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ABSTRACT
A degenerated U-statistic with rank 2 is known to converge in distribu-
tion to a weighted sum of independent chi-square random variables.
However, a result for the asymptotic distribution of a degenerated U-
statistic with rank higher than 2 is not available in the literature. We
derive explicitly the asymptotic distributionof adegeneratedU-statistic
with any rank, which is useful for hypothesis testing when the test
statistic is a degenerated U-statistic under null hypothesis. Interest-
ingly, the limit for a degenerated U-statistic with rank higher than 2 is
a weighted sum of independent polynomials of the standard normal
random variables.
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1. Introduction

U-statistics are popular for unbiased estimation and statistical testing (Hoeffding, 1948).
Let k be a fixed positive integer and h(Y1, . . . ,Yk) be a known function symmetric in Yj’s
with E{h2(Y1, . . . ,Yk)} < ∞, where Y1,Y2, . . . are independent and identically distributed
random vectors. A U-statistic with kernel h of order k based on data Y1, . . . ,Yn is of the form

Uk,n = 1(n
k
) ∑

{i1,...,ik}⊂{1,...,n}
h(Yi1 , . . . ,Yik), (1)

where the summation is over all
(n
k
)
combinations of k distinct integers i1, . . . , ik from

1, . . . , n. By symmetry, the U-statistic Uk,n in (1) is an unbiased estimator of θ =
E{h(Y1, . . . ,Yk)}, which is an unknown parameter depending on the population of Y1. In
fact, when the order statistics of univariate Y1, . . . ,Yn are sufficient and complete,Uk,n is the
uniformly minimum variance unbiased estimator of θ (Serfling, 1980; Shao, 2003).

Several examples are given as follows.

Example 1.1: For univariate Yi, the sample kth order product

1(n
k
) ∑

{i1,...,ik}⊂{1,...,n}
Yi1 · · ·Yik (2)

is a U-statistic in (1) with product kernel h(Y1, . . . ,Yk) = Y1 · · ·Yk and is an unbiased esti-
mator of θ = {E(Y1)}k; in the special case of k = 1, (2) is the popular sample mean of
Y1, . . . ,Yn.
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Example 1.2: For univariate Yi, Gini’s mean difference 2
n(n−1)

∑
{i,j}⊂{1,...,n} |Yi − Yj| is a U-

statistic in (1) with h(Y1,Y2) = |Y1 − Y2| and is an unbiased estimator of the concentration
measure θ = E|Y1 − Y2|.

Example 1.3: Let I(B) denote the indicator of event B. For univariate Yi, the one-sample
Wilcoxon statistic 2

n(n−1)
∑

{i,j}⊂{1,...,n} I(Yi + Yj ≤ 0) is a U-statistic in (1) with h(Y1,Y2) =
I(Y1 + Y2 ≤ 0) and is an unbiased estimator of θ = P(Y1 + Y2 ≤ 0).

Example 1.4: Examples of U-statistics in (1) for vector Yi and θ = a measure of dependence
of random variables are given in Section 4.

Define

ψ(y1) = E{h(y1,Y2, . . . ,Yk)},
ψ(y1, y2) = E{h(y1, y2,Y3, . . . ,Yk)},

...

ψ(y1, y2, . . . , yj) = E
{
h(y1, y2, . . . , yj,Yj+1, . . . ,Yk)

}
,

(3)

for any integer j between 1 and k, where the expectation E is with respect toYj+1, . . . ,Yk. The
U-statisticUk,n in (1) is degenerated if and only ifψ(y1) in (3) is constant. It can be shown that
ifψ(y1, y2, . . . , yj) in (3) is constant, then so isψ(y1, y2, . . . , yj′)with any integer j′ < j. Thus,
the smallest integer �with non-constantψ(y1, y2, . . . , y�) is called the rank ofUk,n in (1) and
Uk,n is degenerated if and only if its rank is higher than 1. For instance, the sample kth order
product in (2) has ψ(y1, . . . , yj) = y1 · · · yjE(Yj+1 · · ·Yk) = y1 · · · yj{E(Y1)}k−j, which is 0 if
and only if E(Y1) = 0 and k ≥ 2; hence, the rank of sample kth order product in (2) is � = 1
when E(Y1) �= 0 and � = k when E(Y1) = 0. The one-sample Wilcoxon statistic and Gini’s
mean difference are both of rank 1 and non-degenerated. More examples of degenerated
U-statistic are given in Section 4.

It is well known that, for a non-degenerated U-statistic Uk,n, its convergence rate to θ =
E(Uk,n) is n−1/2 asn → ∞, and n1/2(Uk,n − θ) converges in distribution to a normal random
variable withmean 0 and variance k2Var{ψ(Y1)} > 0 (Hoeffding, 1948; Serfling, 1980). For a
degenerated U-statistic Uk,n with rank � = 2, its convergence rate to θ = E(Uk,n) is n−1 and
n(Uk,n − θ) converges in distribution to a randomvariable withmean 0 and variance {k2(k −
1)2/2}Var{ψ(Y1,Y2)} > 0, which is proved in detail in Section 5.5.2 of Serfling (1980); in
fact, Serfling (1980) shows that the limit random variable is a weighted (possibly infinite)
sum of independent chi-square random variables.

For a degeneratedU-statisticUk,nwith rank � ≥ 3, however, a general result for the asymp-
totic distribution of Uk,n is not available. For example, what is the asymptotic distribution of
the sample kth order product in (2) when k ≥ 3 and E(Y1) = 0?

The purpose of this paper is to fill in this gap by establishing the asymptotic distribution of
Uk,n in (1) with rank � ≥ 3. In Section 2, we derive the asymptotic distribution of the sample
kth order product in (2), which is the distribution of an explicitly given kth order polynomial
of a standard normal random variable. This result sets up a base stone for general degener-
ated U-statistics. In Section 3, we show that, for Uk,n in (1) with rank � ≥ 3, n�/2(Uk,n − θ)

converges in distribution to a (possibly infinite) weighted sum of independent order � poly-
nomials of the standard normal random variable. The result interestingly extends the result
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in Serfling (1980) for � = 2 since a chi-square random variable is an order 2 polynomial of
the standard normal random variable. Our results have important applications in hypothesis
testing, since a U-statistic with rank � ≥ 2 is often encountered under the null hypothesis
of interest (Lai et al., 2021; Serfling, 1980; Zhu et al., 2012). Section 4 provides examples of
U-statistics for measuring dependence of random variables. Section 5 gives some concluding
remarks.

2. Asymptotic distribution of sample kth order product

In this section we show that the sample kth order product in (2) converges in distribution to
a kth order polynomial of a standard normal random variable.

Theorem 2.1: Let X1,X2, . . . be a sequence of independent and identically distributed random
variables with E(Xi) = 0 and E(X2

i ) = σ 2. For any � = 1, 2, . . .,

n�/2(n
�

) ∑
{i1,...,i�}⊂{1,...,n}

Xi1 · · ·Xi�
d−→ σ�p�(Z), (4)

where d−→ denotes convergence in distribution as n → ∞, Z denotes a standard normal random
variable, p�(Z) is a polynomial of order � given recursively by

p�(Z) = Zp�−1(Z)− (�− 1)p�−2(Z), p1(Z) = Z, p0(Z) = 1, (5)

E{p�(Z)} = 0, and Var{p�(Z)} = �!.

It is interesting to know that p2(Z) = Z2 − 1, p3(Z) = Z3 − 3Z, and p4(Z) = Z4 − 6Z2 +
3. The result in (4) with � = 1 or 2 is well known.

Before presenting the proof of Theorem 1, we compare the asymptotic efficiency between
the sample kth order product in (2) and the simple estimator Yk as estimators of θ =
{E(Y1)}k, where Y is the sample mean of Y1, . . . ,Yn. When E(Y1) = 0 and E(Y2

1 ) = σ 2, an

immediate consequence of Theorem 1 is that nk/2 (the sample kth order product)/σ k d→
pk(Z) with k ≥ 2. On the other hand, nk/2Yk

/σ k d→ Zk and, thus, the asymptotic mean
squared error of the sample kth order product in (2) over that of Yk is

k!
E(Z2k)

= k(k − 1) · · · 2 · 1
(2k − 1)(2k − 3) · · · 3 · 1 = k

2k − 1
k − 1
2k − 3

· · · 2
3
1
1
< 1,

which is 2/3 when k = 2 and 2/5 when k = 3. Thus, the sample kth order product in (2) is
asymptotically more efficient than Yk when E(Y1) = 0 or is nearly 0.

Proof of Theorem 1: Result (4) with � = 2 is actually shown in Section 5.5.2 of Ser-
fling (1980) with p2(Z) = Z2 − 1. Without loss of generality, we assume that σ = 1 in the
proof. Let X be the sample mean of X1, . . . ,Xn and X2 be the sample mean of X2

1, . . . ,X
2
n.
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We first prove (4) with � = 3. From the identity

(n − 1)

⎧⎨⎩ 2
n(n − 1)

∑
{i,j}⊂{1,...,n}

XiXj

⎫⎬⎭ = nX2 − X2, (6)

multiplying n1/2X to each side we obtain that

2
n3/2

∑
{i,j}⊂{1,...,n}

XiXj

n∑
l=1

Xl = n3/2X3 − n1/2XX2,

which is the same as

3!
n3/2

∑
{i,j,l}⊂{1,...,n}

XiXjXl = n3/2X3 − n1/2XX2 − 2
n3/2

∑
{i,j}⊂{1,...,n}

(X2
i Xj + XiX2

j ).

From n1/2(X2 − 1) = Op(1) and n1/2X = Op(1), where, throughout,Op(an) denotes a term
bounded by an in probability, and from the fact that 2

n(n−1)
∑

{i,j}⊂{1,...,n}(X2
i Xj + XiX2

j ) is a
non-degenerated U-statistic that equals 2X + Op(n−1) (Serfling, 1980), we obtain that

n3/2(n
3
) ∑

{i,j,l}⊂{1,...,n}
XiXjXl = n3/2X3 − n1/2X − 2n1/2X + Op(n−1/2)

= n1/2Xp2(n1/2X)− 2p1(n1/2X)+ Op(n−1/2)

= p3(n1/2X)+ Op(n−1/2) (7)

with p3(Z) = Zp2(Z)− 2p1(Z) = Z3 − 3Z as given in (5). Since n1/2X d→ Z, result (7)
implies result (4) with � = 3, noting that E{p3(Z)} = E(Z3 − 3Z) = 0 and Var{p3(Z)} =
E(Z3 − 3Z)2 = E(Z6 − 6Z4 + 9Z2) = 6 = 3!, and using the fact that E(Zd) = 0 for any odd
integer d and E(Zd) = (d − 1)(d − 3) · · · 3 · 1 for any even integer d.

We next prove (4) with � = 4. From (7), multiplying n1/2X to each side we obtain that

n2(n
4
) ∑

{i,j,l,r}⊂{1,...,n}
XiXjXlXr

= n1/2Xp3(n1/2X)

− 3!
n2

∑
{i,j,l}⊂{1,...,n}

(XiXjX2
l + XiX2

j Xl + X2
i XjXl)+ Op(n−1/2)

= n1/2Xp3(n1/2X)− 3

⎛⎝2
n

∑
i<j

XiXj

⎞⎠ + Op(n−1/2)

= n1/2Xp3(n1/2X)− 3(nX2 − X2)+ Op(n−1/2)

= n1/2Xp3(n1/2X)− 3p2(n1/2X)+ Op(n−1/2)

= p4(n1/2X)+ Op(n−1/2), (8)
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where the second equality holds since 3!
n(n−1)(n−2)

∑
{i,j,l}⊂{1,...,n}(XiXjX2

l + XiX2
j Xl +

X2
i XjXl) is a U-statistic (of order 3 and rank 2) that equals 2

n(n−1)
∑

i<j XiXj + Op(n−3/2)

(Serfling, 1980), the third equality follows from (6), the fourth equality follows from
n1/2(X2 − 1) = Op(1) and p2(Z) = Z2 − 1, and the last equality follows from Zp3(Z)−
3p2(Z) = p4(Z) by (5). Therefore, (4) holds for � = 4 with p4(Z) = Z4 − 6Z2 + 3, noting
that E{p4(Z)} = E(Z4)− 6E(Z2)+ 3 = 0 and Var{p4(Z)} = E(Z4 − 6Z2 + 3)2 = E(Z8 +
36Z4 + 9 − 12Z6 + 6Z4 − 36Z2) = 24 = 4!.

Following the argument in the proof for � = 3, 4, for a general � ≥ 5, we multiply n1/2X
to the quantities in the identity for the case of �− 1, e.g., (6)–(8) for � = 2, 3, 4, to obtain

n�/2(n
�

) ∑
{i1,...,i�}⊂{1,...,n}

Xi1 · · ·Xi�

= n1/2Xp�−1(n1/2X)− (�− 1)p�−2(n1/2X)+ Op(n−1/2)

= p�(n1/2X)+ Op(n−1/2), (9)

where the last equality follows from (5). Thus, the convergence d→ in (4) holds.
To finish the proof, it remains to show that E{p�(Z)} = 0 and Var{p�(Z)} = �! for � =

5, 6, . . . . Since the mean and variance of the left side of (9) are 0 and �!{n(n − 1) · · · (n − �+
1)}−1, respectively, by (9), we just need to show that {p2�(n1/2X), n = 1, 2, . . .} is uniformly
integrable (Serfling, 1980; Shao, 2003), which is true since {(n1/2X)2, n = 1, 2, . . .} is uni-
formly integrable (Serfling, 1980; Shao, 2003) and p2�(n

1/2X) is a polynomial of n1/2X with
order 2�. This completes the proof. �

3. Asymptotic distributions of general degenerated U-statistics

Based on Theorem 1 in Section 2, we establish the following general result.

Theorem 3.1: Assume that Uk,n in (1) is degenerated with rank � between 2 and k. There
are nonrandom λ�,t , t = 1, 2, . . ., such that

∑∞
t=1 λ

2
�,t = Var{ψ(Y1, . . . ,Y�)} > 0, where

ψ(y1, . . . , y�) is defined in (3), and

n�/2(Uk,n − θ)
d→
(
k
�

) ∞∑
t=1

λ�,t p�(Zt), (10)

where p�(·) is the polynomial of order � given in (5) and Z1,Z2, . . . are independent stan-
dard normal random variables. Furthermore, the limit in the right side of (10) has mean 0
and variance equal to limn→∞ Var(n�/2Uk,n) = �!

(k
�

)2
Var{ψ(Y1, . . . ,Y�)}.

Before presenting the proof of Theorem 2, we discuss about the relative efficiency between
the U-statistic (1) and its corresponding V-statistic

Vk,n = 1
nk

n∑
i1=1

· · ·
n∑

ik=1
h(Yi1 , . . . ,Yik).

For non-degeneratedU-statistics (rank= 1), it is known that n1/2(Uk,n − θ) and n1/2(Vk,n −
θ) have the same asymptotic distribution, provided that E{h(Yi1 , . . . ,Yik)} < ∞ for all 1 ≤
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i1 ≤ · · · ≤ ik ≤ k; see, e.g., Section 3.5.3 of Shao (2003). For degenerated U-statistics (rank
� ≥ 2), the asymptotic distribution for Vk,n can be derived using the same technique in the
proof of Theorem 2. However, Uk,n is asymptotically more efficient than Vk,n in terms of the
asymptoticmean squared error. The special case of � = 2 is discussed in detail in Section 3.5.3
of Shao (2003). For � ≥ 3, a similar result can be obtained.

Proof of Theorem 2: Becauseψ(y1, . . . , yj) is constant for j = 1, . . . , �− 1, from formula (2)
on Page 190 of Serfling (1980),

n�/2(Uk,n − θ) = n�/2
(
k
�

)
Ũ�,n + Op(n−1/2),

where Ũ�,n is of the form of a U-statistic (1) with order � and kernel function
ψ(Y1, . . . ,Y�)− θ . Let {φt(·), t = 1, 2, . . .} denote orthonormal eigenfunctions correspond-
ing to the eigenvalues {λ�,t , t = 1, 2, . . .} defined in connection with ψ(y1, . . . , y�)− θ

such that φ1(Yi),φ2(Yi), . . . are independent and identically distributed, E{φt(Yi)} = 0,
E{φ2t (Yi)} = 1, and

E

{
ψ(Y1, . . . ,Y�)− θ −

T∑
t=1

λ�,tφt(Y1) · · ·φt(Y�)
}2

= E{ψ(Y1, . . . ,Y�)− θ}2 −
T∑
t=1

λ2�,t → 0 (11)

as T → ∞ (Dunford & Schwartz, 1963; Serfling, 1980), which implies that

E{ψ(Y1, . . . ,Y�)− θ}2 = Var{ψ(Y1, . . . ,Y�)} =
∞∑
t=1

λ2�,t < ∞. (12)

Then, result (10) follows from

n�/2Ũ�,n
d→ W�, W� =

∞∑
t=1

λ�,t p�(Zt). (13)

Define

Ũ(T)�,n =
T∑
t=1

λ�,t(k
�

) ∑
{i1,...,i�}⊂{1,...,n}

φt(Yi1) · · ·φt(Yi�).

Then, Ũ�,n − Ũ(T)�,n is of the form of a U-statistic with order � and kernel

g(Y1, . . . ,Y�) = ψ(Y1, . . . ,Y�)− θ −
T∑
t=1

λ�,tφt(Y1) · · ·φt(Y�).

From the theory of U-statistic, e.g., Section 3.2 of Shao (2003),

E
{
n�

(
Ũ�n − Ũ(T)�,n

)2} = �!Var{g(Y1, . . . ,Y�)} + O(n−1)
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= �!
∞∑

t=T+1

λ2�,t + O(n−1),

where O(an) denotes a term bounded by an and the last equality follows from (11)–(12). Let
ch(s,R) denote the characteristic function of random variable R. Then,∣∣∣ch (s, n�/2Ũ�,n) − ch

(
s, n�/2Ũ(T)�,n

)∣∣∣ ≤ |s|
[
E
{
n�

(
Ũ�,n − Ũ(T)�,n

)2}]1/2

= |s|
(
�!

∞∑
t=T+1

λ2�,t

)1/2

.

This and result (12) imply that, for any fixed s and ε > 0,

sup
n

∣∣∣ch (s, n�/2Ũ�,n) − ch
(
s, n�/2Ũ(T)�,n

)∣∣∣ < ε

for all sufficiently large T. Applying Theorem 1 with Xt and p�(Z) replaced by φt(Yi) and
p�(Zt), respectively, and using the fact that φt(Yi), t = 1, 2, . . ., i = 1, . . . , n, are independent,
we obtain that, for every T = 1, 2, . . .,

n�/2Ũ(T)�,n = n�/2(n
�

) T∑
t=1

λ�,t
∑

{i1,...,i�}⊂{1,...,n}
φt(Yi1) · · ·φt(Yi�)

d→ W(T)
�

=
T∑
t=1

λ�,tp�(Zt). (14)

Hence, for any s, ε > 0 and T,∣∣∣ch (s, n�/2Ũ(T)�,n

)
− ch

(
s,W(T)

�

)∣∣∣ < ε

for all sufficiently large n. For any s and ε > 0,∣∣∣ch (s,W(T)
�

)
− ch(s,W�)

∣∣∣ ≤ |s|
{
E
(
W� − W(T)

�

)2}1/2

= |s|
(
�!

∞∑
t=T+1

λ2�,t

)1/2

< ε (15)

for all sufficiently large T. Therefore, for any s and ε > 0,∣∣∣ch (s, n�/2Ũ�,n) − ch(s,W�)
∣∣∣ < 3ε

for all sufficiently large n. This shows that the characteristic function of n�/2Ũ�,n converges
to the characteristic function ofW� and, thus, (13) holds and the proof of (10) is completed.

It remains to show that themeanofW� is 0 and the variance ofW� is �!Var{ψ(Y1, . . . ,Y�)},
for W� given by (13). Let W(T)

� be given by (14). Then, result (15) actually shows

that W(T)
�

d→ W� as T → ∞. Since {(W(T)
� )2,T = 1, 2, . . . } is uniformly integrable (e.g.,
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Page 86 of Shao, 2003), E(W�) = limT→∞ E(W(T)
� ) = 0 as E{p�(Zt)} = 0 and Var(W�) =

limT→∞ Var(W(T)
� ) = limT→∞

∑T
t=1 λ

2
�,tVar{p�(Zt)} = �! limT→∞

∑T
t=1 λ

2
�,t = �!

∑∞
t=1

λ2�,t = �!Var{ψ(Y1, . . . ,Y�)} by (12). By Hoeffding (1948), Var(n�/2Uk,n)→�!
(k
�

)2
Var{ψ(Y1,

. . . ,Y�)} as n → ∞. This completes the proof. �

4. U-statistics for measures of dependence

In this section, we provide details of Example 4 in Section 1 for U-statistics in (1) with
multivariate Yi’s in estimating measures of dependence of random variables.

Consider two random variables R and S with joint cumulative distribution function
FR,S(r, s) and marginal cumulative distribution functions FR(r) and FS(s) for R and S,
respectively. A measure of dependence of R and S is

θ =
∫∫ {

FR,S(r, s)− FR(r)FS(s)
}2 dFR,S(r, s), (16)

which is 0 if and only if FR,S(r, s) = FR(r)FS(s) for any r and s, i.e., R and S are independent.
Let Yi = (Ri, Si), i = 1, . . . , n, be independent and identically distributed with FR,S(r, s).

As an unbiased estimator of θ in (16), the U-statistic U5,n of order k = 5 is given by (1) with

h(Y1, . . . ,Y5) = 1
5!

∑
P

{
I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri3 ≤ Ri1)I(Si3 ≤ Si1)

− 2I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1)

+ I(Ri2 ≤ Ri1)I(Si3 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1)
}
, (17)

where the summation is over the 5! permutations {i1, . . . , i5} of {1, . . . , 5} and I(B) is the
indicator of B. To see why E{h(Y1, . . . ,Y5)} = θ in (16), note that

θ =
∫∫ {

F2R,S(r, s)− 2
∫∫

FR,S(r, s)FR(r)FS(s)+
∫∫

F2R(r)F
2
S(s)

}
dFR,S(r, s)

and

E
{
I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri3 ≤ Ri1)I(Si3 ≤ Si1)

}
= E

[
E
{
I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri3 ≤ Ri1)I(Si3 ≤ Si1) | Yi1

}]
=

∫ ∫
E
{
I(Ri2 ≤ r)I(Si2 ≤ s)I(Ri3 ≤ r)I(Si3 ≤ s) | Yi1 = (r, s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si2 ≤ s)I(Ri3 ≤ r)I(Si3 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si2 ≤ s)

}
E
{
I(Ri3 ≤ r)I(Si3 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

F2R,S(r, s)dFR,S(r, s),

E
{
I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1)

}
= E

[
E
{
I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1) | Yi1

}]
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=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si2 ≤ s)I(Ri4 ≤ r)I(Si5 ≤ s) | Yi1 = (r, s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si2 ≤ s)I(Ri4 ≤ r)I(Si5 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si2 ≤ s)

}
E
{
I(Ri4 ≤ r)

}
E
{
I(Si5 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

FR,S(r, s)FR(r)FS(s)dFR,S(r, s),

E
{
I(Ri2 ≤ Ri1)I(Si3 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1)

}
= E

[
E
{
I(Ri2 ≤ Ri1)I(Si3 ≤ Si1)I(Ri4 ≤ Ri1)I(Si5 ≤ Si1) | Yi1

}]
=

∫ ∫
E
{
I(Ri2 ≤ r)I(Si3 ≤ s)I(Ri4 ≤ r)I(Si5 ≤ s) | Yi1 = (r, s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)I(Si3 ≤ s)I(Ri4 ≤ r)I(Si5 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

E
{
I(Ri2 ≤ r)

}
E
{
I(Si3 ≤ s)

}
E
{
I(Ri4 ≤ r)

}
E
{
I(Si5 ≤ s)

}
dFR,S(r, s)

=
∫ ∫

F2R(r)F
2
S(s)dFR,S(r, s),

where we use the fact that Yi and Yj are independent whenever i �= j.
From the form of kernel h in (17), we obtain that, with y = (r1, s1),

ψ(y1) = E{I(R2 ≤ r)I(S2 ≤ s)I(R3 ≤ r)I(S3 ≤ s)}
− 2E{I(R2 ≤ r1)I(S2 ≤ s1)I(R4 ≤ r1)I(S5 ≤ s1)}
+ E{I(R2 ≤ r1)I(S3 ≤ s1)I(R4 ≤ r1)I(S5 ≤ s1)}

= F2R,S(r1, s1)− 2FR,S(r1, s1)FR(r1)FS(s1)+ F2R(r1)F
2
S(s1)

= {FR,S(r1, s1)− FR(r1)FS(s1)}2,

which is non-constant (the corresponding U-statistic has rank 1) if and only if θ �= 0 (R and
S are not independent). When R and S are independent, with y1 = (r1, s1) and y2 = (r2, s2),

ψ(y1, y2)

= 1
4

∫
{I(r1 ≤ r)I(r2 ≤ r)− I(r1 ≤ r)FR(r)− I(r2 ≤ r)FR(r)+ F2R(r)}dFR(r)

×
∫

{I(s1 ≤ s)I(s2 ≤ s)− I(s1 ≤ s)FS(s)− I(s2 ≤ s)FS(s)+ F2S(s)}dFS(s),

which is non-constant and, thus, the corresponding U-statistic has rank 2.
The previous discussion can be extended to the dependence of any fixed number of ran-

dom variables. We end this paper by constructing a U-statistic for the dependence of three
random variables, Q, R, and S. Let Y = (Q,R, S), FY(q, r, s) be the joint cumulative distribu-
tion of Y, and FQ(q), FR(r) and FS(s) be the marginal cumulative distributions ofQ, R and S,
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respectively. A measure of dependence of Q, R and S is

θ =
∫∫∫

{FY(q, r, s)− FQ(q)FR(r)FS(s)}2dFY(q, r, s),

which is 0 if and only if FY(q, r, s) = FQ(q)FR(r)FS(s) for any q, r and s, i.e., Q, R and S are
independent. Using the same argument, we can construct a U-statistic (1) of order 7 and
kernel h(Y1, . . . ,Y7) equating

1
7!

∑
P

{I(Qi2 ≤ Qi1)I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Qi3 ≤ Qi1)I(Ri3 ≤ Ri1)I(Si3 ≤ Si1)

− 2I(Qi2 ≤ Qi1)I(Ri2 ≤ Ri1)I(Si2 ≤ Si1)I(Qi5 ≤ Qi1)I(Ri6 ≤ Ri1)I(Si7 ≤ Si1)

+ I(Qi2 ≤ Qi1)I(Ri3 ≤ Ri1)I(Si4 ≤ Si1)I(Qi5 ≤ Qi1)I(Ri6 ≤ Ri1)I(Si7 ≤ Si1)},
where Yi = (Qi,Ri, Si) and the summation is over the 7! permutations {i1, . . . , i7} of
{1, . . . , 7}.

5. Concluding remarks

This paper presents a rigorous and technically sophisticated derivation of the asymptotic
distributions of degenerated U-statistics with any given rank �, extending the existing result
for rank � = 2 and offering new insights into the limiting behaviour of such statistics. This
topic is of practical importance in statistical theory, since aU-statistic with rank � ≥ 2 is often
encountered under the null hypothesis of interest. Possible extensions include the derivations
of asymptotic joint distributions of several U-statistics, some of which have high ranks, and
multi-sample generalized U-statistics with high ranks (Serfling, 1980, p. 175).
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