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ABSTRACT ARTICLE HISTORY

In this paper, we propose bivariate iterated Farlie-Gumbel-Morgenstern (FGM) due to [Huang Received 31 October 2023
and Kotz (1984). Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions. ~ Revised 10 July 2024
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dependence stress—strength reliability function is derived with its important reliability charac- KEYWORDS

teristics. Estimates of dependence reliability parameters are obtained. We analyse the effects of Iterated FGM; Rayleigh
dependence parameters on the reliability function. We found that the upper bound of the pos- distribution; dependence
itive correlation coefficient is attaining to 0.41 under a single iteration with Rayleigh marginals. stress—strength; reliability;

A comprehensive comparison between classical FGM with iterated FGM copulas is graphically Monte-Carlo simulation
examined to assess the over or under estimation of reliability with respect to « and /. We pro-

pose a two-phase estimation procedure for estimating the reliability parameters. A Monte-Carlo

simulation study is conducted to assess the finite sample behaviour of the proposed reliability

estimators. Finally, the proposed estimators are examined and validated with real data sets.

1. Introduction

The stress—strength analysis is one of the well-accepted approach invented firstly to assess the physics of the failure
of a system due to various natural stresses (e.g., temperature, pressure, voltage, etc.) and subsequently, it has been
extensively utilized to evaluate the system reliability from last six decades (see, Birnbaum, 1956) in engineering
science. Stress-strength model is capable to elaborate the functional relationship between two or more random
variables and hence it has attracted to many other domain areas of research, including engineering, viz., medical,
economics, insurance, social and humanities sciences, etc., in the last two decades ago.

A numerous amount work on stress—strength reliability (SSR) model has been cited in the literature, and it has
also attracted in modelling with associated ideas, like accelerated life testing, simultaneous and multiple stresses
application, interference stress-strength, augmented strength, Fuzzy stress—strength, etc., for estimating the reli-
ability parameters of a system (single component or multi-component). The analysis of SSR models are mostly
based on various settings of independence (with identical/non-identical nature) assumptions of stress (Y ) and
strength (X) random variables, where X and Y are assumed to follow a suitable failure time distribution and hence
inferential problems are carried out using parametric (classical and Bayesian), nonparametric and semiparamet-
ric methods of estimation. Some recent key works in this direction are refer to Kotz and Pensky (2003), Chandra
and Rathaur (2017), Chandra and Rathaur (2020), Pak et al. (2022) and references therein.

However, in the present real-life scenarios of fastest growing productions of highly sophisticated and complex
advanced technology used in designing the products, where considering of independence assumptions of underly-
ing variables does not make sense. For instance, components within an electronic system (strength) may share the
same or different stresses. A healthy individual (strength) may subjected to various stresses like, diseases of blood
pressure and diabetic with (low or high) level of scale measure. In both examples, the stress and strength variables
are associated. Consequently, if the dependence between X and Y is not considered, reliability (or survival) may
be either over or under estimated, which may mislead the inferences on time to event analysis. Hence, it is vital to
consider and model the association between X and Y .

Besides, some works on SSR consider either stresses or strengths as dependent within themselves but indepen-
dent between each other. These are assumed to follow bivariate family of life distributions (viz., exponential, gamma,
lognormal, etc.) (Chandra & Pandey, 2012; Gupta & Gupta, 2012; Nadarajah, 2005) and references therein.
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In the aforesaid attempts, correlation between X and Y have not been considered, and their dependence effects
on system’s reliability were completely ignored. Hence, a copula-based approach is more appropriate in modelling
the association between two or more random variables to address these issues and construct a family of multi-
variate distribution function. A variety of copula families are available in the literature and each of them having
their own unique characteristics and constraints, even there is no hard and fast rule for choosing one, among
them, where FGM is one of the most widely used family due to its simplicity. Hence a suitable choice of copula
function is also as important for better inference purpose. Morgenstern (1956) proposed the copula function to
construct the structure of association between two random variables to measure the dependence relation between
them for Cauchy marginals. Gumbel (1960) adopted the same idea for exponential marginals and (Farlie, 1960)
independently studies the dependence structure between random variables and also proposed the generalization
of bivariate form suggested by Morgenstern. Later, their initiatives becomes more popularized in formulating the
dependence structure of multivariate case due to Johnson and Kotz (1975a, 1977) and it is termed as FGM copula
function.

In context of dependence SSR modelling, Domma and Giordano (2012) proposed dependence stress—strength
model for Dagum margins using Frank copula and gave a nice application for income-consumption data to mea-
sure of household financial fragility. Domma and Giordano (2013) attempted dependence SSR for different copula
functions, namely, FGM, Generalized FGM and Frank copula with Burr system of margins. Rubio and Steel (2013)
studied the posterior analysis of SSR for both independent and dependent assumptions of X and Y, where marginal
distributions of Xand Y belong to the class of distributions obtained by skewing scale mixtures of normal, linked
with Gaussian copula. Barbiero (2017) derived the dependence structure of SSR model for exponential margins
using the extended FGM and Ali-Mikhail-Haq copulas, it is graphically examined that the dependence parameter
is significantly affecting the reliability of a system. It is also interesting to note that lower and upper bounds for reli-
ability is studied when information about dependence parameter is unavailable. Patil and Naik-Nimbalkar (2017)
studies estimation of dependence SSR, where X and Y follow two- parameter Pareto distributions, based on
four different copula functions under Archimedean type (Ali-Mikhail-Haq, Gumbel’s bivariate exponential and
Gumbel-Hougaard copulas) as well as non-Archimedean type (FGM copula) for varying ranges of dependence
parameter. The effect of dependency on reliability and asymptotic properties of reliability estimators are also
reported.

Ahmed et al. (2020) obtained the inferences on Bayes and ML estimates of SSR, where stress and strength follow
General Exponential (GE) as well as General Inverse Exponential (GIE) as marginal distributions proposed by
Mokhlis et al. (2017), both are linked with FGM copula. Bai et al. (2021) drawn inferences on SSR of multi-state
system for both independent and dependent strengths using generalized survival signature tricks for exponential
marginal distributions, where Gumbel copula is proposed for dependence structure of strengths.

Recently, James and Chandra (2022) and James et al. (2022) considers the estimation of dependence SSR by
assuming that X follows Xgamma distribution and Y follows exponential distribution for farmer attempt as well as
both X and Y follow Lindley marginal distributions for later one, for non-identical cases of X and Y are linked with
FGM copula function.

However, it is noticed that majority of works cited above on dependence structure of SSR are mainly based on
FGM copula due its flexibility in compare to other existing copulas. The FGM copula is only admitted to model low
(weak) dependence between X and Y ( see, Ahmed et al., 2020, p. 142). Hence, it does not allow to model for higher
dependence ( see, Durante, 2006) due to limited range of values of correlation coefficients, namely, Spearman’s
p € [—0.33,0.33] and Kendall’s 7 € [—0.22, 0.22]. Therefore, a number of modifications and extensions of FGM
copula has been suggested by several authors in the literature as alternatives of weak dependence and also to improve
the correlation between the underlying variables. Johnson and Kotz (1975a) introduced iterative ideas for several
generalizations of FGM for multivariate structure of distributions.

Later, J. Huang and Kotz (1984) extended the iteration idea for bivariate FGM by adding one extra parameter
for single iteration and observed that maximum positive correlation attaining wider ranges from 0.414 (for normal
marginal) to 0.434 (for uniform marginal), even the covariance is increased nearly a 200% for Pareto marginals.

Subsequently, J. S. Huang and Kotz (1999) proposed two different extensions of polynomial type bivariate FGM
by adding one additional parameter and shown that some improvements in the positive correlation while lower
bounds of negative correlation remains unchanged, i.e. p € [—0.333, 0.375], for one form of extended FGM and p €
[0.333,0.391] for another extended form of FGM. Later, Bairamov and Kotz (2002) introduced another polynomial
type generalized FGM copula for more wider range of dependence parameter with p € [—0.48,0.502].

Some more interesting extensions are cited in the literature, particularly extensions based on a new class of
symmetric as well as asymmetric types of bivariate FGM copula with wider range of dependence parameters refer
to Bekrizadeh, Parham, and Zadkarmi (2012) and Bekrizadeh, Parham, and Jamshidi (2017) with p € [—0.50, 0.43]
and varieties of work based on FGM refer to this paper.
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In this paper, we consider the estimation of stress—strength reliability model for generalized FGM copula based
on J. Huang and Kotz (1984) with wider range of positive correlation coefficient p € [—0.33,0.434]. This iterated
FGM with its wider range of correlation motivates us to use it rather simple FGM copula to this attempt. In this
paper we assess the impact of additional parameter f and how affecting the reliability in the presence of baseline
dependence parameter (a).

The rest of the paper is organized as follow. We propose a new bivariate Iterated Farlie-Gumbel-Morgenstern
(IFGM) bivariate distribution with Rayleigh marginals in Section 2. In Section 3, the dependence measures of the
Iterated Farlie-Gumbel-Morgenstern Bivariate Rayleigh (IFGMBR) distribution are discussed. The expressions for
dependence stress—strength reliability and some reliability characteristics of reliability measures of the proposed
distribution are derived in Section 4. In Section 5, we propose a two-phase method including pseudo likelihood in
estimating the parameters of dependence stress—strength reliability model. A numerical comparisons of the reliabil-
ity estimates with respect to dependence parameter based on Monte-Carlo simulation and its findings are reported
in Section 6. Section 7, real data application is utilized to illustrate the proposed estimators.Finally, concluding
remarks are given in Section 8.

2. Iterated FGM type bivariate rayleigh distribution

In the original FGM, J. Huang and Kotz (1984) used successive iterations to capture a broad range of correlation
between random variables. In this study, we consider bivariate FGM with a single iteration, the joint cumulative
distribution function (c.d.f) is given as follows

Fixy) (%) = Fx(x)Gy (y) [1 + aFx (x)Gy () + BEx(x) Gy (») Fx(x) Gy (»)], (1)
and the corresponding joint probability density function (p.d.f)

foxr (6 y) =fx(®)gy (W) [1 + a(l — 2Fx(x))(1 — 2Gy(y)) + fEx(x)Gy (p)
X (2 = 3Fx(x))(2 — 3Gy(»))], )

where Fx and Gy are the cd.fs, f(x) and g(y) are the p.dfs and Fx(x) and Gy(y) denote the
survival functions of X and Y, respectively. The natural parameter space ® is convex, where ® =

. . . 3—a++/9—6a—30>2
{(a,ﬂ).—lsa <La+pf>-1p < =2t

In this paper, we proposed a new bivariate IFGM distribution by assuming that both random variables X and Y
follow non-identical two parameter Rayleigh distributions with respective c.d.f’s are given by

Fx(x A, 1) =1— ehl—u)’ s ui, A1 >0, (3)
Gy(y; A2, ) =1 — e 20—’ y> 2, A2 >0, (4)
and the corresponding and p.d.f’s are
fx(x A1, 1) = 241 (x — ,ul)e_h(x_”l)z, x>y, 41>0, (5)
9 _ 2
gy (s A2, o) = 242(y — u2)e Aly=p2)”) y> U2, A2>0, (6)

where 4; and u;;i=1, 2 are the scale and location parameters of marginal distributions. The main advantage of using
two parameter distribution over Rayleigh is that when the life time of the unit dose not begin from zero. Moreover,
it has an interesting property of unimodal and increasing hazard rate make it more appropriate for modelling the
life time distribution of the unit that rapidly age with time.

Then the joint c.d.f and joint p.d.f of IFGMBR distribution is given as follows

Fixy)(6,y) =(1 — e A=) (1 - e=h20-k2)) (1 + qe~G=n)? g=raly=p2)?
+p(1 — e_}"l(x_‘”)z)(l - e_iz(y_/“)z)e—/ll(x—/ll)ze—iz()’—ﬂz)z) ; )
and
foxr) (6y) =414 = ) (y = pa)e” PO 207 (14 e 0o )
X (2e"12(y‘/‘2)2 -1+ 0 - e—h(x—m)z)(l _ e—lz(y—,uz)z)

x (3eTHOmm)t _ p)(3emR0) 1)) (8)
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2.1. Conditional distribution

Let (X, Y) be a two-dimensional random variable follows IFMBR distribution, then the conditional c.d.f of X given
Y =yis given by

Fxjy (xly) = (1 _ e—/ll(x—/ll)z) [1 + e~ —p)? {Ze—ﬂl(x—/tl)z _ 1}]

+ ﬁe—)»l(x—,ul)z (6—2/11(96—#1)2 _ ze—il(x—ﬂl)z + 1)

3e—2iz(y—/tz)2 26—112()/—/12)2
X —y+uz}, )

4y —u2) Ay — u2)

and then the conditional p.d.f of X given Y =y is given by
foar (xly) =241 (x — ,ul)e_'h("_’“)2 [1 +a {Ze_)‘l("_/“)2 - 1} {Ze_b(y_‘“)2 — 1}
ny {1 _ e—ﬂ.l(x—m)z} {1 _ 0y 3o ) _ 1}
x {semh0-m’ —1l]. (10)

Further, the conditional expectation of X given Y =y is obtained as

E[X/Y :)/] = |:1:/(/lél) +ﬂl:| +a [2e—/12(y—/12)2 _ 1] |:F (%) 1 —2\/2} _ ﬂi|

4 [0 ) f1 = em0mer) v [1 _ L]
_ ﬁ]
234 ]

In similar manner, the expressions of Fy,x (y/x), fy/x(y/x) and E[Y /X = x] can also be obtained.

(11)

3. Dependence measures

Copulas are used to study the dependency or association between two variables. In the literature, we know several
coefficients based on copulas that describe the dependence between random variables. In this section, we will dis-
cuss the three well-known measures of the association, including Spearman’s rho, Kendall’s tau and Blomqvist’s
beta (known as medial correlation).

3.1. Correlation structure

Let Fx(x) and Gy (y) be an absolutely continuous marginals defined in (3) and (4), respectively, with finite standard
deviation o, and o,. The correlation coefficient between X and Y for optimal choice of & and § (see, J. Huang
& Kotz, 1984) is given by

Cov(X,Y a — Vyy —V - V33 — vV
)= ( ):_#22 H12 V22 12+£#33 K23 V33 — V23 (12)

Ox0y 4 Oy oy 9 Oy ay

where py, = E[Xk.n] and vi, = E[Yk.u], Xk.n and Yi., are the kth smallest order statistic of sample size n from F
and G, respectively. J. Huang and Kotz (1984) studied the one-iteration of original FGM and observed that the
correlation between X and Y attaining the wider range for upper bound and lower bound remains unchanged.
Hence, the maximal positive correlation coefficient 0.414 for normal marginal and 0.434 for uniform marginal.
Moreover, in general, for any marginal choice of F with finite o (x), the maximal upper bound of (12), based on
optimal value of a and £, attains to 0.50. The correlation coefficient of (X, Y)) for IFGMBR distribution is obtained
as

a 23/ s 23/4i
Z H + E H [4—T
= 47;

Admissible range of correlation coefficient p of IFGMBR distribution are reported in Table 1.

. 4—1
i=1 44
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Table 1. Admissible range of correlation coefficient p of IFGMBR distribution for A1 = 0.2and A, = 0.9.

a

-1 —-0.5 —-0.1 0.1 0.5 1
0.1 —0.3042205 —0.1472403 —0.02165604 0.04113607 0.1667203 0.3237006
. —0.2652605 —0.1082800 0.01730404 0.08009615 0.2056804 0.3626606
1 —0.2165604 —0.05958008 0.06600414 0.1287963 0.2543805 0.4113607

Table 2. Admissible range of correlation coefficient p of FGMBR distribution for 11 = 0.2and 2, = 0.9.

o -1 —05 —0.1 0.1 0.5 1
P —0.3139605 —0.1569803 —0.03139605 0.03139605 0.1569803 0.3139605

When the additional parameter f = 0 in Equation (13) reduces to the correlation coefficient of FGMBR
distribution, the admissible range of p is reported in Tables 1 and 2.

3.2. Kendall’s tau

Kendall’s tau for a two dimensional random vector (X, Y) with joint distribution function Fxy(xy) is defined as
follows:

T = 4//ny(xy)fxy(xy) dxdy — 1. (14)
X7y

Substituting the joint c.d.f and joint p.d.f from Equations (7) and (8) in (14), the expression of Kendall’s tau for
IFGMBR distribution is obtained as follows

20 B af
= 4+ L 4 15
=5 18 T 500 (15)
3.3. Medial correlation

Medial correlation is also called the Blomqvist’s beta is an association measure based on the medians. A population
version of Blomqvist’s beta is given by

B(Fxy(x,y)) = 4Fxy(Mx,My) — 1 =4C (%, %) -1 (16)

Substituting the joint c.d.f and joint p.d.f from Equations (7) and (8) in (16), the expression of medial correlation
for IFGMBR distribution can be obtained as

plEx ) = 5+ a7)

4. Reliability measures

In this section, we derive stress—strength reliability function, MTTF, MRLE, vitality function and hazard rate
function of IFGMRD distribution.

4.1. Stress-strength reliability measure

We assume that bivariate random variate (X, Y) follows IFGMBRD distribution with scale (11,4;) and location (u1,
12) parameters, and then dependence stress—strength reliability is defined by

R=PY <X)= /OO /xfxy(x,y) dy dx. (18)
mr J o

The structure of the joint density function allows us to express the stress—strength measure as a sum of three com-
ponents: one in the case of independence (« = f = 0), one in the case where dependence is a function of a only,
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and the other in the case where dependence is a function of § only, i.e.,
R=R;+ R, +Ry,

where

/ " fe()gr () dxdy,
H1 U2

fx(0)gy(y)(1 = 2Fx(x))(1 — 2Gy(p)) dx dy,

a

X

=af ),
5 / / A @)gr ()Fx(¥)Gy ()2 — 3Fx () 2 — 3Gy () dx dy.
m Ju

1 2

The expressions of R;, R, and Ry are given by

I e~ 421 —u2)?

Rj=1—-C; —
! ! (A1 + 12)
20 e =) ) e=2h(n—u2)? AreP2(m—n2)?
R, =a | 2C, + - -2 ——————
‘ SNV (A1 + 42) T+ )
116—2/12(/11—/12)2
GG+ T — |,
! i (A1 +243)
4113—/12(/11—/12)2 411e—3iz(ﬂ1—ﬂ2)2 411e—222(ﬂ1—ﬂ2)2
Rp=p|4C;+ ——— +12C5 — 8C3 + -
p=BlaCt+ =T 12) ST T T+ 30) (1 + 12)
c JieP2lm—n2)? " Je—2ln—p)? sCu 20 e~ 22 —p2)’
-C————— -3 —————— 4
(A1 + 42) (A1 +317) (A1 +24,)
3e~ =) ) e=3h(n—pw)’ 6/ e 22 (mi—u2)?
—3C9 — 3C7 — — + 12Cg + ,
T (A1 + 42) (A1 + 22) ST TG+ 242)

where

c AAa/T (2 — p1) exp ((/11#1 + A2 u)?
1 =
(A1 + )V A+ 22 A1+ 42)

A+ A ’
C, = Ao/ (s — pi1) ex ((2/11,”1 + Aapt2)?
(241 + A2)A/241 + A2 (241 + A2)

X (1 — erf (M))
241+ A2 ’
Cs = a1z — pi1) exp (2(/11/11 + A2 u2)?
(A1 4+ A2)4/241 + 2/ (A1 + 42)

5 (1 erf (Ziz(ﬂl - ﬂz)))
241+ 2, ’
Cy = da/m(pa — ) (Muu+2hﬂﬁ2
(A1 4+ 242)A/A1 + 242 (A1 +21))

5 (1 —erf (2/12(/11 - ﬂz)))
VA1 424, ’

— A - izﬂ%)

— 22141 — 2/12#%)

— At — 212#%)

Adan/m(p2 — p1) (2211 + 32212)* 2 2
= —2/11/11—3),2/12
(2).1 + 342)4/241 + 345 (241 +347)

8 (1 —erf (3/12(,111 ﬂz)))
241+ 3,

(19)

(20)

(21)

(22)
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Co = Ao/ (12 — p1) exp ((/11/11 + 3da12)?
(A1 + 342)/A1 + 322 (A1 4+ 342)

A1+ 342 ’
c, = Aoy — p1) exp (3(/11#1 + Aap2)?
(41 + 22)v/341 + 342 (41 + 42)

x(l_erf (M))

3 +34h )]
Co — AAa/m (12 — p1) o ((3/11/414-2/12/12)2
ST Gt 2012k P\ G +24)

y (1 _erf (M))
341+ 24, ’
Co = Ada/m (2 — 1) exp ((3/11/11 + hapa)?
9 —_
(BAL + 12)V/341 + 42 (BA1+ 42)

Aa(pr — p2)
x(1—erf | ———] ).
341+ A2
When the location parameters u; = uz = 0, Equation (19) will reduces to the reliability function of two non-
identical scale parameters of stress and strength for Rayleigh distribution and its expression is given by

— Jpi — 312#%)

— 30}~ 3/12#%)

- 3/11/1% - 2),2/1%)

1 ( 24 24 i )
R=—"2 _4q = +
(A1 + 42) QA+ (44  (A1+24)

+,B( 41 + 40 611 A
QA1+ 1)) (241 4+ 347) (A1 + 42) (A1 +317)
241 321 44 )
+ - +6 . 23
(A1 +242) B+ 42) (341 +243) 2

Further, if § = 0, then Equation (19) is reduced to the reliability function of X and Y linked by FGM copula. In
addition, if both a, f = 0, then Equation (19) reduces to the reliability function when X and Y are independent.

In this paper, our aim is to show that ignoring the dependence between stress and strength, even when it exists,
results in higher or lower values of reliability than the actual case.

11— Reau './_1. — Reau
g 8 -1 §=3- . ”.\__:.’.’ i g - - E::.'.', .
E S ezt 3 S-
D Y S D PRI L s RS Lk
2 R = e —
g n ' [{o]
o 1 I I I I © T | | | |
-1.0 -0.5 0.0 05 1.0 -1.0 05 0.0 05 1.0
o o
< . © e
c © — Prrem e 22| £ © T — prom et
= 71 ---- Prem e~ AT 2 ] ---- Prom o=t
. o "Rl 8 e © 7 I et
o o R Lo d . oo
5 7 et B °d .t
O 4 |= 0 w e
= T T | | @ T T | | |
-1.0 -0.5 0.0 0.5 1.0 -1.0 05 0.0 05 1.0
o o
@ (b)

Figure 1. Plot of reliability function and corresponding correlation for some combinations of marginal and copula parameters (a)
A =01u1=012=08 u;=0and f =0.8and (b) 1 =0.2, 41 = 0.1, 4 = 0.6, £ = 0.2and f = 0.6.
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Figure 3. The plot of empirical and theoretical c.d.f's and P-P plot for data X of data 1.

A comparison of Ripgm (X and Y are linked by IFGM), Rpgm (X and Y are linked by FGM), and R (X and
Y are independent) is presented in Figure 1. In Figure 1, the reliability and corresponding correlation coeffi-
cient are given for a specific combination of the parameters A1, u1, 42, #2 and f in terms of the variation in
the dependence parameter o. Based on the Figures 1(a) and 1(b), it is clear that the assumption of indepen-
dence between stress and strength leads R to assume higher or lower values of reliability than would be in the
actual case.

Let Ry, p; and R, p, denote the values of the reliability function and correlation coefficient corresponding to
the lower and upper values of the dependence parameter a. Further, from Figure 1(a) it is observed that the reli-
ability R=0.8889 when X and Y are independent, however, it should be R, = 0.9318 (R; = 0.8585) if they are
linked by IFGM copula with correlation p, = 0.3918 (p; = —0.2360). If X and Y are associated with FGM copula
R, = 0.9254, with correlation p,, = 0.3139. Hence IFGM is more relevant on R, since it models higher dependence
between X and Y as compared to FGM.

Figure 2 demonstrates the relationship between the distance A, = R, — Ry and p, and A; = R; — Rj and py
with respect to the variation in the additional parameter f. Based on the Figure 2, we can infer that as distance A
increases the bound of p increases, or in other words, the higher the correlation, between X and Y, the higher the
value of A.

4.2. Survival function

Let (X,Y) be a two-dimensional random variable with p.d.f (8), and then the survival function under IFGMBR
distribution is given by

S(X,)/) :e—ll(x—/ll)ze—lz(y_:“z)z (1 + 0((1 _ e—il(x_ﬂl)z)(l _ e—iz(y—/tz)z)

+ B (1= T HOmIIR() = RO (24)
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Figure 4. The plot of empirical and theoretical c.d.f's and P-P plot for data Y of data 1.
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Figure 6. The plot of empirical and theoretical c.d.f's and P-P plot for data Y of data 2.

4.3. Mean time to failure

The mean time to failure (MTTF) is defined as the expected mean of the lifetime before a failure occurs. Then the
MTTF can be defined as

MTTF:/ / Sx,y)(x,y)) dydx. (25)
H1 H2
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Then using (24) and (25), MTTF for IFGMBR distribution is obtained as
1\? 1 1
MTTF =— >~ 1+a(1——) +/3(ﬂ( + )—ﬁ)
4«/}.1«/12 \/5 2 \/ll V3/11 \/211
1 1
(S k) 5)
2 A 345 245

4.4. Mean residual life function

We consider bivariate mean residual life (m.r.l) function of a new iterated bivariate FGM Rayleigh distribution.
Shanbhag and Kotz (1987) proposed the following form of bivariate m.r.I. function

r(x,y) = (n(xy),n2(x ), (27)
where
ny) =EX —x|X > xY > y), (28)
and
nny) =EY —yIX 2 xY 2 y). (29)

The expressions for r1(x, y) and 75 (x, y) of IFGMBR distribution are obtained as
VR = ef (VI = ) + ki
2/ Tne M1 + aulx)u(y)]
B(u(y)*Ks

rn(x%y) =

t e=MG6=1)* (1 + au(x)u(y) + ()2 w(y))?)’ .
and
) CVa[(1=erf (V22(y — 12))) + aKs]
2%y = 2/ Ape=R2 =) [1+ au(x)u@)]
L 2 B (u(x))*Ky ’ (31)
e~ 2012 (1 + au(x)u(y) + B(u(x)*(u())?)
where
Ky =u(y) ((1 —erf (\/i—l(x — ,ul))) - LZ (1 —erf (\/E(x - ﬂl)))) >
Ko =uto) (1= erf (V7= ) = = (1= e (V220 = 1)) )
K= Y2 (1-af (VEG=a0)) - 2 (1 - ef (VIRG =)
s zm 1 H1 m 1 K1
JT
+ N (1 —erf (\/3/11(96 - #1))),
and

K=V (1—erf (VRO =) - S5 (1—erf (V2RO =) 45 Y0 (1-erf (V30— ).

By combining (27), (30) and (31), which give the m.r.l for IFGMBR distribution.

4.5. Vitality function
Sankaran and Nair (1991) proposed the bivariate vitality function as

V(xy) = (Vito), Va(x.)) (32)
where

Vithy) =EX | X >xY >y], (33)
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Val,y) =E[Y | X > xY > y].

(34)

V(x, y) measures the system’s expected lifetime based on its current age. Vi (x, y) represents the expected lifetime
of a system based on the assumption that the first and second components have lived beyond x and y, respectively.

A similar interpretation can be given to V,(x, y).

Further, the bivariate vitality function V;(x,y) is related to the mean residual life function r(x, y) with the

following relation as
Vile,y) = x+ri(x,y), i=12.
Using (30) and (31) in (35), the expressions of V; (x, y) and V,(x, y) are obtained as

V(1 —erf (VZi(x = u)) + aKi ]
2JT1e M G=R [[1 + au(x)u(y)]
N B(u())*Ks
e~ 1= (1 + au(u(y) + Bu())? ()’
VT [(1 = erf (VZ2(y = 12))) + aks]
2/ Tae— 2 0—n2)? [1 + au(x)u(y)]
N B(u(x))*Ky
e~ 20122 (1 + au()u(y) + fu())2u()?)’

Vl(x,}’) =x+

Valx,y) =y +

The vitality function of IFGMBR distribution can be obtained by substituting (36) and (37) in (32).

4.6. Hazard rate function

The bivariate hazard rate function due to Basu (1971) is defined by

faxr) (%))
h(x,y) = ———==.
g S(xy)
Using (8) and (24) with (38) the hazard rate function of [IFGMBR distribution is obtained as
41 A2 (x — p)(y — u2)(1 + aM) Puvwz
h(x,y) = 2.2 2,27
(1 4 auv + pu*v?) (14 auv + pu?v?)

where M = (2e~41—m1)* 1)(2e_’120’_”2)2 —-Dw= (e 41—’ _ 1) and z = (3e~420—12)" _ 1),

Johnson and Kotz (1975b) defined a hazard rate function in a vector form, as shown below

—dlogS(x,y) —0logS(x,y)
0x ’ Oy ’

hv(x,y) = (
where S(x, y) denote the bivariate survival function.

_ —0logS(x,y) Ar(x — ,ul)e"ll(x_/“)zv 2a + 4puv)

h =201(x— ,
! 0x 10 = p0) (1 + auv + pu?v?)

—0log S(x, Ay — e=20-12)%y (24 + 4Buv

hy = g S( y)zziz(y—m)— 2(y — u2) 2(2 Puv)
oy (1 + auv + pu*v?)

Using the expressions (41) and (42) with (40) yields the vector hazard rate function of IFGMBR distribution.

5. Parameter estimation

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

In this section, we propose a two-phase estimation method to estimate the marginal and dependence parameters.
In the first phase we estimate the dependence parameters a and f using the Blomgqvist’s beta and Kendall’s tau

measures of association, which is given by

p

Mxy = ,
XY 16

_l_

IS

(43)
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200 f af
_e L PP 44
wy =g + 13 + 900 (44)

Then, solving the equations Mxy = M XY and txy = Txy simultaneously we get the sample estimates of the depen-
dence parameters as a and ﬁ’ where MXy and Txy be the sample version of Blomqvist’s beta and Kendall’s tau,
respectively.

Assume that {(x;, y;),i = 1,2, ..., n} be n independent pairs of bivariate random sample from the joint distribu-
tion function Fyy (x, y). Now, in the second phase, using the moment estimates & and / of dependence parameters,
the marginal parameter estimates are obtained by maximizing the following pseudo-likelihood function

£ =log(fx(x)) +log(gy(»)) +log (1 + (1 = 2Fx(x))(1 = 2Gy (»))
+ FFx()Gy ()2 = 3Fx (D)2 - 3Gy (7)) (45)

Using Equations (3)-(6) and (45), we have

n n n
€ ocnlog(Z1) + nlog(2) + D log(xi — w1) — 1 D (xi — u1)* + D log(yi — o)

i=1 1 P
n n

— A Z(J/i - ,uz)2 + ZIOg ((1 + &(ze—h(xi—m)z _ 1)(26—/12(%_#2)2 —1)
i=1 i=1

+ 50— e—h(xi—,ul)z)(l _ e hlimp2)? (36—21(96—/11)2 _ 1)(36—/12(%—#2)2 _ 1)) ) (46)

Then the normal equations are given as follows
ol n 26(x; — 1)2e M=)’ Dy,
_ :_ _ Z(x’ ﬂl) _ Z i :ul)~ )’1)
a1 (1 + aD(x;)D(y;)

n
+ E 1 ~ ) , i
H p H X, 4[”. Xi — f —Az(yi—/lz) 1 _22(%‘ )

i=1 (X’)’)( 1 + H(x,y) ( ( y)( 2( ,ul)(y ﬂz)e ( e ))

x (320" _ )My — Ky (422 — 1) (i — m)e—h(yf—WMz) =0, (47)
ol 26 (s — p2)’e 201 D(xy)
ok Z(y’ o) Z( (1 +aD(x)D()
n
1 5 1 (i— — 21 (i
+> (@R = 1) (i — e 1m0 (1 = emhilsmin)y)
i

— H(x,y)(P1 + H(x,y)

X (36_11(&'_'&1)2 — I)Mg) — K3 (411(361' — ,ul)(y,- — ,uz)e_)‘l(x"_'ul)zle) =0, (48)

ol $ L (G — e Dy
— =— + 4 2(xi — + 40y x =
o Z 1 ; i — ) ! ;( 1+ aD(y;)D(x;)

Xi — U1

n ) ] | |
i — —A2(yi—p2)
’ i=1 H(x,y)(P1 + H(x,y) (H(x’)’)(‘*ﬁ/ll/lz(yz Ua)e u

x (1— e—lz(yi—/lz)z))(36—4‘2(%‘—/12)2 — 1)Ms) — Ki (42142 (y; — #z)e—iz(J’i—/tz)zM6) =0, (49)

n n o —2 =122 D ( y-
- ()’1 u2)e "2 D(x;)
y) 2 2(y; — 46 z —
+ 21.:1 Ui = o) Hdadz i:l( 1 + aD(y;)D(x;)

Loy
a,uz zlyl
n

1 B 1 2
+ E H(e, y) (4P A1 A2 (x; — o1 (i)
P H(xJ’)(Pl-i-H(x,y)( (6 Y) @B A1 A2 (xi — 1)

x (1— e—/h(Xf—ﬂl)z))(:;e—il(m—#l)z — )My) — Ki (4142 (x; — Iul)e—/h(xi—ul)zMg) =0, (50)
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D(x)) =(2e~ "1~ — 1), D(y;) = (2e~20m) — 1),
H(x,y) =421 22(x; — i1) (i — pp)e~ G110 = h0imil (1 g (e~ hilimi)” 1)

(ze—lz(}’i—ﬂz)z - 1)),

Py =47105(x; — 1) (i — pp)e M E—HD e h0imi)® o g1 e h1Gimu)’y
x (1— e—iz(yi—ﬂz)z)@e—ll(Xi—ul)z _ 1)(3e—?~z(yi—ﬂz)2 —1),

My =4e710I0% (1 = 27 (x; — u)?) — e himm’
(1= Ay(xi — u1)?) — 3¢ MO0 (1 = 30, (3 — 1)),

M, —e—h1Gimu)? (1 —(xi — u1)* + 0c(2e_”12(”_”2)2 - 1)(26_)‘1("”_/“)2
— 4 40— )% — (1= 2 G — )

My =4e™220i712 (1 — 22, (y; — up)?) — e 2012
(1= 220y — p2)?) — 372002 (1 = 30, (s — 2)?),

My =201 (1 — ha(yi — 12)? + a e MG — 1) (e R 0imm)’
— 4220y = )’ RO — (1= 220 = )

Ms —ge—2M(xim1)? (421 (x; — ,u1)2 -1 - o~ A1 (xi—p1)?

Table 3. Estimates of R when x7 = ©; = 0 and = 0.2 with different combinations of (11, 15)
with varying values of a.

o

n (A1, 22) —09 —05 —0.1 05 0.1 09
(0.2,0.6) 07146 07318 0.7489 0.7575 0.7746 07918
0.7021 0.7235 0.7389 0.7519 0.7877 0.7908
0.0051 0.0044 0.0032 0.0056 0.0038 0.0046
20 (0.5,1.1) 0.6578 06723 0.6869 06942 0.7087 0.7233
0.6678 0.6703 0.6799 0.6812 0.7008 0.7120
0.0068 0.0055 0.0048 0.0036 0.0058 0.0041
(1.1,2.8) 0.6851 0.7011 07171 0.7251 0.7412 0.7572
0.6701 0.6941 0.7021 0.7171 0.7322 0.7472
0.0058 0.0039 0.0051 0.0044 0.0035 0.0062
(0.2,0.6) 0.7146 07318 0.7489 0.7575 0.7746 0.7918
0.7081 0.7245 0.7411 0.7587 0.7887 0.7990
0.0044 0.0038 0.0024 0.0040 0.0028 0.0033
50 (0.5,1.1) 0.6578 06723 0.6869 0.6942 0.7087 0.7233
0.6699 06777 0.6812 0.6899 0.7070 0.7190
0.0048 0.0039 0.0033 0.0020 0.0049 0.0035
(1.1,2.8) 0.6851 0.7011 07171 0.7251 0.7412 0.7572
0.6761 0.6988 0.7098 0.7190 0.7402 0.7492
0.0044 0.0028 0.0030 0.0035 0.0022 0.0042
(0.2,0.6) 0.7146 07318 0.7489 0.7575 0.7746 0.7918
07111 0.7295 0.7488 0.7687 0.7889 0.8010
0.0025 0.0021 0.0018 0.0029 0.0015 0.0020
100 (0.5,1.1) 0.6578 06723 0.6869 0.6942 0.7087 0.7233
0.6611 06780 0.6898 0.6901 0.7058 07214
0.0030 0.0029 0.0018 0.0015 0.0033 0.0025
(1.1,2.8) 0.6851 0.7011 07171 0.7251 0.7412 0.7572
0.6822 07018 07118 0.7199 0.7421 0.7511
0.0031 0.0019 0.0022 0.0025 0.0011 0.0035
(0.2,0.6) 0.7146 0.7318 0.7489 0.7575 0.7746 0.7918
07121 0.7302 0.7499 0.7627 0.7819 0.8001
0.0011 0.0018 0.009 0.0020 0.0006 0.0014
200 (0.5,1.1) 0.6578 06723 0.6869 0.6942 0.7087 0.7233
0.6600 0.6755 0.6860 0.6933 0.7078 0.7250
0.0018 0.0020 0.0011 0.0009 0.0028 0.0015
(1.1,2.8) 0.6851 0.7011 07171 0.7251 0.7412 0.7572
0.6852 0.7026 07133 07239 0.7451 0.7551
0.0022 0.0011 0.0009 0.0016 0.0008 0.0025

First row: true values, second row: estimates, third row: MSE for R.
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@A (x5 — p1)* = 1) = 3 G367, (xi — 1)? — 1),
Mo =271(x; = 1)? = e M7 4 g @e 20 1) (41 0 — o) e 2
e Py — (20 (3 — )R — emhlsmin )
My =de™ 220712 ], (y; — p)? — 1) — e 20712 @2, (s — p2)* — 1)
— 3¢ 32012 (62, (y; — 2)* — 1)
Mg =22(y; — ) — e 2012 4 g aemhtimm)” 1) ((412()’1' — p)Pe 2 0imm)’

— e 201Dy (27, (y; — pp)Pe R 0imHD” e—/lz(yi—uz)z)) )

Because the aforementioned pseudo-likelihood equations are nonlinear and cannot be solved analytically, it must
be solved numerically using any iterative approach. Further, substituting the estimates 1 1, I T2, and fin (19)
results the estimate of stress—strength reliability R.

6. Simulation study

In this Section, we investigate the influence of the dependence parameters & and § on R numerically by using
a two-phase estimation approach for different sample sizes using the criteria of mean square error (MSE) with
respect to different combinations of stress and strength parameters. For mathematical simplicity, here we assume
that the location parameters x1 and u; are assumed to be known. A Monte-Carlo simulation study is carried out to
compare the estimates numerically based on the samples generated from IFGMBR distribution for different sample

Table 4. Estimates of R when x1 = up = 0 and = 0.5 with different combinations of (11,45)
with varying values of a.

n (A1, 22) —09 —05 —0.1 05 0.1 09
(0.2,0.6) 0.7242 0.7414 0.7585 0.7671 0.7842 0.8014
0.7078 0.7201 07314 0.7598 0.7807 0.7878
0.0061 0.0041 0.0048 0.0036 0.0044 0.0055
20 (0.5,1.1) 0.6669 0.6815 0.6960 0.7033 07178 0.7324
0.6544 0.6743 0.6789 0.6892 0.7098 0.7190
0.0058 0.0044 0.0040 0.0049 0.0058 0.0061
(1.1,2.8) 0.6946 0.7107 07267 0.7347 0.7507 0.7668
0.6701 0.6941 0.7081 0.7179 0.7388 0.7582
0.0051 0.0044 0.0041 0.0064 0.0049 0.0055
(0.2,0.6) 0.7242 0.7414 0.7585 0.7671 0.7842 0.8014
0.7108 0.7291 0.7398 0.7601 0.7847 0.7987
0.0042 0.0033 0.0030 0.0022 0.0031 0.0045
50 (0.5,1.1) 0.6669 0.6815 0.6960 0.7033 07178 0.7324
0.6598 06781 0.6800 0.6904 07111 0.7201
0.0035 0.0024 0.0033 0.0040 0.0045 0.0055
(1.1,2.8) 0.6946 0.7107 0.7267 0.7347 0.7507 0.7668
0.6791 0.7044 0.7100 0.7198 0.7403 0.7502
0.0044 0.0032 0.0035 0.0055 0.0038 0.0044
(0.2,0.6) 0.7242 0.7414 0.7585 0.7671 0.7842 0.8014
0.7187 0.7381 0.7418 0.7641 0.7888 0.8013
0.0030 0.0023 0.0025 0.0016 0.0021 0.0031
100 (0.5,1.1) 0.6669 0.6815 0.6960 0.7033 07178 0.7324
0.6654 06798 0.6865 0.6988 07154 0.7245
0.0028 0.0015 0.0022 0.0030 0.0039 0.0042
(1.1,2.8) 0.6946 0.7107 0.7267 0.7347 0.7507 0.7668
0.6801 0.7094 07150 07210 0.7463 0.7592
0.0033 0.0025 0.0015 0.0030 0.0021 0.0026
(0.2,0.6) 0.7242 0.7414 0.7585 0.7671 0.7842 0.8014
0.7217 0.7410 0.7498 0.7684 0.7893 0.8035
0.0022 0.0018 0.0015 0.0009 0.0010 0.0011
200 (0.5,1.1) 0.6669 0.6815 0.6960 0.7033 07178 0.7324
0.6688 0.6848 0.6895 0.7088 07187 0.7295
0.0015 0.0006 0.0012 0.0014 0.0020 0.0018
(1.1,2.8) 0.6946 0.7107 0.7267 0.7347 0.7507 0.7668
0.6891 0.7102 07250 0.7289 07513 0.7652
0.0012 0.0016 0.0008 0.0019 0.0011 0.0015

First row: true values, second row: estimates, third row: MSE for R.
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Table 5. Estimates of R when x1 = x = 0.5 and = 0.8 with different combinations of (41,45)
with varying values of a.

n (A1, 22) -0.9 —-05 —0.1 0.5 0.1 0.9
(0.2,0.65) 0.7380 0.7554 0.7729 0.7817 0.7991 0.8166
0.7218 0.7452 0.7654 0.7878 0.8017 0.8278
0.0181 0.0165 0.0148 0.0154 0.0134 0.0197
20 (0.3,1.1) 0.7579 0.7756 0.7934 0.8022 0.8200 0.8377
0.7544 0.7746 0.7844 0.8019 0.8198 0.8250
0.0188 0.0166 0.0198 0.0169 0.0158 0.0111
(0.6,1.5) 0.6912 0.7071 0.7230 0.7309 0.7468 0.7627
0.6701 0.6941 0.7081 0.7179 0.7388 0.7582
0.0154 0.0188 0.0241 0.0122 0.0199 0.0125
(0.2,0.65) 0.7380 0.7554 0.7729 0.7817 0.7991 0.8166
0.7354 0.7466 0.7699 0.7887 0.8098 0.8221
0.0125 0.0133 0.0115 0.0140 0.0101 0.0151
50 (0.3,1.1) 0.7579 0.7756 0.7934 0.8022 0.8200 0.8377
0.7524 0.7687 0.7811 0.7819 0.8192 0.8298
0.0122 0.0138 0.0118 0.0146 0.0118 0.0101
(0.6,1.5) 0.6912 0.7071 0.7230 0.7309 0.7468 0.7627
0.6855 0.6992 0.7023 0.7189 0.7254 0.7599
0.0122 0.0149 0.0181 0.0106 0.0159 0.0110
(0.2,0.65) 0.7380 0.7554 0.7729 0.7817 0.7991 0.8166
0.7372 0.7522 0.7787 0.7898 0.7951 0.8106
0.0100 0.0086 0.0074 0.0111 0.0062 0.0082
100 (0.3,1.1) 0.7579 0.7756 0.7934 0.8022 0.8200 0.8377
0.7521 0.7785 0.7902 0.8085 0.8264 0.8370
0.0086 0.0103 0.0071 0.0066 0.0089 0.0073
(0.6,1.5) 0.6912 0.7071 0.7230 0.7309 0.7468 0.7627
0.6998 0.7021 0.7322 0.7351 0.7433 0.7663
0.0062 0.0112 0.0125 0.0073 0.0055 0.0092
(0.2,0.65) 0.7380 0.7554 0.7729 0.7817 0.7991 0.8166
0.7311 0.7598 0.7617 0.7808 0.7998 0.8136
0.0084 0.0045 0.0052 0.0061 0.0043 0.0065
200 (0.3,1.1) 0.7579 0.7756 0.7934 0.8022 0.8200 0.8377
0.7506 0.7801 0.7980 0.8036 0.8255 0.8310
0.0071 0.0098 0.0045 0.0055 0.0063 0.0058
(0.6, 1.5) 0.6912 0.7071 0.7230 0.7309 0.7468 0.7627
0.6903 0.7083 0.7301 0.7366 0.7462 0.7633
0.0052 0.0088 0.0095 0.0056 0.0042 0.0079

First row: true values, second row: estimates, third row: MSE for R.

sizes n=20, 50, 100, and 200. We use the following steps to generate the bivariate samples (x;,y;), i =1,2,...,n
from IFGMBR distribution with parameters 11, 1, 22, 42, f and a.

(1)
2)

€)
(4)

Generate two independent random samples u; and t; for i = 1,2, ..., n, from U(0, 1) distribution.
Compute v; using the equation C(v;/u;) = t; and where C(v;/u;) represents the conditional copula of IFGMBR
distribution.

Setxi=,/_l%ll_ui)+lul and y; = /%21_‘“)4_#2.

The bivariate vector (x;, y;) fori = 1,2, ..., n, is the random pair from the IFGMBR distribution.

The numerical investigations of derived reliability estimators are carried out with the help of the R software. The
simulation results are used to compare the reliability estimates on the basis of average estimates and MSEs. The
main purpose of such investigation is to assess the pattern of dependence relations between stress and strength and
also to observe their effects on R. Such investigations are performed for different sample sizes with variations of
a and the additional parameter f. The average estimates and MSEs of stress—strength reliability based on 10,000
replications are presented in Tables 3-7.

(1)

2)

)

It is observed that as the dependence parameter increases, the reliability R also increases as well, i.e., the higher
value of the association parameter results in a higher value of reliability. Also, as the sample size increases, the
MSEs of the estimates gradually decrease.

It is observed that when the additional parameter § increases, the reliability R is also increased. Further, the
value of R is attaining maximum (or minimum) while the dependence parameter a is maximum (o = 0.9) (or
minimum (a = —0.9)).

The value of R shows increasing trends when the dependence parameter o increases while (4;, A,) parameter
values are varying with two different values of £.
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Table 6. Estimates of MTTF when f = 0.2 with different combinations of (11,4;) with varying

values of a.
o
n (21, 22) —0.9 —05 —0.1 0.5 0.1 0.9
(0.2,0.6) 2.1090 2.1879 2.2653 2.3820 2.3942 2.4598
20123 2.1456 2.2456 2.2907 2.3212 2.3435
0.0056 0.0049 0.0039 0.0060 0.0048 0.0051
20 (0.5,1.1) 0.9854 1.0218 1.0581 1.0826 1.1163 1.1489
0.9809 1.0438 1.0522 1.1056 1.1450 1.1476
0.0055 0.0054 0.0046 0.0056 0.0055 0.0043
(1.1,2.8) 0.4164 0.4317 0.4471 0.4548 0.4701 0.4855
0.4088 0.4222 0.4287 0.4343 0.4445 0.4780
0.0055 0.0045 0.0034 0.0048 0.0038 0.0053
(0.2,0.6) 2.1090 2.1879 2.2653 2.3820 2.3942 2.4598
2.0197 2.1175 2.2544 22921 2.3202 2.3650
0.0044 0.0038 0.0024 0.0040 0.0028 0.0033
50 (0.5,1.1) 0.9854 1.0218 1.0581 1.1126 1.1363 1.1489
0.9573 0.9876 1.0112 1.0652 1.1003 1.1622
0.0040 0.0043 0.0034 0.0038 0.0044 0.0024
(1.1,2.8) 0.4164 0.4317 0.4471 0.4548 0.4701 0.4855
0.4164 0.4211 0.4292 0.4433 0.4565 0.4700
0.0044 0.0036 0.0029 0.0041 0.0030 0.0048
(0.2,0.6) 2.1090 2.1879 2.2653 2.3820 2.3942 2.4598
2.1264 2.1975 22765 2.3987 2.3955 2.4655
0.0033 0.0032 0.0019 0.0031 0.0023 0.0023
100 (0.5,1.1) 0.9854 1.0218 1.0581 1.1126 1.1363 1.1489
0.9644 0.9800 1.0234 1.0564 1.1122 1.1822
0.0036 0.0035 0.0028 0.0028 0.0044 0.0024
(1.1,2.8) 0.4164 0.4317 0.4471 0.4548 0.4701 0.4855
0.4164 0.4321 0.4213 0.4547 0.4575 0.4732
0.0036 0.0022 0.0015 0.0032 0.0021 0.0031
(0.2,0.6) 2.1090 2.1879 2.2653 2.3820 2.3942 2.4598
2.1086 2.1891 2.2611 2.3834 2.3941 24511
0.0019 0.0012 0.0011 0.0021 0.0014 0.0014
200 (0.5, 1.1) 0.9854 1.0218 1.0581 1.1126 1.1363 1.1489
0.9811 1.0212 1.0595 1.1100 1.1359 1.1491
0.0021 0.0022 0.0019 0.0017 0.0025 0.0019
(1.1,2.8) 0.4164 0.4317 0.4471 0.4548 0.4701 0.4855
0.4154 0.4213 0.4488 0.4533 0.4791 0.4852
0.0022 0.0012 0.0006 0.0014 0.0011 0.0016

First row: true values, second row: estimates, third row: MSE for MTTF.

(4) The proposed reliability estimators behave consistently while increasing sample sizes through simulated
samples.

(5) It is observed that when the dependence parameter o increases the MTTF function also increases. Further-
more, when £ increases MTTF function also increases.

(6) Also, as the sample size increases, the MSEs of the estimates of MTTF gradually decrease.

7. Real life application

In this section, two different real data sets are analysed to illustrate the applications of the proposed model in various
research fields. First, we examined the data set from the field of medicine (data I). This data represents the human
heart condition in response to external/emotional stress in a controlled environment used by Pham (2020) for
two-parameter exponential margins.

The second data set (data IT) is an application to meteorology and includes rainfall data at the Los Angeles Civic
Center between 1943 and 2018 shown in Pak et al. (2022). Based on Weibull record data in the presence of inter-
record times, the data was used to estimate the stress-strength reliability R. We transformed data II by taking the
square root of the data. The correlation coefficient and test of correlation for real data sets are presented in Table 8.

The first step is to perform a K-S test on each data set separately to determine the goodness of fit for the marginal
distributions. The results are shown in Tables 9 and 10, respectively. The Rayleigh distribution has a lower AIC and
BIC than the other life distributions, as shown by Table 9. Table 10 further suggests that the Rayleigh distribution
fits the data set well. Moreover, the Rayleigh distribution is known for its simplicity and flexibility in modelling
various types of data. This makes it a popular choice in survival analysis and reliability studies.

Finally, the a bivariate Rayleigh distribution based on IFGM copula are fitted to the data sets. A comparison of
IFGMBR has been carried out with the FGMBR distribution (James et al., 2023), FGMBW distribution (Almetwally
etal., 2020) and FGMBGE distribution (Lutfiah et al., 2017) on the basis of AIC and BIC. It is observe that AIC and
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Table 7. Estimates of MTTF when g = 0.6 with different combinations of (11,4;) with varying

values of a.
[
n (A1,22) —0.9 —05 —0.1 0.5 0.1 0.9
(0.2,0.6) 2.1448 2.2226 2.3004 2.3393 24171 24949
2.0123 2.2356 2.2326 2.2417 2.3212 24415
0.0037 0.0041 0.0030 0.0020 0.0033 0.0044
20 (0.5, 1.1) 1.0018 1.0381 1.0745 1.0927 1.1290 1.1653
1.0018 1.0234 1.0567 1.0887 1.1270 1.1441
0.0045 0.0031 0.0038 0.0026 0.0044 0.0043
(1.1,2.8) 0.4234 0.4387 0.4540 0.4617 0.4771 0.4924
0.4123 0.4265 0.4347 0.4555 0.4655 0.4810
0.0036 0.0028 0.0040 0.0022 0.0044 0.0031
(0.2,0.6) 2.1448 2.2226 2.3004 2.3393 24171 24949
2.1328 23222 2.3765 2.3654 2.5663 2.5433
0.0024 0.0033 0.0018 0.0011 0.0023 0.0032
50 (0.5,1.1) 1.0018 1.0381 1.0745 1.0927 1.1290 1.1653
1.0018 1.0271 1.0654 1.0876 1.1540 1.1876
0.0033 0.0018 0.0022 0.0015 0.0030 0.0026
(1.1,2.8) 0.4234 0.4387 0.4540 0.4617 0.4771 0.4924
0.4453 0.4456 0.4654 0.4765 0.4854 0.4984
0.0017 0.0009 0.0014 0.0008 0.0019 0.0015
(0.2,0.6) 2.1448 2.2226 2.3004 2.3393 24171 24949
2.1328 2.3542 2.3865 23704 2.5342 2.6758
0.0018 0.0022 0.0011 0.0008 0.0015 0.0012
100 (0.51.1) 1.0018 1.0381 1.0745 1.0927 1.1290 1.1653
1.0018 1.0231 1.0456 1.0765 1.0977 1.1544
0.0023 0.0008 0.0014 0.0006 0.0016 0.0019
(1.1,2.8) 0.4234 0.4387 0.4540 0.4617 0.4771 0.4924
0.4123 0.4221 0.4435 0.4564 0.4721 0.4901
0.0011 0.0007 0.0016 0.0009 0.0022 0.0014
(0.2,0.6) 2.1448 2.2226 2.3004 2.3393 24171 2.4949
2.1345 2.2231 2.3011 2.3365 24161 2.4876
0.0009 0.0014 0.0006 0.0005 0.0007 0.0006
200 (0.51.1) 1.0018 1.0381 1.0745 1.0927 1.1290 1.1653
1.0018 1.0241 1.0654 1.0876 1.1321 1.1675
0.0011 0.0004 0.0010 0.0004 0.0012 0.0008
(1.1,2.8) 0.4234 0.4387 0.4540 0.4617 0.4771 0.4924
0.4234 0.4365 0.4498 0.4654 0.4691 0.4960
0.0008 0.0004 0.0011 0.0007 0.0013 0.0010
First row: true values, second row: estimates, third row: MSE for MTTF.
Table 8. The correlation coefficient and test of correlation for real
data sets.
Correlation
Data measure Correlation P-value
Datal Pearson’s —0.0280 0.9311
Kendall's —0.0458 0.8366
Datall Pearson’s 0.1757 0.1397
Kendall's 0.1064 0.1861
Table 9. Goodness of fit test for Data 1.
X Y
D P-value AlC BIC D P-value AlC BIC
Rayleigh 0.1888 0.7858 63.1693 64.1391 0.1563 0.1563 64.6732 65.6430
Weibull 0.2091 0.6703 66.2331 67.2029 0.1715 0.8151 65.8901 66.8599
Gen.Exp 0.1573 0.9277 63.8134 64.7832 0.1640 0.8526 65.97461 66.9444

BIC of IFGMBR distribution is least in compare to other FGMB distributions, the results are presented in Tables 11

and 12, respectively.

8. Concluding remarks

Huang and Kotz (1984) investigated the single iterated FGM distribution and found that the maximum positive
correlation is higher than the usual FGM distribution. Also he showed that a single iteration can triple the covariance
for a certain marginal distributions. But iteration based FGM copula and its application has not discussed in the
literature. This present study is an attempt on this direction.
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Table 10. Goodness of fit test for Data 2.

X Y
D P-value AlC BIC D P-value AlC BIC
Rayleigh  0.0623 0.9425 177.4054  181.9588  0.0780 0.7726 148.5079  153.0613
Weibull 0.0658 0.9144 177.2219 1817752  0.0652 0.919 147.4094  151.9627
Gen.Exp 0.1021 0.4402 180.0294 1845827  0.0937 0.5519 1567723 1613257
Table 11. The estimates of the parameters of FGM distributions for data 1.
ba hE 22 i a A AIC BIC MTTF
IFGM-Rayleigh  0.0093 0.2345 0.0079 12771 —0.5302 09011 121.2547 124.164 90.6575
FGM-Rayleigh  0.0098  8.0036 0.0024  0.0675 —0.4649 - 1524928  154.9174 -
FGM-Weibull 44980 18816 5701 19311  —0.2940 - 137.8986  140.3232 -
FGM-Gen.Exp 0.0714 0.0042  0.4085 0.0203 —0.3536 - 267.2368  269.6613 -
Table 12. The estimates of the parameters of FGM distributions for data 2.
M i 2 hh é A AIC BIC

IFGM-Rayleigh ~ 1.0903  0.4045 03735 0.0334 04745 00239 3256484 3265404 12819
FGM-Rayleigh ~ 03165  0.0220 05009 0.1775  0.5647 - 330937 3343204 -
FGM-Weibull 19266 17818 22579 16015  0.5755 - 331465  334.8484 -
FGM-Gen.Exp ~ 0.13599  0.0159  0.8388 14317 04556 - 619.7982  631.1815 -

The main objective of the study is to develop an IFGM based SSR model using Rayleigh marginal as a baseline
distribution. We derived the expression for the correlation coefficient p and we found that IFGMBR distribution is
more suitable in compared to the FGMBR distribution for modelling higher positive association. In addition, we
found that, increasing the extra parameter S boosts the upper bound of correlation coefficient p.

Further, a graphical comparison of SSR using IFGM and FGM based on Rayleigh distribution is performed with
respect to the dependence parameter a and the additional parameter . From the graphical representation it is
clear that the if the association between X and Y is ignored then reliability may be either over or under estimated.
Moreover IFGMBR is better than FGMBR, because it capture higher dependence between X and Y .

The performance of dependence SSR is studied by Monte-Carlo simulation using a two-phase estimation
method. We investigated the expression of R with respect to the variation in the dependence parameter « as well as
in additional parameter £ while fixing others parameters. From the numerical results we found that as the depen-
dence parameter increases, the reliability R is also increases as well, i.e. higher value of the association parameter,
higher the value of reliability. Also, as the sample size increases, the MSEs of estimates obtained are decresing. Fur-
thermore, as future study objectives, one may think other life distributions as well as the second iterated FGM family
for modelling SSR.
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