Y = 1 if the MMSE
score is no less than 28 and Y = 0 otherwise.

It can be seen that the data is high dimensional,
which may contain variables with redundant informa-
tion. Thus, we first use correlation screening to select
features that aremost likely to be related to the response
variable. All the 3 variables in CSF are kept and 10 vari-
ables each for PET, MRI and GENE are screened. We
also tried other variable number but found that this
screening procedure gave us the smallest KL loss.

To compare the prediction performances of the
methods considered in the simulation, we randomly
select 75% of the subjects from each response pattern,
combine them to a training data for model fitting, and
use the rest of the subjects as the test data for perfor-
mance evaluation. For each of the considered methods,
we use the training data to fit the model, apply it to the
test data, and compute the KL loss of the predictions on
test data. The KL loss instead of misclassification rate
is considered because the probability of AD is what we
really care. We repeat this procedure independently for
100 replications.

Note that in this real data analysis, we do not
only consider the prediction for V∗ = V . For V∗ =
{CSF, PET,MRI, GENE}, the proposedmethod ignores
the covariates not in V∗ for modelling and predic-
tion. For example, when V∗ = {PET,MRI, GENE}, the
covariates from ‘CSF’ are ignored and only 5 candidate
models are considered. More details for this kind of
procedure can be found in Fang et al. (2019).

Figure 4 displays boxplots of the KL losses over 100
replications for different methods. The boxplots for
IMP1 and IMP2 are not shown in the figure because
their KL losses are too large. The proposed methods
OPT1 and OPT2 outperform the other methods.

6. Concluding remarks

Fragmentary data is becoming more and more popular
in many areas and it is not easy to handle. Most exist-
ing methods dealing with fragmentary data consider
a continuous response while in many applications the

response variable is discrete. We propose a model aver-
aging method to deal with fragmentary data under
generalized linear models. The asymptotic optimality
is established and empirical results from a simulation
study and a real data analysis about Alzheimer disease
show the superiority of the proposed method.

There are several topics for our future study. First,
the covariate dimension p and the number of candi-
date models K are assumed to be fixed. The asymptotic
optimality with diverging p and K needs further inves-
tigation. Second, we do not focus on the comparison
of λn = 2 and λn = log(n1). Which tuning parameter
should we use in the practice? In fact, how to choose
the best tuning parameter for model averaging is still a
challenging problem even under linear models. Third,
we assume the overall model belongs to an exponential
family which is still restrictive. The extension to more
general models deserves further study.
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Appendix. Proof of Theorem 3.1

Proof: Let G̃(w) = G(w) − 2φ−1B0 + 2φ−1μ�
S1θ0. It is obvi-

ous that ŵ = argminw∈Hn
G̃(w). From the proof of Theorem1

inWan et al. (2010), Theorem 3.1 is valid if the following two
conclusions hold:

(i) sup
w∈Hn

|KL(w) − KL∗(w)|
KL∗(w)

→p 0, (A1)

and

(ii) sup
w∈Hn

|G̃(w) − KL∗(w)|
KL∗(w)

→p 0. (A2)

By (6), we know that uniformly for w ∈ Hn,

β̂(w) − β∗(w) =
K∑

k=1

wk�
�
k (β̂(k) − β∗

(k)) = Op(n
−1/2
1 ).

(A3)

It follows from (A3), Condition (C1), and Taylor expansion
that uniformly for w ∈ Hn,

|B{β̂(w)} − B{β∗(w)}|

≤
∥∥∥∥∂B(β)

∂β� |β=β̃(w)

∥∥∥∥ ‖ β̂(w) − β∗(w) ‖= Op(n
1/2
1 ),

μ�
S1 [θ{β̂(w)} − θ{β∗(w)}]
≤‖ μ�

S1X1 ‖‖ β̂(w) − β∗(w) ‖= Op(n
1/2
1 ),

and

ε�
S1 [θ{β̂(w)} − θ{β∗(w)}]

≤‖ ε�
S1X1 ‖‖ β̂(w) − β∗(w) ‖= Op(1),

where β̃(w) is a vector between β̂(w) and β∗(w). In addition,
using the central limit theoremandCondition (C.2), we know
that uniformly for w ∈ Hn,

ε�
S1θ{β∗(w)} =

K∑
k=1

wkε
�
S1θ(��

k β∗
(k)) = Op(n

1/2
1 ).

Then we have

sup
w∈Hn

|KL(w) − KL∗(w)|

≤ 2φ−1 sup
w∈Hn

|B{β̂(w)} − B{β∗(w)}|

+ 2φ−1 sup
w∈Hn

|μ�
S1 [θ{β̂(w)} − θ{β∗(w)}]|

= Op(n
1/2
1 ) (A4)

and

sup
w∈Hn

|G̃(w) − KL∗(w)|

≤ 2φ−1 sup
w∈Hn

|B{β̂(w)} − B{β∗(w)}|

+ 2φ−1 sup
w∈Hn

|y�
S1θ{β̂(w)} − μ�

S1θ{β∗(w)}|

+ λn

K∑
k=1

wkpk

≤ 2φ−1 sup
w∈Hn

|B{β̂(w)} − B{β∗(w)}|

+ 2φ−1 sup
w∈Hn

|μ�
S1 [θ{β̂(w)} − θ{β∗(w)}]|

+ 2φ−1 sup
w∈Hn

|ε�
S1θ{β∗(w)}|

+ 2φ−1 sup
w∈Hn

|ε�
S1 [θ{β̂(w)} − θ{β∗(w)}]|

+ λn

K∑
k=1

wkpk

= Op(n
1/2
1 ) + λn

K∑
k=1

wkpk. (A5)

Now, from (A4) to (A5), n1ξ−2
n = o(1), and n−1/2

1 λn = O(1),
we can obtain (A1) and (A2). This completes the proof. �
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