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ABSTRACT
Phase II clinical trials are commonly conducted as pilot studies to evaluate the efficacy and safety
of the investigational drug in the targeted patient populationwith the disease or condition to be
treated or prevented.When designing such a trial considering efficacy conclusions, people natu-
rally think as follows: if efficacy evidence is very strong, a go decision should be made; if efficacy
evidence is veryweak, a no-go decision should bemade; if the efficacy evidence is neither strong
norweak, nodecision canbemade (inconclusive). Thedesigns presented in this papermatch this
natural thinking process with go/no-go/inconclusive outcomes. Both two-/three-stage designs
are developed with three outcomes. Additionally, a general approach based on conditional
error function is implemented such that new decision boundaries can be calculated to handle
mid-course sample size change which results in either ‘over-running’ or ‘under-running’ and
ensure the control of overall type I error. A free open-source R package tsdf that calculates
the proposed two-/three-stage designs is available on CRAN.
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1. Introduction

Phase II clinical trials are commonly conducted as pilot studies to evaluate the efficacy and safety of the investi-
gational drug in the targeted patient population of the disease or condition to be treated or prevented. The initial
assessment of efficacy plays an important role in determining if a compound should be further studied in the tar-
geted patient population. When designing such a trial considering efficacy conclusions, people naturally think as
follows: if efficacy evidence is very strong, a go decision should be made; if efficacy evidence is none or very weak, a
no-go decision should be made; if the efficacy evidence is neither very strong nor very weak, no clear decision can
be made (inconclusive). This decision process is essential in proof-of-concept (POC) studies and this is fundamen-
tally different from Phase III confirmatory studies. Note that this decision process is quite common in real-world
practice. For example, in one oncology study (the actual tumour type and compound are not revealed here since
the compound is still under development), the decision tree is as follows: if the response rate is above 50%, a phase
3 study will be launched with a single agent under study as the active treatment against an active control; if the
response rate is below 30%, no further studies will be conducted on the compound for the cancer under study;
if the response rate is between 30% and 50%, a study of the agent in combination with an existing treatment will
be conducted. The question is how to design a trial that matches this natural decision process and supports it
statistically.

The topic has been discussed in B. Zhong (2012) and W. Zhong and Zhong (2013) and they proposed a design
to accommodate such a natural and practical thinking process that can provide a more realistic basis for decision
making in Phase 2 trials comparing to the most commonly used Simon’s two-stage design. The design is outlined
as follows. First, the minimal effective response rate, pc, is selected. Then the hypotheses are set up as: H0 : p = pc,
vs. H1 : p �= pc, where if data supports hypothesis conclusion p < pc then a no-go decision should be made, and if
data supports hypothesis conclusion p > pc then a go decision should be made. If data supports neither hypothesis
conclusion p < pc nor hypothesis conclusion p > pc then neither a go nor a no-go decision can bemade, resulting in
an inconclusive outcome. Similar designswith three outcomes under different hypothesis settingswere developed to
overcome the issue that the union of null and alternative hypotheses can’t cover the whole parameter spaces (Hong
&Wang, 2007; Sargent et al., 2001). In practice, Zhong’s two-stage designs have some limitations, which motivated
this paper. The objective of our paper is to modify and extend Zhong’s two-stage designs to address the following.
(1) Allow early stopping for efficacy. If the intervention proves to be superior, the study can be stopped early to
maximize the number of patients who will benefit from the intervention, to save time and to reduce costs in drug
development. (2) Apply alpha spending method (Demets & Lan, 1994) on two-/three-stage designs so that type I
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error allocated at each stage will be controlled. (3) Extend the design where an interval (pl, pu) is utilized instead of
a single point pc to accommodate the uncertainty in specifying pc in practice. Specifically, if the true response rate
of the test treatment is p and if p < pl then the test treatment is clearly not effective (no-go) or if p > pu then the
test treatment is clearly effective (go). (4) Allow for mid-course sample size change. In classical group sequential
designs, the sample sizes for the interim and final analyses need to be pre-specified and followed strictly throughout
the trial to control the overall type I error rate. In practice, however, the actual sample sizes often deviate from
the planned ones, such as trials conducted in multi-centres. These situations are referred to ‘over-running’ and
‘under-running’ (Whitehead, 1992). To this end, we derive new decision boundaries based on the conditional error
function and ensure strictly control of the overall type I error rate under these ‘over-running’ or ‘under-running’
situations. Various procedures are proposed to deal with unplanned sample size at interim or final stage (Koyama
& Chen, 2008; Li et al., 2002; Shan & Chen, 2018). However, these existing methods either based on Simon’s two-
stage design, not providing flexible stopping rule for early stopping for efficacy, or don’t control type 1 error rate at
each stage.

The remainder of the paper is organized as follows. Section 2 is devoted to explain how to calculate two- and
three-stage designs. Section 3 explains the handling of ‘over-running’ and ‘under-running’ using conditional error
function. Section 4 introduces an R package tsdf that implements the proposed two-/three-stage designs. We
provide some examples in Section 5 to demonstrate our proposed designs and the pragmatic feature of handling
the ‘over-running’ and ‘under-running’. Discussions are given in Section 6.

2. Two- and three-stage designs

The key of Zhong’s two-stage design (B. Zhong, 2012) is to correctly specify the minimal effective response rate,
pc. Intuitively, any response rate below pc (the minimal effective response rate) is considered ineffective hence does
not warrant further development. In contrast, any response rate above pc is considered effective hence may warrant
further development. It can be seen that the selection of the minimal effective response rate (threshold) is critical.
General guidelines are given below on how to select the threshold in single-arm trials. There are three scenarios in
practice. 1. When a standard of care for the disease and population under investigation is available, a reliable point
estimate of the response rate of the standard care is commonly available. In this scenario, if the test treatment can be
developed as ‘similar’ to the standard of care, then one of the choices is to select the point estimate of the standard of
care as theminimal effective response rate. This is based on the fact that the standard of care is an effective therapy. If
the test treatment is intended to be developed as a treatment superior over the standard treatment, then a rate equal
to or higher than the point estimate of the standard care can be chosen according to clinical and statistical judgment.
For oncology studies where the objective response rate is the endpoint, the minimal effective response rate may be
chosen as 5% to 10% above the point estimate. 2. When a standard of care is not available but several treatments are
available, then the selection of theminimal response rate depends on the choice of the control of future randomized
registration studies. If one of the available treatments will be the active control, then that treatment can serve as the
‘standard of care’ for the purpose of determining of the minimal effective response rate. The patient population
should mimic the population of the control as well. If the objective is to beat all of them, then a possible choice is to
use the highest point estimate of the response rates among all available treatments. 3. When there is no treatment
available, the minimal effective response rate can be set based on clinical and statistical judgment. Historical data
under best supportive care is commonly used to support such a choice.

Once the minimal effective response rate pc is chosen, the hypotheses are set as

H0 : p = pc vs. H1 : p �= pc. (1)

Note that the alternative can be decomposed as two parts:

H−
1 : p < pc and H+

1 : p > pc.

There are three possible conclusions for the above hypothesis test: do not reject null hypothesis, reject null and
conclude H+

1 , and reject null and conclude H−
1 . It means we may conclude that the response rate is equal, higher

or lower than the minimal effective response rate. This hypothesis test also can be generalized to the case that the
minimal effective response rate is not a single value but a pre-specified interval. The hypothesis becomes

H0 : p ∈ [pl, pu] vs. H1 : p /∈ [pl, pu], (2)

where pu > pl. Similarly, we decompose the alternative as

H−
1 : p < pl and H+

1 : p > pu.
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The interval setup is motivated by situations where a single point cannot be confidently and accurately determined.
For example, when a standard of care exists but there is more than one reliable and large trial that yields different
estimates of the response of the standard of care. Another example is when there is no available treatment and clin-
ical judgment is expressed in an interval, the response rate below 15% is clearly not of interest and the response rate
above 25% is clearly of interest for further development. In these situations, the threshold can be set as an interval
[pl, pu]. That is, any response rate below pl is considered ineffective hence does not warrant further development;
any response rate above pu is considered effective hence may warrant further development. The hypothesis test
in (2) is equivalent to test in (1) when pl = pu = pc, so we proceed with (2) hereafter.

Denote xi as the cumulative number of responders among n1 + n2 + · · · + ni at stage i. The corresponding left-
side critical values are ri’s and right-side critical values are si’s. At each stage, one of the following decisions will be
made.

• If xi ≤ ri, conclude H−
1 and stop the trial for inefficacy.

• If xi > si, conclude H+
1 and stop the trial for efficacy.

• If ri < xi ≤ si, proceed to next stage and treat an additional ni+1 subject.

ri and si are determined by significance levels, i.e., left-side and right-side type I errors. Denote the overall left-
side type I error as α1, right-side type I error as α2, and the type II error as β . We use the α-spending function to
distribute the overall type I error over two/three stages, which prevents the case that most α are spent in the early
stages. We denote the cumulative left-side type I errors at stage i as α1i’s (α11 ≤ α12) and the cumulative right-side
type I errors as α2i’s (α21 ≤ α22). We have the following constraints:

• if p = pl, the probability of concluding H−
1 should not exceed α1i (left-side type I error) ;

• if p = pu, the probability of concluding H+
1 should not exceed α2i (right-side type I error);

• if the expected response rate is pe (> pu), then the probability of not concluding H+
1 should not exceed β .

Before we provide details of two-stage designs and three-stage designs in the following sections, how error con-
straints affect the trial designwill be discussed. The type I error is the probability of rejecting the true null hypothesis.
For left-side, high type I error means that it’s more likely to conclude H−

1 , i.e., it’s easier to terminate the trial for
inefficacy. Thus high left-side type I error designs lead to a higher chance of terminating the trial for inefficacy.
Right side is the opposite: low right-side type I error is more conservative as it is harder to reject the null hypothe-
sis, which leads to declaring efficacy outcome. Investigators can choose a suitable design by giving specific left-side,
right-side type I errors and type II error, respectively.

We describe two-stage designs in Section 2.1 and three-stage designs in Section 2.2.

2.1. Two-stage designs

The two-stage design setup is: n1 patients are treated in the first stage. If the trial continues to the second stage,
additional n2 patients are treated. Recall that xi is the total cumulative number of responders until stage i. The
procedure is as follows (ri ≤ si, r1 ≤ r2, s1 ≤ s2, ri ≤ ∑i

k=1 nk, si ≤ ∑i
k=1 nk).

(1) Stage 1: treat n1 patients
• If x1 ≤ r1, terminate the trial and conclude H−

1 .
• If x1 > s1, terminate the trial and conclude H+

1 .
• If r1 < x1 ≤ s1, continue the trial and go to stage 2.

(2) Stage 2: treat additional n2 patients
• If x2 ≤ r2, terminate the trial and conclude H−

1 .
• If x2 > s2, terminate the trial and conclude H+

1 .
• If r2 < x2 ≤ s2, terminate the trial and conclude ‘data does not contradict to null hypothesis’.

Denote the binomial cumulative density function as B(·; n, p) and probability function as b(·, n, p), where n is
the number of Bernoulli trials and p is the probability of success. Let’s calculate the conditional probabilities. If the
true response rate is p and given r1, n1, then the probability of concluding H−

1 at the first stage is

L1(p) = B(r1, n1, p) (3)
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and at the second stage, given r2, n2, is

L2(p) =
s1∑

t1=r1+1
b(t1, n1, p)B(r2 − t1, n2, p). (4)

Similarly, the probabilities of concluding H+
1 at stage 1 and 2 are

R1(p) = 1 − B(s1, n1, p) and R2(p) =
s1∑

t1=r1+1
b(t1, n1, p)[1 − B(s2 − t1, n2, p)].

Lower and upper type I errors α1,α2 are spent following an error spending method. For any chosen error spending
function, error rate αi1 ≤ αi2 = αi allowed at each stage can be calculated. Therefore, ri, si satisfy the following type
I error constraints:

L1(pl) ≤ α11, L1(pl) + L2(pl) ≤ α12 = α1 (5)

and

R1(pu) ≤ α21, R1(pu) + R2(pu) ≤ α22 = α2. (6)

The type II error constraint is
2∑

i=1
Ri(pe) ≥ 1 − β . (7)

We search all combinations of (ri, si, ni) satisfying the type I error and type II error constraints. The focus is to
pursue designs that have the closest errors to the desired left-side and right-side type I errors under the condition
that≤ αi1 at stage 1 and≤ αi2 = αi, i = 1, 2 at stage 2 from a chosen α-spending function and the minimal sample
size n with many choices of n1 under the expected response rate. In addition, it is also desirable to maximize the
power for a given n.With the conditions (5), (6), and (7) outlined, there are usuallymany designs with combinations
of (ri, si, ni) that satisfy type I and II error constraints. Therefore, additional selection criteria are needed to choose
designs that satisfy practical considerations. Given n1, n2, all possible combinations of (ri, si, i ≤ 2) satisfying the
constraints are outputted into a matrix in R. The designs are then sorted in descending order by left-side, right-
side type I errors and power. The first design is then chosen. For given n1, n2, this chosen design has the closest
type I errors to α11, α21, α12, and α22 and the maximum of power. We increment the total sample n from 2 until
predetermined distinct choices of n1 are found. Denote the smallest possible n1 as n1s and the largest as n1l. Then all
integers between n1s and n1l can be used as the first stage sample size. In practice, this means once the total sample
is fixed, the stage 1 sample size can vary within a range instead being fixed, which makes trial conduct easier to
manage.

With so many choices of stage 1 sample size as described above, a natural question is where we should set our
target stage 1 sample size. One possible choice is to set the target sample size at which the expected sample size
is minimized under null hypothesis. That is, we should target to have the design that minimizes n1 + n2 × (1 −
B(r1, n1, pl)) (without early stopping for efficacy) or n1 + n2 × (B(s1, n1, pu) − B(r1, n1, pl)) (with early stopping
for efficacy). The chosen design is called optimal design.

2.2. Three-stage designs

Three-stage design is the extension of two-stage design where we treat additional n3 patients if the decision is to
continue to the next stage at the end of stage 2. Thus the sample size is at most n1 + n2 + n3 = n. The complete
three-stage design is as follows.

(1) Stage 1: treat n1 patients
• If x1 ≤ r1, terminate the trial and conclude H−

1 .
• If x1 > s1, terminate the trial and conclude H+

1 .
• If r1 < x1 ≤ s1, go to stage 2.

(2) Stage 2: treat additional n2 patients
• If x2 ≤ r2, terminate the trial and conclude H−

1 .
• If x2 > s2, terminate the trial and conclude H+

1 .
• If r2 < x2 ≤ s2, go to Stage 3.
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(3) Stage 3: treat additional n3 patients
• If x3 ≤ r3, terminate the trial and conclude H−

1 .
• If x3 > s3, terminate the trial and conclude H+

1 .
• If r3 < x3 ≤ s3, terminate the trial and conclude ‘data does not contradict to null hypothesis ’.

Then we only need to calculate the conditional probabilities at the third stage in addition to the first two stages
that have been calculated in previous subsection. Given n1, n2, r1, r2, r3, s1, s2, the probability of concluding H−

1 at
the third stage is

L3(p) =
s1∑

t1=r1+1

s2−t1∑
t2=r2−t1+1

b(t1, n1, p)b(t2, n2, p)B(r3 − t1 − t2, n3, p), (8)

and concluding H+
1 at the third stage is

R3(p) =
s1∑

t1=r1+1

s2−t1∑
t2=r2−t1+1

b(t1, n1, p)b(t2, n2, p)[1 − B(s3 − t1 − t2, n3, p)].

Combining (8) with the constrains on the first two stages (3), (4), ri, ni satisfy the following constraints:

i∑
k=1

Lk(pl) ≤ α1i and
i∑

k=1

Rk(pu) ≤ α2i,

for i = 1, 2, 3 and
3∑

i=1
Ri(pe) ≥ 1 − β .

The optimal design is chosen as described in the end of Section 2.1.

3. Adjustment for over-running and under-running

To assure the control of type I error rate, the sample size at each stage need to be specified in the protocol and
adhered strictly during study conduct in sequential clinical trial. However, a considerably amount of uncertainty is
usually expected during the planning stage of a study and such strong restrictions of the sample sizes imposed by the
common two-/three-stage designs canmake study conduct very challenging. For example, stopping the recruitment
exactly after certain number of patients have been accrued can be difficult especially in a multi-centre trial. Patients
may have been screened and it is unethical to withhold treatment and exclude such patients from the study. As a
result, over-running may occur. Moreover, even if we have recruited the exact number of patients as pre-specified
in the protocol, it is possible that not all the patients are evaluable in regard to the primary endpoint, leading to a
situation we then refer as ‘under-running’ of the study. In all the aforementioned cases, there is a violation of the
predetermined sample sizes and the control of type I error is no longer guaranteed.

In general, there are three possible scenarios: (1) sample size is only modified at interim analysis; (2) sample size
is only modified at final analysis; (3) sample size is modified at both interim analysis and final analysis. For the first
scenario, recall that in our proposed two-/three-stage designs, a range of the designs satisfying the criterion are
generated. In other words, our proposed design allows change of the sample size n1 in the first stage for two-stage
design or (n1, n2) in the first two stages in the three-stage design as long as the new sample size n∗

1 or (n∗
1, n

∗
2) is

within the range and the total sample size remains the same as the initial design while controlling the type I error.
For the third scenario, it is easy to locate a design in our list of proposed designs to match the modified sample
size at interim. With that being said, the third scenario can be reduced to the second scenario. Therefore, we only
need to consider the cases where the sample size at the final analysis is modified and discuss possible remedies for
mid-course modifications of sample size while strictly controlling the overall type I error rate.

We apply the conditional error function approach in Englert and Kieser (2012, 2015) that allows for arbitrary
modifications of sample size based on the results of the interim analysis or external information while controlling
for overall type I error. The concept of conditional error function (Proschan & Hunsberger, 1995) was introduced
as a method to test the null hypothesis within a two-stage design and allow for data dependent modifications of the
sample sizes after the first stage. The conditional significance level of the second stage depends on the outcome of
the first stage. Simultaneously, conditioning on the results from interim analysis, the rejection region of the final
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decision is invariant to the mid-course modifications such that the unconditional overall Type I error is controlled.
The flexibility nature of such designs is referred as ‘conditional invariance principle’ (Brannath et al., 2007).

For single-arm oncology trials with the binary endpoint, the conditional error function is the type I error rate
used at the final stage given the number of responses observed in the previous stages. We first apply the conditional
error function approach to the proposed two-stage design. Assume the sample size modification happens at the
second stage. After completion of the first stage, the trial proceeds to the second stage and the second stage sample
size may be changed from n2 to n∗

2 so that we need to find new boundaries r∗2 and s∗2 to assure that overall type I
error is controlled. Recall that our hypothesis is H0 : p ∈ [pl, pu] vs. H1 : p /∈ [pl, pu] and the null hypothesis can
be written as H−

1 : p < pl and H+
1 : p > pu. We allocate different type I error α1 and α2 on left side and right side,

respectively. Denote the number of responses at the first stage as t1. Then the conditional function for left side test
H−
1 is

fl(t1) =

⎧⎪⎨
⎪⎩

0, if t1 ≤ r1,
B(r∗2 − t1, n∗

2, pl), if r1 < t1 ≤ s1
1, if t1 > s1,

,

and, for right side H+
1 ,

fr(t1) =

⎧⎪⎨
⎪⎩

0, if t1 ≤ r1,
1 − B(s∗2 − t1, n∗

2, pu), if r1 < t1 ≤ s1,
1, if t1 > s1.

The conditional error functions can be considered as the conditional significance level that can be used at final
analysis. The trial is terminated early for efficacy or inefficacy when the conditional function is equal to 0 and 1,
respectively. We then have the left-side type I error

α∗
1 =

n1∑
t1=0

fl(t1, pl) · b(t1, n1, pl),

and the right-side type I error

α∗
2 =

n1∑
t1=0

fr(t1, pu) · b(t1, n1, pu).

The boundaries r∗2 and s∗2 are selected such that the actual type I error α∗
i is at most αi, i = 1, 2 under the null

hypothesis. In all possible combinations of r∗2 and s
∗
2, the one has the closest type I errors to the desired significance

level and the smallest type II error is selected.
For three-stage designs, the third stage sample size may be changed from n3 to n∗

3 after completion of stage 1
and stage 2. We need to obtain new boundaries s∗3 and r∗3 to control overall type I error. Similarly, we obtain the
right-side type I error α∗∗

2

α∗∗
2 =

n1∑
t1=0

n2∑
t2=0

fr(t1, t2) · b(t1, n1, pu) · b(t2, n2, pu),

where

fr(t1, t2) =

⎧⎪⎨
⎪⎩

0, if t1 + t2 ≤ r2 or t1 ≤ r1,
1, if t1 + t2 > s2 or t1 > s1,
1 − B(s∗3 − t1 − t2, n∗

3, pu), otherwise,

and the left-side type I error α∗∗
1

α∗∗
1 =

n1∑
t1=0

n2∑
t2=0

fl(t1, t2) · b(t1, n1, pu) · b(t2, n2, pu),

where

fl(t1, t2) =

⎧⎪⎨
⎪⎩

0, if t1 + t2 ≤ r2 or t1 ≤ r1,
1, if t1 + t2 > s2 or t1 > s1,
B(r∗3 − t1 − t2, n∗

3, pl), otherwise.

We solve for r∗3 and s∗3 with the same approach as the two-stage cases.
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By applying the conditional error function technique, we re-calculate new decision boundaries at final stage for
two-stage designs and three-stage designs when the sample size is only changed at the final analysis. As a result, our
proposed design allows for a completely free sample size modification at every stage while controlling the overall
type I error rate. The examples are given in Section 5.

4. Software

We provide an R package that calculates the proposed two-/three-stage designs. This section gives a general sense
of this package and introduces some basic usage. The complete document is in CRAN R documentation (Guo
et al., 2019). To install tsdf, run the following command in R console:

> install.packages("tsdf")

Themain function performing Phase II designs isopt.design. We will briefly go over this function, see some
basic operations and have a look at the outputs. opt.design requires at least five inputs: alpha1 as the left-side
type I error, alpha2 as the right-side type I error, beta as the type II error, pc as the minimal effective rate used
in null hypothesis which can be a single value or an interval, and pe as the expected response rate. So a simple
example would be

> opt.design(alpha1 = 0.15, alpha2 = 0.10, beta = 0.15, pc = 0.25,
pe = 0.45)

The above code returns an object that contains all feasible designs and prints out the optimal one as below.

Minimal response rate: 0.25
Postulate response rate: 0.45
Left-side type 1 error: 0.15
Right-side type 1 error: 0.1
Type 2 error: 0.15
Notation:
Left-side rejection region at stage i is response <= ri
Right-side rejection region at stage i is response > si
Sample size used at stage i is ni
Optimal design :
r1 r2 s1 s2 n1 n2
0 3 7 11 7 26
True errors :

alpha11 alpha12 alpha21 alpha22 beta
0.13348389 0.14332822 0.00000000 0.09665671 0.12794521

By default, this function calculates two-stage designs that do not include early stop for superiority and do not
apply alpha-spending method. Other key options include

• stage: A single value indicates whether two or three stage designs should be returned.
• stop.eff: A logical flag indicates if this trial can allow early stopping for efficacy.
• sf.param: A single real value specifying the gamma parameter for which Hwang-Shih-DeCani spending is to

be computed.

tsdf supports Hwang-Shih-DeCani (Hwang et al., 1990) α−spending function, which takes the form:

f (t,α, γ ) = α(1 − exp(−tγ ))/(1 − exp(−γ )),

where α is the overall type I error, t is the values of the proportion of sample size/information for which the spend-
ing function will be computed, and γ is a parameter that controls how the α is distributed at each stage. In function
dec.table, sf.param specifies the choice of γ . Increasing γ implies that more error is spent at early stage
and less is available in late stage. For example, a value of γ = −4 is used to approximate an O’Brien–Fleming
design (O’Brien & Fleming, 1979), while a value of γ = 1 approximates a Pocock design (Jennison & Turn-
bull, 2000). We set the maximum sample size to be 100 by default as it may take more time to compute when n
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Table 1. Differences between Simon’s two-stage design and the new design.

Simon’s design New design

Setup of threshold Some uninteresting level, p0. Some interesting level, p1 The minimal effective response rate pc or an interval [pl , pu]
Hypothesis setup H0 : p ≤ p0 vs. H1 : p ≥ p1 H0 : p = pc vs. H1 : p �= pc or H0 : p ∈ [pl , pu] vs. H1 : p /∈ [pl , pu]
Sample size at interim Fixed or limited Flexible
Trial conclusions Inefficacy (no-go, p < p1) Inefficacy (no-go, p < pc or p < pl ) Efficacy (go, p > pc or p > pu )

is large. It can be specified by the user based on their design settings and computing power. More details of this
package can be found in the R documentation (Guo et al., 2019).

5. Evaluation

Simon’s two-stage design (Simon, 1989) is the most commonly used design for Phase II oncology trials and any
new method used in a trial may be asked by the question from investigators and IRBs (institutional review boards)
to explain why the new design is needed and the difference between them.We summarize the differences in Table 1.
In this section, we implement the proposed two-/three-stage designs and illustrate the procedure involved.

We look at two case studies, one with minimal response rate as single point and one as an interval.

Case 1: The minimal effective response rate is 0.40. The postulate response rate is at least 0.55. The type I error
to conclude the compound is ineffective (conclude p<0.4) when p = 0.4 and effective (conclude p>0.4) when
p = 0.4 are 0.3, 0.1, respectively. The power to conclude the compound is effective (conclude p>0.4)when p = 0.55
is at least 0.80.

We used Pocock spending function and calculated designs with and without early stopping for efficacy.We increase
the total sample size n by 1 from 2 and stop until we find there are at least five choices of n1 in the range of 30–60%
of the total.

Table 2(a) summarizes two-stage designs without early stopping for efficacy. The study will enroll a total of 50
response-evaluable subjects, with stage 1 sample size between 15 and 30. The response-evaluable subjects will con-
sist of all subjects who receive at least 1 dose of study drug and have at least one post-treatment disease assessment.
At the end of the second stage, efficacy is declared when there are more than 24 responders from 50 response-
evaluable subjects while inefficacy is declared when there are less than or equal to 17 responders. In this example,
the boundaries at the second stage are not impacted by the stage 1 sample size. In fact, r2, s2 usually do not change
much as the total sample size remains the same when the stage 1 sample size varies. The optimal design is when
the stage 1 sample size is 22, with the expected sample size of 45.564. Table 3 provides designs when sample size at
stage 2 may be changed from n2 = 26 to n∗

2 = 25 ∼ 31 while the stage 1 sample size remains the same. As can be
observed, the new boundaries r∗2 and s

∗
2 are adjusted along with the new sample size n∗

2. Namely, efficacy and ineffi-
cacy are claimed with smaller number of responders in the under-running cases while larger number of responders
are needed to reach conclusion in the over-running cases. Table 2(b) presents two-stage designs with early stopping
for efficacy. The total sample size is also 50. The stage 1 sample size has a range of 15–30. The optimal design is the
same except adding efficacy boundary at stage 1. For example, when stage 1 sample size n1 = 15, efficacy is declared
when there aremore than 11 responders. The inefficacy boundaries are similar to the designs without early stopping
for efficacy in Table 2.

Case 2: The minimal effective response rate is between 0.40 and 0.45. The expected response rate is at least 0.60.
The type I errors to conclude the compound is ineffective (conclude p<0.4) when p = 0.4 and effective (con-
clude p>0.45) when p = 0.45 are 0.3, 0.1, respectively. The power to conclude the compound is effective(conclude
p>0.4) when p = 0.60 is at least 0.80.

Using the assumptions in Case 2, the study will need 53 response-evaluable subjects, with stage 1 sample size
between 15 and 32. The inefficacy boundary for stage 1 varies from 3 to 10. At the end of the second stage, efficacy
is declared when there are more than 28 responders from 53 response-evaluable subjects and inefficacy is declared
when there are less than or equal to 18 responders. The optimal design is when the stage 1 sample size is 22 with an
expected sample size of 48.088. The maximum expected sample size is 50.633 when stage 1 sample size is 19. The
improvement in the expected sample size is very small while there is a big difference in stage 1 sample size. This
indicates it is not necessary to seek the optimal design.
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Table 2. Two-stagedesigns forCase1: theminimal effective response rate is 0.40. Thepostulate response rate is at least 0.55. The type
I errors to conclude the compound are ineffective (conclude p< 0.4) when p = 0.4 and effective (conclude p> 0.4) when p = 0.4
are 0.3, 0.1, respectively. The power to conclude the compound is effective (conclude p> 0.4) when p = 0.55 is at least 0.80.

(a) No early stopping for efficacy.

α11 α12 α22 β r1 r2 s2 n1 n2 E(n)

0.090 0.272 0.097 0.198 3 17 24 15 35 46.832
0.065 0.259 0.098 0.197 3 17 24 16 34 47.785
0.126 0.286 0.097 0.198 4 17 24 17 33 45.842
0.094 0.269 0.098 0.197 4 17 24 18 32 46.987
0.070 0.257 0.098 0.197 4 17 24 19 31 47.842
0.126 0.281 0.098 0.197 5 17 24 20 30 46.232
0.096 0.266 0.098 0.197 5 17 24 21 29 47.224
0.158 0.294 0.098 0.197 6 17 24 22 28 45.564
0.124 0.275 0.098 0.197 6 17 24 23 27 46.653
0.096 0.262 0.098 0.197 6 17 24 24 26 47.505
0.154 0.285 0.098 0.197 7 17 24 25 25 46.161
0.122 0.269 0.098 0.197 7 17 24 26 24 47.083
0.184 0.297 0.098 0.197 8 17 24 27 23 45.769
0.148 0.278 0.098 0.197 8 17 24 28 22 46.733
0.119 0.263 0.098 0.197 8 17 24 29 21 47.507
0.176 0.287 0.098 0.197 9 17 24 30 20 46.474

(b) With early stopping for efficacy.

α11 α12 α21 α22 β r1 r2 s1 s2 n1 n2 E(n)

0.090 0.272 0.002 0.098 0.198 3 17 11 24 15 35 46.765
0.065 0.259 0.005 0.099 0.196 3 17 11 24 16 34 47.619
0.126 0.286 0.000 0.097 0.198 4 17 13 24 17 33 45.827
0.094 0.269 0.006 0.099 0.196 4 17 12 24 18 32 46.803
0.070 0.257 0.003 0.098 0.196 4 17 13 24 19 31 47.747
0.126 0.281 0.006 0.099 0.196 5 17 13 24 20 30 46.038
0.096 0.266 0.004 0.098 0.196 5 17 14 24 21 29 47.120
0.158 0.294 0.007 0.099 0.196 6 17 14 24 22 28 45.366
0.124 0.275 0.004 0.098 0.196 6 17 15 24 23 27 46.546
0.096 0.262 0.007 0.099 0.196 6 17 15 24 24 26 47.310
0.154 0.285 0.004 0.098 0.197 7 17 16 24 25 25 46.053
0.122 0.269 0.008 0.099 0.196 7 17 16 24 26 24 46.894
0.184 0.297 0.005 0.098 0.197 8 17 17 24 27 23 45.663
0.148 0.278 0.008 0.099 0.196 8 17 17 24 28 22 46.555
0.119 0.263 0.013 0.100 0.195 8 17 17 24 29 21 47.224
0.176 0.287 0.008 0.099 0.196 9 17 18 24 30 20 46.308

Table 3. Two-stage designs for Case 1 with over-running
and under-running at stage 2 (no stopping for efficacy). The
planned design has n1 = 22, n2 = 28. The sample size at
stage 2 is changed from 28 to 25–27 (under-running) and
29–31 (over-running).

α11 α12 α22 β r1 r∗2 s∗2 n1 n∗
2

Under-running at stage 2
0.158 0.238 0.082 0.245 6 15 23 22 25
0.158 0.275 0.060 0.290 6 16 24 22 26
0.158 0.254 0.077 0.241 6 16 24 22 27

Planned design
0.158 0.294 0.098 0.197 6 17 24 22 28

Over-running at stage 2
0.158 0.271 0.073 0.236 6 17 25 22 29
0.158 0.250 0.092 0.195 6 17 25 22 30
0.158 0.288 0.070 0.232 6 18 26 22 31

6. Summary and discussion

This paper presentedmodifications and extensions of the two-stage designs of B. Zhong (2012) to solve some practi-
cal issues when conducting single-arm Phase II oncology trials. We provide flexible two-/three-stage designs which
allows flexible interim sample size, early stopping rule for efficacy, hypothesized interval of response rate when a
single minimal response rate is not available, and handling of over-running and under-running while controlling
overall type I error. Moreover, we provide an open-source R package that integrates the aforementioned features.

In Zhong’s design, an inconclusive outcome is added as a natural outcome of the designs. The inconclusive
outcome corresponds to a trial where definitive go/no-go decisions cannot be made. This inconclusive result is an
unavoidable result due to the small sample size as well as the intrinsic nature of these uncontrolled clinical trials.
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Table 4. Two-stage designs for Case 2: the minimal effective response rate
is between 0.40 and 0.45. The expected response rate is at least 0.60. The
type I errors to conclude the compound is ineffective (conclude p< 0.4)
when p = 0.4 and effective (conclude p> 0.45) when p = 0.45 are 0.3, 0.1,
respectively. The power to conclude the compound is effective (conclude
p > 0.4) when p = 0.60 is at least 0.80.

α11 α12 α22 β r1 r2 s2 n1 n2 E(n)

0.090 0.263 0.100 0.177 3 18 28 15 38 49.561
0.065 0.250 0.100 0.177 3 18 28 16 37 50.590
0.126 0.279 0.100 0.177 4 18 28 17 36 48.464
0.094 0.261 0.100 0.177 4 18 28 18 35 49.704
0.070 0.248 0.100 0.177 4 18 28 19 34 50.633
0.126 0.274 0.100 0.177 5 18 28 20 33 48.855
0.096 0.258 0.100 0.177 5 18 28 21 32 49.936
0.158 0.288 0.100 0.177 6 18 28 22 31 48.088
0.124 0.268 0.100 0.177 6 18 28 23 30 49.281
0.096 0.254 0.100 0.177 6 18 28 24 29 50.217
0.154 0.280 0.100 0.177 7 18 28 25 28 48.701
0.122 0.263 0.100 0.177 7 18 28 26 27 49.718
0.184 0.292 0.100 0.177 8 18 28 27 26 48.217
0.148 0.272 0.100 0.177 8 18 28 28 25 49.288
0.143 0.264 0.100 0.177 9 18 28 31 22 49.846
0.205 0.293 0.100 0.177 10 18 28 32 21 48.704

Our design can be further extended by integrating an additional hypothesis testingwith the secondary endpoint and
dividing the ‘grey zone’ into a ‘sub-go zone’ and a ‘sub-no-go zone’. Moreover, the inefficacy/efficacy boundaries
are established with the new two-stage design. The concept of inefficacy is used instead of the commonly used term
‘futility’. The term ‘futility’ in clinical trials is used to refer to the inability of a clinical trial to achieve its objectives.
For example, a trial is designed with 65% response rate for the test treatment group and 50% response rate for the
control group (standard of care) and with the intention to establish the superiority. Therefore, the study objective
is to demonstrate that the test treatment is superior over the standard of care. In the middle of the study, an interim
analysis was performed and revealed 55% response rate for the new treatment group and 50% response rate for the
control group. Based on the results from the interim analysis, it is concluded that it is unlikely to reach statistical
significance at the end of the study. Therefore, the trial is terminated. Note that the test treatment is still better than
the standard of care by the interim observed response rates. If the sample size is large enough, statistical significance
may still be demonstrated. In other words, futility does not mean inefficaciousness. For this example, the observed
response rate at the interim analysis is 55% and this is higher than the 50% response rate of the standard of care.
The test treatment is still effective even if it has a 50% response rate. It is obvious that ineffectiveness cannot be
concluded from the interim data but futility conclusion can be made.

The designs presented in this paper can also be used for multi-arm trials with the intention to identify/rule
out ineffective doses/treatments where go/no-go decisions are based on the data from individual arms. Finally, the
framework of the paper is based on hypothesis testing.Other extensions such as using confidence intervals approach
or extending our framework to other type of endpoints and randomized trials will be investigated in the future.
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