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ABSTRACT
In two-level fractional factorial designs, conditionalmain effects can provide insights bywhich to
analyze factorial effects and facilitate the de-aliasing of fully aliased two-factor interactions. Con-
ditional main effects are of particular interest in situations where some factors are nested within
others. Most of the relevant literature has focused on the development of data analysis tools that
use conditional main effects, while the issue of optimal factorial design for a given linear model
involving conditionalmain effects has been largely overlooked.Mukerjee,WuandChang [Statist.
Sinica 27 (2017) 997–1016] established a framework by which to optimize designs under a con-
ditional effect model. Although theoretically sound, their results were limited to a single pair of
conditional and conditioning factors. In this paper, we extend the applicability of their frame-
work to double pairs of conditional and conditioning factors by providing the corresponding
parameterization and effect hierarchy. We propose a minimum contamination-based criterion
by which to evaluate designs and develop a complementary set theory to facilitate the search
of minimum contamination designs. The catalogues of 16- and 32-run minimum contamination
designs are provided. For five to twelve factors, we show that all 16-runminimumcontamination
designs under the conditional effect model are also minimum aberration according to Fries and
Hunter [Technometrics 22 (1980) 601–608].
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1. Introduction

Factorial designs have been widely used in industry and academia in the past decades. Two-level fractional facto-
rial designs have proven particularly effective in situations in which the purpose of experiments is to screen out
inactive factors. Researchers have dedicated considerable effort to the evaluation of two-level fractional factorial
designs. Fries and Hunter (1980) proposed a model robust criterion named minimum aberration tailored specifi-
cally to two-level regular fractional factorial designs. Theminimum aberration criterionminimizes the wordlength
patterns of two-level regular designs in a sequential manner from lower-order factorial effects to higher-order ones.
It is established for design selection under the assumption that lower-order effects are more important than higher-
order effects and effects of the same order are equally important. The minimum aberration criterion has since
been adaptive to accommodate nonregular fractional factorial designs (Cheng et al., 2002; Tang & Deng, 1999; Xu
&Wu, 2001) andmulti-stratum factorial designs (Chang, 2022; Chang&Cheng, 2018). All the aforementionedmin-
imum aberration criteria were developed under an orthogonal parameterization of factorial effects (Cheng, 2014,
chapter 6). Accordingly, a defining word of length four, say F1F2F3F4, creates three pairs of fully aliased two-
factor interactions as follows: F1F2 = F3F4, F1F3 = F2F4 and F1F4 = F2F3. The two-factor interactions in each
pair are completely mixed up and cannot be estimated simultaneously. Interested readers may refer to Mukerjee
and Wu (2006), Cheng (2014) and Wu and Hamada (2021) for further details.

In some practical situations, it is preferable to investigate a two-factor interaction via two conditional main effects,
with each one conditionally defined according to another factor of a specific level. For example, the two-factor
interaction F1F2 can be decomposed as the difference between a conditional main effect F1 conditioned on the low
level of F2 and that conditioned on the high level of F2. Sliding level experiments in engineering are structured in
this way (Wu & Hamada, 2021, p. 343), where the interest is on the conditional main effects conditioned on the
slid factors. Mukerjee et al. (2017) reported on an industrial experiment involving motor and speed as two factors.
The objective of the experiment was to assess the comparison of the motors separately at each speed; therefore, the
conditional main effects of themotors conditioned on each level of speed are of particular interest. Other intriguing
examples pertaining to the use of conditional main effects are outlined in Wu (2015) and Wu (2018).
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It is known, also mentioned in Wu (2015), that for 2 two-level factors F1 and F2, the main effect F1 in con-
junction with the interaction F1F2 spans the same vector space as that spanned by the conditional main effects F1
respectively conditioned on the two levels of F2. Mukerjee et al. (2017) referred to F1 and F2 as a pair of conditional
and conditioning factors. To deal with a single pair of conditional and conditioning factors, Mukerjee et al. (2017)
proposed a model in which the main effect of F1 and the two-factor interaction F1F2 are replaced with the two
associated conditional main effects. This can be viewed as an alternative to the aforementioned orthogonal param-
eterization, under which the defining relation I = F1F2F3F4 produces partially aliased effects (neither fully aliased
nor orthogonal). In this paper, the model proposed by Mukerjee et al. (2017) is referred to as a conditional effect
model. The fact that the parameterization of a single-pair conditional effect model differs from that of a model tai-
lored to the minimum aberration necessitates a new aberration criterion applicable to conditional effect models.
Mukerjee et al. (2017) proposed a minimum aberration criterion as well as a strategy by which to search for designs
under a single-pair conditional effect model. Apart fromMukerjee et al. (2017), an alternative approach by the use
of the indicator function in Pistone and Wynn (1996) is given by Sabbaghi (2020), who developed an algebra for
conditional effect models. From the data analysis aspect, Mak andWu (2019) proposed a bi-level variable selection
of conditional main effects in observational data using a penalty function with two layers: the outer one controlling
between-group selection, and the inner one controlling within-group selection.

It is important to consider that the parameterization under a condition effectmodel destroys the fully aliased rela-
tionship between two-factor interactions. Thus, one application of conditional main effects involves the de-aliasing
of two-factor interactions in regular fractional factorial designs of resolution four. This involves identifying signif-
icant but aliased two-factor interactions and then transforming the model to the corresponding conditional effect
model. Afterwards, the de-aliasing strategies in Wu (2015), Su and Wu (2017), Chang (2019) and Lawson (2020)
can then be used to facilitate subsequent data analysis.

In the current study, we consider two-level factorial designs in conjunction with conditional effect models
involving two pairs of conditional and conditioned factors. The remaining factors, not involving the two pairs of
conditional and conditioning factors, are called traditional factors. Wu and Hamada (2021, p. 347) described an
experiment involving the sealing of a light bulb, in which the outcomes were determined mainly by two pairs of
conditional and conditioning factors (H,G) and (J, I), respectively. The corresponding linear model comprised the
conditional main effects of H and J respectively conditioned on G and I. In the current study, we extend the work
ofMukerjee et al. (2017) to double-pair conditional effect models. Theminimum aberration was based on the effect
hierarchy principle (Wu & Hamada, 2021, p. 168); however, it is difficult to artificially argue an order among the
effects in a conditional effect model. In accordance with Mukerjee et al. (2017), we adopt the Bayesian approach
proposed in Mitchell et al. (1995), later popularized by Kerr (2001), Joseph (2006), Joseph and Delaney (2007), Ai
et al. (2009), Joseph et al. (2009), Kang and Joseph (2009), Chang and Cheng (2018) and Chang (2019, 2022), to
derive an order of factorial effects based on their prior variances. Once this order has been established, we then
define a criterion for design evaluation by sequentially minimizing the bias (contamination) caused by lower-order
interactions to higher-order interactions. We refer to the proposed criterion as the minimum contamination crite-
rion. We provide the catalogues of 16-run and 32-run minimum contamination designs for various factor numbers
at the end of this paper.

The remainder of this paper is organized as follows. Section 2 introduces the parametrization and a Bayesian-
inspired hierarchical order of effects under a double-pair conditional effect model. Some sufficient conditions for
a design to be universally optimal under the conditional effect model involving only main effects are given in
Section 3. Section 4 presents a new minimum contamination criterion defined according to the Bayesian-inspired
hierarchical order. In addition, we develop a complementary set theory to guide the search for minimum contami-
nation designs involving a large number of factors. An efficient computational procedure is developed in Section 5
to search for minimum contamination regular/nonregular designs for an arbitrary number of factors. Numerical
examples and a real experiment are discussed. Conclusions are drawn in Section 6.

2. Conditional effect model and Bayesian-inspired effect hierarchy

We give the details regarding the parameterization under a double-pair conditional effect model. We adopt the
Bayesian approach in Mitchell et al. (1995) to derive an effect order, which serves as the building block for the
minimum contamination criterion introduced in Section 4.

2.1. Conditional effectmodel

A double-pair conditional effect model is a linear model with reparameterization using two pairs of conditional
and conditioning factors. Consider a 2n full factorial design with n (≥ 4) factors F1, . . . , Fn, each at levels 0 and
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1. Without loss of generality, let F1, F2 be one pair of conditional and conditioned factors and F3, F4 be the other
pair. The main effect and interaction effects involving F1 (respectively, F3) are defined conditionally on each fixed
level of F2 (respectively, F4). Define � as the set of ν = 2n binary n-tuples representing the 2n treatment combina-
tions of the full factorial design. For (i1, . . . , in) ∈ �, let τ(i1 · · · in) be the treatment effect of treatment combination
i1 · · · in. Under a linear model, τ(i1 · · · in) is the expectation of the responsemeasured at the treatment combination
i1 · · · in. Similarly, we write θ(i1 · · · in) for the factorial effect Fi11 · · · Finn using the conventional orthogonal param-
eterization (Cheng, 2014, chapter 6) when i1 · · · in is nonnull, and θ(0 · · · 0) for the grand mean. With n = 3 for
illustration,

θ(100) = 1
8

{τ(100) + τ(110) + τ(101) + τ(111) − τ(000) − τ(010) − τ(001) − τ(011)} ,

θ(110) = 1
8

{τ(000) + τ(110) + τ(001) + τ(111) − τ(100) − τ(101) − τ(010) − τ(011)} ,

θ(111) = 1
8

{τ(100) + τ(010) + τ(001) + τ(111) − τ(000) − τ(110) − τ(101) − τ(011)}

separately represent the main effect of F1, the two-factor interaction of F1 and F2, and the three-factor interaction
of F1, F2, F3. Each θ(i1i2i3) can be interpreted using the mean responses measured at different levels of factors. For
example, the main effect θ(100) is the average of the difference between the mean responses measured at the levels
1 and 0 of F1. Let τ and θ be ν × 1 vectors with elements τ(i1 · · · in) and θ(i1 · · · in) arranged in the lexicographic
order, respectively, where for n = 3, we have

θ = (θ(000), θ(001), θ(010), θ(011), θ(100), θ(101), θ(110), θ(111))
�
.

Then, the linear model using the orthogonal parameterization under the full factorial design is given by

τ = H⊗nθ (or equivalently, θ = ν−1H⊗nτ ), (1)

where ⊗ represents the Kronecker product andH⊗n denotes the n-fold Kronecker product of

H =
(
1 1
1 −1

)
,

a Hadamard matrix of order two. When interpreted under the linear model, the columns of H respectively corre-
spond to the grand mean and a contrast of the mean responses measured at the two levels of the factor. Since a 2n

full factorial design has a cross-product structure, the associated matrix of the grand mean and contrasts can be
obtained via the n-fold Kronecker product ofH as in (1). We refer to the model in (1) as a traditional model under
the full factorial design.

LetH(0) = (1, 1) andH(1) = (1,−1) be the top and bottom rows ofH, respectively. Emphasizing F1 and F3, we
express Equation (1) as

θ = ν−1

⎛
⎜⎜⎝
H(0) ⊗ H ⊗ H(0) ⊗ H
H(1) ⊗ H ⊗ H(0) ⊗ H
H(0) ⊗ H ⊗ H(1) ⊗ H
H(1) ⊗ H ⊗ H(1) ⊗ H

⎞
⎟⎟⎠H⊗(n−4)τ . (2)

Let β(j1 · · · jn) be the factorial effect Fi11 · · · Finn under a conditional effect model with two pairs conditional and
conditioning factors F1, F2 and F3, F4, respectively. Denote the vector with the ν elements β(j1 · · · jn)’s by β in the
same lexicographic order as θ . Under the double-pair conditional effect model, the factorial effects involving F1 and
F3 are defined conditionally on the levels of F2 and F4, respectively. Thus in (2),H is replaced with

√
2I2 whenever

H(1) precedes it. We can reparametrize θ by β with

β = ν−1W ⊗ H⊗(n−4)τ , (3)

where

W =

⎛
⎜⎜⎝
H(0) ⊗ H ⊗ H(0) ⊗ H
H(1) ⊗ √

2I2 ⊗ H(0) ⊗ H
H(0) ⊗ H ⊗ H(1) ⊗ √

2I2
H(1) ⊗ √

2I2 ⊗ H(1) ⊗ √
2I2

⎞
⎟⎟⎠ ,

in which I2 is the identity matrix of order two. The model in (3) is called a double-pair conditional effect model
in this paper. The factorial effects involving F1 and F3 are referred to as conditional (factorial) effects, while those
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not involving them are referred to as unconditional (factorial) effects. We cluster β into various groups of vectors
representing unconditional and conditional factorial effects. Define

�0l = {(j1, . . . , jn) : j1 = j3 = 0, and l of j2, j4, . . . , jn equal 1},
�1l = {(j1, . . . , jn) : j1 = 1, j2 = 0, 1, j3 = 0, and l − 1 of j4, . . . , jn equal 1}

∪ {(j1, . . . , jn) : j3 = 1, j4 = 0, 1, j1 = 0, and l − 1 of j2, j5, . . . , jn equal 1},
�2l = {(j1, . . . , jn) : j1 = j3 = 1, j2 = 0, 1, j4 = 0, 1, and l − 2 of j5, . . . , jn equal 1},

where 1 ≤ l ≤ n − 2. It is apparent that β(j1 · · · jn) = θ(j1 · · · jn) if (j1, . . . , jn) ∈ �0l. Let βsl be the vector with
elements β(j1 · · · jn), where (j1, . . . , jn) ∈ �sl. Later we will see that the effects associated with the same �sl have
the same importance using the Bayesian-inspired effect hierarchy introduced in the next subsection.

2.2. Bayesian-inspired effect hierarchy

Chipman et al. (1997) proposed a Bayesian variable selection for designed experiments with complex aliasing.
Rather than independence prior distribution on the factorial effects, Chipman et al. (1997) used a hierarchical prior
that is consistent with the effect heredity principle (Wu&Hamada, 2021, p. 169). A basic idea of their approach is to
assign a larger prior variance to a more important factorial effect. This idea is compatible with the Bayesian (func-
tional) prior distribution derived byMitchell et al. (1995), Kerr (2001), Joseph (2006), Joseph andDelaney (2007), Ai
et al. (2009), Joseph et al. (2009), Kang and Joseph (2009), Chang and Cheng (2018) and Chang (2019, 2022). With
the derived prior variances, one can readily define an effect hierarchical order and an aberration-like criterion for
design evaluation.

In this paper, we adopt the Bayesian approach inMitchell et al. (1995), who set up a functional prior by regarding
τ as a realization of a stationaryGaussian random function. Then the prior distribution of factorial effects is induced
by the relation in (1).When applied to (3), the Bayesian approach induces an effect hierarchy of theβ(j1 · · · jn)’s via a
prior specification on τ in terms of a zero-meanGaussian random function such that cov(τ ) = σ 2R⊗n, where σ 2 >

0 and the 2 × 2matrixR has diagonal elements 1 and off-diagonal elements ρ, 0 < ρ < 1. This covariance structure
is equivalent to Equation (4) of Joseph (2006). It follows by expanding R⊗n that the correlation of τ(i1 · · · in) and
τ(j1 · · · jn) is ∏

l:1≤l≤n,il 	=jl

ρ,

which is equal to ρ
∑

l:1≤l≤n,il 	=jl and only depends on the total number of components where (i1 · · · in) and (j1 · · · jn)
differ. Thus, such a covariance structure can be interpreted as treating every factor equally, which is reasonable
since there is usually no knowledge about the importance of the factors at the experimentation stage. In conjunction
with (3), the prior covariance matrix of β is given by

cov(β) = ν−2{W ⊗ H⊗(n−4)}cov(τ ){W ⊗ H⊗(n−4)}�

= σ 2ν−2{WR⊗4W
�} ⊗ {HRH}⊗(n−4).

The following result gives the variances of the β(j1 · · · jn)’s.
Theorem 2.1: For a (j1, . . . , jn) ∈ �sl, we have

var(β(j1 · · · jn)) = σ 2ν−1(1 + ρ)n−l−s(1 − ρ)l.

Proof: By the identity cov(β) = σ 2ν−2{WR⊗4W
�} ⊗ {HRH}⊗(n−4), one can easily verify thatHRH = 2diag(1 +

ρ, 1 − ρ),

W =

⎛
⎜⎜⎝

H⊗2 H⊗2 H⊗2 H⊗2√
2I2 ⊗ H

√
2I2 ⊗ H −√

2I2 ⊗ H −√
2I2 ⊗ H√

2H ⊗ I2 −√
2H ⊗ I2

√
2H ⊗ I2 −√

2H ⊗ I2
2I⊗2

2 −2I⊗2
2 −2I⊗2

2 2I⊗2
2

⎞
⎟⎟⎠ ,

and

R⊗4 =

⎛
⎜⎜⎝

R⊗2 ρR⊗2 ρR⊗2 ρ2R⊗2

ρR⊗2 R⊗2 ρ2R⊗2 ρR⊗2

ρR⊗2 ρ2R⊗2 R⊗2 ρR⊗2

ρ2R⊗2 ρR⊗2 ρR⊗2 R⊗2

⎞
⎟⎟⎠ .
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WR⊗4W
�
is a 16 × 16matrix, which can be regarded as a 4 × 4 block-matrix with each block being a 4 × 4matrix.

Denote the (i, j)th block-matrix of WR⊗4W
�
by [WR⊗4W

�
]ij. Then by calculation, we get [WR⊗4W

�
]ij = 0

when i 	= j; for i = j, we obtain [WR⊗4W
�
]11 = 4(1 + ρ)2(HRH)⊗2, [WR⊗4W

�
]22 = 8(1 − ρ2)R ⊗ (HRH),

[WR⊗4W
�
]33 = 8(1 − ρ2)(HRH) ⊗ R and [WR⊗4W

�
]44 = 16(1 − ρ)2R ⊗ R.

The diagonal elements of (HRH)⊗2, denoted by diag((HRH)⊗2), can be obtained as 4(1 + ρ)2, 4(1 − ρ)(1 +
ρ), 4(1 − ρ)(1 + ρ), 4(1 − ρ)2. We also have diag(R ⊗ (HRH)) = 2(1 + ρ, 1 − ρ, 1 + ρ, 1 − ρ), diag((HRH) ⊗
R) = 2(1 + ρ, 1 + ρ, 1 − ρ, 1 − ρ) and diag(R ⊗ R) = (1, 1, 1, 1). Thus, we get diag([WR⊗4W

�
]11) =

16((1 + ρ)4, (1 − ρ)(1 + ρ)3, (1 − ρ)(1 + ρ)3, (1 − ρ)2(1 + ρ)2), diag([WR⊗4W
�
]22) = 16((1 + ρ)2(1 − ρ),

(1 + ρ)(1 − ρ)2, (1 + ρ)2(1 − ρ), (1 + ρ)(1 − ρ)2), diag([WR⊗4W
�
]33) = 16((1 + ρ)2(1 − ρ), (1 + ρ)2(1 −

ρ), (1 + ρ)(1 − ρ)2, (1 + ρ)(1 − ρ)2) and diag([WR⊗4W
�
]44) = 16((1 − ρ)2, (1 − ρ)2, (1 − ρ)2, (1 − ρ)2).

Since the variances of β(j1 · · · jn)’s are only related to the diagonal elements of cov(β), one can easily check for
a (j1, . . . , jn) ∈ �sl, var(β(j1 · · · jn)) = σ 2ν−1(1 + ρ)n−l−s(1 − ρ)l based on the above calculation. �

Let Vsl = var(β(j1 · · · jn)) for (j1, . . . , jn) ∈ �sl. From Theorem 2.1, it is clear that V0l > V1l > V2l for 2 ≤ l ≤
n − 2. Because V2l/V0,l+1 = 1/(1 − ρ2) > 1 for all 0 < ρ < 1, we have

V01 > V11 > V02 > V12 > V22 > V03 > V13 > V23 > · · · > V0,n−2 > V1,n−2 > V2,n−2. (4)

In view of (4), we define the following effect hierarchy under the conditional effect model (3) as follows. The uncon-
ditional main effects have the largest variance V01 and are the most important, while the conditional main effects
with variance V11 are positioned next; then come the unconditional two-factor interactions (V02), followed by the
one-pair conditional two-factor interactions (V12), then two-pair conditional two-factor interactions (V22), and so
on. This effect hierarchy order is not surprising since a conditional main effect is proportional to the average of a
unconditional main effect and two-factor interaction, resulting in a variance in-between.

3. Universally optimal designs for main effect model

As mentioned in Mukerjee et al. (2017), a justifiable criterion for design evaluation is to identify a class of designs
which ensure optimal inference on the β(j1 · · · jn)’s corresponding to�01 and�11 in the absence of all interactions.
Then, in order to possess model robustness, among these designs we find one which sequentially minimizes a
suitably definedmeasure of bias caused by successive interactions in the effect hierarchy. In this section, we connect
the conditional effect model with the traditional model. Then we provide some sufficient conditions for a design to
be universally optimal under a main-effect conditional effect model.

The connection between conditional effects β and traditional factorial effects θ can be established by (1) and (3)
as follows:

β = ν−1W ⊗ H⊗(n−4)τ

= ν−1W ⊗ H⊗(n−4)H⊗nθ

= ν−1{WH⊗4} ⊗ {HH}⊗(n−4)θ .

By using the factHH = 2I2 and

WH⊗4 = 4

⎛
⎜⎜⎝
H⊗2H⊗2 0 0 0

0 0
√
2I2 ⊗ HH⊗2 0

0
√
2H ⊗ I2H⊗2 0 0

0 0 0 2I⊗2
2 H⊗2

⎞
⎟⎟⎠ ,

we obtain

β =

⎛
⎜⎜⎜⎜⎝
I⊗(n−2)
2 0 0 0
0 0 1√

2
H ⊗ I2 ⊗ I⊗(n−4)

2 0

0 1√
2
I2 ⊗ H ⊗ I⊗(n−4)

2 0 0

0 0 0 1
2H

⊗2 ⊗ I⊗(n−2)
2

⎞
⎟⎟⎟⎟⎠ θ ,
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which implies

θ =

⎛
⎜⎜⎜⎜⎝
I⊗(n−2)
2 0 0 0
0 0 1√

2
H ⊗ I2 ⊗ I⊗(n−4)

2 0

0 1√
2
I2 ⊗ H ⊗ I⊗(n−4)

2 0 0

0 0 0 1
2H

⊗2 ⊗ I⊗(n−2)
2

⎞
⎟⎟⎟⎟⎠ β

becauseH−1 = (1/2)H. This yields

θ(0j20j4j5 · · · jn) = β(0j20j4j5 · · · jn),

θ(1j20j4j5 · · · jn) = 1√
2

{
β(100j4j5 · · · jn) + δ(j2)β(110j4j5 · · · jn)

}
,

θ(0j21j4j5 · · · jn) = 1√
2

{
β(0j210j5 · · · jn) + δ(j4)β(0j211j5 · · · jn)

}
,

θ(1j21j4j5 · · · jn) = 1
2
{β(1010j5 · · · jn) + δ(j4)β(1011j5 · · · jn)

+ δ(j2)β(1110j5 · · · jn) + δ(j2)δ(j4)β(1111j5 · · · jn)},

where δ(j) = −2j + 1. In view of θ , the first of above identities shows that 2n−2/2n = 1/4 of the θ(j1 · · · jn)’s remain
unconditional effects, while the other 3/4 of the θ(j1 · · · jn)’s involve F1 and F3 and hence are a combination of the
conditional effects. These equations uncover the connection between factorial effects under the traditional model
and under the conditional effectmodel. Take n = 5 for example.We have θ(10000) = {β(10000) + β(11000)}/√2.
Recall that β(10000) and β(11000) are the conditional main effects of F1 conditioned on levels 0 and 1 of F2,
respectively. Thus, the unconditional main effect of F1 is proportional to the average of the two conditional main
effects of F1. Likewise, we have θ(11000) = {β(10000) − β(11000)}/√2, whichmeans that the unconditional two-
factor interaction of F1 and F2 is proportional to the difference between the two conditional main effects of F1.

Consider an N-run design represented by the N × n design matrix D with elements 1 (high level) and −1 (low
level). Denote the corresponding N × 2n full model matrix under (1) by X, each column corresponding to one
θ(j1 · · · jn). Note thatX can be obtained by deleting the rows ofH⊗n that are not inD. With the vector of responses
y, we haveE(y) = Xθ . Each columnofX is represented by x(j1 · · · jn)with (j1, . . . , jn) ∈ �. The connection between
θ(j1 · · · jn)’s and β(j1 · · · jn)’s suggests

z(0j20j4j5 · · · jn) = x(0j20j4j5 · · · jn),

z(1j20j4j5 · · · jn) = 1√
2

{
x(100j4j5 · · · jn) + δ(j2)x(110j4j5 · · · jn)

}
,

z(0j21j4j5 · · · jn) = 1√
2

{
x(0j210j5 · · · jn) + δ(j4)x(0j211j5 · · · jn)

}
,

z(1j21j4j5 · · · jn) = 1
2
{x(1010j5 · · · jn) + δ(j4)x(1011j5 · · · jn)

+ δ(j2)x(1110j5 · · · jn) + δ(j2)δ(j4)x(1111j5 · · · jn)},

where δ(j) = −2j + 1. Let Zsl and Xsl consist of the z(j1 · · · jn)’s and x(j1 · · · jn)’s respectively, where (j1, . . . , jn) ∈
�sl. Then the conditional effect model under D can be represented by

E(y) = z(0 · · · 0)β(0 · · · 0) +
2∑

s=0

n−2∑
l=1

Zslβsl. (5)

We follow the convention that the random observational errors are uncorrelated and homogeneous with equal
variance.

3.1. Universally optimal designs

If all interactions are absent, then the model (5) reduces to

E(y) = z(0 · · · 0)β(0 · · · 0) + Z01β01 + Z11β11, (6)
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consisting of only unconditional and conditional main effects. In the following, we present a theorem which gives
some requirements for a design to be universally optimal under model (6).

Theorem 3.1: Suppose an N-run design D satisfies

(i) D is an orthogonal array of strength two;
(ii) all eight triples of symbols occur equally often when D is projected onto F1, F2, Fj, j ∈ {4, 5, . . . , n};
(iii) all eight triples of symbols occur equally often when D is projected onto F3, F4, Fj, j ∈ {2, 5, . . . , n};
(iv) all sixteen triples of symbols occur equally often when D is projected onto F1, F2, F3, F4.

Then D is universally optimal among all N-run designs for inference on β01 and β11 under model (6).

Proof: Let Z1 = (Z01,Z11). Denote the information matrix of β01 and β11 under model (6) byM. Note thatM can
be obtained by the Schur complement

M = Z
�
1 {IN − z(0 · · · 0)[z(0 · · · 0)�

z(0 · · · 0)]−1z(0 · · · 0)�}Z1,

which can be simplified asM = Z
�
1 {IN − 1

N 1N1
�
N}Z1 because z(0 · · · 0) = 1N . Because Z

�
1 Z1 − M is nonnegative

definite, we have

tr[M] ≤ tr[Z
�
1 Z1] = N(n − 2) + 4N = N(n + 2) (7)

for every N-run design. Under the conditions (i),. . . ,(iv), it is easy to verify that Z
�
1 1N = 0 and Z

�
1 Z1 = NIn+2.

ThusM = NIn+2 and tr[M] reaches the upper bound in (7). The result now follows from Kiefer (1975). �

By Theorem 3.1, a necessary condition for universally optimal designs is N ≥ 16. Therefore, if n = 4, the
model (5) can only involve the two pairs of conditional and conditioning factors (F1, F2) and (F3, F4). Then the uni-
versally optimal design is exactly the 24 full factorial design. Thus, to avoid trivialities, we let n ≥ 5 in the discussion
of design selection in the next section.

4. Minimum contamination and complementary set theory

The designs meeting the conditions (i),. . . ,(iv) of Theorem 3.1 are universally optimal under model (6). In addition,
β̂h1 = N−1Z

�
h1y is the best linear unbiased estimator ofβh1, h = 0, 1.However, nonnegligible interactionsmay exist

and β̂h1 is no longer unbiased in this case.We revert back to the model (5), which includes all interactions, to assess
the impact of possible presence of interactions on β̂h1. Under model (5), β̂h1 has bias N−1 ∑2

s=0
∑n−2

l=2 Z
�
h1Zslβsl.

ThematrixN−1 ∑2
s=0

∑n−2
l=2 Z

�
h1Zsl is referred to as an alias matrix inWu andHamada (2021, p. 419). A reasonable

measure of the bias in β̂h1 caused by the interactions, as in Tang and Deng (1999), is

Ksl(h) = N−2tr[Z
�
h1ZslZ

�
slZh1] = N−2tr[X

�
h1XslX

�
slXh1],

where the last equality holds because Xsl is an orthogonal transform of Zsl. Based on the effect hierarchy in (4), one
should minimize the bias successively in order of priority. Thus, we define a minimum contamination design as the
one which minimizes the terms of

K = {K02(0),K02(1),K12(0),K12(1),K22(0),K22(1),K03(0),K03(1), . . .} (8)

in a sequentialmanner from left to right. In (8),Ksl(0) appears beforeKsl(1) because the contamination or bias in β̂01
is deemed more severe than in β̂11. The concept of minimizing contamination due to the existence of interactions
is not new.We note that Cheng and Tang (2005) used this idea to develop a general theory for minimum aberration.

The minimum contamination criterion in (8) induces a ranking of designs of the same run size. It is time con-
suming, however, to find the minimum contamination design via complete search using (8) if n is large. A useful
technique of design construction is via complementary designs. Tang andWu (1996) provided identities related to
the wordlength pattern of a regular two-level design to that of its complementary design. Suen et al. (1997) extended
these identities to regular sn−p designs. Cheng (2014, p. 179) reviewed the design construction using complementary
designs.

We now focus on regular designs under the conditional effect model due to their nice properties and popularity
among practitioners. Let 
r be the set of nonnull r × 1 binary vectors. All operations with these vectors are over
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the finite field GF(2). Regarding the notation, we do not apply bold font style to these binary vectors to distinguish
them from the vectors with the elements belonging to real numbers. A regular design in N = 2r (r<n) runs is
given by n distinct vectors b1, . . . , bn from 
r such that the matrix B = (b1, . . . , bn) has full row rank. The design
consists of the N treatment combinations of the form a�B, where a ∈ 
r ∪ {0}.

In the following, we define some useful quantities to representKsl(h). LetA
(1)
l be the number of ways of choosing

l out of b2, b4, . . . , bn such that the sum of the chosen l equals 0; A(21)
l be the number of ways of choosing l out of

b4, . . . , bn such that the sum of the chosen l is in the set {b1, b1 + b2}; A(22)
l be the number of ways of choosing

l out of b2, b5, . . . , bn such that the sum of the chosen l is in the set {b3, b3 + b4}; A(2)
l = A(21)

l + A(22)
l ; A(31)

l be
the number of ways of choosing l out of b4, . . . , bn such that the sum of the chosen l is in the set {0, b2}; A(32)

l
be the number of ways of choosing l out of b2, b5, . . . , bn such that the sum of the chosen l is in the set {0, b4};
A(3)
l = A(31)

l + A(32)
l ;A(42)

l be the number of ways of choosing l out of b2, b5, . . . , bn such that the sum of the chosen
l is in the set {b1 + b3, b1 + b3 + b4}; A(43)

l be the number of ways of choosing l out of b5, . . . , bn such that the sum
of the chosen l is in the set {b1 + b3, b1 + b3 + b4};A(52)

l be the number of ways of choosing l out of b5, . . . , bn such
that the sum of the chosen l is in the set {b1 + b2 + b3, b1 + b2 + b3 + b4}; A(7)

l be the number of ways of choosing
l out of b5, . . . , bn such that the sum of the chosen l is in the set {b1 + b3, b1 + b2 + b3, b1 + b3 + b4, b1 + b2 +
b3 + b4}; A(8)

l be the number of ways of choosing l out of b5, . . . , bn such that the sum of the chosen l is in the set
{b1, b3, b1 + b2, b1 + b4, b2 + b3, b3 + b4, b1 + b2 + b4, b2 + b3 + b4}. The next result, with the proof deferred to
the appendix, gives expressions for Ksl(h) in terms of the quantities just introduced.

Theorem 4.1: For 2 ≤ l ≤ n − 2, we have

(a) K0l(0) = (l + 1)A(1)
l+1 + (n − l − 1)A(1)

l−1;
(b) K0l(1) = A(2)

l−1 + A(2)
l ;

(c) K1l(0) = (n − l − 1)A(2)
l−2 + A(2)

l−1 + lA(2)
l ;

(d) K1l(1) = 2A(3)
l−1 + 2{A(42)

l−1 + A(43)
l−2 + A(52)

l−1 };
(e) K2l(0) = 2A(7)

l−2 + (n − l − 1)A(7)
l−3 + (l − 1)A(7)

l−1;
(f) K2l(1) = 2A(8)

l−2.

In view of Theorem 4.1, sequential minimization of K is equivalent to that of the terms of A = {A(1)
3 ,A(2)

2 ,A(42)
1 +

A(52)
1 ,A(7)

1 ,A(1)
4 ,A(2)

3 , . . .}, which is reduced to

A = {A(1)
3 ,A(2)

2 ,A(7)
1 ,A(1)

4 ,A(2)
3 , . . .}

because F1, F2, F3, F4 form a complete factorial, implying A(42)
1 + A(52)

1 = A(7)
1 .

We now develop a complementary set theory for the first four terms in the sequenceA. Let T̃ be the complement
of {b2, b4, . . . , bn} in 
r; Al(T̃) be the number of ways of choosing lmembers of T̃ such that the sum of the chosen
l equals 0. Let T12 = T̃ \ {b1, b1 + b2}; T34 = T̃ \ {b3, b3 + b4}; A(12)

l (T12) be the number of ways of choosing l
members of T12 such that the sum of the chosen l is in {b1, b1 + b2}; A(34)

l (T34) be the number of ways of choosing
lmembers of T34 such that the sum of the chosen l is in {b3, b3 + b4}.

Theorem 4.2: Let cj, j = 1, . . . , 5, be constants irrelevant to designs and T = 
r \ {b5, . . . , bn}. Define Hi(·, ·) as
Equation (2) in Mukerjee and Wu (2001). We have

(a) A(1)
3 = c1 − A3(T̃);

(b) A(1)
4 = c2 + A3(T̃) + A4(T̃);

(c) A(2)
2 = c3 + A(12)

2 (T12) + A(34)
2 (T34);

(d) A(7)
1 = B1 + B2 + B3 + B4, where B1 = c41 + H1({b1 + b3},T) if b1 + b3 = bj for some j ∈ {5, . . . , n} and

zero otherwise; B2 = c42 + H1({b1 + b2 + b3},T) if b1 + b2 + b3 = bj for some j ∈ {5, . . . , n} and zero oth-
erwise; B3 = c43 + H1({b1 + b3 + b4},T) if b1 + b3 + b4 = bj for some j ∈ {5, . . . , n} and zero otherwise;
B4 = c44 + H1({b1 + b2 + b3 + b4},T) if b1 + b2 + b3 + b4 = bj for some j ∈ {5, . . . , n} and zero otherwise.
c4j’s are constants for every design.

Proof: Parts (a) and (b) are evident from Tang and Wu (1996).
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For (c), note that A(21)
2 = H2({b1}, {b4, . . . , bn}) + H2({b1 + b2}, {b4, . . . , bn}), which can be simplified

as A(21)
2 = c + H2({b1}, {b2, b1 + b2} ∪ T12) + H2({b1 + b2}, {b1, b2} ∪ T12) by Lemmas 1 and 3 in Mukerjee

and Wu (2001), where c is a constant for every design. Because the design is an orthogonal array of strength
two, we haveH2({b1}, {b2, b1 + b2} ∪ T12) = 1 + H2({b1},T12) andH2({b1 + b2}, {b1, b2} ∪ T12) = 1 + H2({b1 +
b2},T12). HenceA

(21)
2 = c + 2 + H2({b1},T12) + H2({b1 + b2},T12) = c + 2 + A(12)

2 (T12). Similarly,A(22)
2 = c′ +

2 + A(34)
2 (T34), where c′ is a constant for every design. Therefore, we have A(2)

2 = c3 + A(12)
2 (T12) + A(34)

2 (T34) by
letting c3 = c + c′ + 4.

For (d), note that A(7)
1 = H1({b1 + b3}, {b5, . . . , bn}) + H1({b1 + b3 + b4}, {b5, . . . , bn}) + H1({b1 + b2 + b3},

{b5, . . . , bn}) + H1({b1 + b2 + b3 + b4}, {b5, . . . , bn}). Let F = 
r \ {b1 + b3, b5, . . . , bn}. If b1 + b3 	= bj for
j = 5, . . . , n, then H1({b1 + b3}, {b5, . . . , bn}) = 0. If b1 + b3 = bj for some j ∈ {5, . . . , n}, then H1({b1 +
b3}, {b5, . . . , bn}) = c41 + H1({b1 + b3}, F) by Lemmas 1 and 3 in Mukerjee and Wu (2001), where c41 is a con-
stant for every design. Since b1 + b3 = bj for some j ∈ {5, . . . , n}, we have F = T andH1({b1 + b3}, F) = H1({b1 +
b3},T). Thus H1({b1 + b3}, {b5, . . . , bn}) = B1. Similarly, we have H1({b1 + b2 + b3},T) = B2, H1({b1 + b3 +
b4},T) = B3 and H1({b1 + b2 + b3 + b4},T) = B4. So, A

(7)
1 = B1 + B2 + B3 + B4. �

Theorem 4.2 provides a way to evaluate designs using the sequence A, and equivalently sequence K, with
the number of factors n = (N − 1) + 2 − t̃ = N − 1 − t̃, where t̃ is the cardinality of T̃. Once T̃ is con-
structed, one can quickly get {b2, b4, . . . , bn} by the identity 
r = T̃ ∪ {b2, b4, . . . , bn}, and construct the design
{b1, b2, b3, b4, . . . , bn}. Constructing T̃ with minimum contamination given a large t̃ is usually time-consuming. It
is more practical to find a small T̃ with minimum contamination, leading to a large n. Thus, Theorem 4.2 helps
find large minimum contamination designs. For example, consider t̃ = 5. The set T̃ = {α1,α2,α3,α4,α1 + α2} can
be verified to have maximal A3(T̃) = 1, where α1,α2,α3,α4 are four linearly independent vectors from 
r. More-
over, assigning α1 = b1, α2 = b3 + b4, α3 = b3 and α4 = b1 + b2 results in minimal A(12)

2 (T12) = A(34)
2 (T34) = 0.

Thus, we have T̃ = {b1, b3 + b4, b3, b1 + b2, b1 + b3 + b4} and construct a minimum contamination design with
the number of factors N−6, which equals 10, 26, 58 for 16-, 32- and 64-run designs.

5. Efficient design search and examples

Finding minimum contamination designs using (8) is a daunting task for even moderate run size and number of
factors. This section presents an extension of a searching procedure given by Mukerjee et al. (2017) to the current
setting and provides examples for illustration.

5.1. A procedure for efficient design search

The minimum contamination criterion (8) can be applied to regular and nonregular designs, but requires heavy
computation of Ksl(h) = N−2tr[X

�
h1XslX

�
slXh1]. By noting that XslX

�
sl is reminiscent of minimummoment aberra-

tion in Xu (2003), Mukerjee et al. (2017) developed an efficient computational procedure forKsl(h). We now extend
this procedure for computing XslX

�
sl to double-pair conditional effect models. For 0 ≤ c ≤ n − 2, let Q0(c) = 1,

Q1(c) = 2c − (n − 4), and

Ql(c) = l−1{[2c − (n − 4)]Ql−1(c) − (n − l − 2)Ql−2(c)}, (9)

where 2 ≤ l ≤ n − 2.Write D̃ for the subarray given by the last n−4 columns ofD (i.e. only consisting of traditional
factors). For 1 ≤ u,w ≤ N, let cuw be the number of positions where the uth andwth rows of D̃ have the same entry,
and qsl(u,w) be the (u,w)th element of XslX

�
sl . Denote the (u, j)th element of D by duj. Then the following result

holds.

Theorem 5.1: For 1 ≤ u,w ≤ N and 2 ≤ l ≤ n − 2, we have

(a) q0l(u,w) = (du2dw2du4dw4)Ql−2(cu,w) + (du2dw2 + du4dw4)Ql−1(cu,w) + Ql(cu,w);
(b) q1l(u,w) = (du1dw1 + du1dw1du2dw2 + du3dw3 + du3dw3du4dw4)Ql−1(cu,w);
(c) q2l(u,w) = du1dw1du3dw3(1 + du2dw2 + du4dw4 + du2dw2du4dw4)Ql−2(cu,w).
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Proof: For 2 ≤ l ≤ n − 2, let �(l) be the sum over binary tuples j5 · · · jn such that l of j5, . . . , jn equal 1. We have

q0l(u,w) = �(l)x(u; 0000j5 · · · jn)x(w; 0000j5 · · · jn)
+ �(l−1)x(u; 0100j5 · · · jn)x(w; 0100j5 · · · jn)
+ �(l−1)x(u; 0001j5 · · · jn)x(w; 0001j5 · · · jn)
+ �(l−2)x(u; 0101j5 · · · jn)x(w; 0101j5 · · · jn)

= (du2dw2du4dw4)
l−2(cu,w) + (du2dw2 + du4dw4)
l−1(cu,w) + 
l(cu,w),

where 
l(u,w) = �(l) ∏n
s=5(dudw)js . Similarly, we have

q1l(u,w) = (du1dw1 + du1dw1du2dw2 + du3dw3 + du3dw3du4dw4)
l−1(cu,w),

q2l(u,w) = du1dw1du3dw3(1 + du2dw2 + du4dw4 + du2dw2du4dw4)
l−2(cu,w).

The result will follow if 
l(u,w) = Ql(cuw). It is clear that 
0(u,w) = 1 and 
1(u,w) = cuw + (−1)(n − 4 −
cuw) = 2cuw − (n − 4). It remains to show 
l(u,w) satisfies the recursion relation (9).

Let �(ξ) = ∏n
j=5(1 + ξdujdwj) and let �l(ξ) be the lth derivative of �(ξ). Note that 
l(u,w) = �l(0)/l!.

Differentiation of log�(ξ) yields

�1(ξ) =
⎛
⎝ n∑

j=5

dujdwj
1 + ξdujdwj

⎞
⎠�(ξ)

=
(

cuw
1 + ξ

− (n − 4) − cuw
1 − ξ

)
�(ξ),

that is, (1 − ξ2)�1(ξ) = {2cuw − (n − 4)(1 + ξ)}�(ξ). Differentiating this l−1 and taking ξ = 0, we get

�l(0) = [2cuw − (n − 4)]�l−1(0) − (l − 1)(n − l − 2)�l−2(0).

This leads to (9) by using 
l(u,w) = �l(0)/l!. �

With the help of Theorem 5.1 and suggested by Mukerjee et al. (2017), an algorithm is provided as follows.

(1) Search for minimum contamination designs by first listing of all nonisomorphic regular designs for given run
size N(≥ 16) and number of factors n(≥ 5).

(2) For each nonisomorphic regular design, permute its columns such that the resulting design satisfies the condi-
tions in Theorem 3.1. Let the first four columns represent the two pairs of conditional and conditioned factors,
that is, F1, F2 and F3, F4.

(3) Calculate the criterion in (8) by using Theorem 5.1, and hence find a minimum contamination design.

This procedure mostly consumes affordable computational time. For N = 16 and n = 10, for example, it takes
around 3.94minutes to find aminimum contamination design on a desktop with 3.8 GHz CPU and 64 GB of RAM.

5.2. Examples

We apply the algorithm presented in Section 5.1 to 16- and 32-run designs. Afterwards, the light bulb experi-
ment (Wu & Hamada, 2021, p. 347) mentioned in Section 1 is revisited.

For N = 16 and 32, a list of all nonisomorphic regular designs are given in the catalogues in Chen et al. (1993).
Table 1 exhibits the results for N = 16 and 5 ≤ n ≤ 12. In the table, the numbers 1,2,4,8 represent basic factors
in a design. The other numbers represent added factors. For example, for n = 5, if the five factors are denoted by
A, B, C, D, E, then the minimum contamination design is the one with the defining relation E = ABCD because
15 = 1+ 2+ 4+ 8. We can see that all minimum contamination designs under conditional effect models are also
minimum aberration under traditional models. The finding supports using minimum aberration designs under
traditional models to perform subsequent de-aliasing analysis in Su and Wu (2017). Table 2 exhibits the results
for N = 32 and 6 ≤ n ≤ 18. Same as Table 1, the numbers 1,2,4,8,16 represent basic factors in a design. The other
numbers represent added factors. For example, for n = 6, if the five factors are denoted by A, B, C,D, E, F, then the
minimumcontamination design is the onewith the defining relationF = ABCDE because 31 = 1+ 2+ 4+ 8+ 16.
The R codes for generating these designs are attached to the supplementary material.
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Table 1. Regular minimum contamination designs for N = 32.

n Minimum aberration design

6 (1, 2, 4, 8, 16, 31)
7 (1, 8, 16, 7, 2, 4, 27)
8 (4, 16, 7, 29, 1, 2, 8, 11)
9 (1, 4, 7, 29, 2, 8, 16, 11, 19)
10 (4, 8, 7, 19, 1, 2, 16, 11, 29, 30)
11 (16, 11, 14, 19, 1, 2, 4, 8, 7, 13, 21)
12 (16, 11, 13, 19, 1, 2, 4, 8, 7, 14, 21, 22)
13 (16, 11, 13, 19, 1, 2, 4, 8, 7, 14, 21, 22, 25)
14 (1, 4, 7, 11, 2, 8, 16, 13, 14, 19, 21, 22, 25, 26)
15 (1, 2, 4, 8, 16, 32, 7, 11, 13, 14, 19, 22, 25, 26, 28)
16 (1, 2, 4, 8, 16, 7, 11, 13, 14, 19, 21, 22, 25, 26, 28, 31)

Table 2. Regular minimum contamination designs for N = 16.

n Minimum aberration design

5 (1, 2, 4, 8, 15)
6 (1, 8, 2, 4, 7, 11)
7 (1, 2, 4, 8, 7, 11, 13)
8 (1, 2, 4, 8, 7, 11, 13, 14)
9 (2, 4, 8, 3, 1, 5, 9, 14, 15)
10 (1, 6, 2, 8, 4, 3, 5, 9, 14, 15)
11 (4, 8, 5, 10, 1, 2, 3, 6, 9, 13, 14)
12 (2, 5, 6, 10, 1, 4, 8, 3, 9, 13, 14, 15)

The light bulb experiment mentioned inWu and Hamada (2021, p. 347) studied a light bulb sealing process per-
formed to improve a cosmetic problem that was frequently occurring (Taguchi, 1987, Section 17.6). The outcomes
were determined mainly by six two-level traditional factors A, B, C,D, E, F and two pairs of conditional and condi-
tioning factors (H,G) and (J, I), respectively. A 16-run regular fractional factorial design is to be conducted to study
this light bulb sealing process. With the use of the algorithm in Section 5.1, we obtain the minimum contamination
design with the designmatrix given in Table 3 (the column indices also provided in Table 2). The first four columns
are assigned to the two pairs of conditional and conditioning factors (H,G) and (J, I), respectively; the remaining
columns are assigned to the six traditional factors. This 210−6 design has the defining generators B = HI, C = AH,
A = GI, D = HJ, E = AIJ and F = AHIJ. The corresponding K-sequence in (8) has 2 × 3 × (10 − 2 + 1) = 42
elements given as follows:

K = {9, 10, 17, 4, 2, 0, 28, 16, 21, 12, 12, 6, 35, 16, 54, 16, 30, 18, 28, 12, 18, 24, 40, 20,
19, 6, 17, 4, 30, 12, 0, 4, 1, 0, 12, 6, 1, 0, 0, 0, 2, 2}.

We also evaluate the design provided by Taguchi (1987, Section 17.6) (see Table 7.13 of Wu and Hamada (2021,
p.347)) by the minimum contamination criterion in (8). The resulting K-sequence is given by

K = {15, 7, 11, 6, 3, 0, 20, 19, 30, 10, 10, 6, 35, 18, 38, 22, 31, 18, 32, 10, 32, 18, 40, 20,
13, 7, 15, 4, 29, 12, 4, 3, 2, 0, 14, 6, 1, 0, 0, 0, 1, 2}.

The first element of the K-sequence of the design in Table 3 is 9, smaller than that of the design provided by
Taguchi (1987, Section 17.6). Thus, the proposed algorithm found a better design in terms of the minimization
of contamination caused by interactions under the double-pair conditional effect model.

6. Concluding remarks

This paper extends the work of Mukerjee et al. (2017) to two pairs of conditional and conditioning factors. The
conditional effect model in (3) is an orthogonal reparameterization of the traditional model in (1). Such a repa-
rameterization introduces a new effect hierarchy order of factorial effects, resulting in a different design evaluation
from the minimum aberration due to Fries and Hunter (1980). We note that alternative reparameterization of (1)
is required if the topic of interest does not depend on conditional effects. For example, Yang and Speed (2002) pro-
posed to define the factorial effects with reference to natural baseline levels of the factors, referred to as baseline
parameterization. Later, Mukerjee and Tang (2012), Mukerjee and Huda (2016) and Sun and Tang (2022) discussed
design optimality and construction under the baseline parameterization.

Mukerjee et al. (2017) claimed that, in practice, the number of conditional and conditioned pairs seldom exceeds
two. On the other hand, the effect hierarchy order in (4) is only irrelevant to the value of r when the number of pairs
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Table 3. Sixteen-run minimum contamination design with ten factors for the light bulb experiment.

H G I J A B C D E F

1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
2 1 1 1 −1 1 1 1 −1 −1 −1
3 1 −1 1 1 −1 1 −1 1 −1 −1
4 1 −1 −1 1 1 −1 1 1 −1 −1
5 −1 1 1 1 1 −1 −1 −1 1 −1
6 −1 1 −1 1 −1 1 1 −1 1 −1
7 −1 −1 −1 −1 1 1 −1 1 1 −1
8 −1 −1 1 −1 −1 −1 1 1 1 −1
9 −1 −1 −1 1 1 1 −1 −1 −1 1
10 −1 −1 1 1 −1 −1 1 −1 −1 1
11 −1 1 1 −1 1 −1 −1 1 −1 1
12 −1 1 −1 −1 −1 1 1 1 −1 1
13 1 −1 1 −1 −1 1 −1 −1 1 1
14 1 −1 −1 −1 1 −1 1 −1 1 1
15 1 1 −1 1 −1 −1 −1 1 1 1
16 1 1 1 1 1 1 1 1 1 1

is not greater than two. When dealing with more than two pairs, the effect hierarchy order is a nontrivial function
of r and deriving useful results can be exceedingly difficult. Alternatively, we note that theminimum contamination
criterion in (8) can be applied to regular aswell as nonregular designs; however, this paper focuses on regular designs
owing to their popularity and theoretical underpinnings. The application of this framework to nonregular designs
is left for future research. Another interesting future direction suggested by a reviewer is to involve qualitative four-
level conditional/conditioning factors. It is known that a qualitative four-level factor can be decomposed into three
orthogonal main effect components with two levels each (Wu & Hamada, 2021, chapter 7). However, our theory
cannot be directly applied since the three two-level main effect components do not share the same properties as a
real two-level factor. The covariance structure for the main effect components is different from that for two-level
factors; see Joseph et al. (2009) for a discussion. The resulting effect hierarchy order of conditional factorial effects
may be complicated with vague interpretations. Since this topic requires a nontrivial extension, we leave it for future
research.
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Appendix. Proof of Theorem 4.1

In this proof, a traditional factorial effect is represented by a word, i.e. a subset of {1, . . . , n}. For two words W1 and W2, we
defineW1�W2 to be (W1 ∪ W2) \ (W1 ∩ W2). Note that Ksl(h) = N−2tr[X

�
h1XslX

�
slXh1], which is the sum of squared entries

of N−2X
�
h1Xsl. Because the design is regular, each squared entry is either one or zero according to whether the corresponding

effects are aliased.
Part (a) is evident from Tang and Deng (1999) except that the number of factors considered in the computation is n−2

(exclude F1 and F3). So we have K0l(0) = (l + 1)A(1)
l+1 + (n − l − 1)A(1)

l−1.
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For (b), let Sl be the set of all words of length l not containing any word involving 1 and 3. Let Sl2 be a subset of Sl and 2
belongs to each word in Sl2. Then {1}�W,W ∈ Sl2, is of the form {1, 2} ∪ (W \ {2}), where (W \ {2}) is of length l−1. Similarly,
{1}�W,W ∈ (S \ Sl2), is of the form {1} ∪ W, whereW is of length l. Similar argument can be made when the roles of F1 and
F3, F2 and F4 are interchanged, respectively. By the definition of A(21)

l and A(22)
l , we obtain K0l(1) = A(2)

l−1 + A(2)
l .

For (c), first consider {2}�({1} ∪ W) and {2}�({1, 2} ∪ W), where W runs through all the words not involving F1, F2, F3
and has length l−1. It is equivalent to consider {1, 2} ∪ W and {1} ∪ W for such W’s. This yields A(21)

l−1 in K1l(0). Next we
consider {j}�({1} ∪ W) and {j}�({1, 2} ∪ W), where j = 4, . . . , n and W runs through all the words not involving F1, F2, F3
and has length l−1. By Tang and Deng (1999), this yields (n − l − 1)A(21)

l−2 + lA(21)
l in K1l(0). Similar argument can be made

when the roles of F1 and F3, F2 and F4 are interchanged, respectively. By the definition of A(21)
l and A(22)

l , we obtain K1l(0) =
(n − l − 1)A(2)

l−2 + A(2)
l−1 + lA(2)

l .
For (d), first consider {1}�({1} ∪ W), {1}�({1, 2} ∪ W), {1, 2}�({1} ∪ W) and {1, 2}�({1, 2} ∪ W), whereW runs through

all the words not involving F1, F2, F3 and has length l−1. It is equivalent to considerW, {2} ∪ W, {2} ∪ W andW for suchW’s.
This yields 2A(31)

l−1 inK1l(1). Next consider {1}�({3} ∪ W), {1}�({3, 4} ∪ W), {1, 2}�({3} ∪ W) and {1, 2}�({3, 4} ∪ W), where
W runs through all the words not involving F1, F3, F4 and has length l−1. For suchW’s, {1}�({3} ∪ W) and {1}�({3, 4} ∪ W)

yield A(42)
l−1 in K1l(1); {1, 2}�({3} ∪ W) and {1, 2}�({3, 4} ∪ W) yield A(43)

l−2 + A(52)
l−1 in K1l(1). Similar argument can be made

when the roles of F1 and F3, F2 and F4 are interchanged, respectively. By the definition of A(3)
l , we obtain K1l(1) = 2A(3)

l−1 +
2{A(42)

l−1 + A(43)
l−2 + A(52)

l−1 }.
For (e), first consider {2}�({1, 3} ∪ W), {2}�({1, 3, 4} ∪ W), {2}�({1, 2, 3} ∪ W), {2}�({1, 2, 3, 4} ∪ W) and {4}�({1, 3} ∪

W), {4}�({1, 3, 4} ∪ W), {4}�({1, 2, 3} ∪ W), {4}�({1, 2, 3, 4} ∪ W), where W runs through all the words not involv-
ing F1, F2, F3, F4 and has length l−2. This yields 2A(7)

l−2 in K2l(0). Next consider {j}�({1, 3} ∪ W), {j}�({1, 3, 4} ∪ W),
{j}�({1, 2, 3} ∪ W), {j}�({1, 2, 3, 4} ∪ W) for j = 5, . . . , n. By Tang andDeng (1999), this yields (n − l − 1)A(7)

l−3 + (l − 1)A(7)
l−1.

So we obtain K2l(0) = 2A(7)
l−2 + (n − l − 1)A(7)

l−3 + (l − 1)A(7)
l−1.

For (f), consider {j}�({1, 3} ∪ W), {j}�({1, 3, 4} ∪ W), {j}�({1, 2, 3} ∪ W), {j}�({1, 2, 3, 4} ∪ W) for j = 1, 3, and
{i, j}�({1, 3} ∪ W), {i, j}�({1, 3, 4} ∪ W), {i, j}�({1, 2, 3} ∪ W), {i, j}�({1, 2, 3, 4} ∪ W) for (i, j) = (1, 2), (3, 4), whereW runs
through all the words not involving F1, F2, F3, F4 and has length l−2. This yields 2A(8)

l−2. So we obtain K2l(1) = 2A(8)
l−2.
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