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ABSTRACT
In the paper, the autoregressive moving average model for matrix time series (MARMA) is inves-
tigated. The properties of the MARMA model are investigated by using the conditional least
square estimation, the conditional maximum likelihood estimation, the projection theorem in
Hilbert space and the decomposition technique of time series, which include necessary and suf-
ficient conditions for stationarity and invertibility, model parameter estimation, model testing
and model forecasting.
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1. Introduction

Matrix time series is a time series whose cross-sectional data are matrices, which can be found in a variety of fields
such as economics, business, ecology, psychology, meteorology, biology and fMRI (Samadi, 2014). For example,
consider two stocks, A1 and A2, as potential investment products, whose prices and volumes are selected as two
analysis factors. Denote the price and volume of stock Ak at time t by Pk(t) and Vk(t), k = 1, 2, and then a 2 ×
2-dimensional matrix time series can be constructed as follows:{

Xt ≡
[

P1(t) P2(t)
V1(t) V2(t)

]
, t = 1, 2, . . .

}
.

Matrix time series has attracted a few scholars’ attention and research at the beginning of the century. Walden
and Serroukh (2002) studied the construction of matrix-valued filters for multi-resolution analysis of matrix time
series. Samadi (2014) brought forward and investigated a p-order autoregressivemodel formatrix time series, which
is essentially a VAR(p) model in matrix form. D. Wang et al. (2019) proposed a novel factor model

Xt = RFtC� + εt , t = 1, 2, . . . ,

where Xt and Ft are matrix time series. Chen et al. (2021) first proposed one-order autoregressive model for matrix
time series in the bilinear form, denoted by MAR(1),

Xt = AXt−1B� + εt , t = 1, 2, . . . , (1)

and investigated its stationarity, causality, method of parameter estimation, and asymptotics of statistic. Wu
and Hua (2022) independently proposed the p-order autoregressive model for matrix time series in the bilinear
form, denoted by MAR(p),

Xt =
p∑

k=1

AkXt−kB�
k + εt , t = 1, 2, . . . , (2)

and presented parameter estimation, model identification criterion andmodel checking. Formore literature studies
on matrix time series, one can refer to H. Wang and West (2009), Zhou et al. (2018), Getmanov et al. (2021) and
their references.

It is widely known that the autoregressive moving average model of time series (ARMA) plays a very important
role in the theory and the application of one-dimensional time series, and we will show later that a bilinear model
has its unique advantages for matrix time series. In the paper, autoregressive moving average models for matrix
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time series (MARMA) are first proposed and investigated. Necessary and sufficient conditions for stationarity of
MARMA are provided, and parameter estimations are also considered by the conditional least squares method and
the conditional maximum likelihood estimation method. At last, an example is presented to show the applications
of the MARMAmodel.

2. Preliminaries

Let (�,F ,P) be a probability space with a σ -filtration {Ft , t ∈ N} in which the second moment of each variable
exists, and N = {1, 2, 3, . . .}.

Definition 2.1: For any given positive integersm and n, anm × n-dimensional matrix time series refers to

X =
{(
Xij(t)

)
m×n , t ∈ N

}
, (3)

where {Xij(t), t ∈ N} is a one-dimensional time series on a probability space (�,F ,P) for any i = 1, 2, . . . , n and
j = 1, 2, . . . ,m.

Definition 2.2: Let X = {X(t), t ∈ N} be an m × n-dimensional matrix time series defined by (3), and then its
mean function follows as

μX(t) ≡ E[X(t)] = (
E[Xij(t)]

)
m×n , t ∈ N. (4)

Additionally, its autocovariance function follows as

�X(t, s) ≡ �vec(X)(t, s) = (
σij,k�(t, s)

)
mn×mn , (5)

where σij,k�(t, s) = cov(Xij(t),Xk�(s)), i, k = 1, 2, . . . , n and j, � = 1, 2, . . . , n; t, s ∈ N, and vec(X(t)) is the vector-
ization of X(t) by columns, that is,

vec(X(t)) = [X11(t),X21(t), . . . ,Xm1(t),X12(t),X22(t), . . . ,Xmn(t)]� . (6)

Stationarity and matrix white noise play a very important role on time series analysis. Thus, we will introduce
the concept of stationary matrix time series and matrix white noise in the following.

Definition 2.3: Let {X(t), t ∈ N} be a matrix time series defined by (3) and vec(X(t)) be the vectorization of X(t)
defined by (6). Then {X(t), t ∈ N} is a stationary matrix time series if and only if {vec(X(t)), t ∈ N} is stationary.

Definition 2.4: For any given positive integers m and n, denote an m × n-dimensional matrix time series ε =
{(εij(t))m×n, t ∈ N}, and then ε is called an m × n-dimensional matrix white noise, if it satisfies the following
conditions.

(1) Its mean function με(t) = Om×n for all t ∈ N, where Om×n is them × n-dimensional zero matrix.
(2) Its autocovariance function �ε(t, s) defined by Definition 2.3 satisfies that

�ε(t, s) =
{

Omn, t �= s,
�mn, t = s, ∀t, s ∈ N,

where Omn is themn × mn-dimensional zero matrix, and

�mn = diag
(
σ 2
11, σ

2
21, . . . , σ

2
m1, σ

2
12, σ

2
22, . . . , σ

2
(m−1)n, σ

2
mn

)
(7)

is themn × mn-dimensional diagonal matrix with diagonal entries σ 2
11, σ

2
21, . . . , σ

2
m1, σ

2
12, σ

2
22, . . . , σ

2
(m−1)n, σ

2
mn.

For any matrix white noise {ε(t), t ∈ N}, if its vectorization by columns, {vec(ε(t)), t ∈ N}, is Gaussian, then
{ε(t), t ∈ N} is called a matrix Gaussian white noise.

Property 2.1: For anym × n-dimensionalmatrix time series {ε(t), t ∈ N}, it is anm × n-dimensionalmatrix white
noise if and only if {vec(ε(t)), t ∈ N} is anmn-dimensional vector white noise, where N = {1, 2, 3, . . .}.

The proof of Property 2.1 is not difficult, so we omit it.
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When we investigate the autoregressive moving average model for matrix time series, we may use the Kronecker
product, matrix reshape and derivative of matrix. Thus, we introduce them in the following.

Definition2.5 (Graham, 2018): AssumematricesA = (aij)m×n andC = (cij)p×q, and then them × n blockmatrix
(aijC)m×n is called the Kronecker product of A and C, denoted by A ⊗ C, that is,

A ⊗ C =

⎡⎢⎢⎢⎣
a11C a12C · · · a1nC
a21C a22C · · · a2nC
...

...
. . .

...
am1C am2C · · · amnC

⎤⎥⎥⎥⎦ .

Definition 2.6: For any A = (aij)m×n and positive integers p, q satisfying pq = mn, the (p, q)-order reshaped
matrix of A, denoted by Res(A, p, q), is defined by

Res(A, p, q) =

⎡⎢⎢⎢⎣
a1 ap+1 · · · a(p−1)q+1
a2 ap+2 · · · a(p−1)q+2
...

...
. . .

...
ap a2p · · · apq

⎤⎥⎥⎥⎦ ,

where ak = aij for all k = 1, 2, . . . , pq, i = k − m[(k − 1)/m] and j = [(k − 1)/m] + 1, where [·] is the operator of
taking the integer part.

Definition 2.7 (Graham, 2018): Let F = (Fij)m×n and X = (Xij)p×q be two matrices, where m, n, p and q are
natural numbers. The derivative of matrix F with respect to matrix X is defined by

∂F
∂X

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F
∂X11

∂F
∂X12

· · · ∂F
∂X1q

∂F
∂X21

∂F
∂X22

· · · ∂F
∂X2q

...
...

. . .
...

∂F
∂Xp1

∂F
∂Xp2

· · · ∂F
∂Xpq

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the derivative of matrix F with respect to scalar Xij is defined by

∂F
∂Xij

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F11
∂Xij

∂F12
∂Xij

· · · ∂F1n
∂Xij

∂F21
∂Xij

∂F22
∂Xij

· · · ∂F2n
∂Xij

...
...

. . .
...

∂Fm1

∂Xij

∂Fm2

∂Xij
· · · ∂Fmn

∂Xij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, i = 1, 2, . . . , p,

j = 1, 2, . . . , q.

For the derivative of matrix with respect to matrix, its product rule and two common formulas follow as
Properties 2.2 and 2.3.

Property 2.2 (Graham, 2018): For any X = (xij)m×n, Y = (yij)n×u and Z = (zij)p×q, it follows that

∂(XY)
∂Z

= ∂X
∂Z
(Iq ⊗ Y)+ (Ip ⊗ X)

∂Y
∂Z

,

where Iq is the q × q-dimensional identity matrix.

Taking Y = (yij)n×1 and X = Y� into Property 2.2, we obtain Corollary 2.1.

Corollary 2.1: For any Y = (yij)n×1 and Z = (zij)p×q, it follows that

∂(Y�Y)
∂Z

= 2
∂Y�

∂Z
(Iq ⊗ Y).
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Property 2.3 (Graham, 2018): For any A = (aij)m×n, B = (bij)n×u and invertible X = (Xij)n×n, it follows that

∂vec(AX−1B)
∂vec(X)

= −(X−1B)⊗ (AX−1)�

and
∂ ln(X)
∂X

= (X−1)�.

Taking B = (bij)n×1 and A = B� into Property 2.3, we obtain Corollary 2.2.

Corollary 2.2: For any B = (bij)n×1 and invertible X = (Xij)n×n, it follows that

∂B�X−1B
∂X

= −Res
(
(X−1B)⊗ (AX−1)�, n, n

)
.

3. Autoregressive moving averagemodel for matrix time series

The autoregressivemoving averagemodel for matrix time series is an extension of the vector autoregressive moving
averagemodel (VARMA) tomatrix time series. However, we cannot build the autoregressivemoving averagemodel
for matrix time series like the VARMAmodel as follows:

X(t) = 	0 +
p∑

i=1
	iX(t − i)+ ε(t)−

q∑
j=1


jε(t − j). (8)

The reason is that the form of (8) cannot describe the dependent relation between the different columns of X(t)
according to the rule of matrix multiplication. That is, the �th column of X(t)will not be affected by the sth column
of X(t − 1),X(t − 2), . . . ,X(t − p) as s �= �.

3.1. MARMA (p,q)model

In this section, an autoregressive moving average model for matrix time series (MARMA) is first brought for-
ward, whose degradation model, autoregressive model for matrix-valued time series (MAR), is just the model (2)
proposed by Wu and Hua (2022) and the extension of model (1) proposed by Chen et al. (2021).

Definition 3.1: Let {X(t), t ∈ N} be anm × n-dimensional matrix time series. IfX is stationary and for each t ∈ N

it follows that

X(t) = C +
p∑

k=1

	kX(t − k)
k + ε(t)−
q∑

j=1
�jε(t − j)�j, (9)

where C is an m × n-dimensional matrix; 	k and �j are m × m-dimensional matrices, and 
k and �j are n ×
n-dimensional matrices for each k = 1, 2, . . . , p and j = 1, 2, . . . , q, where p and q are two nonnegative integers;
{ε(t), t ∈ N} is an m × n-dimensional matrix white noise satisfying that vec(ε(t)) is independent with vec(X(s))
for all s< t, and then {X(t), t ∈ N} is said to follow a (p, q)-order autoregressive moving average model for matrix
time series, denoted by MARMA(p, q).

When q = 0, MARMA(p, 0)model (9) degenerates into the form

X(t) = C +
p∑

k=1

	kX(t − k)
k + ε(t), (10)

which is a p-order autoregressive model for matrix time series, MAR(p).
When p = 0, MARMA(0, q)model (9) degenerates into the form

X(t) = C + ε(t)−
q∑

j=1
�jε(t − j)�j, (11)

which is called a q-order moving average model for matrix time series, denoted by MMA(q).
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If X = {X(t), t ∈ N} is anm × n-dimensional matrix time series defined by (3) and X is stationary, denote

μ = E[X(t)], ∀t ∈ N,

and then it follows fromMARMA(p, q)model (9) that

μ = C +	1μ
1 +	2μ
2 + · · · +	pμ
p. (12)

Denote

Y(t) = X(t)− μ.

It yields from (12) and MARMA(p, q)model (9) that

Y(t) =
p∑

k=1

	kY(t − k)
k + ε(t)−
q∑

j=1
�jε(t − j)�j (13)

holds for all t ∈ N, and then Y = {Y(t), t ∈ N} is said to follow a (p, q)-order centralized MARMA(p, q)model.
Because every MARMA(p, q)model can be changed into a centralized MARMA(p, q)model and they have the

same coefficient parameters. Thus, while estimating coefficient parameters of MARMA(p, q) model (9) we will
mainly study centralized MARMA(p, q)model (13).

For any MARMA(p, q) model (9), and for any ck �= 0 and dj �= 0, k = 1, 2, . . . , p and j = 1, 2, . . . , q, it follows
that

X(t) = C +
p∑

k=1

(ck	k)X(t − k)
(
1
ck

k

)
+ ε(t)−

q∑
j=1
(dj�j)ε(t − j)

(
1
dj
�j

)
,

that is, coefficient parameters of MARMA(p, q) model (9) are not unique! Thus, we present constraint conditions
that


k = (ψuv)n×n satisfies argmax
ψij

{|ψij|, i, j = 1, 2, . . . , n} = 1 (14)

and

�j = (ξuv)n×n satisfies argmax
ξij

{|ξij|, i, j = 1, 2, . . . , n} = 1 (15)

for all k = 1, 2, . . . , p and j = 1, 2, . . . , q.

3.2. Relationship betweenMARMAmodel and VARMAmodel

When the column number of matrixX(t) equals one, i.e., n = 1,MARMA(p, q)model (9) degenerates into a (p, q)-
order vector autoregressive moving average model, VARMA(p, q), as follows:

X(t) = C +
p∑

k=1

	kX(t − k)+ ε(t)−
q∑

j=1
�jε(t − j), (16)

where {X(t), t ∈ N} is an m-dimensional vector time series, C is an m-dimensional vector, 	k and �j are m ×
m-dimensional matrices for all k = 1, 2, . . . , p and j = 1, 2, . . . , q, and {ε(t), t ∈ N} is a white noise of the m-
dimensional vector time series satisfying that ε(t) is independent with X(s) for all s< t. Obviously, VARMAmodel
(16) is a special case of MARMAmodel (9).

On the other hand, for anym × n-dimensional matrix time series {X(t), t ∈ N}, its vectorization {vec(X(t)), t ∈
N} is an mn × 1-dimensional time series, and the (p, q)-order vector autoregressive moving average model
VARMA(p, q) for {vec(X(t)), t ∈ N} follows as

vec(X(t)) = A0 +
p∑

k=1

Akvec(X(t − k))+ ε(t)−
q∑

j=1
Bjε(t − j), (17)

where A0 is an mn × 1-dimensional vector; Ak and Bj are mn × mn-dimensional matrices for k = 1, 2, . . . , p and
j = 1, 2, . . . , q; and {ε(t), t ∈ N} is an mn × 1-dimensional white noise satisfying that ε(t) is independent with
vec(X(s)) for all s< t.
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A natural question is why the authors still bring forward MARMA(p, q)model (9) for {X(t), t ∈ N} but directly
use VARMA(p, q)model (17) for {vec(X(t)), t ∈ N}.

In fact, there are two important reasons that the authors propose MARMA(p, q) model (9) for {X(t), t ∈ N}.
Firstly, MARMA(p, q)model (9) for {X(t), t ∈ N} can reveal the information structure of {X(t), t ∈ N} very clearly.
Secondly,MARMA(p, q)model (9) for {X(t), t ∈ N} can reducemodel parametersmore greatly than VARMA(p, q)
model (17) for {vec(X(t)), t ∈ N}. In fact, the parameter number of MARMA(p, q) model (9) for {X(t), t ∈ N} is
2mn + (p + q)(m2 + n2). However, the parameter number of VARMA(p, q) model (17) for {vec(X(t)), t ∈ N} is
2mn + (p + q)m2n2. Generally,

2mn + (p + q)(m2 + n2) � 2mn + (p + q)m2n2.

For example, if p = q = 1 andm = n = 10, then

2mn + (p + q)(m2 + n2) = 600 � 2mn + (p + q)m2n2 = 20200.

In today’s big data era,m and n are often very large, takingm = n = 100 and p = q = 1 as an example, and then

2mn + (p + q)(m2 + n2) = 60000 � 2mn + (p + q)m2n2 = 200020000.

Remark 3.1: MARMA(p, q)model (9) greatly reducesmodel parameters comparedwithVARMA(p, q)model (17).

Although it is not a good idea to replaceMARMA(p, q)model (9)withVARMA(p, q)model (17), in the following
we will show there exists a special VARMA(p, q)model equivalent to MARMA(p, q)model, which will play a very
important role in theoretical analysis of MARMA(p, q)model (9).

Theorem 3.1: MARMA(p, q) model (9) for {X(t), t ∈ N} is equivalent to VARMA(p, q) model (18) for
{vec(X(t)), t ∈ N} as follows:

vec(X(t)) = vec(C)+
p∑

k=1


�
k ⊗	kvec(X(t − k))+ vec(ε(t))

−
q∑

j=1
��

j ⊗�jvec(ε(t − j)), (18)

where vec(X(t)) and vec(ε(t)) represent the vectorization ofmatrices X(t) and ε(t) by columns, and⊗ is the Kronecker
product.

Theorem 3.1 can be proved by the following equivalence relation: for anymatricesYm×n,Am×m, Bm×n andCn×n,
it follows that

Ym×n = Am×mBm×nCn×n ⇐⇒ vec(Ym×n) = (C�
n×n ⊗ Am×m)vec(Bm×n).

The equivalence relation is not difficult to prove, so we omit the proof and that of Theorem 3.1.

3.3. Stationary and invertible conditions forMARMAmodel

According to Theorem 3.1, any MARMA(p, q) model (9) can be converted into its corresponding VARMA(p, q)
model (18). Furthermore, VARMA(p, q)model (18) can be rewritten as

P(B)vec(X(t)) = vec(C)+ Q(B)vec(ε(t)), t ∈ N, (19)

where

P(B) = Imn −
p∑

k=1


�
k ⊗	kBk, (20)

Q(B) = Imn −
q∑

j=1
��

j ⊗�jBj (21)

and B is the delay operator, i.e., BX(t) = X(t − 1) holds for all t ∈ N.
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Theorem 3.2: ForMARMA(p, q)model (9), the necessary and sufficient conditions for stationarity are that any root
λ of (22) is in the unit circle, where

∣∣∣λpImn − λp−1
�
1 ⊗	1 − λp−2
�

2 ⊗	2 − · · · − λ
�
p−1 ⊗	p−1 −
�

p ⊗	p

∣∣∣ = 0. (22)

The necessary and sufficient conditions for invertibility are that any root λ of (23) is in the unit circle, where

∣∣∣λqImn − λq−1��
1 ⊗�1 − λq−2��

2 ⊗�2 − · · · − λ��
q−1 ⊗�q−1 −��

q ⊗�q

∣∣∣ = 0. (23)

The proof of Theorem 3.2 is presented in Appendix 1.

Corollary 3.1: For MAR(p) model (10), the necessary and sufficient conditions for stationarity are that any root λ
of (22) is in the unit circle.

Remark 3.2: Corollary 3.1 expands Proposition 1 in Chen et al. (2021).

Corollary 3.2: For MMA(q) model (11), the necessary and sufficient conditions for invertibility are that any root λ
of (23) is in the unit circle.

3.4. Parameter estimation forMARMAmodel

In the section, we will present the conditional least square method and the conditional maximum likelihood
estimation method for MARMA(p, q)model (9).

Let x1, x2, . . . , xN be a series of samples of the centralized matrix time series X = {X(t), t ∈ N} defined by (3)
with C = Om×n, where

xt =

⎡⎢⎢⎢⎣
x11(t) x12(t) · · · x1n(t)
x21(t) x22(t) · · · x2n(t)

...
...

. . .
...

xm1(t) xm2(t) · · · xmn(t)

⎤⎥⎥⎥⎦ , t = 1, 2, . . . ,N, (24)

where the integer N is the sample length.
When the coefficient parameters of MARMA(p, q)model (9) have been obtained, it follows from (12) that

C = μ−	1μ
1 −	2μ
2 − · · · −	pμ
p,

and then the constant matrix C of MARMA(p, q)model (9) can be estimated as follows:

Ĉ = X −	1X
1 −	2X
2 − · · · −	pX
p,

where

X = 1
N

N∑
t=1

xt .

Thus, in the following we always assume the samples come from a centralized MARMA(p, q) model (9), i.e., C =
Om×n.

We use VARMA(p, q) model (19) with C = Om×n, equivalent to centralized MARMA(p, q) model (9), to
estimate the coefficient parameters of MARMA(p, q)model (9) by the conditional least square method.
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It yields from (19) with C = Om×n that

vec(ε(t)) = Q−1(B)P(B)vec(X(t)), t ∈ N, (25)

where Q−1(B) is the inverse operator of Q(B), and

P(B) = Imn −
p∑

k=1


�
k ⊗	kBk, Q(B) = Imn −

q∑
j=1

��
j ⊗�jBj.

For the sake of briefness, denote

G(B) �=
+∞∑
k=0

GkBk = Q−1(B)P(B) (26)

and

P(B) =
+∞∑
i=0

PiBi, Q(B) =
+∞∑
j=0

QjBj,

where we stipulate that

Pi =
⎧⎨⎩

Imn, i = 0,
−
�

i ⊗	i, 1 ≤ i ≤ p,
Omn, i ≥ p + 1,

and Qj =
⎧⎨⎩

Imn, j = 0,
−��

j ⊗�jBj, 1 ≤ j ≤ q,
Omn, j ≥ q + 1.

(27)

It follows from (26) that Q(B)G(B) = P(B), which means that
k∑

i=0
QiGk−i = Pk, k = 0, 1, 2, . . . . (28)

It yields from (28) and (27) that

Gk =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Imn, k = 0,

−
�
k ⊗	k +

k∧q∑
i=1

(
��

i ⊗�i

)
Gk−i, 1 ≤ k ≤ p,

k∧q∑
i=1

(
��

i ⊗�i

)
Gk−i, k ≥ p + 1,

(29)

where k ∧ q = min{k, q}.
In summary, centralized MARMA(p, q)model (9), i.e., C = Om×n, is equivalent to VARMA(p, q)model (30).

vec(ε(t)) =
+∞∑
k=0

Gkvec(X(t − k)), t ∈ N, (30)

where Gk, k = 0, 1, 2, . . ., are given by (29).

Theorem 3.3: According to the conditional least square method, the parameters of MARMA(p, q) model (9) satisfy
the following matrix differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂	i

(
Im ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= Om, i = 1, 2, . . . , p,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂
i

(
In ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= On, i = 1, 2, . . . , p,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
Im ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= Om, j = 1, 2, . . . , q,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
In ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= On, j = 1, 2, . . . , q,

where Gk is given by (29).
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The proof of Theorem 3.3 is presented in Appendix 2.

Corollary 3.3: According to the conditional least square method, the parameters of MAR(p) model (10) satisfy the
following matrix differential equations:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
t=p+1

∂
(
x̃�
t−i(
i ⊗	�

i )
)

∂	i

(
Im ⊗

(
x̃t −

p∑
�=1

(
�
� ⊗	�)x̃t−�

))
= Om,

N∑
t=p+1

∂
(
x̃�
t−i(
i ⊗	�

i )
)

∂
i

(
In ⊗

(
x̃t −

p∑
�=1

(
�
� ⊗	�)x̃t−�

))
= On,

i = 1, 2, . . . , p.

Theorem 3.4: Assume the innovations are Gaussian with the mean Om×n and covariance matrix �mn. According
to the conditional maximum likelihood estimation method, the parameters of centralized MARMA(p, q) model (9)
satisfy the following matrix differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂	i

(
Im ⊗ [

�−1
mnH(t,G·)

]) = Om, i = 1, 2, . . . , p,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂
i

(
In ⊗ [

�−1
mnH(t,G·)

]) = On, i = 1, 2, . . . , p,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
Im ⊗ [

�−1
mnH(t,G·)

]) = Om, j = 1, 2, . . . , q,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
In ⊗ [

�−1
mnH(t,G·)

]) = On, j = 1, 2, . . . , q,

1
N

N∑
t=1

Res
([
�−1

mnH(t,G·)
]⊗ [

�−1
mnH(t,G·)

]
,mn,mn

) = �−1
mn,

where H(t,G·) = x̃t +∑t−1
k=1 Gkx̃t−k and Gk is given by (29).

The proof of Theorem 3.4 is presented in Appendix 3.

Corollary 3.4: Assume the innovations are Gaussian with the mean Om×n and covariance matrix�mn. According to
the conditional maximum likelihood estimation method, the parameters of centralizedMAR(p) model (10) satisfy the
following matrix differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=i+1

∂
(
x̃�
t−i(
i ⊗	�

i )
)

∂	i

(
Im ⊗ [

�−1
mnH(t,	·,
·)

]) = Om, i = 1, 2, . . . , p,

N∑
t=i+1

∂
(
x̃�
t−i(
i ⊗	�

i )
)

∂
i

(
In ⊗ [

�−1
mnH(t,	·,
·)

]) = On, i = 1, 2, . . . , p,

1
N

N∑
t=1

Res
([
�−1

mnH(t,	·,
·)
]⊗ [

�−1
mnH(t,	·,
·)

]
,mn,mn

) = �−1
mn,

where H(t,	·,
·) = x̃t −∑(t−1)∧p
s=1 (
�

s ⊗	s)x̃t−s.

Remark 3.3: Thematrix differential equations inTheorems 3.3 and 3.4 are very complex. Especially, the coefficients
Gk in (29), k = 1, 2, . . ., are defined by a series of recursions, whose implied parameters are to be estimated. Thus, it
is difficult to obtain its closed solution, but its approximate solutions can be obtained by the numerical computation
method.
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3.5. Hypothesis testing for theMARMAmodel

Let x1, x2, . . . , xN be a series of samples of the centralized matrix time series X = {X(t), t ∈ N} defined by (3) with
C = Om×n and xt = (xij)m×n for all t = 1, 2, . . . ,N. Additionally assume x1, x2, . . . , xN areGaussian. In the section,
we will test whether x1, x2, . . . , xN follow MARMA(p, q)model (9).

The null hypothesis and the alternative hypothesis follow as

H0: X = {X(t), t ∈ N} follows MARMA(p, q)model (9);
H1: X = {X(t), t ∈ N} does not follow MARMA(p, q)model (9).

When H0 holds, denote

ε̃(t) =
t−1∑
k=0

Gkx̃t−k, t = 1, 2, . . . ,N, (31)

where ˜(·) = vec(·). It follows from Corollary 5.3 (Karl & Simar, 2015) that

T2 = N( ¯̃ε)� (S2ε̃)−1 ¯̃ε ∼ T2(mn,N − 1),

where

¯̃ε = 1
N

N∑
t=1

ε̃t and S2ε̃ = 1
N − 1

N∑
t=1

ε̃t ε̃
�
t . (32)

It follows from Theorem 5.9 (Karl & Simar, 2015) that

N − mn
(N − 1)mn

T2(mn,N − 1) ∼ F(mn,N − mn),

that is,

F = N(N − mn)
(N − 1)mn

( ¯̃ε)� (S2ε̃)−1 ¯̃ε ∼ F(mn,N − mn).

Summarize the above deduction andwe obtain Theorem 3.5 for the hypothesis testing onMARMA(p, q)model (9).

Theorem 3.5: For any given significance level α ∈ (0, 1), if F < F α
2
(mn,N − mn) or F > F1− α

2
(mn,N − mn), then

reject {X(t), t ∈ N} following MARMA(p, q) model (9); otherwise, accept {X(t), t ∈ N} following MARMA(p, q)
model (9), where

F = N(N − mn)
(N − 1)mn

( ¯̃ε)� (S2ε̃)−1 ¯̃ε,

and ¯̃ε, S2
ε̃
, ε̃t are given by (32) and (31).

3.6. Forecasting for theMARMAmodel

Let {Xt , t ∈ N} be an m × n-dimensional matrix time series defined by (3) following MARMA(p, q) model (9),
equivalently, {vec(Xt), t ∈ N} following VARMA(p, q)model (18), that is,

vec(Xt) = vec(C)+
p∑

k=1


�
k ⊗	kvec(Xt−k)+ vec(εt)

−
q∑

j=1
��

j ⊗�jvec(εt−j), (33)

where {εt , t ∈ N} is anm × n-dimensional matrix white noise.
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Denote the forecasting for Xt+� under the condition that X1,X2, . . . ,Xt have been known by X̂t(�), which refers
to the �th step forecasting. It follows from (33) and the projection theorem in Hilbert space that

vec(X̂t(�)) = vec(C)+
p∑

k=1


�
k ⊗	kvec(X̃t(�− k))−

q∑
j=1

��
j ⊗�jvec(ε̃t(�− j)), (34)

where

vec(X̃t(k)) =
{

vec(Xt+k), k ≤ 0,
vec(X̂t(k)), k ≥ 1, and vec(ε̃t(k)) =

{
vec(εt+k), k ≤ 0,
vec(Om×n), k ≥ 1.

It yields from the equivalence relation of MARMA(p, q)model (9) and VARMA(p, q)model (18) that

X̂t(�) = C +
p∑

k=1

	kX̃t(�− k)
k −
q∑

j=1
�jε̃t(�− j)�j, (35)

where

X̃t(k) =
{

Xt+k, k ≤ 0,
X̂t(k), k ≥ 1, and ε̃t(k) =

{
εt+k, k ≤ 0,
Om×n, k ≥ 1.

In the following, we will study the interval estimation of MARMA(p, q)model (9) and assume the innovations are
Gaussian. Equivalently, {vec(Xt), t ∈ N} follows VARMA(p, q)model (19), that is,

P(B)vec(Xt) = vec(C)+ Q(B)vec(εt),

where P(B) and Q(B) are defined by (20) and (21), and {vec(εt), t ∈ N} is a vector white noise.
Denote

�(B) �=
+∞∑
k=0

�kBk = P−1(B)Q(B),

and then

vec(Xt) = P−1(B)vec(C)+
+∞∑
k=0

�kvec(εt−k), (36)

where

�k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Imn, k = 0,

−��
k ⊗�k +

k∧p∑
i=1

(

�

i ⊗	i

)
�k−i, 1 ≤ k ≤ q,

k∧p∑
i=1

(

�

i ⊗	i

)
�k−i, k ≥ q + 1,

(37)

with k ∧ p = min{k, p}.
For any � > 0, it follows from (36) and the estimation method of vec(X̂t(�)) that

vec(Xt+�)− vec(X̂t(�)) =
�−1∑
k=0

�kvec(εt+�−k), (38)

and then

vec(Xt+�)− vec(X̂t(�)) ∼ N

(
Omn×1,

�−1∑
k=0

�k�mn�
�
k

)
. (39)

For any given α ∈ (0, 1), it yields from (39) that the confidence interval of vec(Xt+�) with confidence level 1 − α

follows as⎛⎝vec(X̂t(�))− U1− α
2

√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)
, vec(X̂t(�))+ U1− α

2

√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)⎞⎠ ,

where diag(·) refers to the vector composed by all main diagonal elements, and
√·means taking the square roots of

every elements. It yields from the equivalence relation of MARMA(p, q) model (9) and VARMA(p, q) model (19)
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that the confidence interval of Xt+� with confidence level 1 − α follows as⎛⎝X̂t(�)− U1− α
2
Res

⎛⎝
√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)
,m, n

⎞⎠ , X̂t(�)

+ U1− α
2
Res

⎛⎝
√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)
,m, n

⎞⎠⎞⎠ .

In summary, we can obtain the following results.

Theorem 3.6: Assume {Xt , t ∈ N} followsMARMA(p, q)model (9).
(1) For any � > 0, the �-step point estimation follows as

X̂t(�) = C +
p∑

k=1

	kX̃t(�− k)
k −
q∑

j=1
�jε̃t(�− j)�j,

where

X̃t(k) =
{

Xt+k, k ≤ 0,
X̂t(k), k ≥ 1, and ε̃t(k) =

{
εt+k, k ≤ 0,
Om×n, k ≥ 1.

(2) For any � > 0 and α ∈ (0, 1), the �-step interval estimation with confidence level 1 − α follows as⎛⎝X̂t(�)− U1− α
2
Res

⎛⎝
√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)
,m, n

⎞⎠ , X̂t(�)

+ U1− α
2
Res

⎛⎝
√√√√diag

(
�−1∑
k=0

�k�mn�
�
k

)
,m, n

⎞⎠⎞⎠ ,

where U1− α
2
is the 1 − α

2 level lower quantile of standard normal distribution, Res(·) the reshape function by
Definition 2.6, diag(·) the vector composed by all main diagonal elements,

√· takes the square roots of every elements,
and

�k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Imn, k = 0,

−��
k ⊗�k +

k∧p∑
i=1

(

�

i ⊗	i

)
�k−i, 1 ≤ k ≤ q,

k∧p∑
i=1

(

�

i ⊗	i

)
�k−i, k ≥ q + 1.

3.7. Supplementary notes for theMARMAmodel

3.7.1. Model identification for theMARMAmodel
According to Theorem 3.1, MARMA(p, q) model (9) is equivalent to VARMA(p, q) model (18). Thus, we can use
the model identification method for the VARMAmodel to identify the order of MARMAmodel, such as

AIC(p, q) = ln(|�mn(p, q)|)+ 2
N
(p + q)(m2 + n2),

BIC(p, q) = ln(|�mn(p, q)|)+ ln(N)
N

(p + q)(m2 + n2),

or alternatively,

AIC(p, q) = − ln(L)+ (p + q)(m2 + n2),

BIC(p, q) = −2 ln(L)+ ln(N)(p + q)(m2 + n2),

where N is the length of observation sequence and ln(L) is the logarithm likelihood function.
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3.7.2. MARIMAmodel
For any matrix time series {X(t) = (Xij(t))m×n, t ∈ N} defined by (3), the difference operator � for matrix time
series follows as

�X(t) = X(t)− X(t − 1),

�kX(t) = �k−1X(t)−�k−1X(t − 1), k = 2, 3, . . . ,
(40)

and � defined by (40) has the same effect as the difference operator for vector time series. That is, if {X(t) =
(Xij(t))m×n, t ∈ N} is nonstationary, then we can try to eliminate nonstationarity by � defined by (40). If
there exists a positive integer d such that {�dX(t), t ∈ N} is stationary but {�d−1X(t), t ∈ N} is nonstationary,
and {�dX(t), t ∈ N} follows a MARMA(p, q) model (9), then {X(t) = (Xij(t))m×n, t ∈ N} is called to follow a
(p, d, q)-order autoregressive integrated moving average for matrix time series, and denoted by MARIMA(p, d, q).

4. An application of theMARMAmodel

In this section, we will try to model the time series of daily closing prices and daily volumes of Haitong Securities
Company Limited (Abbreviated as Haitong Securities; Stock code: 600837) and Ping An Insurance (Group) Com-
pany of China, Ltd. (Abbreviated as Ping An; Stock code: 601318). The data are downloaded from the China Stock
Market & Accounting Research Database (CSMAR), and the time window is from January 2, 2018 to December 31,
2021, which includes 973 records every stock.

For the sake of clarity, we denote the time series by{[
P1(t) P2(t)
V1(t) V2(t)

]
, t = 1, 2, 3, . . .

}
,

where P1(t) and V1(t) are the daily closing price and daily volume of Haitong Securities, and P2(t) and V2(t) are
the daily closing price and daily volume of Ping An.

4.1. Data preprocessing

We first conduct the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test, i.e., ‘kpsstest’ function in the software
MATLAB R2020b, to test the stationarity of the daily closing prices and daily volumes of Haitong Securities and
Ping An, and the results show that the daily closing prices and daily volumes of Haitong Securities and Ping An are
nonstationary.

In the following we will consider the logarithmic rates (log rate) of daily closing prices and daily volumes of
Haitong Securities and Ping An. Denote{

R(t) =
[

R11(t) R12(t)
R21(t) R22(t)

]
, t = 2, 3, 4, . . .

}
, (41)

where

R1k(t) = ln
(

Pk(t)
Pk(t − 1)

)
and R2k(t) = ln

(
Vk(t)

Vk(t − 1)

)
, k = 1, 2.

That is, R11(t) is the logarithmic rate of daily closing price of Haitong Securities, R21(t) the logarithmic rate of daily
volume ofHaitong Securities,R12(t) the logarithmic rate of daily closing price of PingAn andR22(t) the logarithmic
rate of daily volume of Ping An.

We conduct the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test, i.e., ‘kpsstest’ function in the software
MATLABR2020b, to test the stationarity of the logarithmic rates of daily closing prices and daily volumes ofHaitong
Securities and Ping An, and the results show that the logarithmic rates of daily closing prices and daily volumes of
Haitong Securities and Ping An are stationary.

Additionally, we conduct a Ljung-Box Q test, i.e., ‘lbqtest’ function in the software MATLAB R2020b, to test the
pure randomness of the logarithmic rates of daily closing prices and daily volumes of Haitong Securities and Ping
An, and the results show that the logarithmic rates of daily closing prices or daily volumes of Haitong Securities
and Ping An are not purely random.

In conclusion, for the stocks of Haitong Securities and Ping An, their daily closing prices and daily volumes
are nonstationary, but their logarithmic rates of daily closing prices and daily volumes are stationary, and their
logarithmic rates of daily closing prices or daily volumes are not purely random.
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4.2. Modelling ofMARMA (p,q)

We use the Bayesian information criterion (BIC) to select the model, and the results show that MARMA(4,0) is the
best. Using the conditional least square method andMATLAB R2020b program, we establish MARMA(4,0) model
for {R(t), t = 1, 2, 3, . . .} by (41) as follows:

R(t) = Ĉ + 	̂1R(t − 1)
̂1 + 	̂2R(t − 2)
̂2 + 	̂3R(t − 3)
̂3 + 	̂4R(t − 4)
̂4 + ε(t), (42)

where

	̂1 =
[

2.11 × 10−2 1.32 × 10−3

3.4371 −0.3527

]
, 
̂1 =

[
1 0.3708

−0.4014 0.0354

]
,

	̂2 =
[

0.0339 −2.21 × 10−3

1.1721 −0.1271

]
, 
̂2 =

[
0.4132 0.4468

1 0.2409

]
,

	̂3 =
[

0.0101 −9.82 × 10−4

0.3575 −0.1739

]
, 
̂3 =

[
1 −0.4715

−0.1625 0.2516

]
,

	̂4 =
[ −0.0440 8.75 × 10−4

−0.4732 −0.1012

]
, 
̂4 =

[
0.9537 0.6853
0.4385 1

]
,

μ̂ =
[ −6.66 × 10−5 −3.75 × 10−4

4.86 × 10−4 −1.64 × 10−3

]
,

and

Ĉ =
[ −3.27 × 10−5 −3.48 × 10−4

1.27 × 10−3 −3.40 × 10−3

]
,

and then the covariance matrix of residuals {ε(t), t ∈ N} follows as

�ε =

⎡⎢⎢⎣
4.40 × 10−4 2.74 × 10−3 2.17 × 10−4 1.30 × 10−3

2.74 × 10−3 0.1386 1.31 × 10−3 5.60 × 10−2

2.17 × 10−4 1.31 × 10−3 3.15 × 10−4 1.31 × 10−3

1.30 × 10−3 5.60 × 10−2 1.31 × 10−3 0.1077

⎤⎥⎥⎦ . (43)

4.3. Evaluation onMARMA (p,q)

For the sake of saving space, we will not show the model test, model optimization or forecasting of MARMA(4,0)
model (42), but present a comparison of theMARMAmodel andARMAmodel in this subsection.We first establish
ARMA(p, q)model for R11(t),R21(t),R12(t) and R22(t), respectively, and obtain their models as follows:

R11(t) = 1.53 × 10−8 + 0.0204R11(t − 1)+ 0.0058R11(t − 2)

+ 0.0625R11(t − 3)− 0.0393R11(t − 4)+ e11(t),

R21(t) = −2.98 × 10−4 − 0.3994R21(t − 1)− 0.2598R21(t − 2)

− 0.1918R21(t − 3)− 0.1096R21(t − 4)+ e21(t),

R12(t) = 5.17 × 10−7 − 0.0002R12(t − 1)− 0.0041R12(t − 2)

+ 0.0476R12(t − 3)− 0.0699R12(t − 4)+ e12(t),

R22(t) = 2.52 × 10−4 − 0.4842R22(t − 1)− 0.3860R22(t − 2)

− 0.2660R22(t − 3)− 0.1562R22(t − 4)+ e22(t),

(44)

where the covariance matrix of residuals {e(t) �=(e11(t), e21(t), e12(t), e22(t))�, t ∈ N} follows as

�e =

⎡⎢⎢⎣
4.49 × 10−4 2.69 × 10−3 2.22 × 10−4 1.24 × 10−3

2.69 × 10−3 0.1692 1.40 × 10−3 7.22 × 10−2

2.22 × 10−4 1.40 × 10−3 3.22 × 10−4 1.32 × 10−3

1.24 × 10−3 7.22 × 10−2 1.32 × 10−3 0.1369

⎤⎥⎥⎦ . (45)

It follows from (43) and (45) that the residuals of MARMA(4,0) model (42) are almost consistently less than those
of ARMA(4,0) model (44).
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In practice, we are more concerned about the residual variance, i.e., the variance of every element of residual.
Using (43) and (45), we compute the relative change of the residual variance of MARMA(4,0) model (42) to the
residual variance of ARMA(4,0) model (44) as follows:⎡⎢⎣

var(ε11(t))− var(e11(t))
var(e11(t))

var(ε12(t))− var(e12(t))
var(e12(t))

var(ε21(t))− var(e21(t))
var(e21(t))

var(ε22(t))− var(e22(t))
var(e22(t))

⎤⎥⎦ =
[ −1.93% −2.24%

−18.10% −21.31%

]
.

That is, MARMA(4,0) model (42) reduces all residual variance relative to ARMA(4,0) model (44). Especially, the
relative change of volume’s residual variance exceeds 10% by MARMA(4,0) model (42) relative to ARMA(4,0)
model (44), which means the MARMAmodel could really improve the prediction accuracy.

5. Conclusion

We proposed an autoregressive moving average model for matrix time series (MARMA), which is an extension
of the autoregressive model for matrix time series (MAR). Like the MAR model, the MARMA model retains the
original matrix structure, and provides a much more parsimonious model, compared with the approach of the
vector autoregressive model for vectorizing the matrix into a long vector. Compared with MAR model, MARMA
models are capable of modelling the unknown process with the minimum number of parameters.

As for MARMA model, the necessary and sufficient conditions for stationarity and invertibility are established.
Parameter estimation methods are investigated for the conditional least square method and the conditional maxi-
mum likelihood estimationmethod. Point forecasting and interval forecasting are presented by using the projection
theorem in the Hilbert space and the decomposition technique of time series. Additionally, model identification,
model testing and possible extensions are discussed.

There aremany directions to extend the scope of theMARMAmodel. Random environment such as theMarkov
environmentmight be imposed on theMARMAmodel to depict the impact of environmental change. Additionally,
sparsity or group sparsity might be imposed on coefficient matrices to reach a further dimension reduction. Fur-
thermore, the idea of MARMA can be applied for yield modelling, volatility modelling, weather forecast modelling
and animal migration modelling.
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Appendices

Appendix 1. Proof of Theorem 3.2

In order to obtain stationary conditions and invertible conditions forMARMA(p, q)model (9), we first give a lemma as follows.

Lemma A.1: For any square matrices A1,A2, . . . ,Ak, the operator

G(B) �= I − A1B − · · · − Ak−1Bk−1 − AkBk

is invertible if and only if any root λ of (A1) satisfies |λ| < 1, where k is a natural number and B is the delay operator.∣∣∣λkI − λk−1A1 − · · · − λAk−1 − Ak

∣∣∣ = 0. (A1)

Proof: For the polynomial with k degree and matrix coefficients

G(z) = I − A1z − · · · − Ak−1zk−1 − Akzk,

it can be factorized into k linear polynomials with the matrix coefficient in the complex field as follows:

G(z) = (I − C1z)(I − C2z) · · · (I − Ckz),

where C1,C2, . . . ,Ck are determined by∑
1≤j1<j2<···<ju≤k

Cj1Cj2 · · ·Cju = (−1)u−1Au, u = 1, 2, . . . , k. (A2)

Thus,
G(B) = (I − C1B)(I − C2B) · · · (I − CkB). (A3)

For any i = 1, 2, . . . , k, it is easy to prove that I − CiB is invertible if and only if ρ(Ci) < 1, that is, all roots of |λI − Ci| = 0
are in the unit circle. It follows from (A3) that G(B) is invertible if and only if all I − CiB, i = 1, 2, . . . , k, are invertible. Thus,
G(B) is invertible if and only if all roots of |λI − Ci| = 0 are in the unit circle for all i = 1, 2, . . . , k. According to determinant
properties, G(B) is invertible if and only if all roots of

|(λI − C1)(λI − C2) · · · (λI − Ck)| = 0 (A4)

are in the unit circle. It yields from (A2) that

(λI − C1)(λI − C2) · · · (λI − Ck) = λkI − λk−1A1 − · · · − λAk−1 − Ak.

Thus, G(B) is invertible if and only if all roots of∣∣∣λkI − λk−1A1 − · · · − λAk−1 − Ak

∣∣∣ = 0

are in the unit circle. �

Proof of Theorem 3.2: For VARMA(p, q)model (19),

P(B)vec(X(t)) = vec(C)+ Q(B)vec(ε(t)), t ∈ N.

It follows from the concept of stationarity that the necessary and sufficient conditions of stationarity are that the operator P(B)
is invertible. According to Lemma A.1, the operator P(B) is invertible if and only if any root λ of (22) satisfies |λ| < 1. Thus,
VARMA(p, q) model (19) is stationary if and only if any root λ of (22) satisfies |λ| < 1. Note that VARMA(p, q) model (19)
is equivalent to MARMA(p, q) model (9), so MARMA(p, q) model (9) is stationary if and only if any root λ of (22) satisfies
|λ| < 1.

The necessary and sufficient conditions for invertibility can be obtained by the similar method to obtain the necessary and
sufficient conditions for stationarity, so we omit it. �

Appendix 2. Proof of Theorem 3.3

Noting that {vec(ε(t)), t ∈ N} is an mn × 1-dimensional white noise, and the objective function of VARMA(p, q) model (30)
using the conditional least square method follows as

J
(
	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q

)
=

N∑
t=p+1

(
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)� (
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)
, (A5)

where we take xt = Om×n for all t ≤ 0.

https://doi.org/10.1109/Access.6287639
https://doi.org/10.1109/ACCESS.2018.2882798
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LemmaA.2: J(	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q) defined by (A5) has the minimum value about	k,
k,�j and
�j for all k = 1, 2, . . . , p and j = 1, 2, . . . , q.

Proof: It yields from analysing (29) that J(	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q) by (A5) is a multivariate polyno-
mial of	k,
k,�j and�j for all k = 1, 2, . . . , p and j = 1, 2, . . . , q. And it is obvious that J(	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,
�1, . . . ,�q) by (A5) is greater than or equal to zero, which means that J(	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q)
by (A5) has lower bound. Thus, J(	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q) by (A5) has the minimum value about	k,

k,�j and�j for all k = 1, 2, . . . , p and j = 1, 2, . . . , q. �

Proof of Theorem 3.3.: It follows from Lemma A.2 that, according to the conditional least square method, the parameters of
MARMA(p, q)model (9) satisfy the following matrix differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂	i

N∑
t=p+1

(
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)� (
vec(xt)+

t−1∑
�=1

G�vec(xt−�)

)
= Om, i = 1, 2, . . . , p,

∂

∂
i

N∑
t=p+1

(
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)� (
vec(xt)+

t−1∑
�=1

G�vec(xt−�)

)
= On, i = 1, 2, . . . , p,

∂

∂�j

N∑
t=p+1

(
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)� (
vec(xt)+

t−1∑
�=1

G�vec(xt−�)

)
= Om, j = 1, 2, . . . , q,

∂

∂�j

N∑
t=p+1

(
vec(xt)+

t−1∑
k=1

Gkvec(xt−k)

)� (
vec(xt)+

t−1∑
�=1

G�vec(xt−�)

)
= On, j = 1, 2, . . . , q.

Using the derivative of scalar by matrix, it yields from Corollary 2.1 that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂	i

(
Im ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= Om, i = 1, 2, . . . , p,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂
i

(
In ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= On, i = 1, 2, . . . , p,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
Im ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= Om, j = 1, 2, . . . , q,

N∑
t=p+1

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
In ⊗

(
x̃t +

t−1∑
�=1

G�x̃t−�

))
= On, j = 1, 2, . . . , q.

�

Appendix 3. Proof of Theorem 3.4

It yields from (30) that

vec(X(t)) = −
+∞∑
k=1

Gkvec(X(t − k))+ vec(ε(t)), t ∈ N. (A6)

For the sake of briefness, we denote

X̃t = vec(X(t)), t ∈ N and x̃k = vec(xk), k = 1, 2, . . . ,N.

It yields from (A6) that

X̃t |
{
X̃t−1, X̃t−2, . . .

} ∼ N

(
−

+∞∑
k=1

GkX̃t−k,�mn

)
, t ∈ N, (A7)

where�mn is defined by (7).
Let X(t) = Om×n for all t ≤ 0. It follows from (A7) that

X̃1 ∼ N (Omn×1,�mn) (A8)

and

X̃t |
{
X̃t−1, X̃t−2, . . . , X̃1

} ∼ N

(
−

t−1∑
k=1

GkX̃t−k,�mn

)
, t ∈ N. (A9)

Thus, the maximum likelihood function of x1, x2, . . . , xV follows as

L
(
x1, x2, . . . , xN ;	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q

)
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= L
(
x̃1, x̃2, . . . , x̃N ;	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q

)
= f (x̃1)f

(
x̃2
∣∣{x̃1}) f (x̃3∣∣ {x̃2, x̃1}) · · · f (x̃N | {x̃N−1, x̃N−2, . . . , x̃1

})
= (2π)−

Nmn
2 |�mn|−N

2 exp

⎧⎨⎩−1
2

N∑
t=1

(
x̃t +

t−1∑
k=1

Gkx̃t−k

)�
�−1

mn

(
x̃t +

t−1∑
k=1

Gkx̃t−k

)⎫⎬⎭ ,

where f (·) means the probability density function, and we stipulate
∑0

k=1(·) equals zero vector or zero matrix as needed.
Therefore, the logarithm maximum likelihood function of x1, x2, . . . , xN follows as

�
(
x1, x2, . . . , xN ;	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q

)
= ln

(
L
(
x1, x2, . . . , xN ;	1, . . . ,	p,
1, . . . ,
p,�1, . . . ,�q,�1, . . . ,�q

))
= −Nmn

2
ln(2π)− N

2
ln(|�mn|)− 1

2

N∑
t=1

(
x̃t +

t−1∑
k=1

Gkx̃t−k

)�
�−1

mn

(
x̃t +

t−1∑
k=1

Gkx̃t−k

)
. (A10)

Using the derivative of scalar by matrix, it yields from (A10) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=1

∂

∂	i

(
H(t,G·)��−1

mnH(t,G·)
)

= Om, i = 1, 2, . . . , p,

N∑
t=1

∂

∂
i

(
H(t,G·)��−1

mnH(t,G·)
)

= On, i = 1, 2, . . . , p,

N∑
t=1

∂

∂�j

(
H(t,G·)��−1

mnH(t,G·)
)

= Om, j = 1, 2, . . . , q,

N∑
t=1

∂

∂�j

(
H(t,G·)��−1

mnH(t,G·)
)

= On, j = 1, 2, . . . , q,

N
∂ ln(|�mn|)
∂�mn

+
N∑
t=1

∂

∂�mn

(
H(t,G·)��−1

mnH(t,G·)
)

= Omn,

(A11)

where H(t,G·) = x̃t +∑t−1
k=1 Gkx̃t−k. It yields from Corollary 2.2 and Property 2.3 that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂	i

(
Im ⊗ [

�−1
mnH(t,G·)

]) = Om, i = 1, 2, . . . , p,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂
i

(
In ⊗ [

�−1
mnH(t,G·)

]) = On, i = 1, 2, . . . , p,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
Im ⊗ [

�−1
mnH(t,G·)

]) = Om, j = 1, 2, . . . , q,

N∑
t=2

t−1∑
k=1

∂
(
Gkx̃t−k

)�
∂�j

(
In ⊗ [

�−1
mnH(t,G·)

]) = On, j = 1, 2, . . . , q,

1
N

N∑
t=1

Res
([
�−1

mnH(t,G·)
]⊗

[(
�−1

mn
)� H(t,G·)

]
,mn,mn

)
= (

�−1
mn
)� .
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