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ABSTRACT
Sample compression schemes were first proposed by Littlestone and Warmuth in 1986. Undi-
rected graphical model is a powerful tool for classification in statistical learning. In this paper,
we consider labelled compression schemes for concept classes induced by discrete undirected
graphicalmodels. For the undirected graph of two vertices with no edge, where one vertex takes
two values and the other vertex can take any finite number of values, we propose an algorithm
to establish a labelled compression scheme of size VC dimension of associated concept class.
Further, we extend the result to other two types of undirected graphical models and show the
existence of labelled compression schemes of size VC dimension for induced concept classes.
Thework of this papermakes a step forward in solving sample compression problem for concept
class induced by a general discrete undirected graphical model.
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1. Introduction

Compression is an important facet of learning. In statistical learning, excellent and appropriate compression can
guarantee a small generalization error (Blumer et al., 1987). A significant notion of compression is sample compres-
sion scheme, which was introduced by Littlestone andWarmuth (1986). There are two types of sample compression
schemes: labelled and unlabelled. Such compression schemes are approaches for encoding a finite sample in a small
subsample.

A labelled sample compression scheme of size k for a concept class consists of a compression function g and
a reconstruction function h. Compression function g compresses a finite sample to a small labelled subsample of
size at most k that is called compression set, and reconstruction function h aims to construct a concept consis-
tent with the original sample set by the compression set. A crucial fact called compactness lemma was given by
Ben-David and Litman (1998), which essentially says that if a finite class admits a compression scheme so does an
infinite class. Vapnik-Chervonenkis (VC) dimension is ameasure of the complexity of function classes. In statistical
learning, VC dimension is deeply related to probably approximately correct learning (PAC) and sample compres-
sion scheme (Blumer et al., 1989; Floyd & Warmuth, 1995). In particular, for any concept class of VC dimension
d the size of its sample compression scheme must be at least d (Bollobás & Radcliffe, 1995). Furthermore, Floyd
and Warmuth (1995) and Warmuth (2003) proposed a sample compression conjecture, that is, for every class of
VC dimension d, there exists a sample compression scheme of size O(d). Up to now, this question has not been
solved. However, it has been proved for many families of concept classes which are natural and important in sta-
tistical learning. Floyd and Warmuth (1995) showed that there is a labelled sample compression scheme of size d
for any maximum class of VC dimension d. Moran and Warmuth (2016) presented the labelled sample compres-
sion schemes of size d for ample classes which are a natural generalization of maximum classes based on Sandwich
Lemma (Anstee et al., 2002; Bollobás&Radcliffe, 1995). One noteworthy result is thatMoran andYehudayoff (2016)
proved the existence of labelled compression scheme of size exp(d) for arbitrary class of VC dimension d. In a latest
study, Chepoi et al. (2021) showed that the topes of a complex of oriented matroids (COM) have a labelled sample
compression scheme of size VC dimension d.

Another type of compression scheme is unlabelled. An unlabelled sample compression scheme is that the com-
pression set is unlabelled. In other words, the compression function compresses each given sample to a subset
of the domain of the sample. For some specific concept classes, unlabelled sample compression schemes have
been explored by several researchers and they have achieved a series of results (Chalopin et al., 2019; Helmbold
et al., 1990; Kuzmin &Warmuth, 2007; Marc, 2022; Pálvölgyi & Tardos, 2020; Rubinstein & Rubinstein, 2012).
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Figure 1. A simple UG G1.

Undirected graphical model (UGM), also known as Markov network, is one of the research hot points in the
field of statistical learning. In the past a few decades, it has been successfully applied to many real problems (Fried-
man, 2004; Lauritzen, 1996). We know that a statistical model is a family of probability distributions, which is a
(part of) real algebraic variety from the viewpoint of algebraic geometry (Pistone et al., 2001). In particular, con-
sidering discrete data, a statistical model is the set of all solutions of some polynomials in the probability simplex
(Geiger et al., 2001; Settimi & Smith, 2000).

Given an undirected graph (UG) and sample space, one has an algebraic geometric characterization of the corre-
sponding discrete UGM (Geiger et al., 2006). Based on the work in Geiger et al. (2006), for general discrete UGMs,
Li and Yang (2018) developed an algebraicmethod for computing VC dimensions of corresponding concept classes.
Their work lays a theoretical foundation for this paper.

A natural question is whether the sample compression conjecture holds for the concept classes induced by dis-
creteUGMs. In this paper, we consider concept classes induced by three types of discreteUGMs.Using the quadratic
binomials associated with a positive UGM, we construct a labelled compression scheme of size VC dimension d.
That is, the compression conjecture is correct for these three concept classes. It is an open question whether the
concept class induced by a general discrete UGM has a sample compression scheme of size VC dimension.

The remainder of this paper is organized as follows. Section 2 introduces main definitions and notations.
Section 3 discusses a property of one-inclusion graphs of concept classes induced by general UGMs and establishes
the existence of labelled sample compression schemes of size equal to their VC dimensions for classes induced by
three kinds of discrete UGMs. Section 4 summarizes the work of this paper.

2. Preliminaries

In this section, we introduce some formal definitions and notations that appear in this paper.

2.1. Discrete UGMs

We consider UGMs whose underlying UGs are simple. A UG G = (V ,E) contains a set of vertices V and a set of
unordered pairs vertices (undirected edges) E. A graph is complete if there exists an edge between every pair of
vertices. Given a UG G, a clique is a maximal complete subgraph ofG, and we use κG to denote the set of all cliques
of G. Let X1,X2, . . . ,Xn be discrete random variables (vertices in G), where Xi ∈ [ki]

.= {0, 1, . . . , ki − 1}, ki ∈ N,
ki ≥ 2. Let X = (X1,X2, . . . ,Xn) be an n-dimension vector, and then the sample space X = ∏n

i=1[ki]. A UGM P
is a family of probability distributions, and each element (probability distribution onX ) in P has the form

px1x2···xn
.= P(x1, x2, . . . , xn) = P(x) ∝

∏
K∈κG

ψK(x), (1)

where x = (x1, x2, . . . , xn) ∈ X , and ψK(x) is a potential function that depends on X only through the values of
variables in K. We focus on the collection of positive probability distributions in P , denoted as P+.

Example 2.1: The graph G1 in Figure 1 is a simple UG, V = {X1,X2}, E = {(X1,X2)} and κG1 = {{X1}, {X2}}. If
X1,X2 ∈ [2], X has four values: x(1) = (0, 0), x(2) = (1, 1), x(3) = (0, 1), x(4) = (1, 0).

2.2. Algebraic geometry of discrete UGMs

We work in the real polynomial ring R[X ] whose indeterminates are elementary probabilities px1x2···xn . A subset
I ⊆ R[X ] is an ideal if it satisfies the following conditions: (1) 0 ∈ I, (2) if f , g ∈ I, then f + g ∈ I, and (3) if f ∈ I
and h ∈ R[X ], then hf ∈ I. Every ideal I in R[X ] associates a variety

XR>0
I = {y ∈ R

m
>0 : f (y) = 0 for every f ∈ I},

wherem = ∏n
i=1 ki, R

m
>0 is the set ofm-dimensional vectors whose components are positive real numbers.

Given a UG G, we say Xi is independent of Xj given {X1,X2, . . . ,Xn}\{Xi,Xj} if (Xi,Xj) /∈ E. Denote
it by XiXj|{X1,X2, . . . ,Xn}\{Xi,Xj} and call it a pairwise conditional independence statement. Each XiXj



STATISTICAL THEORY AND RELATED FIELDS 289

Figure 2. (a) C1 and (b) its one-inclusion graph.

|{X1,X2, . . . ,Xn}\{Xi,Xj} corresponds to a set of quadratic binomials: ∀ xi, x′
i ∈ [ki], ∀ xj, x′

j ∈ [kj], ∀ z ∈∏n
l=1,l �=i,l �=j[kl],

pxixjzpx′
ix

′
jz − pxix′

jzpx′
ixjz holds.

Let Ipairwise(G) be the ideal in R[X ] generated by the quadratic binomials corresponding to all the pairwise con-
ditional independence statements. The well-known Hammersley–Clifford theorem shows that XR>0

Ipairwise(G) = P+

(Geiger et al., 2006; Lauritzen, 1996).

Example 2.2: Consider the same UG and sample space given in Example 2.1. Since X1X2, the unique quadratic
binomial associated with this discrete UGM is

px(1) · px(2) − px(3) · px(4) . (2)

2.3. Concept classes, VC dimension, sample compression schemes

A concept class C over domain X (also denoted as dom(C)) is a family of functions of the form c : X → {0, 1}.
Alternatively, C can be represented by the one-inclusion graph (Haussler et al., 1994). The vertices of the graph are
all the concepts in C and two concepts have an edge if they differ at a single point. Each function c ∈ C is said to be
a concept, and it can also be viewed as a subset ofX where x ∈ c if and only if x ∈ X and c(x) = 1. For some subset
A ⊆ X , the restriction of C on A is the class C|A = {c ∩ A : c ∈ C}. If |C|A| = 2|A| that means for every binary
vector b ∈ {0, 1}|A| there is a concept c such that c(A) = b, then A is said to be shattered by C. The VC dimension
of C is given by

VCdim(C) = sup{m|A ⊆ X shattered by C and |A| = m}.
The sign function is defined as

sign (z) =
{
1, if z ≥ 0,
0, if z < 0, (3)

where z ∈ R. The concept class induced by a discrete UGM is the set of Boolean functions over X of the form
sign(log(P(x)/Q(x))) for P,Q ∈ P+, whereP+ is a distribution class. Hence, sign(log(P(x)/Q(x))) = 1 if P(x) ≥
Q(x) and sign(log(P(x)/Q(x))) = 0 otherwise. A concept class C is called maximum if its size is

( n
≤d

) = ∑d
i=0

(n
i
)
,

where n = |dom(C)| and d = VCdim(C).

Example 2.3: According to Example 2.2., clearly, there is no pair of distributions P,Q ∈ P+
1 such that

(sign(log( p00q00 )), sign(log(
p11
q11 )), sign(log(

p01
q01 )), sign(log(

p10
q10 ))) take the values (1, 1, 0, 0) and (0, 0, 1, 1). Since p00 +

p01+ p10 + p11 = q00 + q01 + q10 + q11 = 1, the value (0, 0, 0, 0) cannot appear. The concept class C1 is shown in
Figure 2(a). Note that VCdim(C1) = 3, and it is not a maximum class. The one-inclusion graph of C1 is given in
Figure 2(b).
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Figure 3. Two antipodal subgraphs of the graph in Figure 2(b).

A labelled sample is a set s = {(x(1), y1), . . . , (x(m), ym)}, where x(i) ∈ X , yi ∈ {0, 1}. A labelled sample compres-
sion scheme of a concept class C is a pair of functions (g, h). Function g is the compression function for mapping a
labelled realizable finite sample that comes from some concept to a labelled subsample as a compression set. h is the
reconstruction function for mapping the subsample to a hypothesis on X consistent with the entire sample. The
size of the compression scheme is the size of the largest compression set. A sample compression scheme is proper
if h(g(s)) ∈ C for any realizable sample s, otherwise, it is called improper.

3. Labelled sample compression schemes

In this section, we point out that one-inclusion graph of the concept class induced by a discrete UGM is not the
tope graph of a COM if the underlying graph is incomplete and construct labelled sample compression schemes of
size VC dimension for classes corresponding to three types of discrete UGMs.

3.1. One-inclusion graphs of concept classes induced by general discrete UGMs

For a discrete UGM, vertices in its underlying UG represent random variables. In this section, each vertex in the
graph under consideration represents an object, which is not a random variable (the object is a concept in one-
inclusion graph).

Let G′ = (V ′,E′) be a finite, connected and simple graph. The distance d(u, v) .= dG′(u, v) between vertices u
and v is defined as the length of a shortest (u, v)-path. We say that G′ = (V ′,E′) is isometrically embeddable into a
graph H = (W, F) if there is a map ϕ : V ′ → W such that dH(ϕ(u),ϕ(v)) = d(u, v) for all u, v ∈ V ′. A graph G′ is
a partial cube if it allows an isometric embedding into a hypercube graph Qn.

It is significant for us to introduce two types of metric subgraphs. For a subgraphH,H is even if for every vertex v
there exists unique vertex v′ such that d(v, v′) = diam(G′), where diam(G′) is the diameter ofG′. An even subgraph
is symmetric if d(u, v)+ d(u, v′) = diam(G′) for all u, v in H. A symmetric-even subgraph H of G′ is also called
an antipodal subgraph. Two antipodal subgraphs of the graph Figure 2(b) are shown in Figure 3. A subgraph H is
gated if for each vertex v in G′ there exists a gate x in H, such that there is a shortest path from v through x to y
for each vertex y ∈ H. In a partial cube that means there exists a path from v to H that does not use any color that
appears in the edges of H. We say that a graph is antipodally gated if all of its antipodal subgraphs are gated.

Considering the subgraph Figure 3(b), it is an antipodal subgraph, while the vertex ‘0010’ does not have gate. For
vertex ‘0010’, there is not a path from ‘0010’ to Figure 3(b) that does not use red or blue edge. Similarly, the subgraph
induced by vertex set {‘0010’,‘0110’,‘1110’,‘1010’} is a non-gated antipodal subgraph. Therefore, Figure 2(b) is not
antipodally gated. By Theorem 1.1 in Knauer and Marc (2020), it is not the tope graph of a COM. Furthermore,
each one-inclusion graph of concept class induced by a UGMwhose underlying graph is incomplete is not the tope
graph of a COM.

3.2. Sample compression schemes for the concept classes induced by discrete UGMs

Given a sample space, if a UG is complete, the corresponding concept class is a maximum class (Li & Yang, 2018),
and its one-inclusion graph is the tope graph of a COM (Knauer & Marc, 2020). Now, we consider labelled
compression scheme of C1.
Proposition 3.1: C1 has a labelled compression scheme of size 3.

Proof: Let X1,X2 ∈ {0, 1}, and consider G2 in Figure 4. X1 and X2 are dependent. Note that the induced concept
class C2 contains 15 concepts, and it is a maximum class. Then we can get a labelled compression scheme for C2
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Figure 4. A UG G2.

Table 1. A labelled compression scheme for C1.
x(1) x(2) x(3) x(4) Labelled compression sets

0 0 0 1 {(x(1) , 0), (x(2) , 0), (x(3) , 0)}
0 0 1 0 {(x(1) , 0), (x(2) , 0), (x(4) , 0)}
0 1 0 0 {(x(1) , 0), (x(3) , 0), (x(4) , 0)}
0 1 0 1 {(x(1) , 0), (x(2) , 1), (x(3) , 0)}, {(x(1) , 0), (x(3) , 0), (x(4) , 1)}
0 1 1 0 {(x(1) , 0), (x(2) , 1), (x(4) , 0)}, {(x(1) , 0), (x(3) , 1), (x(4) , 0)}
0 1 1 1 {(x(1) , 0), (x(2) , 1), (x(3) , 1)}, {(x(1) , 0), (x(2) , 1), (x(4) , 1)}, {(x(1) , 0), (x(3) , 1), (x(4) , 1)}
1 0 0 0 {(x(2) , 0), (x(3) , 0), (x(4) , 0)}
1 0 0 1 {(x(1) , 1), (x(2) , 0), (x(3) , 0)}, {(x(2) , 0), (x(3) , 0), (x(4) , 1)}
1 0 1 0 {(x(1) , 1), (x(2) , 0), (x(4) , 0)}, {(x(2) , 0), (x(3) , 1), (x(4) , 0)}
1 0 1 1 {(x(1) , 1), (x(2) , 0), (x(3) , 1)}, {(x(1) , 1), (x(2) , 0), (x(4) , 1)}, {(x(2) , 0), (x(3) , 1), (x(4) , 1)}
1 1 0 1 {(x(1) , 1), (x(2) , 1), (x(3) , 0)}, {(x(1) , 1), (x(3) , 0), (x(4) , 1)}, {(x(2) , 1), (x(3) , 0), (x(4) , 1)}
1 1 1 0 {(x(1) , 1), (x(2) , 1), (x(4) , 0)}, {(x(1) , 1), (x(3) , 1), (x(4) , 0)}, {(x(2) , 1), (x(3) , 1), (x(4) , 0)}
1 1 1 1 {(x(1) , 1), (x(2) , 1), (x(3) , 1)}, {(x(1) , 1), (x(2) , 1), (x(4) , 1)},

{(x(1) , 1), (x(3) , 1), (x(4) , 1)}, {(x(2) , 1), (x(3) , 1), (x(4) , 1)}

Table 2. A labelled compression scheme for a maximum class.

x(1) x(2) x(3) x(4) Labelled compression sets

0 0 0 0 {(x(1) , 0), (x(2) , 0), (x(3) , 0)}, {(x(1) , 0), (x(2) , 0), (x(4) , 0)}
0 0 0 1 {(x(1) , 0), (x(2) , 0), (x(4) , 1)}
0 0 1 0 {(x(1) , 0), (x(2) , 0), (x(3) , 1)}
0 1 0 0 {(x(1) , 0), (x(2) , 1), (x(3) , 0)}, {(x(1) , 0), (x(2) , 1), (x(4) , 0)}, {(x(1) , 0), (x(3) , 0), (x(4) , 0)}
0 1 0 1 {(x(1) , 0), (x(2) , 1), (x(4) , 1)}, {(x(1) , 0), (x(3) , 0), (x(4) , 1)}
0 1 1 0 {(x(1) , 0), (x(2) , 1), (x(3) , 1)}, {(x(1) , 0), (x(3) , 1), (x(4) , 0)}
0 1 1 1 {(x(1) , 0), (x(3) , 1), (x(4) , 1)}
1 0 0 0 {(x(1) , 1), (x(2) , 0), (x(3) , 0)}, {(x(1) , 1), (x(2) , 0), (x(4) , 0)}, {(x(2) , 0), (x(3) , 0), (x(4) , 0)}
1 0 0 1 {(x(1) , 1), (x(2) , 0), (x(4) , 1)}, {(x(2) , 0), (x(3) , 0), (x(4) , 1)}
1 0 1 0 {(x(1) , 1), (x(2) , 0), (x(3) , 1)}, {(x(2) , 0), (x(3) , 1), (x(4) , 0)}
1 0 1 1 {(x(2) , 0), (x(3) , 1), (x(4) , 1)}
1 1 0 0 {(x(1) , 1), (x(2) , 1), (x(3) , 0)}, {(x(1) , 1), (x(2) , 1), (x(4) , 0)},

{(x(1) , 1), (x(3) , 0), (x(4) , 0)}, {(x(2) , 1), (x(3) , 0), (x(4) , 0)}
1 1 0 1 {(x(1) , 1), (x(2) , 1), (x(4) , 1)}, {(x(1) , 1), (x(3) , 0), (x(4) , 1)}, {(x(2) , 1), (x(3) , 0), (x(4) , 1)}
1 1 1 0 {(x(1) , 1), (x(2) , 1), (x(3) , 1)}, {(x(1) , 1), (x(3) , 1), (x(4) , 0)}, {(x(2) , 1), (x(3) , 1), (x(4) , 0)}
1 1 1 1 {(x(1) , 1), (x(3) , 1), (x(4) , 1)}, {(x(2) , 1), (x(3) , 1), (x(4) , 1)}

(Floyd &Warmuth, 1995; Moran &Warmuth, 2016), and a labelled compression scheme of size 3 for C1 as shown
in Table 1 due to C1 ⊂ C2 and VCdim(C1) = VCdim(C2) = 3.

�

Remark 3.1: ForG1 in Figure 1, letX1 ∈ [k1],X2 ∈ [k2], where k1, k2 ∈ N, k1, k2 ≥ 2 excluding the case k1 = k2 =
2. Then we can give the algebraic characterization of this discrete UGM:

pij · plk − pik · plj, (4)

where i, l ∈ [k1], i< l, j, k ∈ [k2], j< k. It is easy to know that only (0, 0, 1, 1) and (1, 1, 0, 0) cannot occur on
{(i, j), (l, k), (i, k), (l, j)}, that is, there are 14 functions, denoted by C3.

Note that VCdim(C3) = 3. A natural idea would be to embed it into a maximum class of the same VC dimen-
sion that contains C3. As we all know there are 16 functions on 4 domain points in total, and then we can delete
(0, 0, 1, 1) to get a maximum class of VC dimension 3 which contains C3. The labelled compression scheme for
this maximum class is shown in Table 2. The concept (1, 1, 0, 0) /∈ C3, and it has four compression sets. If we
know {((i, j), 1), ((l, k), 1), ((i, k), 0)}, this evidence cannot be used to predict the label of (l, j) in C3 though the
fact that it comes from (1, 1, 0, 1) is obvious. The key point is that compression sets corresponding to (1, 1, 0, 1)
do not contain {((i, j), 1), ((l, k), 1), ((i, k), 0)} in the maximum class C3 ∪ (1, 1, 0, 0). Thus we can assign the
labelled compression set {((i, j), 1), ((l, k), 1), ((i, k), 0)} to (1, 1, 0, 1), {((i, j), 1), ((l, k), 1), ((l, j), 0)} to (1, 1, 1, 0),
{((i, j), 1), ((i, k), 0), ((l, j), 0)} to (1, 0, 0, 0), and {((l, k), 1), ((i, k), 0), ((l, j), 0)} to (0, 1, 0, 0). Then one can obtain
a new compression scheme for C3 as shown in Table 3. This compression scheme is crucial in this paper.
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Table 3. A new labelled compression scheme for C3.
x(1) x(2) x(3) x(4) Labelled compression sets

0 0 0 0 {(x(1) , 0), (x(2) , 0), (x(3) , 0)}, {(x(1) , 0), (x(2) , 0), (x(4) , 0)}
0 0 0 1 {(x(1) , 0), (x(2) , 0), (x(4) , 1)}
0 0 1 0 {(x(1) , 0), (x(2) , 0), (x(3) , 1)}
0 1 0 0 {(x(1) , 0), (x(2) , 1), (x(3) , 0)}, {(x(1) , 0), (x(2) , 1), (x(4) , 0)}, {(x(1) , 0), (x(3) , 0), (x(4) , 0)},

{(x(2) , 1), (x(3) , 0), (x(4) , 0)}
0 1 0 1 {(x(1) , 0), (x(2) , 1), (x(4) , 1)}, {(x(1) , 0), (x(3) , 0), (x(4) , 1)}
0 1 1 0 {(x(1) , 0), (x(2) , 1), (x(3) , 1)}, {(x(1) , 0), (x(3) , 1), (x(4) , 0)}
0 1 1 1 {(x(1) , 0), (x(3) , 1), (x(4) , 1)}
1 0 0 0 {(x(1) , 1), (x(2) , 0), (x(3) , 0)}, {(x(1) , 1), (x(2) , 0), (x(4) , 0)}, {(x(1) , 1), (x(3) , 0), (x(4) , 0)},

{(x(2) , 0), (x(3) , 0), (x(4) , 0)}
1 0 0 1 {(x(1) , 1), (x(2) , 0), (x(4) , 1)}, {(x(2) , 0), (x(3) , 0), (x(4) , 1)}
1 0 1 0 {(x(1) , 1), (x(2) , 0), (x(3) , 1)}, {(x(2) , 0), (x(3) , 1), (x(4) , 0)}
1 0 1 1 {(x(2) , 0), (x(3) , 1), (x(4) , 1)}
1 1 0 1 {(x(1) , 1), (x(2) , 1), (x(3) , 0)}, {(x(1) , 1), (x(2) , 1), (x(4) , 1)}, {(x(1) , 1), (x(3) , 0), (x(4) , 1)},

{(x(2) , 1), (x(3) , 0), (x(4) , 1)}
1 1 1 0 {(x(1) , 1), (x(2) , 1), (x(3) , 1)}, {(x(1) , 1), (x(2) , 1), (x(4) , 0)}, {(x(1) , 1), (x(3) , 1), (x(4) , 0)},

{(x(2) , 1), (x(3) , 1), (x(4) , 0)}
1 1 1 1 {(x(1) , 1), (x(3) , 1), (x(4) , 1)}, {(x(2) , 1), (x(3) , 1), (x(4) , 1)}

Remark 3.2: Consider formula (4). If we know arbitrary three of the four values pij, plk, pik, plj, then the value
of the unknown probability can be obtained. However, according to Table 3, we must abide by the follow-
ing rules: if we want to reconstruct (0, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1) we must
know {((i, j), 0), ((l, k), 0)}, {((i, j), 0), ((l, j), 1)}, {((i, j), 0), ((i, k), 1)}, {((l, k), 0), ((l, j), 1)}, {((l, k), 0), ((i, k), 1)},
{((i, k), 1, ((l, j), 1)}, respectively. Similarly, if we want to reconstruct concepts (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 1, 1),
(1, 0, 1, 1), we need to know the specified three points {((i, j), 0), ((l, k), 0), ((l, j), 1)}, {((i, j), 0), ((l, k), 0), ((i, k), 1)},
{((i, j), 0), ((i, k), 1), ((l, j), 1)}, {((l, k), 0), ((i, k), 1), ((l, j), 1)}, respectively. The remaining four concepts in C3 need
not be specific 0−1 values.

Next we will show that when X1 ∈ [2] and X2 takes any finite number of values, each concept in the induced
class can be compressed to a labelled set of size VC dimension.

Lemma 3.2: For G1 in Figure 1, let X1 ∈ [2], X2 ∈ [k2], k2 ∈ N and k2 ≥ 2, let C4 denote the class induced by this
discrete UGM, and then for each concept c ∈ C4, there exists a compression set of size k2 + 1 which can reconstruct c
exactly.

Proof: For k2 = 2, we have C4 = C1, and then the lemma holds. For k2 > 2, C4 has 2k2 domain points, denoted as
(0, 0), (1, 0), . . . , (1, k2 − 1). The quadratic binomials associated with this UGM are as follows:

p0i · p1j − p0j · p1i, (5)

where i ∈ [k2 − 1], i < j ∈ [k2]. We know that VCdim(C4) = k2 + 1 (Li & Yang, 2018). ∀ c ∈ C4, there are four
cases to discuss.

Case (1): {c|{(0,m), (1,m)} : m ∈ [k2]} = (1, 1).
Note that c|{(0, i), (1, j), (0, j), (1, i)} = (1, 1, 1, 1), so by Remark 3.2, we must retain ((0, j), 1) and ((1, i), 1) to

reconstruct ‘1111’. Therefore, for anymwe first retain ((0,m), 1) and ((1,m), 1). Then for any n ∈ [k2]\m, if n<m
retain ((1, n), 1); if n>m retain ((0, n), 1). Then we can get the compression set of size k2 + 1.

Case (2): {c|{(0,m), (1,m)} : m ∈ [k2]} = {(1, 1), (0, 0)}. There are two subcases as follows.
Case (2a): c|{(0,m), (1,m)} = (0, 0) and c|{(0, n), (1, n)} = (1, 1) for each n<m. We can first retain

((0,m), 0) and ((1,m), 0). Then according to reconstruction rules, for n<m we retain ((1, n), 1). For n>m, if
c|{(0, n), (1, n)} = (1, 1) then retain ((0, n), 1); if c|{(0, n), (1, n)} = (0, 0) then retain ((1, n), 0).

Case (2b): c|{(0,m), (1,m)} = (1, 1) and c|{(0, n), (1, n)} = (0, 0) for each n<m. We can first retain ((0,m), 1),
((1,m), 1) and ((0, n), 0) for n<m. For n>m, if c|{(0, n), (1, n)} = (1, 1) then retain ((0, n), 1); if c|{(0, n), (1, n)} =
(0, 0) then retain ((1, n), 0).

Case (3): ∀ m ∈ [k2], c|{(0,m), (1,m)} ∈ {(1, 1), (0, 0), (0, 1)}, and there exists at least one m ∈ [k2] such that
c|{(0,m), (1,m)} = (0, 1).

Let k = min{m; c|{(0,m), (1,m)} = (0, 1)}. We first retain ((0, k), 0) and ((1, k), 1). Then by the rule shown in
Table 3, for any n< k if c|{(0, n), (1, n)} = (0, 0), we retain ((0, n), 0) or ((1, n), 0); if c|{(0, n), (1, n)} = (1, 1), we
retain ((0, n), 1) or ((1, n), 1). For any n> k if c|{(0, n), (1, n)} = (0, 0), we retain ((1, n), 0); if c|{(0, n), (1, n)} =
(0, 1), retain ((0, n), 0) or ((1, n), 1); if c|{(0, n), (1, n)} = (1, 1), retain ((0, n), 1). This means that k2 + 1 points are
reserved.
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Case (4): ∀ m ∈ [k2], c|{(0,m), (1,m)} ∈ {(1, 1), (0, 0), (1, 0)}, and there exists at least one m ∈ [k2] such that
c|{(0,m), (1,m)} = (1, 0).

Let l = max{m; c|{(0,m), (1,m)} = (1, 0)}. First, we retain ((0, l), 1) and ((1, l), 0). Then using similar techniques
as in Case (3), it follows that for any n< l if c|{(0, n), (1, n)} = (0, 0), we retain ((0, n), 0); if c|{(0, n), (1, n)} = (1, 1),
we retain ((1, n), 1); if c|{(0, n), (1, n)} = (1, 0), we retain ((0, n), 1) or ((1, n), 0). For any n> l if c|{(0, n), (1, n)} =
(0, 0), we retain ((0, n), 0) or ((1, n), 0); if c|{(0, n), (1, n)} = (1, 1), we retain ((0, n), 1) or ((1, n), 1).

In summary, we can get a compression set A of size k2 + 1 for any concept c. Clearly, the compression process
ensures that we can reconstruct c|(dom(c)\A) correctly only by points in the compression set A. �

In fact, in the proof of Lemma 3.2, Case (3) contains the following four subcases: {c|{(0,m), (1,m)} : m ∈ [k2]} =
{(0, 1)}, {(0, 1), (0, 0)}, {(0, 1), (1, 1)}, {(1, 1), (0, 0), (0, 1)}. Case (4) also has four subcases: {c|{(0,m), (1,m)} : m ∈
[k2]} = {(1, 0)}, {(1, 0), (0, 0)}, {(1, 0), (1, 1)}, {(1, 1), (0, 0), (1, 0)}.

On a high level, our goal is to construct a sample compression scheme for C4 which compresses any sample s of
C4 to a subsample of size at most k2 + 1, and then this subsample can be used to reconstruct a concept consistent
with s. Next we will give an algorithm which generates such a compression scheme. The input is a labelled sample
s of C4. The output is a subsample s′ of size at most k2 + 1 that represents some hypothesis consistent with s.

The Algorithm for Constructing a Labelled Compression Scheme.

• The compression algorithm: The input is a finite sample s of C4. Let A1,A2, . . . , An denote all domain sets
corresponding to quadratic binomials that 2k2 domain points need to satisfy, n = (k2

2
)
and further let A =

{At : |s|At| = 4, t = 1, . . . , n}. If A = ∅, then s′ = s. Otherwise, let A′ = ⋃
At where At ∈ A. Then compress

s|A′ by the way used in the proof of Lemma 3.2 and denote the compression set for s|A′ by s′′, and then
s′ = s′′

⋃
(s|dom(s)\A′).

• The reconstruction algorithm: The input is a subsample s′ of size at most k2 + 1, and reconstruction function is
asked to predict the labels of elements in dom(C4)\dom(s′). For any element x ∈ dom(C4)\dom(s′), if there is
a quadratic binomial that contains x and the other three points are in the subsample s′, then predict the label of
x by the scheme in Table 3. Let the set of such x be B, and then for elements in dom(C4)\(dom(s′)⋃B), assign
any set of possible 0−1 values associated binomial (5) as their labels.

The following theorem (3.3) shows that the algorithm produces a correct compression set of size at most k2 + 1.

Theorem 3.3: Let s be a sample labelled consistently with some concept of C4, 1 ≤ |s| = m ≤ 2k2. Then the algorithm
produces a compression set of size at most k2 + 1 and the reconstructed hypothesis is consistent with the original
sample s.

Proof: We first show that the size of the compression set s′ is at most k2 + 1. If A = ∅, there is at most one pair
of points (x0i, y0i), (x1i, y1i) in the sample s, where y0i, y1i ∈ {0, 1}. Therefore, |s′| = |s| ≤ 2 + (k2 − 1) = k2 + 1. If
A �= ∅, there exist at least two pairs of points (x0i, y0i), (x1i, y1i) and (x0j, y0j), (x1j, y1j) in sample s where i �= j. Let
the set of these points be D, |D| = 2n, where 2 ≤ n ≤ k2. By Lemma 3.2, we can compress the labelled set D to s′′
of size n + 1. Then |s′| = |s′′| + |s − D| = n + 1 + m − 2n ≤ k2 + 1.

From the algorithm and Lemma 3.2, it follows immediately that reconstructed hypothesis is consistent with s on
dom(s)\dom(s′), and consequently, the sample set s. This ends the proof. �

Example 3.4: Consider the graph G1. If X1 ∈ [2], X2 ∈ [3], let C5 denote the concept class induced by this discrete
UGM, and then dom(C5) = {(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}. The associated quadratic binomials are:

(1) p00 · p11 − p01 · p10; (2) p00 · p12 − p02 · p10; (3) p01 · p12 − p02 · p11.
It is easy to know the VC dimension of C5 is 4 (Li & Yang, 2018). Consider the sample s = {((0, 0), 1),

((1, 0), 1), ((0, 1), 1), ((1, 1), 1), ((0, 2), 0), ((1, 2), 1)} which is a concept in C5 (e.g. let P = (0.12, 0.28, 0.12, 0.28,
0.06, 0.14), Q = (0.09, 0.01, 0.09, 0.01, 0.72, 0.08), s = sign(log(P(x)/Q(x))), x ∈ dom(C5)). Using the proposed
algorithm, we can compress s to {((0, 0), 1), ((0, 1), 1), ((0, 2), 0), ((1, 2), 1)}. The reconstruction function predicts
the label ‘1’ for (1, 0), ‘1’ for (1, 1) by binomials (2) and (3), respectively. That is, the reconstructed hypothesis we
obtain is exactly s.

If s = {((0, 0), 1), ((0, 1), 1), ((1, 1), 1), ((1, 2), 1)}, by the proposed algorithm, s itself is the labelled sample com-
pression set. Then (1, 0) and (0, 2) are both labelled by ‘0’. This concept does not belong to C5, which means that
the labelled compression scheme we presented is improper.

Naturally, we can extend Lemma 3.2 to a family of concept classes whose corresponding graph has three vertices
and two edges.
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Figure 5. A UG of three vertices with two edges.

Theorem 3.5: For the graph shown in Figure 5, let X1 ∈ [2], Xi ∈ [ki], where ki ∈ N, ki ≥ 2, i = 2, 3. Let C6 denote
the class induced by this UGM. Then there exists a labelled compression scheme of size k2(k3 + 1) for C6.

Proof: There are 2 · k2 · k3 domain points in C6, and VCdim(C6) = k2(k3 + 1) (Li & Yang, 2018). For the UG in
Figure 5, X1X3|X2, and one can use the sample compression scheme of C4 to construct scheme for C6.

For any sample set s, we can divide it into k2 parts according to the value ofX2, denoted by s1, s2, . . . , sk2 . Note that
for the elements in each part si, X2 takes the same value (i − 1) ∈ [k2]. Let the compression sets of s1, s2, . . . , sk2 be
s′1, s

′
2, . . . , s

′
k2 , respectively, where |s′n| ≤ k3 + 1, n = 1, 2, . . . , k2. Then the compression set of s is

⋃
s′n and |⋃ s′n| ≤

k2(k3 + 1). This ends the proof of Theorem 3.5. �

Immediately, we have the following result.

Corollary 3.6: For anyUGMwhose underlying graph has two cliques K1 = {X1,X2, . . . ,Xn1}, K2 = {X2,X3, . . . ,Xn}
with X1 ∈ [2], then there is a labelled sample compression scheme of size VC dimension of the corresponding induced
concept class.

Proof: Note that we number the vertex that only in K1 first, then vertices in K1 ∩ K2, and K2\K1 finally. Suppose
Xi ∈ [ki], where ki ∈ N, ki ≥ 2, i = 2, . . . , n.

If n1 = 1 (K1 ∩ K2 = ∅), the two cliques can be viewed as two isolated vertices taking 2 and
∏n

i=2 ki values
respectively, and this case reduces to the case of Lemma 3.2. If n1 ≥ 2 (K1 ∩ K2 = {X2, . . . ,Xn1}), this UG can be
viewed as the UG in Figure 5 taking 2,

∏n1
i=2 ki and

∏n
i=n1+1 ki values respectively, and this case reduces to the

setting of Theorem 3.5. The conclusion is confirmed. �

4. Conclusion and discussion

UGMs have become one of the popular models used for classification in statistical learning. In this paper, we
focus on the question whether there exists a sample compression scheme of size VC dimension for the concept
class induced by a discrete UGM. We show that for three types of discrete UGMs the answers are positive. The
construction of these labelled compression schemes utilizes algebraic characterization of discrete UGMs.

A natural question is whether there are unlabelled sample compression schemes of size VC dimension for
these three types of induced concept classes. For a general discrete UGM whether there exists a labelled sample
compression scheme of size equal to VC dimension of the induced concept class remains open.
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