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ABSTRACT
In randomized clinical trials with right-censored time-to-event outcomes, the popular log-rank
test without adjusting for baseline covariates is asymptotically valid for treatment effect under
simple randomization of treatments but is too conservative under covariate-adaptive random-
ization. The stratified log-rank test, which adjusts baseline covariates in the test procedure by
stratification, is asymptotically valid regardless of what treatment randomization is applied. In
the literature, however, under simple randomization there is no affirmative conclusion about
whether the stratified log-rank test is asymptotically more powerful than the unstratified log-
rank test. In this article we show when the stratified and unstratified log-rank tests aim for the
same null hypothesis and that, under simple randomization, the stratified log-rank test is asymp-
totically more powerful than the unstratified log-rank test in the region of alternative hypothesis
that is specified by a Cox proportional hazards model. We also provide some discussion about
why we do not have an affirmative conclusion in general.
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1. Introduction

The log-rank test (Mantel, 1966) and stratified log-rank test (Peto et al., 1976) are the two longstanding and most
popular nonparametric tests for treatment effect in randomized clinical trials with two treatment arms and right-
censored time-to-event outcomes. What motivates the stratified version of log-rank test is that baseline prognostic
factors (covariates), measured prior to treatment assignments and thus not affected by treatments, are adjusted
through stratification for efficiency gain.

Adjusting baseline covariates has been widely advocated to improve efficiency for tests and other analyzes, in the
following two aspects. (i) In the design stage, covariate-adaptive randomization can be used to enforce the balance
of treatment assignments across baseline prognostic factors, which results in more efficient tests (EMA, 2015).
More details about covariate-adaptive randomization are given in Section 2. (ii) In the analysis stage, ‘incorporating
prognostic baseline factors in the primary statistical analysis of clinical trial data can result in a more efficient use
of data to demonstrate and quantify the effects of treatment’ (FDA, 2021), ‘under approximately the same minimal
statistical assumptions that would be needed for unadjusted’ (EMA, 2015; FDA, 2021; ICH E9, 1998).

If the log-rank test is considered as ‘unadjusted test’, then the stratified log-rank test qualifies as an adjusted
test under the same minimal assumption because it is still a nonparametric test without using any model. Tests
using the Cox proportional hazards model as a working model are also qualified (DiRienzo & Lagakos, 2002; Kong
& Slud, 1997; Lin & Wei, 1989), but the resulting tests can be less efficient than the unadjusted log-rank test when
the working model is wrong (Kong & Slud, 1997). In this paper we focus on the stratified and unstratified log-rank
tests.

Although stratified log-rank test uses information from baseline prognostic factors and thus is expected to be
more efficient, an affirmative conclusion about whether it is asymptotically more efficient than the unstratified log-
rank test is not available, under simple randomization in which patients are assigned to treatments completely at
random.Another issue is that the stratified log-rank actually tests a null hypothesis stronger than that of the log-rank
test and, hence, a prerequisite in their comparison is to investigate when the two null hypotheses are the same.

The purpose of this paper is to establish some affirmative conclusions about the stratified and unstratified log-
rank tests, in terms of null hypothesis, asymptotic validity of tests and Pitman’s asymptotic relative efficiency. The
research is important as these two longstanding tests are used a lot in applications without a guidance on which one
should be used.
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Section 2 describes data, design, and log-rank test statistics. Section 3 introduces hypotheses, assumptions and
the concept of validity for log-rank tests. Some theoretical results for stratified and unstratified log-rank tests are
given in Section 4, where we show that, under simple randomization, the stratified log-rank test is asymptoti-
cally more powerful in the region of alternative hypothesis that is specified by a Cox proportional hazards model.
Section 5 contains conclusions and Appendix provides technical proofs.

2. Data, design and test statistics

For a patient from the population under investigation, let Tj and Cj be the potential life time and right-censoring
time, respectively, under treatment j = 0 or 1, andW be the vector of all baseline covariates and other time-varying
covariates, observed or unobserved. Suppose that a random sample of n patients is obtained from the population
with independent (Ti0,Ci0,Ti1,Ci1,Wi), i = 1, . . . , n, identically distributed as (T0,C0,T1,C1,W). For each patient,
only one of the two treatments is assigned and received.

Let Ii be a binary treatment indicator for patient i and 0 < π < 1 be the pre-specified treatment assignment
proportion for treatment 1. Consider the design, i.e. the generation of Ii’s for n sequentially arrived patients. Sim-
ple randomization assigns patients to treatments completely at random with P(Ii = 1) = π for all i, which may
yield treatment proportions that substantially deviate from the target π across levels of some baseline prognostic
factors. Because of this, covariate-adaptive randomization using Z, a sub-vector of W containing observed base-
line prognostic factors with finitely many joint levels, is widely applied. When patient i with baseline Zi = z is
arrived, a treatment is assigned using a mechanism dependent on all previously assigned treatments for patients
with Zi = z. For example, the most popular covariate-adaptive randomization scheme, the stratified permuted
block design (Zelen, 1974), randomly assigns sequentially arrived patients with Zi = z in blocks of size B, each
having Bπ patients in treatment 1, where B is appropriately chosen so that Bπ is an integer and the last block
is allowed to be incomplete. Another popular covariate-adaptive randomization is Pocock-Simon’s minimiza-
tion (Pocock & Simon, 1975; Taves, 1974). Other schemes can be found in two reviews, Schulz and Grimes (2002)
and Shao (2021). To see how popular covariate-adaptive randomization is, it was used in more than 500 clinical
trials between 1989 and 2008 (Taves, 2010) and 237 trials among nearly 300 trials published in two years, 2009
and 2014 (Ciolino et al., 2019). All commonly used covariate-adaptive randomization schemes satisfy the following
mild condition (Antognini & Zagoraiou, 2015).

(D1) Given {Z1, . . . ,Zn}, {I1, . . . , In} and {T11,C11,T10,C10,W1, . . . ,Tn1,Cn1,Tn0,Cn0,Wn} are conditionally
independent;E(Ii | Z1, . . . ,Zn) = π for all i; and for every level z ofZ,nz1/nz → π in probability asn → ∞,
where nz is the number of patients with Zi = z and nz1 is the number of patients with Zi = z and Ii = 1.

Most commonly used covariate-adaptive randomization schemes except Pocock-Simon’s minimization also
satisfy the next condition.

(D2) Conditional on Z1, . . . ,Zn, the vector whose zth component is
√
n(nz1/n − π) with z ranging over all levels

ofZ converges in distribution toN(0,�), where� is the diagonalmatrixwhose zth diagonal entry is ν/P(Z =
z) and ν ≤ π(1 − π) is a known constant depending on the randomization scheme.

Although simple randomization is not counted as covariate-adaptive randomization, it satisfies (D1) and (D2)
with ν = π(1 − π).

After Ii is assigned, the observed outcome from patient i is min(Ti,Ci) with Ti = IiTi1 + (1 − Ii)Ti0 and Ci =
IiCi1 + (1 − Ii)Ci0, together with an indicator of Ti ≤ Ci.

The log-rank test statistic is

�L = √
n ÛL/ σ̂L,

ÛL = 1
n

n∑
i=1

∫ τ

0

{
Ii − Y1(t)

Y(t)

}
dNi(t),

σ̂ 2
L = 1

n

n∑
i=1

∫ τ

0

Y1(t)Y0(t)
Y(t)2

dNi(t), (1)

where Y(t) = ∑n
i=1 Yi(t)/n, Yi(t) = IiYi1(t) + (1 − Ii)Yi0(t), Yij(t) = the indicator of the event min(Tij,Cij) ≥ t,

Y1(t) = ∑n
i=1 IiYi(t)/n, Y0(t) = ∑n

i=1(1 − Ii)Yi(t)/n, Ni(t) = IiNi1(t) + (1 − Ii)Ni0(t), Nij(t) is the indicator of
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the event Tij ≤ min(t,Cij), and the upper limit τ in the integral is a point satisfying P(min(Tij,Cij) ≥ τ) > 0 for
j = 0, 1.

The stratified log-rank test statistic is a weighted average of the stratum-specific log-rank test statistics with strata
constructed using Z,

�SL = √
n ÛSL/ σ̂SL,

ÛSL = 1
n

∑
z

∑
i:Zi=z

∫ τ

0

{
Ii − Yz1(t)

Yz(t)

}
dNi(t),

σ̂ 2
SL = 1

n

∑
z

∑
i:Zi=z

∫ τ

0

Yz1(t)Yz0(t)
Yz(t)2

dNi(t), (2)

where Yz1(t) = ∑
i:Zi=z IiYi(t)/n, Yz0(t) = ∑

i:Zi=z(1 − Ii)Yi(t)/n, and Yz(t) = Yz1(t) + Yz0(t).
It is clear that in terms of test statistics, the stratified �SL in (2) utilizes Z values whereas the unstratified �L

in (1) is unadjusted. Under covariate-adaptive randomization, �L is not completely unadjusted since it uses Z-
information through assignments Ii’s, although it does not adjust for covariate-adaptive randomization in a correct
way. On the other hand, the stratified �SL uses Z-information in both design and analysis stages.

We consider stratification with all levels of Z. In applications, it is allowed to use more covariates to form strata.
The conclusions in what follows remain the same. However, it is not a good idea to use fewer levels of Z for
stratification, because it may result in a test that is not asymptotically valid.

3. Null hypothesis, assumption and validity

Throughout,α ∈ (0, 1)denotes a given significance level and zα/2 is the (1 − α/2)th quantile of the standard normal
distribution. When |�L| > zα/2, the log-rank test rejects the following null hypothesis H0 of no treatment effect,

H0 : λ1(t) = λ0(t) for all t, (3)

where λj(t) is the unconditional hazard function of Tj, j = 0, 1. H0 in (3) is a commonly adopted null hypothesis
of no treatment effect unconditional on covariates.

The log-rank test is nonparametric. Its validity requires non-informative censoring (DiRienzo & Lagakos, 2002;
Kong & Slud, 1997), i.e.,

(C) Cj is independent of Tj given j.
Under simple randomization, it is well-known (Kalbfleisch & Prentice, 2011) that the log-rank test is asymptot-

ically valid in the sense that

lim
n→∞ P

(|�L| > zα/2
) ≤ α (4)

with equality holding for at least one population P under H0.
Unlike simple randomization, covariate-adaptive randomization generates a dependent sequence of treatment

assignments, whichmay render conventionalmethods developed under simple randomization, such as the log-rank
test, not valid under covariate-adaptive randomization (EMA, 2015; FDA, 2021). It is shown in Ye and Shao (2020)
that, under covariate-adaptive randomization with ν in (D2) strictly smaller than π(1 − π), the log-rank test is
asymptotically conservative in the sense that,

lim
n→∞ P

(|�L| > zα/2
) ≤ α0 < α (5)

for all P under H0.
The stratified log-rank �SL in (2) actually tests the null hypothesis

H̃0 : λ1(t | z) = λ0(t | z) for all t and z, (6)

where λj(t | z) is the hazard function of Tj conditional on Z = z, j = 0, 1. Note that H̃0 in (6) holds if and only if
the hazard functions are the same in every stratum z and, thus, is stronger than H0 in (3).

The validity of stratified log-rank test requires the following assumption on censoring:
(CZ) Cj is independent of Tj given j and Z.
Conditions (C) and (CZ) are not comparable, although both are implied by that Cj is independent of (Tj,Z)

given j, a reasonable condition for non-informative censoring.
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Under simple randomization and covariate-adaptive randomization satisfying (D1) in Section 2, (4) holds with
�L replaced by�SL andH0 replaced by H̃0 (Ye & Shao, 2020), provided that all levels of Z are used in stratification.

Since H̃0 is stronger than H0, the stratified and unstratified log-rank tests are not comparable. Thus, a prereq-
uisite for the comparison of efficiency of two log-rank tests is H̃0 = H0. Is there a scenario under which H̃0 = H0?
Consider the following transformation model assumption.

(TR) There is an increasing function h such that h(P(T0 ≥ t | V)) = θ + h(P(T1 ≥ t | V)) for all (t,V) and a
constant θ , where V is a vector of covariates, Z ⊂ V ⊂ W, and both h and θ can be unknown.

Assumption (TR) is discussed in Cheng et al. (1995), which includes many commonly used semiparametric
models as special cases, for example, the Cox proportional hazards model (see formula (7) in Section 4). It is a mild
assumption since h is unknown and we only need to know it exists.

The proof of following result is in the Appendix.

Theorem 3.1: Under (TR), H̃0 in (6) is the same as H0 in (3).

4. Comparison of two log-rank tests

When H̃0 = H0, is the stratified log-rank test�SLmore efficient than the unstratified log-rank test�L under simple
randomization when both tests are asymptotic valid? Intuitively this sounds correct since �L does not adjust for
covariates.

Unfortunately, there is no result on this in the literature. In this section we try to fill this gap to some extent
and explain why the two log-rank tests are not comparable in terms of efficiency. This is important because both
stratified and unstratified log-rank tests are used a lot in applications.

To this goal, we first state the following asymptotic result (whose proof is given in Appendix) for the asymptotic
distributions of stratified and unstratified log-rank tests under local alternatives. Define

Oij =
∫ τ

0
{1 − μ(t)}j{μ(t)}1−j{dNij(t) − Yij(t)p(t) dt}, j = 0, 1,

Ozij =
∫ τ

0
{1 − μz(t)}j{μz(t)}1−j{dNij(t) − Yij(t)pz(t) dt}, j = 0, 1,

where μ(t) = E(Ii | Yi(t) = 1), μz(t) = E(Ii | Yi(t) = 1,Zi = z), p(t) dt = E{dNi(t)}/E{Yi(t)}, and pz(t) dt =
E{dNi(t) | Zi = z}/E{Yi(t) | Zi = z}. Also, we use Oj to denote Oij for any i and Ozj to denote Ozij for any
i and z. Note that, under the null hypothesis H0, E(Oj) = 0 for j = 0, 1, and under the null hypothesis H̃0,
E(Ozj | Z = z) = 0 for all z and j = 0, 1.

Theorem 4.1: (a) Assume (CZ) and (D1). Under the local alternative hypothesis that E(Ozj | Z = z) = czjn−1/2

with czj’s not depending on n and that λ1(t | z)/λ0(t | z) is bounded and → 1 for every t and z, �SL
d−→

N(δSL/σSL, 1), where d−→ denotes convergence in distribution as n → ∞, δSL = ∑
z P(Z = z){πcz1 − (1 −

π)cz0}, σ 2
SL = ∑

z P(Z = z){πvarH̃0(Oz1 | Z = z) + (1 − π)varH̃0(Oz0 | Z = z)}, and varH̃0 denotes vari-
ance under H̃0.

(b) Assume (C), (D1), and (D2). Under the local alternative hypothesis that E(Ozi) = cjn−1/2 with cj’s not depend-

ing on n and that λ1(t)/λ0(t) is bounded and → 1 for every t, �L
d−→ N(δ3L/σL, σ 2

L(ν)/σ 2
L), where δL =

πc1 − (1 − π)c0, σ 2
L = πvarH0(O1) + (1 − π)varH0(O0), σ 2

L(ν) = σ 2
L − {π(1 − π) − ν}varH0{EH0(O1|Z) +

EH0(O0|Z)} for ν given in (D2), and EH0 and varH0 denote expectation and variance under H0, respectively.

Because the local alternative hypotheses specified in (a) and (b) of Theorem 4.1 do not follow any model, δ2SL
and δ2L can be arbitrarily very different and, thus, �SL and �L may be not comparable in terms of asymptotic
efficiency. In other words, the space of alternative hypothesis is too large to compare efficiency of �SL and �L, as
there is nomodel at all. A semiparametric model on alternative hypothesis narrowing down the space of alternative
hypothesis may result in affirmative results of comparing efficiency. We derive a result under the Cox proportional
hazards model to highlight this.
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Figure 1. Power curves based on n = 500 and 2000 simulations.

Suppose that the true hazard follows a Cox proportional hazards model,

λj(t | V) = λ(t) exp(θ j + η�V), j = 0, 1, (7)

whereZ ⊂ V ⊂ W,λj(t | V) is the hazard conditional on covariateV, θ is an unknownparameter, η is an unknown
parameter vector, and λ(t) is an unspecified function. Undermodel (7), (TR) holds with h(s) = − log(− log(s)) and
H̃0 = H0 : θ = 0.

Corollary 4.1: Assume that model (7) holds, Cj is independent of (Tj,Z) given j, and P(C1 ≥ t | V) = P(C0 ≥
t | V) for all t. Then, under simple randomization, the stratified log-rank test �SL is always more efficient than the
unstratified log-rank test �L in terms of Pitman’s asymptotic relative efficiency.

The proof is given in the Appendix. A key to the proof is that the local alternative hypotheses in (a) and (b) of
Theorem 4.1 can be unified into θ = c/

√
n with the help of model (7).

As both log-rank tests are nonparametric and do not needmodel (7), what does Corollary 4.1 tell us? It says that,
under simple randomization, the stratified log-rank test�SL is more efficient in the region of alternative hypothesis
specified bymodel (7), althoughwe cannot claim that�SL ismore efficient in the entire alternative hypothesis space.

We now turn to covariate-adaptive randomization, under which the unstratified log-rank test�L is not valid but
conservative, as we discussed in Section 3. On the other hand, by Theorem 4.1(a), the stratified log-rank test�SL is
valid for testing H̃0 regardless of which covariate-adaptive randomization is applied. Therefore, stratified log-rank
test is a clear winner when covariate-adaptive randomization is applied.

Another way to adjust for covariates used in randomization is the modified (unstratified) log-rank test �RL =
σ̂L�L/σ̂L(ν) proposed by Ye and Shao (2020), where σ̂L(ν) is a consistent estimator of σL(ν) (see §3.2 of Ye
and Shao 2020).�RL removes the conservativeness of�L and is valid for testingH0 in (3) under covariate-adaptive
randomization.
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Even if model (7) holds, �SL and �RL are not comparable in terms of asymptotic efficiency. We provide two
simulation examples here to demonstrate that �SL is more efficient in one scenario but less efficient in another
scenario, compared with �RL. The simulation setting is model (7) with λ(t) = 12−1 log 2 for all t and η�V =
−1.5Z1 + 0.5Z2

2, where Z1 is binary with P(Z1 = 1) = 0.5, Z2 ∼ N(0, 1), and Z1 and Z2 are independent. Z1 and
discretized Z2 with 4 equal probability categories are used for stratified permuted block randomization with block
size 4. In scenario 1, censoring is independent of treatment and (Z1,Z2) and distributed as uniform on (10,40). In
scenario 2, censoring is independent of treatment and Z2, but conditioned on Z1, and censoring is distributed as 10
+ the exponential distribution with mean 2Z1. The power curves over θ with α = 0.05 and n = 500 based on 2000
simulations are given in Figure 1. Note that �SL is more powerful than �RL under scenario 1 but less powerful
under scenario 2. Both �SL and �RL are more powerful than the conservative �L in any case.

The reasonwhy the stratified�SL and themodified unstratified�RL are not comparable in asymptotic efficiency
is that the two tests adopt different approaches in utilizing baseline covariates: the former adjusts baseline covariates
by stratification, whereas the latter utilizes baseline covariates bymodifying the unstratified�L whose performance
is affected by covariate-adaptive randomization.

5. Conclusion and discussion

(1) Under some semiparametric models for survival time such as the transformation model (TR) described in
Section 3, the null hypotheses of stratified and unstratified log-rank tests are the same.

(2) Under simple randomization of treatment assignments, the stratified log-rank test is asymptotically more effi-
cient than the unstratified log-rank test in terms of Pitman’s relative efficiency in the region of alternative
hypothesis specified by the Cox proportional hazards model given by (7). It is of interest to derive more affir-
mative results using assumptions/models other than the Cox model to narrow down the space of alternative
hypothesis.

(3) Under covariate-adaptive randomization of treatment assignments, the unstratified log-rank test is not asymp-
totically valid but conservative, whereas the stratified log-rank test is asymptotically valid as long as the
covariates used in randomization are all included in stratification. Thus, the stratified log-rank test is a clear
winner. A modified unstratified log-rank test removes conservativeness and is valid, but its relative efficiency
compared with the stratified log-rank test has no definite conclusion, because the two tests apply different
approaches in utilizing covariates.

(4) Because the region specified by the Cox model is quite large and the stratified log-rank test is a clear winner
under covariate-adaptive randomization, we recommend the stratified log-rank test over the unstratified log-
rank test.
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Appendix

Proof of Theorem 3.1

It is clear that H̃0 in (6) impliesH0 in (3). Thus, it suffices to show that, under (TR), λ1(t) = λ0(t) for all t implies λ1(t | Z) =
λ0(t | Z) for all (t,Z). Define Sj(t | V) = P(Tj ≥ t | V) and Sj(t) = P(Tj ≥ t). If λ1(t) = λ0(t) for all t, then S0(t) = S1(t)
for all t. Condition (TR) implies that

S0(t | V) = h−1(θ + h(S1(t | V))) for all (t,V).

Then

S1(t) = S0(t) = E {S0(t | V)} = E
{
h−1(θ + h(S1(t | V)))

}
for all t,

i.e.,

E
{
h−1(θ + h(S1(t | V))) − S1(t | V)

} = 0 for all t.

Since h−1(θ + h(S1(t | V))) ≥ S1(t | V) or ≤ S1(t | V) depending on whether θ ≥ 0 or ≤ 0,

h−1(θ + h(S1(t | V))) = S1(t | V) for all (t,V).

This implies that θ = 0 and, thus, S0(t | V) = S1(t | V) for all (t,V), which together with Z ⊂ V imply that S0(t | Z) =
S1(t | Z) and hence λ0(t | Z) = λ1(t | Z) for all (t,Z).

Proof of Theorem 4.1

We prove (a) only, since the proof of (b) is similar. We first show that, under the null hypothesis H̃0 or alternative hypothesis,

√
n

(
ÛSL −

∑
z

nz1θz1 − nz0θz0
n

)
d−→ N

(
0, σ̃ 2

SL

)
, (A1)

where nzj = the number of patients with treatment j in stratum z, θzj = E(Ozj | Z = z), j = 0, 1, and

σ̃ 2
SL =

∑
z

P(Z = z) {πvar(Oz1 | Z = z) + (1 − π)var(Oz0 | Z = z)} .

Following the argument in the Appendix of Lin andWei (1989), we obtain that, under either the null or alternative hypothesis,
the left hand side of (A1) is equal to

1√
n

∑
z

∑
i:Zi=z

{Ii(Ozi1 − θz1) − (1 − Ii)(Ozi0 − θz0)} + op(1), (A2)

where op(1) denotes a quantity converging to 0 in probability as n → ∞. Define I = {I1, . . . , In} andZ = {Z1, . . . ,Zn}. Similar
to the proof of Theorem 2 in Ye et al. (2022), the Lindeberg’s Central Limit Theorem justifies that, conditioned on I andZ , the
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random vector ⎛⎝ 1√
n

∑
z

∑
i:Zi=z

Ii(Ozi1 − θz1),
1√
n

∑
z

∑
i:Zi=z

(1 − Ii)(Ozi0 − θz0)

⎞⎠�

converges in distribution to a 2-dimensional normal distribution with mean 0, conditional on I and Z . LetM be the quantity
in (A2) excluding op(1), which is the sum of two components of the previous random vector. Consequently,

{var(M | I ,Z)}−1/2M | I ,Z d−→ N(0, 1).

Under (D1),

var(M | I ,Z) = 1
n

∑
z

⎧⎨⎩ ∑
i:Zi=z,Ii=1

var(Oiz1 | Z) +
∑

i:Zi=z,Ii=0

var(Oiz0 | Z)

⎫⎬⎭
= 1

n

∑
z

⎧⎨⎩ ∑
i:Zi=z,Ii=1

var(Oiz1 | Zi = z) +
∑

i:Zi=z,Ii=0

var(Oiz0 | Zi = z)

⎫⎬⎭
= 1

n

∑
z

{nz1var(Oz1 | Z = z) + nz0var(Oz0 | Z = z)}

=
∑
z

nz
n

{
nz1
nz

var(Oz1 | Z = z) + nz0
nz

var(Oz0 | Z = z)
}

=
∑
z

P(Z = z) {πvar(Oz1 | Z = z) + (1 − π)var(Oz0 | Z = z)} + op(1)

= σ̃ 2
SL + op(1).

Then {var(M | I ,Z)}−1/2M d−→ N(0, 1) unconditionally. Thus, by Slutsky’s theorem, (A1) holds.
Next, under the local alternative specified in part (a), σ̃ 2

SL → σ 2
SL and

√
n

(∑
z

nz1θz1 − nz0θz0
n

)
=
∑
z

P(Z = z){πcz1 − (1 − π)cz0} + op(1)

= δSL + op(1).

Hence, by (A1) and Slutsky’s theorem,

√
nÛSL

d−→ N
(
δSL, σ 2

SL

)
.

It remains to show that σ̂ 2
SL − σ 2

SL = op(1), under the specified local alternative. By Lemma 3 of Ye and Shao (2020), within
any stratum z, Yz1(t)Yz0(t)/Yz(t)2 = μz(t){1 − μz(t)} + op(1). By the identity

E{dNi(t)} = πE{Yi1(t)λ1(t)} dt + (1 − π)E{Yi0(t)λ0(t)} dt
from Kalbfleisch and Prentice (2011) and the form of σ̂ 2

SL, we obtain that, under the specified local alternative,

σ̂ 2
SL =

∑
z

nz
n

∫ τ

0
μz(t){1 − μz(t)}E{dNi(t)} + op(1)

=
∑
z

nz
n

∫ τ

0
μz(t){1 − μz(t)}[πE{Yi1(t)λ1(t)} + (1 − π)E{Yi0(t)λ0(t)}] dt + op(1)

=
∑
z

P(Z = z){πvarH̃0(Oz1 | Z = z) + (1 − π)varH̃0(Oz0 | Z = z)} + op(1)

= σ 2
SL + op(1).

Proof of Corollary 4.1

A direct calculation shows that

σ 2
L = σ 2

SL =
∫ τ

0
EH0{Yi(t) exp(η�Vi)}v(t) d�(t),

where σ 2
L and σ 2

SL are given in Theorem 4.1, �(t) = ∫ t
0 λ(s) ds, v(t) = var(Ii | Yi(t) = 1), and EH0 denotes expectation under

H0 : θ = 0.
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Under the local alternative hypothesis θ = c/
√
n with a fixed constant c �= 0, by Theorem 4.1, �L

d−→ N(c θL/σL, 1), where

θL = σ 2
L −

∫ τ

0

(
EH0

{
Yi(t) exp(2η�Vi)

}
−
[
EH0{Yi(t) exp(η�Vi)}

]2
EH0 {Yi(t)}

)
v(t)�(t) d�(t),

and �SL
d−→ N(c θSL/σL, 1), where

θSL = σ 2
L −

∫ τ

0

(
EH0

{
Yi(t) exp(2η�Vi)

}
− EH0

[
E{Yi(t) exp(η�Vi) | Zi}

]2
EH0 {Yi(t) | Zi}

)
v(t)�(t) d�(t).

Pitman’s asymptotic relative efficiency of �SL with respect to �L is θ2SL/θ
2
L.

Applying Jensen’s inequalityϕ{E(M)} ≤ E{ϕ(M)}with convex functionϕ(t1, t2) = t21/t2 andM = (EH0{Yi(t) exp(η�Vi)} |
Zi}, EH0{Yi(t) | Zi})�, we obtain that θL ≤ θSL. To reach the conclusion θ2SL/θ

2
L ≥ 1, it remains to show that θL ≥ 0.

The condition P(C1 ≥ t | V) = P(C0 ≥ t | V) for all t implies that v(t) = π(1 − π) and, hence,

θL = π(1 − π)

∫ τ

0
EH0

{
Yi(t) exp(η�Vi)

}
d�(t)

− π(1 − π)

∫ τ

0
EH0

{
Yi(t) exp(2η�Vi)

}
�(t) d�(t)

+ π(1 − π)

∫ τ

0

[
EH0{Yi(t) exp(η�Vi)}

]2
EH0 {Yi(t)} �(t) d�(t).

Thus, it suffices to show ∫ τ

0

[
EH0

{
Yi(t) exp(η�Vi)

}
− EH0

{
Yi(t) exp(2η�Vi)

}
�(t)

]
d�(t) ≥ 0. (A3)

Note that

E{Ni1(τ )} =
∫ τ

0
E{dNi1(t)}

=
∫ τ

0
E
{
Yi1(t) exp(θ + η�Vi)

}
d�(t)

=
∫ τ

0
EV
[
exp{−�(t) exp(θ + η�Vi)}P(C1 ≥ t | Vi) exp(θ + η�Vi)

]
dt,

where EV is the expectation with respect to covariate Vi and is not depending on θ . Taking the derivative with respect to θ , we
obtain that

∂E{Ni1(τ )}
∂θ

=
∫ τ

0
EV
[
exp{−�(t) exp(θ + η�Vi)}P(C1 ≥ t | Vi) exp(θ + η�Vi)

− exp{−�(t) exp(θ + η�Vi)}P(C1 ≥ t | Vi) exp(2θ + 2η�Vi)�(t)
]
d�(t).

Then,
∂E{Ni1(τ )}

∂θ
|θ=0 =

∫ τ

0
EV
[
exp{−�(t) exp(η�Vi)}P(C1 ≥ t | Vi) exp(η�Vi)

− exp{−�(t) exp(η�Vi)}P(C1 ≥ t | Vi) exp(2η�Vi)�(t)
]
d�(t)

=
∫ τ

0

[
EH0

{
Yi1(t) exp(η�Vi)

}
− EH0

{
Yi1(t) exp(2η�Vi)�(t)

}]
d�(t),

which is the same as the left-hand side of (A3). As E{Ni1(τ )} is the probability of having an observed failure before time τ , it is
a non-decreasing function of θ . This implies that (A3) holds.
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