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ABSTRACT ARTICLE HISTORY
A degenerated U-statistic with rank 2 is known to converge in distribu- Received 12 June 2025
tion to a weighted sum of independent chi-square random variables. ~ Accepted 18 October 2025

However, a result for the asymptotic distribution of a degenerated U- KEYWORDS

statistic with rank higher than 2 is not available in the literature. We Degenerated U-statistics;
derive explicitly the asymptotic distribution of a degenerated U-statistic orthonormal eigenfunctions;
with any rank, which is useful for hypothesis testing when the test rank of U-statistics; sample
statistic is a degenerated U-statistic under null hypothesis. Interest- mean and sample product;
ingly, the limit for a degenerated U-statistic with rank higher than 2 is V-statistics

a weighted sum of independent polynomials of the standard normal

random variables.

1. Introduction

U-statistics are popular for unbiased estimation and statistical testing (Hoeffding, 1948).
Let k be a fixed positive integer and h(Y7, ..., Yi) be a known function symmetric in Y;’s
with E{h*(Y1,..., Yx)} < 0o, where Y1, Y>,... are independent and identically distributed
random vectors. A U-statistic with kernel % of order k based on data Y7, . . ., Y, is of the form

Uk,nzﬁ S WYY, M
{

K {iy,.ig}C{1,.0m)

where the summation is over all (Z) combinations of k distinct integers i, ..., i from
1,...,n. By symmetry, the U-statistic Ug, in (1) is an unbiased estimator of 0 =
E{h(Y1,...,Yy)}, which is an unknown parameter depending on the population of Y;. In
fact, when the order statistics of univariate Y, .. ., Y, are sufficient and complete, Uy, is the
uniformly minimum variance unbiased estimator of 8 (Serfling, 1980; Shao, 2003).

Several examples are given as follows.

Example 1.1: For univariate Y;, the sample kth order product

1
A) > Yi, - Yy (2)
K {iy,...i}c{1,...,n}

is a U-statistic in (1) with product kernel h(Y1,...,Yy) = Y - - - Yy and is an unbiased esti-
mator of 6 = {E(Y1)}%; in the special case of k = 1, (2) is the popular sample mean of
Yi,..., Y,
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Example 1.2: For univariate Y;, Gini’s mean difference n(+_1) Z{i,j}c{l,‘..,n} |Y; — Yjlisa U-
statistic in (1) with h(Y7, Y;) = |Y] — Y| and is an unbiased estimator of the concentration
measure § = E|Y; — Y>|.

Example 1.3: Let I(B) denote the indicator of event B. For univariate Yj, the one-sample

.....

I(Y; + Y, < 0) and is an unbiased estimator of & = P(Y; + Y, < 0).

Example 1.4: Examples of U-statistics in (1) for vector Y; and § = a measure of dependence
of random varijables are given in Section 4.

Define
w(y1) = E{h(y1, Y2, ..., Y}
w(y1,y2) = Eth(y1,y2, Y3, ..., Yi) b,

l//()’b)/z, ... >)/]) = E{h()/b)/z, ... ayj; ij—|—1) cee Yk)} )

for any integer j between 1 and k, where the expectation E is with respect to Yjy1, ..., Yx. The
U-statistic Uy, in (1) is degenerated if and only if y (y;) in (3) is constant. It can be shown that
if y (y1, 92, . .., y;) in (3) is constant, then so is w (y1, y2, . . . , ) with any integer /' < j. Thus,
the smallest integer ¢ with non-constant y (y1, ¥2, . . ., y¢) is called the rank of Uy ,, in (1) and
Uy, is degenerated if and only if its rank is higher than 1. For instance, the sample kth order
productin (2) has y (y1,...,y) = y1-- Y EYjy1--- Yi) = y1-- ~yj{E(Y1)}k_j, which is 0 if
and only if E(Y7) = 0 and k > 2; hence, the rank of sample kth order productin (2)is ¢ =1
when E(Y7) # 0 and £ = k when E(Y;) = 0. The one-sample Wilcoxon statistic and Gini’s
mean difference are both of rank 1 and non-degenerated. More examples of degenerated
U-statistic are given in Section 4.

It is well known that, for a non-degenerated U-statistic Uy ,, its convergence rate to § =
E(Uy,)is n~1/2asn — o0o,and n'/? (Ug,n — 0) converges in distribution to a normal random
variable with mean 0 and variance k*Var{ w (Y1)} > 0 (Hoeffding, 1948; Serfling, 1980). For a
degenerated U-statistic Uy, with rank ¢ = 2, its convergence rate to & = E(Uy ) is n~! and
n(Uyx, — 0) converges in distribution to a random variable with mean 0 and variance {k? (k —
1)2/2}Var{y (Y1, Y2)} > 0, which is proved in detail in Section 5.5.2 of Serfling (1980); in
fact, Serfling (1980) shows that the limit random variable is a weighted (possibly infinite)
sum of independent chi-square random variables.

For a degenerated U-statistic U, withrank £ > 3, however, a general result for the asymp-
totic distribution of Uy, is not available. For example, what is the asymptotic distribution of
the sample kth order product in (2) when k > 3 and E(Y;) = 0?

The purpose of this paper is to fill in this gap by establishing the asymptotic distribution of
Uk, in (1) with rank € > 3. In Section 2, we derive the asymptotic distribution of the sample
kth order product in (2), which is the distribution of an explicitly given kth order polynomial
of a standard normal random variable. This result sets up a base stone for general degener-
ated U-statistics. In Section 3, we show that, for Uy, in (1) with rank ¢ > 3, nt/ 2(Ugn — 0)
converges in distribution to a (possibly infinite) weighted sum of independent order £ poly-
nomials of the standard normal random variable. The result interestingly extends the result
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in Serfling (1980) for £ = 2 since a chi-square random variable is an order 2 polynomial of
the standard normal random variable. Our results have important applications in hypothesis
testing, since a U-statistic with rank £ > 2 is often encountered under the null hypothesis
of interest (Lai et al., 2021; Serfling, 1980; Zhu et al., 2012). Section 4 provides examples of
U-statistics for measuring dependence of random variables. Section 5 gives some concluding
remarks.

2. Asymptotic distribution of sample kth order product

In this section we show that the sample kth order product in (2) converges in distribution to
a kth order polynomial of a standard normal random variable.

Theorem 2.1: Let X1,X,,. .. be a sequence of independent and identically distributed random
variables with E(X;) = 0 and E(X?) = ¢%. Forany { = 1,2, .,

nl/? i,
0 > Xy Xy, 5 olpe(2), (4)
{i1

o) iy, ir}C{L,...m)

d TN
where — denotes convergence in distribution as n — oo, Z denotes a standard normal random
variable, p¢(Z) is a polynomial of order € given recursively by

pe(2) = Zpe—1(Z) — (€ — Dpe—2(2), p1(Z2) = Z, po(Z2) = 1, (5)

E{pe(Z)} = 0, and Var{p,(2)} = ¢\

It is interesting to know that p,(Z) = Z? — 1,p3(Z) = Z° — 3Z,and p4(2) = Z* — 6Z* +
3. The result in (4) with £ = 1 or 2 is well known.
Before presenting the proof of Theorem 1, we compare the asymptotic efficiency between

the sample kth order product in (2) and the simple estimator Y as estimators of 6 =
{E(Yl)}k, where Y is the sample mean of Y7,. .., Y,,. When E(Y;) = 0 and E(le) =02 an
immediate consequence of Theorem 1 is that #n*/2 (the sample kth order product)/c* 4
pk(2) with k > 2. On the other hand, nk/ 217k/ak i 7k and, thus, the asymptotic mean
squared error of the sample kth order product in (2) over that of Yo is

k! k(k—1)---2-1 kK k-1 21

== = e —— 1,
E(ZZk) Q2k—1)Q2k—3)---3-1 2k—12k-3 31<

which is 2/3 when k = 2 and 2/5 when k = 3. Thus, the sample kth order product in (2) is
asymptotically more efficient than Y* when E(Y;) = 0 or is nearly 0.

Proof of Theorem 1: Result (4) with £ =2 is actually shown in Section 5.5.2 of Ser-
fling (1980) with p,(Z) = Z*> — 1. Without loss of generality, we assume that ¢ = 1 in the
proof. Let X be the sample mean of X, .. ., X,, and X, be the sample mean of X2,...,X2.

n
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We first prove (4) with ¢ = 3. From the identity

2

"D Z XiX; | =nX" - Xy, (6)

{ijic{l,...n}

(n—=1)
multiplying n'/2X to each side we obtain that

2 __
{i,i}C{L,....n}

which is the same as

3!

3/2%3 1/2 2 2 2
=7 > XXX =X - n!?XX, - —7 > GX + XiX)).

(i b C{L,....n) {if}C{L,....n)

From n'/?(X; — 1) = Op(1) and n'2X =0 »(1), where, throughout Op(an) denotes a term
bounded by a, in probability, and from the fact that n( Ty 2 ficiL, }(Xl-sz + X,‘ij) isa
non-degenerated U-statistic that equals 2X + Op(n™") (Serfling, 1980) we obtain that

(n) Z XiXiXi = 1’13/2)_(3 —n'2X —2n'?X + Op(?’l_l/z)
{

= n'/?Xpy(n'?X) — 2p1 (n'/?X) + Op(n_l/z)
= p3(n'/2X) + 0, (n~"/?) ?)

with p3(2) = Zp2(2) — 2p1(2) = Z3 —3Z as given in (5). Since n'/2X —d> Z, result (7)
implies result (4) with £ = 3, noting that E{p3(Z)} = E(Z® —3Z) =0 and Var{p3(2)} =
E(Z? —32)* = E(Z° — 6Z* 4+ 9Z?) = 6 = 3!, and using the fact that E(z%) = 0 for any odd
integer d and EZY =(d—-1)(d—-3)---3-1for any even integer d.

We next prove (4) with ¢ = 4. From (7), multiplying n'/2X to each side we obtain that

2
(nT) > XXXiX,
4 (GjLrc{l,...n)

— n1/2)_(p3(n1/2)_()

3! )
) Z XiXGXT + XX X) + X X;X) + Op(n 1/2)

(i3 C{L,..m)
= n'/?Xps(n'*X) =3 %ZX,-XJ- +0,(n"1/?)
i<j
— n"2Xp3 (n"/2X) = 3(1X" = Xz) + Op(n™'/?)
= ”1/2)_(173(111/2)_() _ 3p2(n1/2)_() + Op(n_l/z)
= pa(n'*X) + 0p(n™"1?), )
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where the second equality holds since ﬁ;(n_z) > lijlc {1,...,n}(XinX12 + X,-Xle +
XI-ZX]'XZ) is a U-statistic (of order 3 and rank 2) that equals ﬁ ij XiX; + Op(n_3/2)
(Serfling, 1980), the third equality follows from (6), the fourth equality follows from
n'2X, —1) = Op(1) and py(2) = 7% — 1, and the last equality follows from Zp3(Z) —
3p2(Z) = pa(Z) by (5). Therefore, (4) holds for £ = 4 with ps(2) = Z4 — 672 + 3, noting
that E{p4(Z)} = E(Z*) — 6E(Z?) + 3 = 0 and Var{p4(Z)} = E(Z* — 62% + 3)> = E(Z% +
36Z% +9 — 127° + 62* — 362%) = 24 = 4!,

Following the argument in the proof for £ = 3,4, for a general £ > 5, we multiply n'/2X
to the quantities in the identity for the case of £ — 1, e.g., (6)-(8) for £ = 2, 3, 4, to obtain

nt/2
(n) Z Xi, - X,
&) {iy,oig}Cll,e.on)

= n"/2Xpy_1 (n/2X) = (€ = Dpr—a (1K) + Op (™)
— pe(n'?X) + Op(n_l/z), %)

where the last equality follows from (5). Thus, the convergence —d> in (4) holds.

To finish the proof, it remains to show that E{p;(Z)} = 0 and Var{p,(2)} = ¢! for £ =
5,6,....Since the mean and variance of the left side of (9) are 0 and {!{n(n — 1) --- (n — £ +
1)} 71, respectively, by (9), we just need to show that {p% n'/?X),n=1,2,...} is uniformly
integrable (Serfling, 1980; Shao, 2003), which is true since {(n'/?X)%,n=1,2,...} is uni-
formly integrable (Serfling, 1980; Shao, 2003) and p?(n'/?X) is a polynomial of n'/2X with
order 2¢. This completes the proof. [

3. Asymptotic distributions of general degenerated U-statistics
Based on Theorem 1 in Section 2, we establish the following general result.
Theorem 3.1: Assume that Uy, in (1) is degenerated with rank € between 2 and k. There

are nonrandom Agy, t =1,2,..., such that Z;’il A%’t = Var{y (Y1,...,Ye)} > 0, where
w1, ...,ye) is defined in (3), and

k o0
né’/Z(Uk)n —-0) —d> (5) ;lg,tpg(Zt), (10)

where pe(-) is the polynomial of order € given in (5) and Z,,Z,, ... are independent stan-
dard normal random variables. Furthermore, the limit in the right side of (10) has mean 0

2
and variance equal to lim,_, s Var(nt/? Ukn) = f!(’g) Var{y (Y1,..., Yy}

Before presenting the proof of Theorem 2, we discuss about the relative efficiency between
the U-statistic (1) and its corresponding V-statistic

1 n n
Vk,n = ﬁzlzlh(Yll’,Ylk)
i1= ir=

For non-degenerated U-statistics (rank = 1), it is known that n'/2(Uy, — 0) and n'/2(Vy,,, —
0) have the same asymptotic distribution, provided that E{h(Y; ,...,Y;)} < ooforall 1 <
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ip < --- < < k; see, e.g., Section 3.5.3 of Shao (2003). For degenerated U-statistics (rank
¢ > 2), the asymptotic distribution for Vi, can be derived using the same technique in the
proof of Theorem 2. However, Uy, is asymptotically more efficient than Vj , in terms of the
asymptotic mean squared error. The special case of £ = 2isdiscussed in detail in Section 3.5.3
of Shao (2003). For £ > 3, a similar result can be obtained.

Proof of Theorem 2: Because y (y1,. . . ,)j) is constant forj=1,...,¢£ — 1, from formula (2)
on Page 190 of Serfling (1980),

K\ ~
n"2(Uy, — 0) = n'/? ( 5) U + Op(n~Y?),

where ﬁg,n is of the form of a U-statistic (1) with order ¢ and kernel function
w(Y1,...,Yy) — 0. Let{¢:(-),t = 1,2,...} denote orthonormal eigenfunctions correspond-
ing to the eigenvalues {1,;,t =1,2,...} defined in connection with w(y1,...,y¢) — €
such that ¢1(Y;), $2(Y)),... are independent and identically distributed, E{¢;(Y;)} =0,
E{$?(Y))} = 1,and

T 2
E [ p(Yi, o Ye) =0 = D dps(Y1) - --@(n)]

t=1
T
=Ely(Y1,...,Y) =0 = > i}, > 0 (11)
=1
as T — oo (Dunford & Schwartz, 1963; Serfling, 1980), which implies that
o
E{y (Yy,...,Y) = 0Y = Var{y(Y1,..., Yp)} = D47, < 0. (12)
t=1
Then, result (10) follows from
~ d ©
nPUpw S We, We = Jeipe(Zy). (13)
t=1

Define
T e
~(T N3
O =>2 N (v (Y
t=1 (f) {its..ie}C{l,...,n}

Then, ﬁg,n - f]gl) is of the form of a U-statistic with order £ and kernel

T
g1, Y = w(Yo,..,Y0) =6 = D dpepe(Y1) -+~ $e(Yo).
t=1

From the theory of U-statistic, e.g., Section 3.2 of Shao (2003),

. — 2
E [n[ (Ut’n - qu)) ] = {!Var{g(Y1,..., Y0)} + O(n™ ")
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o
=0 > i, +0m™,

t=T+1

where O(a,,) denotes a term bounded by a,, and the last equality follows from (11)-(12). Let
ch(s, R) denote the characteristic function of random variable R. Then,

~ B N 21712
o o 07 = 2202 < 4 o (8- 92)')
00 1/2
= || (f! > i%,t) :
t=T+1

This and result (12) imply that, for any fixed sand € > 0,

ch (s, nf/zﬁg,n) —ch (s t2g (T))‘ <€

for all sufficiently large T. Applying Theorem 1 with X; and p,(Z) replaced by ¢:(Y;) and
pe(Zy), respectively, and using the fact that ¢ (Y;),t = 1,2,...,i = 1,..., n,are independent,
we obtain that, forevery T = 1,2,.. .,

d
n'20p)) = (n sz > a) gy S wh
4 =1

Lreensig}C{L,..5m)

~

Z Aeipe(Ze). (14)

Hence, for any s, € > 0 and T,
‘ch (s, ng/zﬁgn)) —ch (s, WET))‘ <e€

for all sufficiently large n. For any s and € > 0,

‘ch (s, Wé )) — ch(s, Wg)‘ < |s|{ ( WégT)) }1/2

00 1/2
=|s|(€! > Aﬁ,t) <e (15)

t=T+1

for all sufficiently large T. Therefore, for any s and € > 0,
‘ch (s, nt/? ﬁ(,n) — ch(s, W[)‘ < 3¢

for all sufficiently large n. This shows that the characteristic function of n‘/2Uy,, converges
to the characteristic function of Wy and, thus, (13) holds and the proof of (10) is completed.

It remains to show that the mean of Wy is 0 and the variance of Wy is £!'Var{w (Y1, ..., Y¢)},
for Wy glven by (13). Let Wé D be given by (14). Then, result (15) actually shows

that WéT) — Wy as T — oo. Since (WET))Z, = 1,2,...} is uniformly integrable (e.g.,
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Page 86 of Shao, 2003), E(W;) = limr— 0 E(W(T)) =0 as E{p;(Z;)} = 0 and Var(W;) =
hmT_moVar(WfT)) =lim7_, o Zt lxthar {pe(Z1)} = €'limr—, 0 Z /lg’t =037

22, = WVar{y(Y1,...,Ys)} by (12). By Hoeffding (1948), Var(n/?Uy.,)— ¢! k 2Var{1//(Y1,
Ot y Y g , ;
., Ye)} as n — oo. This completes the proof. |

4, U-statistics for measures of dependence

In this section, we provide details of Example 4 in Section 1 for U-statistics in (1) with
multivariate Y;’s in estimating measures of dependence of random variables.

Consider two random variables R and S with joint cumulative distribution function
Frs(r,s) and marginal cumulative distribution functions Fr(r) and Fs(s) for R and S,
respectively. A measure of dependence of R and S is

0= / / {Frs(r,s) = FR(1)Fs(s)}’ dFrs(r,s), (16)

which is 0 if and only if Fg s(r,s) = Fr(r)Fs(s) for any r and s, i.e., R and S are independent.
Let Y; = (R;, Si), i = 1,...,n, be independent and identically distributed with Fgs(r,s).
As an unbiased estimator of & in (16), the U-statistic Us , of order k = 5 is given by (1) with

1
h(Yl) e YS) = ; Z {I(Rlz < Ri])I(Siz < Sil)I(Rf3 < Ri1)1(8i3 < Si])
P
— ZI(RI2 < R,I)I(S,2 < SII)I(R,4 < il)I(Si5 < Si1)
+I(R12 < Rl1)I(Sl3 < Sl])I(RZ4 = il)I(sis < Sil)}> (17)

where the summation is over the 5! permutations {ij,...,i5} of {1,...,5} and I(B) is the
indicator of B. To see why E{h(Y1, ..., Y5)} = 6 in (16), note that

o= [ {Fﬁ,sm 92 [[ Fustromrse + [[ F£<r>F§(s>] dFzs(r)

E{I(Rzz = 11)1(512 = 11)I(R13 = il)I(Si3 < Sil)}
= E[E{I(R;, < Ri)I(Si, < Si)I(R;; < Ri)I(Si; < Si)) | Vi, }]

and

_ / / E{IR;, < NI(S;, < IR, < NI(S;, < 9) | Vi = (1,9 }dFrs(rr)
_ / / E{I(R;, < NI(S;, < IR, < DI, < 9)}dFrs(r,s)

= / / E{I(R;, < nNI(S;, < $)}E{I(R;; < nI(Si, < 5)}dFps(r,s)

= / / Fg s(r,5)dFrs(r,5),

E{I(Rlz < Ri])I(Siz < Si])I(Ri4 < Ri])I(Sis < Sil)}
= E[E{I(Riz < Ril)I(Sl2 = Sll)I(Rl4 = RZI)I(Sls = Sn) | Yll}]
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_ / / E{I(R, < NI(S;, < IR, < DI(Si, < 5) | ¥y = (r,9)}dFrs(rr9)
_ / / E{I(R,, < NI(S;, < IR, < DI, < 9)}dFrs(r.9)
= / / E{I(R;, < NI(S;, < 9)}E{I(Ry, < n}E{I(Si5 < 5)}dFrs(r,s)

= / / FRs(r,s)FRr(r)Fs(s)dFRs(r, s),
E{I(R;, < Ri)I(Si; < Si)I(Ri, < Ri)I(Sis < Siy)}
= E[E{I(R;, < Ri)I(Si; < Si)I(Ri; < Ri)I(Sis < Siy) | Vi, }]

= [ B, < 165, < 918, < 0165, 91 = (19} dFas(r9)
= [ [ Buw, < s, < 918, < 0165, < 9)dFs(r)

= / / E{I(R;, < n)}E{I(S;; < $)}E{I(R;, < n)}E{I(Si; < 5)}dFrs(r,s)
= [ [ BOROEs ..

where we use the fact that Y; and Y; are independent whenever i # j.
From the form of kernel / in (17), we obtain that, with y = (11, s1),
w(y1) = E{I(Ry < nNI(S2 < 9)I(R3 < 1)I(S3 < 5)}
— 2E{I(Ry < r)I(Sy < s))I(Ry < r)I(Ss < 51)}
+ E{I(Ry < r1)I(S3 < s))I(Rg < 1)I(Ss < s1)}
= F (r1,s1) — 2Fp;s(r1,51)Fr(r1)Fs(s1) + F(r1)F5(s1)
= {Frs(r1,51) — Fr(r1)Fs(s1)}

which is non-constant (the corresponding U-statistic has rank 1) if and only if § # 0 (R and
S are not independent). When R and S are independent, with y; = (r1,s1) and y2 = (2, 52),

v (y1,y2)

= ;L/{I(n < NI(ry < 1) = I(n < 1)Fr(r) = I(ry < 1)FR(r) + Fx(r)}dFr ()
y /{1(51 < 5)(sy < s) —I(s; < s)Fs(s) — I(s; < s)Fs(s) + Fﬁ(S)}dFs(S),

which is non-constant and, thus, the corresponding U-statistic has rank 2.

The previous discussion can be extended to the dependence of any fixed number of ran-
dom variables. We end this paper by constructing a U-statistic for the dependence of three
random variables, Q, R, and S. Let Y = (Q, R, S), Fy (g, 1> s) be the joint cumulative distribu-
tion of Y, and Fq(q), Fr(r) and Fs(s) be the marginal cumulative distributions of Q, R and S,
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respectively. A measure of dependence of Q, R and S is

0= ///{Fy(q’ r,5) — Fo(q)Fr(r)Fs(s)*dFy (g, 1, ),

which is 0 if and only if Fy(g, 1, s) = Fo(q)Fr(r)Fs(s) for any g, r and s, i.e,, Q, R and S are
independent. Using the same argument, we can construct a U-statistic (1) of order 7 and
kernel h(Y3,. .., Y7) equating

D@, = QIR < RIS, < $)IQ; < QIR < RIS < 51)
P

= 2I(Qi, < QiDIR;, < Ri)I(Si, < Si))I(Qis < QiI(Ris < Ri)I(S;, < Siy)
+1(Qi, < Qi)I(Ri; < RiDI(S;, < SiDI(Qis < Qi)I(Rjs < Ri)I(Si; < Sip)}s

where Y; = (Q;, R;,S;) and the summation is over the 7! permutations {ij,...,iy} of
{1,...,7}.

5. Concluding remarks

This paper presents a rigorous and technically sophisticated derivation of the asymptotic
distributions of degenerated U-statistics with any given rank ¢, extending the existing result
for rank £ = 2 and offering new insights into the limiting behaviour of such statistics. This
topic is of practical importance in statistical theory, since a U-statistic with rank £ > 2 is often
encountered under the null hypothesis of interest. Possible extensions include the derivations
of asymptotic joint distributions of several U-statistics, some of which have high ranks, and
multi-sample generalized U-statistics with high ranks (Serfling, 1980, p. 175).
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