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ABSTRACT ARTICLE HISTORY
Conditional Local Risk Ratio (CLRR) is a widely used metric for assess- Received 22 January 2025
ing heterogeneous treatment effects of binary outcomes in random- Accepted 16 July 2025
ized clinical trials involving noncompliance. Existing methods, such KEYWORDS

as moment-based and likelihood-based approaches, often overlook Conditional local risk ratio;
the inherent mixture structure in data, necessitate stringent paramet- instrumental variable;

ric assumptions, or yield estimates with implausible values. In this noncompliance;

paper, we introduce a novel semiparametric likelihood-based (SPL) retrospective approach;
method for estimating CLRR. Our method requires only three para- semiparametric model

metric model assumptions, significantly fewer than the six models
needed by existing likelihood-based methods, thereby reducing model
complexity and enhancing robustness. This simplicity also results in
fewer unknown parameters, further boosting computational efficiency.
Unlike moment-based methods, our SPL method fully exploits the mix-
ture structure of the observed data and the principal strata framework.
Additionally, our method ensures that the final CLRR estimate always
fall within a valid range. We establish the asymptotic normality of
our estimator and demonstrate its superiority over existing methods
through numerical simulations. We further apply our method to analyze
the Oregon Health Insurance Experiment dataset, providing valuable
insights into the heterogeneous effects of Medicaid on both physical
and mental health.

1. Introduction

Randomized controlled trials (RCTs) are universally acknowledged as the gold standard for
assessing the efficacy of novel interventions or treatments across diverse scientific disciplines
(Kohavi & Thomke, 2017; Piantadosi, 2024; Shadish et al., 2002). This paper specifically
focuses on binary outcomes, which are commonly employed to capture crucial endpoints
such as depression status (depressed or not) (Taylor et al., 2016), mortality (dead or alive)
(Stamler et al., 1986), and disease status (ill or not) (Have et al., 2003), particularly prevalent
in global health research. The binary outcome is pivotal in RCTs due to their extensive use in
trial design, as evidenced by Charles et al. (2009), who reported that nearly half of the sample
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size calculations in the trials they reviewed were based on binary outcomes, underscoring
their critical role in determining statistical power and facilitating treatment comparisons.

However, in practice, ethical considerations and individual noncompliance frequently lead
to deviations from the intended protocols in RCTs, with the reasons for these deviations often
remaining unobserved (Baicker et al., 2013; Lois et al., 2008). This phenomenon, known as
nonnegligible noncompliance, introduces unmeasured confounders that concurrently influ-
ence both the treatments received and the outcomes. It poses a substantial challenge in
assessing the effectiveness of experimental treatments in clinical trials and causal inference,
as it violates the unconfoundedness assumption required by traditional causal inference
methods (Dodd et al., 2012).

The existing methodologies for addressing noncompliance in RCTs can broadly be cate-
gorized into two groups: naive approaches and instrumental variable (IV) approaches. Naive
approaches encompass intent-to-treat (ITT), as-treated (AT), and per-protocol (PP) analyses.
A critical limitation shared by these naive methods is that they fail to provide valid estimates
of the target causal effects due to selection bias and confounding bias.

On the contrary, IV approaches leverage the random assignment mechanism as an instru-
ment, enabling the identification of causal effects even in the presence of unmeasured
confounders. With IV, the literature has explored both parametric identification of average
treatment effect (ATE) (Imbens, 2004; Robins, 1994) and nonparametric identification of
local average treatment effect (LATE) (Frolich, 2007; Imbens & Angrist, 1994), which focuses
on the average treatment effect among potential compliers. However, for bounded causal esti-
mands induced by binary outcomes, the aforementioned methods may yield misleading or
absurd estimates. For instance, in the context of binary outcomes, the additive LATE is the-
oretically bounded within the range of [—1, 1], yet its estimates may fall outside this range,
which is absurd (Abadie, 2002; Hirano et al., 2000; Tan, 2006).

Instead of relying on traditional additive LATE, multiplicative LATE measures such as
causal risk ratio (RR) and causal odds ratio (OR) are commonly used to assess the impact
of a binary treatment on a binary outcome. It is well-documented that odds ratios are not
collapsible, meaning the marginal odds ratio does not fall within the convex hull of stratum-
specific odds ratios. Conversely, risk ratios are collapsible, making them a more favorable
choice (Rothman et al., 2008). Furthermore, the pervasive nature of individual heterogeneity
highlights the critical need to incorporate covariates in analytical frameworks. This integra-
tion can improve estimation efficiency, enable identification of distinct subpopulations, and
support evidence-based individualized decision-making. These substantive considerations
jointly emphasize the methodological importance of conducting inference on conditional
local risk ratios (CLRR) - the multiplicative counterpart to the additive LATE.

Recently, there has been a surge of interest in CLRR within the literature. Existing meth-
ods for estimating CLRR are semiparametric methods, which can broadly be categorized
into moment-based and likelihood-based approaches. Moment-based methods rely on spe-
cific moment conditions to obtain estimates. For example, Abadie (2003) specifies a model
for the outcome given compliers, treatment, and covariates (such as a logistic model), mini-
mizing a weighted ordinary least squares criterion. However, this approach may suffer from
instability and lack interpretability in the estimated parameters, which arises from the use
of negative weights for individuals whose received treatment deviates from their assigned
treatment. Alternatively, Okui et al. (2012) and Ogburn et al. (2015) proposed doubly robust
methods that offer additional flexibility but do not fully leverage compliance information and
can be highly sensitive to initial values when solving certain estimating equations. In RCTs
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with noncompliance, the data are best viewed through a mixture model framework under the
theory of principal strata (Imbens & Rubin, 1997). Unfortunately, moment-based methods
often fail to fully address the complexities arising from this mixture.

On the other hand, likelihood-based approaches aim to maximize the likelihood function.
While maximum likelihood and Bayesian methods provide a theoretically sound framework
under six parametric model specifications (Hirano et al., 2000; Imbens & Rubin, 1997; Little
& Yau, 1998), their validity is compromised if the working models are misspecified. Wang
et al. (2021) assumes model specifications that are variation-independent from the CLRR
and introduces a one-to-one mapping to traditional parametric models, but their method
also risks model misspecification. Compared to moment-based methods, likelihood-based
methods are computationally more demanding due to the involvement of more unknown
parameters. The trade-off between computational efficiency and robustness remains a critical
challenge in the estimation of CLRR.

The aforementioned discussions motivate the development of our semiparametric
likelihood-based (SPL) method for RCTs with noncompliance and binary outcomes. Firstly,
unlike moment-based methods, SPL fully utilizes the mixture structure in the data and
the principal strata framework. It is specifically designed for estimating CLRR, effectively
addressing binary outcomes and accounting for individual heterogeneity. Secondly, the pro-
posed SPL method imposes parametric assumptions only on the three density ratios, inspired
by Anderson (1979). It requires fewer parametric assumptions than existing likelihood-based
methods, such as Wang et al. (2021), which rely on six parametric models. This enhances
robustness, reduces the number of unknown parameters, and significantly decreases com-
putational time. Thirdly, a key advantage of our approach is that the final CLRR estimate
always remains within a valid range, ensuring plausible results.

The remainder of this paper is organized as follows: In Section 2, we introduce the IV
setup, provide definitions of potential outcomes and assumptions referred to throughout the
paper, and present basic notions for later use. Section 3 details the proposed estimation proce-
dure and its large-sample properties. In Section 4, we evaluate the finite sample performance
of the proposed estimators via simulations. Our method is applied to estimate the causal
effect of a health insurance program on physical and mental health in OHIE using data from
the RCTs conducted by Baicker et al. (2013). Section 6 concludes with a brief discussion. For
clarity, all proofs are relegated to the Appendix A.

2. Methodology
2.1. Notations and assumptions

We consider estimating causal effects in randomized controlled trials (RCTs) with noncom-
pliance and a binary outcome Y. Let Z represent the treatment assigned, D represent the
actual treatment received. Here, Z = 1 and 0 indicate assignments to the treatment and con-
trol groups, respectively, while D = 1 and 0 indicate whether the treatment was received or
not, respectively. Due to potential noncompliance, the treatment received D may differ from
the treatment assigned Z, leading to confounding of the effect of D on Y by both observed
covariates X and unobserved confounders U.

Suppose that the sample size is n. We adopt the potential outcomes framework
(Rubin, 1974), and let D(z1, . . ., z,) € {0, 1} be the potential treatment received under ran-
domization assignment (Z,...,Z,) = (z1,...,2,). Similarly, let Y(z1,...,24,d1,...,dy)
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Table 1. Principal stratum describing potential complier status

(D(1),D(0)).

D(1) D(0) Principal stratum Abbreviation S
1 1 Always-taker a
1 0 Complier C
0 1 Defier d
0 0 Never-taker n

represent the potential outcome under treatment assigned (Zy,...,Z,) = (z1,...,2,) and
treatment received (D1 (z1, . ..,2n),. .., Dp(z1,...,2,)) = (d1,...,d,). We make the follow-
ing commonly-used assumption:

(A0) Stable Unit Treatment Value Assumption (SUTVA): D; = Di(Z;) = Di(Z1, ..., Zy),
Y, = Y,‘(Z,‘, D,’) = Yi(Zl, .2y, Dy, ,Dn).

Under (AO0), the potential outcome become D;(Z;) and Y;(Z;, D;). Suppose that the samples
(Zi, Dj, X;, Y;) are independent and identically distributed (i.i.d.) as (Z, D, X, Y).

Based on the value of potential received treatment (D(1), D(0)), the population can be
divided into four latent groups S, called principal strata (Frangakis & Rubin, 2002),

e Always-takers (S = a): Units with D(z) = 1 for all z € {0, 1}, who systematically accept
treatment regardless of assignment.

e Never-takers (S = n): Units with D(z) =0 for all z € {0,1}, who persistently reject
treatment irrespective of assignment.

e Compliers (S = c): Units with D(z) = z for all z € {0, 1}, who adhere to assignment.

e Defiers (S = d): Units with D(z) = 1 — z for all z € {0, 1}, who counteract assignment.

See Table 1. Note that the principal stratum is unidentifiable. This is because D(1) and
D(0) cannot be observed simultaneously, and observed data cannot distinguish the principal
strata due to the following overlaps: (Z = 0, D = 0) could be either never-taker or complier,
(Z = 0,D = 1) could be either always-taker or defier, (Z = 1, D = 0) could be either never-
taker or defier, (Z = 1, D = 1) could be either always-taker or complier. Among these four
principal stratum, compliers play a crucial role in RCTs with noncompliance.

The objective of this paper is to make inferences about the conditional local risk ratio
(CLRR) for compliers, i.e.,

_ E{Y(1,1) | X=x,S=¢}
T E{Y(0,0) | X=xS=c}

R(x) 1)

which falls within [0, co) when dealing with the binary outcome. To ensure the CLRR is well
defined, in addition to (A0), we make another assumption:

(A1) E{Y(0,0) | X = x,S = ¢} # 0 almost surely.

Since the unidentification of compliance strata renders the CLRR unidentifiable, we adopt
five additional assumptions from Abadie (2003) to identify it.

(A2) Exclusion Restriction: Y(Z=1,D=d) =Y(Z =0,D=d) = Y(D =d) forall d.
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Figure 1. lllustration of an instrumental variable model using a causal graph. Variables Z, D, X, Y are
observed; U is unobserved. The left panel gives a causal Directed Acyclic Graph (Pearl, 2009), and the right
panel gives a Single World Intervention Graph (Richardson & Robins, 2013). (a) A Directed Acyclic Graph
and (b) A Single World Intervention Graph.

(A3) Exogeneity: Z is independent of {D(0), D(1), Y(0), Y(1), X}.
(A4) Relevance: E{D(1) — D(0) | X} # 0 almost surely.

(A5) Monotonicity: p{D(1) > D(0) | X} = 1 almost surely.

(A6) Positivity: 0 < p(Z = 1) < 1 almost surely.

(A2)-(A4) represent the classical instrumental variable assumptions, and Z is an instru-
mental variable under these three assumptions. (A2) implies that Z isn’t a direct cause of the
outcome Y, and (A3) implies ignorability, which allows for direct comparability of D and Y
corresponding to different Z. This means that the causal effects of Z on D or Y are identi-
fiable. Note that (A3) naturally holds in randomized experiments. (A4) shows that Z has a
non-zero causal effect on D, or equivalenlty p(S = ¢|X = x) # 0. The relationship among the
variables Y, Z, D, X and the unobserved confounder U can be illustrated by a causal directed
acyclic graph (Pearl, 2009) and a corresponding Single World Intervention Graph (Richard-
son & Robins, 2013); see Figure 1. What’s more, (A6) naturally holds in RCTs, and (A4) is
testable under (A6), since E{D(1) — D(0)|X}p(Z = 1)p(Z = 0) = Cov(Z, D|X). Next, (A5)
is the most important assumption, which rules out the existence of defiers and is proposed
to identify causal effects nonparametrically. Under Assumptions (A0)-(A3), the CLRR can
be expressed as

_p(Y:lIX:x,Z:l,S:c)

R(x) = , 2
) pY=1|X=x2=0,S=¢) @
which allows for nonparametric identification.
2.2. ldentification and re-expression of CLRR
As disclosed by Abadie (2002), the CLRR for a binary outcome can be identified as
(Y=1,D=1X=xZ=1)—p(Y=1,D=1X=x2=0)
R(x) =P P ©)

Cp(Y=1LD=0X=x2=0-p(Y=1,D=0X=x2=1)

Clearly, the four terms p(Y = 1, D = d|X = x, Z = z) on the right-hand side of (3) are non-
parametrically identifiable from observed data, and so is the CLRR. Unfortunately, estimates
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of both the numerator and denominator of the right-hand side of (3) may be negative. This
leads to negative CLRR estimates, which is inconsistent with the definition of CLRR as a
nonnegative measure.

To overcome this problem, we consider an alternative expression of the CLRR in (2). We
retrospectively decompose the numerator and the denominator of (2) as

p¥Y=y|X=x2Z2=1,S=0)
_pY=ylZ=18S=0p|Y =y,Z=1,5=¢)
pxlZ=1,S=¢)
p¥Y=y|X=x,Z2=0,S=0)
_p(Y=yIZ=0,S=0)p(x|]Y =y,Z=0,S=¢)
pxlZ=0,S=¢)

>

4)

Under Assumption (A3), Z is independent of (S, X), and therefore, p(x|Z =0,S =¢) =
p(x|Z = 1, S = ¢). It then follows that

_pxlY=1,Z=1,8S=c¢c) p(Y=1Z=18=0)
Cpx|lY=1,Z=0,S=¢) p(Y=1|Z=0,S=¢)’

R(x)

Let pa(y) =p(Y =yIS=c¢Z=1), po(y) =p(Y =yIS=¢2Z=0), ga(xly) =pX =
x|Y=98=¢Z=1) and go(x|ly) =p(X =x|Y =»,8S=c¢,Z=0). The CLRR can be
expressed as

_ & (x[1) pe1 (1)

~ g1 peo(1) (5)

R(x)

Lemma 2.1: Under Assumptions (A0)-(A6), as functions of (x,y), the parameters
P (y)s Peo ), ga1(xly), and geo(x|y) are all identifiable.

A proof of Lemma 2.1 is provided in Appendix A.1. As R(x) is uniquely determined by
pe1(1), peo(1), ga1(x]1), and go(x|1), Lemma 2.1 implies that R(x) is identifiable. This also
suggests that we can estimate R(x) through estimating p.1 (1), pco(1), ge1(x]1), and geo(x|1),
or simply estimating p.; (1), pco(1), and g¢1 (x]1) /geo (x]1).

2.3. Semiparametric likelihood estimation

Recall that {(Z;, D;, X;, Y;)}i., are i.i.d. observations from (Z, D, X, Y). Based on the identi-
fication results in the previous subsection, we propose a novel semiparametric likelihood
estimation method called SPL. Our estimation procedure consists of two steps, which

estimate {p.1(1), pco(1)} and gc1 (x|1) /g0 (x|1), respectively.

2.3.1. Steplof SPL
As the parameters p.(1) and p.(1) do not involve the covariates x, the first step of our
method is built on the data {(Z;, D;, Y;),i = 1,. .., n}. The likelihood function is

n

b= [ [{p2 =0 p0 = 120

i=1

I{Z;=0,D;=1}
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{Z;=1,D;=0

x {p(Zi = 1) - p(¥;, Dy = 0)Z; = D} H=H0=0
I{Z;=0,D;=

x {p(Zi = 0) - p(Ys, D; = 02; = 0)} ==
I{Z;=1,D;=1

X {p(Z, = 1) . p(Yi,Di = 1|Zi = 1)} { ! }] .

Let 6=p(Z=1),¢a =p(S=2),¢yu =p(S=n), . =p(S=0¢)=1—¢ds — Pu, pa(y) =
p¥Y=ylS=a)=p(Y =ylS=a,Z=2),and p,(y) =p(Y =y|S=n)=p(Y =y|S=n,
Z = z). It can be found that

P(Yb D;=0|Z; = 0) = ¢npn(Yi) + ¢CPCO(Y1')>

p(Yi, D; = 1|1Z; = 0) = ¢apa(Yi),

p(Yi, D; = 1|1Z; = 1) = ¢papa(Yi) + ¢pcper(Yi),

p(Yi,D; = 0|Z; = 1) = ¢npu(Yi).

Therefore the likelihood L; can be expressed as

n

L= H [{(1 - 5)¢apa(yi)}I{ZiZO,D,-:1}

i=1
X {(1 — 5) [¢npn(YZ) + ¢CPCO(Y1')
x {dlapa(Ys) + ¢cpcl(Y,')]}”Zi=1)Di=1}] _

]}I{Z,-:O,D,-: I{Z;=1,D;=0}

D x {6pupn(Yi)}

In the meantime, we summarize the data {(Z;, D;, Y;),i = 1,...,n} by defining I,; = I{Z; =
2hLai=I{Zi=2Di=d},Lgyi=I{Zi=2Di=d,Yi=y},n, =2 | H{Zi=z}ny =
Z?:l K{Z; =2z D; = d},nzdy = Z?:l HZ;=2D;=4d,Y; = y}. Let 0 = (9, ¢a’¢n)pa(1)>
Pn(1), peo(1), pe1(1)), which includes the important parameters p.;(1) and p.o(1) as com-
ponents. The log-likelihood function in this step is
£1(0) = nolog(1l — ) + ny1logd + ng1 log ¢ + no11log pa(1) + no10log{1 — pa(1)}

+ n10log ¢n + ni01 log pu(1) + nigo log{l — pu(1)}

+ ngo1 log [(1 — Pa — Pu)po(1) + ¢npn(1)]

+ nogo log [(1 = ¢a — Pl — poo(1)} + Pull — pn(l)}]

+ nin 10g [(1 — ¢a — Pn)par (1) + ¢apa(l)]

+ ny10log [(1 = ¢a — Pu){1l — pa (1)} + ¢afl _Pa(l)}] . (6)

The parameter 6 should belong to

O=1{0:5€(0,1),¢s¢y = 0,1 =y — ¢y > 0,

PcO(l) € (0, 1]) Pa(l)’Pn(l)’Pcl(l) € [0’ 1]})
where the constraint 1 — ¢, — ¢, > 0 follows directly from Assumption (A5), and po(1) €
(0,1] follows from Assumption (Al) and Equation (4). We propose to estimate 6

by its maximum likelihood estimator (MLE) 6 = o, &a,&n,ﬁa(l),f)n(l),f)cg(l),ﬁcl(1)) =
argmaxgee €1(0).
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Remark 2.1: The constraints in © are essential to ensure the validity of the MLE. If we
ignore thesg constraints, ~the MLE of0~ is 0 = (6, Pa, P> Pa(1), Pu(1), peo (1), pe1 (1)), where
0 = n1/n, ¢ = no1/no, $n = n10/n1, $c = 1 — (no1/no) — (n10/m1), and

(n11y/m1) — (n01y/10)
1 — (no1/no) = (n10/m)’

- n N n .
Pa) = —2, Pu) = —2, pa(y) =
n10

no1

(n0oy/no) — (n10y/n1)
1 — (no1/no) — (n10/m1)
This corresponds to the moment estimator in Appendix A.1. However, the moment estimator 0

may be misleading because the estimates $., peo(y) and pe) (y) may be negative or greater than
1, falling outside their ranges.

I~’c0 ()’) =

2.3.2. Step Il of SPL
It remains to estimate g (x|1)/gc0(x|1). Define two conditional density functions

Saxly) =pX =xS=a,Y=y)=pX=xS=aY=y,Z=2),
Gxy) =pX=xS=nY=y)=pX=x[S=nY=yZ=2).
In Step II, we postulate three density ratio models

LU _ gy 8D gy 8a D sy 7
go(x]1) go(x]1) geo(x[1)

where #1(), #2(+) and #3(-) are user-specified functions. For example, we may choose them
to be linear functions to facilitate computation and interpretation.
Step IT of our SPL is built on the conditional likelihood

L= [] p@ DyX;Yi=1).
iYi=1

The following lemma plays an important role in expressing the conditional likelihood L, in
terms of @ and 8 = (ﬂlT,ﬁzT,ﬂ;)T.

Lemma 2.2: Under Assumptions (A0)-(A6) and models (7), we have
p(Z=0,D=0X=xY =1) = (1 — 8)go(x|1) {qﬁcpco(l) + ¢npn(1)e'72(x;ﬂz)} )
PZ=0D=1LX=xY=1) = (1 - §)go(xIDapa(l)e" “F?,
P(Z=1,D=0,X=uxY = 1) = dgeo(x|1)npn(1)e” 2,
pZ=1,D=1X=2xY =1) = dgo(x|1) {¢de(1)en3(x;ﬂ3) + ¢apa(1)em<x;ﬂl)} ,

With the preparations in Lemma 2.2, we can express the logarithm of L, as

02(B,8010) = £21(B, gw0l0) + £22(0),

where

£21(8.80l8) = > 1{Yi = 1} [ loglgeo(Xil DX}

i=1
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+ lo1,in1 (Xi; B1) + Tho,in2(Xis B2)

+ Ino,i log {qﬁcpco(l) + ¢npn(1)e’72(xi;ﬂ2)}

+ I log {¢cpcl(1>e"3<xf;ﬂs> + papa(De” S0 ],

£22(0) = ZI —log(dXy) + Ioy,i log(1 — )papa(1)

+ T1o,ilog{0¢upn (1)} + Ioo,i log{(1 — 6)} + I11,ilog 4] .

In this step, we propose to replace 6 in {>(B,gc0|6) by 0 and estimate by maximizing
€2(B, g0|0) or equivalently maximizing €21(B, g:010) because £2,(#) does not depend on .
Directly maximizing £»1 (8, g«0|0) with respect to (B, g.0) is questionable because g, is an
infinite-dimensional parameter.

In the expression of €21 (B |0) g0 is related with all observations X; such that Y; = 1. As
gc0 is a density function, we handle it with the empirical likelihood method. Let G (x|1)
denote the cumulative probability distribution function corresponding to g.o(x|1). Then
dG(Xi|l) = go(Xi|1)dX;. In the principle of empirical likelihood, we model G.o(x|1) by
a step function Gy (x|1) = Z?:l I(Y; = DwiI(X; < x). Because Gg(x|1) is a distribution
function, this together with (7) implies that w = (wy, ..., w,) should belong to

n
wi > O,ZI(Yi = I)W,' =1,

i=1

W(B) = {w

n
DY = Dwe ) = 1,5 = 1,2,3} :
i=1

Given B, after g.o(Xi|1)dX; = dG(Xi|1) are replaced with w;, the likelihood €21(8, g:010)
is maximized with respect to w in W(B) when w; = I{Y; = 1}/[m{1 + 213:1 ij(e”f(X";ﬂi) -
1)}, where m =" | Y; and (41,42, 43) = (41(B), A2(B), 43(B)) is the solution to the
following equation arrays

=0, k=1,2,3. (8)

1 Z”: {Y; = 1{e B — 1}
1+ X Ate ) — 1

Therefore, the profiled log-likelihood (up to a constant not depending on ) of 8 is

n 3
01(B16) =D H{Y; =1} | —log § 14 > () — 1) F + Ioy i (Xs B1)
. P

+ IlO,i772 (Xi; ﬁz) + IOO,i 10g (¢cp60 + (lsnpneW(Xi;ﬂZ))
+1;1,log (¢dee'73(Xi;ﬂ3) + ¢apaem(Xi;ﬂ1)) . (9)

We propose to estimate B by its MLE ﬁ = arg maxg {’21(/3|0) Finally, by substituting the
quantities in (5) with the estimators (0 ﬁ ), the proposed estimator of CLRR R(x) is R(x) =
exp{n3(x; ﬂ 3)} - Pe1(1)/peo(1). Obviously, this estimator always lies in the range [0, 00).



340 W. LIU ET AL.

Because of the presence of a two-component mixture structure in the likelihood ¢5; (8 |I9\),
its maximization is challenging. We overcome this challenge via an EM algorithm.

2.3.3. EM algorithm

Let O denote the observed data and S; denote the principle strata that individual i belongs to.
In our EM algorithm, we take O as missing data and take O U {Sy, . . ., S,} as complete data.
Based on the complete data, the profile log-likelihood is £51, that is, Equation (9).

To account for latent principal strata, we propose an EM algorithm for optimization.
Assume that #(x), for k = 1, 2, 3, each contains a constant term. This is a mild assump-
tion that is commonly met in practice and allows for a closed-form expression of A. Let 8 ©
be an initial value of 8 and B = (B ), gk)’ B gk))’ be the parameter value in the kth round
of EM algorithm.

In the E-step of the kth iteration of our EM algorithm, we calculate the conditional expec-
tation of £3; given the observed data O with Y = 1 and the parameter value ﬂ(k_l) in the
previous iteration. It can be seen that

E(£21]0; Y; = 1; %~1)

n 3
=D HY;=1} | —log {1+ > AP %h) — 1)

i—1 i1
+ Ior,im (Xis B1) + o,in2(Xi; B)
A A k A A .
o+ Ioo, {wif) log depeo(1) + (1 = wil)) log dupu(1)em55#2) |

+ Ill,i {Wg,(i) log(};cﬁcl(l)e%(xi;h) + (1 - Wg,cz)) log(};aﬁa(l)em(xﬁﬂl)}]

n 3
x D HY =1} | —log 1 14 > 4P — 1)

i—1 =1
o x (1 )
11,iW, ’73( is ﬂ3) + 11o1,i + I1,i (1 Woi ’71(X1) ﬂl)
k
+ {IIO,i + Ino,i (1 - WE})} ﬂz(Xi;ﬂz)] , (10)

where

W = p(Si =clZi=0,D; =0,Y; = 1,X))
_ pePeo(1)
 Bepeo() + Gupu(1)eriBE
Wg,? =pSi=¢cZ =1Di=1Y;=1,X))

&cf’a (1)e™ X85 )
B ggCﬁcl(1)3’730{";@{_1)) + &aﬁa(l)em(xi;ﬂgkﬂ))'
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and

R (e )

>

m
k
D {1101,1' + Ioow,i ( Wg l))}
FIC
2 - bl
m

K

o X hws)

AP = =t UL
m

>

withm =" {Y; = 1}.
kK _ (k)

Given the initial value of ﬂ( (w1 1,...,wgk)) w(k)

(wgfl) s Wy )) and AR = (lgk),lgk),/lgk)). This allows us to compute the conditional
expectation (10). The M-step in the kth iteration of our EM algorithm is to calculate

k_l), we can obtain w)

g® :argm,?XE{lelQSb Yi = hﬂ(k_l)}’ v

and thus we get the kth estimator 8%, The process is iterated until convergence.

Algorithm 1: EM algorithm to calculate the maximizer of {2,
Data: {(Z;,D;,X;,Y;=1):1,...,n} R
Input: Working models (7), an estimate 6, and an initial value BO for B
e E-step: Calculate the conditional expectation in (10);
e M-step: Calculate (11).
e Repeat the above two steps until convergence.

Output: The final parameter value B® is the MLE of B.

3. Large-sample properties

We assume that #3(x; B3) is smooth enough in B5. Then the proposed CLRR estimator R(x)
is a smooth function of the MLEs § and ﬂ To study its large-sample properties, it suffices to
investigate the large-sample properties of 0 and B.
For an observation O = (Z,D, X, Y),letI, = I(Z = 2), I,y = I(Z = z,D = d) and L4, =
I(Z=2zD=4d,Y =y). Define
f(0;0) =1Iylog(l —0) +I;logo

+ Io1 log $a + Io11 log pa(1) + Ioio log{1 — pa(1)}

+ Tolog ¢u + o1 log pu(1) + Lioo log{1 — pa(1)}

+ Inoo 10g [(1 - ¢a - ¢n) {1- PcO(l) + ¢n{1 - pn(l)}]

+ Ioo1 log [(1 — ¢a — Pn)peo(l) + ¢npn(1)]

+ 1o log [(1 = ¢a = p){1 = per (D} + dall = pa(D)}]

+ I111 log [(1 = ¢a — Pu)pa (1) + ¢apa(1)]
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The true parameter value of 0 is 0y = arg maxgce Pf(O;0), where P is the probability mea-
sure of O.LetO; = (Z;, D;, X, Yi)’ i=1,...,n,and P, denote their empirical measure. Then
the MLE 6 can be expressed as @ = arg maxgee P,f(O;0).

Theorem 3.1: Suppose that 0 is an interior of the parameter space ©®, and Assumptions
(A0)-(A®6) are satisfied. Then as n — oo,

V@ — 05)-5N©, VY,

where V = —E{f(0;00)} and f(0;0) denotes the second-order partial derivative of f(0;0)
with respect to 0.

Then we examine the large-sample properties ofﬁ = (ﬁ?:ﬁ;— ji\;—)T andA = (11, 42, 23).
Let A = (41, 42, A3) and define

h(O; B, X, 0) = In1n1(X; By) + Tion2(X; B,)

+ I log {‘bcpcle%(x;ﬂﬁ + (;Zsapae’71 (X;ﬂl)}

+ I log {¢cPc0 + (ﬁnpne"Z(X;BZ)}

3
—log 11+ z/lj(e”j(x;ﬂf) -1
j=1

We use h,g (0; B,1,0) to denote the partial derivative of h with respect to B and define
hg(O; B, 1, 0) and h; (O; B, A, 0) similarly. Define h= (h—r hT)T Then (ﬂ l) is the solu-

tion to P,I{Y = 1}h(0; B, A, 0) = 0, and the true value (ﬂo,ko) is the solution to PI{Y =
1}h(0; B.A 0) =0.

Let h 86(O; B, A, 0) denote the second-order partial derivative of h with respect to 8 and
0, and define other second-order partial derivatives in a similar way. We make the following
assumptions.

(C1) (1)(Bg»>Ao) is the unique solution to PI{Y = l}h(O;ﬂ,k,Go) = 0. (ii)The parameter
space B of §8 is compact. Take A = [0, 1] x [0, 1] x [0, 1] to be the range of A.

(C2) (i) Geo(x|1) is non-degenerate, (ii) #1, 772 and #3 have continuous second-order deriva-
tives with respect to 8, 8, and B3, respectively. (iii) There exists a positive function
Ki(x) satisfying E{K1(X)} < oo such that |71 B3, 17206 B2) 113, 1755 B3)II3,
1771 (X B, 1772(X; B2) Il and [[73(X; B3) || are all controlled by K; (X) for all B € B.

(C3) The matrix X1; = —E{I(Y = 1)hgg(O; By, Lo, 00)} is positive definite.

Define

0L = P (I(Y = Dlgg(0; By, 20, 00)  I(Y = 1)ém<o;ﬂo,xo,oo>)
I(Y = 1)hyg(O; By, Ao, 00)  I(Y = 1) (O; By, Ao, 00)

_ (1Y = 1)@ﬁo(O;ﬂo,ko,00))
Q= (I(Y = 1)h9(0; By, X0,00))
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We use dj, to denote the dimension of 8 for k = 1, 2, 3, and define Is = (0,0,0,0,0, 1, 0),
Is = (0,0,0,0,0,0, 1), and

Iy, = (0,...,0,0,...,0,1,...,1,0,0,0).
—— ——— — —
di d ds

Theorem 3.2: Suppose that 0 is an interior of the parameter space ©, and Assumptions
(A0)-(A6) and (C1)-(C3) are satisfied. Then as n — 00, we have

(B Bo) LN, o),
A —2o
where £ = QU'W(QTY) T and W = Var{I(Y = 1)h(0; Bg, Lo, 00) + QVf(0;00))}.
With the above results, we show that our final estimator R(x) is also asymptotically normal.

Theorem 3.3: Suppose that 0 is an interior of the parameter space ®, and Assumptions
(AO);(A6) and (C1)-(C3) are satisfied. Then for each fixed x, as n — oo, it holds that
/n{R(x) — Ro(x)} — N(0, Var(M(x)), where

_eXP{ﬂ3(X;I33,o)}( _ pao() )T TN
Mx) = Peo,0(1) ! Pco,o(l)I5 V7 f(0:60)
- 773(36;/33 0) eXP{’B(x;ﬂs,o)}
pao(l)

(1)1d3Q1 {I1(Y = 1)h(0; By, o, 00) + Q2V'f(0:80)}.

In addition, if the support X of X is compact, then asn — 00, sup, . y IR(x) — Ro(x)| = 0p(1).

To make inference about ﬁ and R(x) based on Theorems 3.2 and 3.3, it is necessary to
construct consistent estlmates for the asymptotic variances in the two theorems. However,
the asymptotic variance of ﬁ and R(x) both exhibit very complex structures, making their
direct estimation formidable. To overcome this problem, we recommend using the usual
nonparametric bootstrap method to estimate the asymptotic variance of ﬁ and R(x).

4, Simulation
4.1. Settings

We conduct simulations to examine the finite-sample performance of the proposed
SPL estimation procedure. For comparison, we also consider the following competitors:
Abadie (2003)’s least square estimation method (LSE), Wang et al. (2021)’s maximum like-
lihood method (MLE), Wang et al. (2021)’s doubly robust estimator with optimal weighting
function (DRW), Wang et al. (2021)’s doubly robust estimator with identity weighting
function (DRU), and Richardson et al. (2017)’s maximum likelihood method ignoring the
information of D (ITT).

While the SPL framework was originally developed through retrospective analysis, our
simulation study adopts a prospective approach to data generation. This method not only
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aligns with the inherent causal mechanisms of the system but also enables more straight-
forward implementation. We generate a univariate covariate X from the standard normal
distribution and set X = (1, X). In our data generating process (DGP), we choose

¢pe(x) = p(S = c|X = x) = {1+ exp(a] x) + exp(e, x)} 7,
Pa(x) = p(S = alX = x) = exp(et, X)¢pc(x),
$n(x) = p(S = n|X = x) = exp(et,) X)pc(x),

po(1lx) =p(Y =1IS=¢,Z=0,X=x) = n(—yCTx),

pal) =p(Y =1S=c,Z=1LX=x) =x(y]x),

Pa(llx) =p(Y = 1IS=a,X =x) = 7 (y, »),

pu(1lx) =p(Y =1|S=n,X =x) = z(y | »),

where 7 (t) = e’ /(1 + €'). We set = 0.5, and cosider two settings

o (aga,) =(—3,-05-2,01),andy, =y, =y.=(-3,1),
o (aga,) =(—-1,-1,-0.8,02),andy, =y, =y.=(1,-1).

Under this DGP,
8a(x1)/ga(x1) = exp { (o = y.) Tx + logl{gepao(}/ ($apa (D}
g (1) /g (x1) = exp { (@, = ,) Tx + logl{epeo (D} (upn (DN}
g1 (x11)/geo (x11) = exp [y x + loglpeo (1) /pea (1}

Because y, =7y, =Y. it follows that 71(x;B;) = (aa — ¥,)  x + log(dc/da) — ¥ 1 x,
n(x;B1) = (o — ya)Tx — y;rx, and 73(x; B,) = y;rx + log(po(1)/pc1(1)). The quantity
of interest is the CLRR

_ g1 (xll) Pcl(l) _ Pcl(l)
gco(xll) Pco(l) PcO(l)

where B3 = (B31,83,) " and ¥, = (y1,72) = (log(pc1(1)/peo(1)) + B315 B3;) . We choose
(%, Br) (k =1, 2, 3) to be linear functions in the proposed SPL method, and compare it
with its competitors through their finite-sample performances in the estimation of R(x) and
Ye

We conducted L = 500 Monte Carlo simulations, each with sample sizes n = 500 and
1000, across different simulation settings. First, we take simulated biases (Bias), scaled biases
(+/n|Bias|), and root mean squared errors (RMSE) based on 500 Monte Carlo as criteria
to evaluate an estimator of y. = (y1, y2). Second, we also investigate the estimation results
for the CLRR curve R(x). For a generic estimator R(x), we evaluate its accuracy using the
integrated absolute error (IAE),

R(x)

exp lﬂ;x + log } = exp(p ] %),

1000
IAE(R) = To01 > 1logR(t;) — logR(t;)],
i=1
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Table 2. Simulation results for the estimation of y . = (y1, y2) when X ~ N(0, 1).

lal V2

Y. Methods Bias J/n|Bias| RMSE Bias /n|Bias| RMSE IAE

n = 500

(—3,1) SPL —0.082 2.601 0.473 0.040 1.260 0.361 0.427
LSE1 —3.730 117.957 36.317 1.641 51.896 16.167 8.044
LSE2 —10.362 327.662 88.226 1.961 62.022 34.801 -
MLE —0.101 3.178 0.554 0.024 0.771 0.390 0.431
DRU —0.493 15.598 3.522 3.256 102.959 22.385 3.748
DRW —0.107 3.386 0.567 0.033 1.054 0.404 0.438
ITT 0.132 4.168 0.353 —0.042 1319 0.249 0.346

(1,=1) SPL 0.064 2.023 0.404 —0.061 1.915 0.443 0.426
LSE1 0.028 0.876 0.347 —0.064 2.018 0.417 3.164
LSE2 0.695 21.992 7.702 —0.784 24.808 7314 -
MLE 0.078 2473 0.424 —0.086 2.708 0.420 0.404
DRU 0.121 3.842 0.695 —0.129 4.074 0.572 0.479
DRW 0.077 2442 0.443 —0.084 2.668 0.451 0413
ITT —0.722 22.847 0.726 0.851 26.916 0.856 1.009

n = 1000

(—3,1) SPL —0.049 1.563 0.295 0.032 1.010 0.254 0.290
LSE1 —1.155 36.513 23.279 0.532 16.813 10.667 3.436
LSE2 —6.003 189.822 86.644 3.073 97.165 44.980 -
MLE —0.045 1.420 0.283 0.021 0.680 0.215 0.269
DRU —0.083 2614 0.372 0.318 10.045 1.580 0.583
DRW —0.049 1.558 0.293 0.026 0.814 0.222 0.273
ITT 0.149 4.703 0.267 —0.044 1.384 0.175 0.256

(1,-1) SPL 0.032 1.015 0.259 —0.038 1.199 0.273 0.291
LSE1 0.015 0.470 0.236 —0.035 1.092 0.257 1.133
LSE2 0.038 1.213 0.325 —0.047 1.484 0.389 -
MLE 0.035 1.118 0.253 —0.034 1.076 0.251 0.264
DRU 0.053 1.677 0.304 —0.067 2.106 0.327 0.309
DRW 0.030 0.960 0.257 —0.035 1.107 0.262 0.270
ITT —0.721 22.786 0.722 0.848 26.824 0.851 1.004

where t; = x; 4+ (i — 1) - (x, — x7)/1000, x; and x,, denote the 0.05 and 0.95 quantiles of the
distribution of X.

Note that in the LSE method, two different linear logistic models, © (7:1 X)and (—FCTOX),
are used to model p.; (11X) and p.(1]X), respectively. The true values of ¥ ,; and ¥ are both
equal to y . Each of them can be taken as an LSE estimator of y 5, and we use LSE1 and LSE2
to differentiate them. Despite leading to two different estimates of y ., they produce only one
estimate ﬁ(X) = n(’f;rlX) / n(—?I)X) for R(X), and thus we use ’-’ to replace the repeated
items. For n = 500 and 1000, B = 200 nonparametric bootstrap samples were generated to
compute the standard errors (SE) of the estimators and the corresponding Wald confidence
interval coverage probabilities (CP) at the 95% level.

4.2. Results

Table 2 presents the simulation results for the estimates of y .and IAE when y . = (—3,1) and
(1,—1), and n = 500 and 1000. And Figure 2 displays the boxplots of their Biases and IAEs.
It is worth noting that LSE1 and LSE2 may yield unstable results due to negative weights,
DRU and DRW exhibit extreme values when initialized poorly, and ITT estimator is biased
under the presence of noncompliance. For better displays in Figure 2, we excludes extremely
abnormal estimates (i.e., cases where estimates are NA or the absolute bias exceeds 100).
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Figure 2. Boxplots for Bias of ¥ and IAE ofﬁ(x) across different sample sizes. The top panel (a) shows
results for N = 500 with two columns representing different y . values, while the bottom panel (b) shows
results for N = 1000 under the same conditions. Horizontally, the first row compares Bias, and the second
row compares |IAE.
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In Table 2, as the reported biases and RMSEs for all methods are calculated after excluding
extremely abnormal estimates, we note that there are no abnormal estimates in all scenarios
for SPL, and the biases, RMSEs, and IAEs are generally small, yielding highly accurate esti-
mates. In contrast, for LSE1 and LSE2, when y, = (—3,1) and n = 500, excluding 4 and
9 abnormal estimates respectively, the resulting estimates show non-negligible biases. The
same pattern is observed for n = 1000, where 1 and 2 abnormal estimates are excluded for
LSE1 and LSE2, respectively. However, for y = (1, —1), LSE2 exhibits bias after excluding
2 abnormal estimates for n = 500, with no exclusions needed for n = 1000. These findings
underscore the inherent instability of the LSE methods, particularly in the context of latent
mixture models, as evidenced by the bias boxplots in Figure 2(a). The LSE1 and LSE2 also
exhibit the largest IAEs among all approaches.

For MLE, there is a slight bias when y . = (—3, 1) and n = 500, which may be attributed to
a few extreme estimates. Nevertheless, MLE performs comparably to SPL, and even slightly
better with larger sample sizes, as anticipated given the correct specification of the parametric
model. Despite this, MLE’s computational cost is heavy, with runtime exceeding five times
that of SPL. DRU and DRW, being doubly robust methods, reveal that DRU exhibits bias when
n = 500, and both its RMSE and IAE are larger than those of SPL. On the other hand, DRW,
leveraging optimal weights, produces more stable estimates in terms of bias and RMSE, and
performs similarly to SPL. However, both DRU and DRW inherit the computational burden
of MLE, since they use MLE’s estimates as initial values for optimization.

Lastly, the ITT approach, which ignores actual treatment received, remains one of the most
commonly employed methods in clinical trials. Despite its widespread use and sample size
of n = 1000, ITT exhibits significant bias. Although Figure 2(a,b) demonstrate that ITT has
the smallest variance, these results collectively indicate that ITT methods are suboptimal for
estimating causal effects in randomized experiments with noncompliance.

The boostrap results are shown in Table 2. To mitigate the influence of outliers, we trim
the top 2% of absolute bias values. The refined results, along with standard deviations (SD)
calculated from 200 simulation replications, are presented in Table 3. The results demon-
strate that, with the exception of ITT, all other methods achieved CPs close to the nominal
95% level. Moreover, a detailed comparison of SD and SE shows that, apart from ITT, SPL
has the most consistent SD and SE values, indicating that SPL provides accurate uncertainty
quantification and further supports its robustness.

4.3. Analysis under model misspecification

As we recommend linear models for 7 (x; B1), kK = 1, 2, 3, this subsection investigates the
scenario where these models are misspecified. In the previous simulations, wesety , = y, =
Y. to ensure that the true models for 7 (x; B1), kK = 1, 2, 3, were linear. In contrast, in this
subsection, we set ¥, = Y, # ¥ so that the true models for #; and #, are no longer linear.

a(x|1 1 —Ya cPeo(l
m = lo M=a2x+log T exp( yT“x) lo ¢p°(),
geoxl1) T+ep(r[n) 7 dapall)
n(x|1 1 —¥, cPeo(l
n =lo g(l):ctzx—l—lo + exp( yTnx) log¢p0( ),
geo(x|1) 1+ exp(y/x) bupn(1)
ge1(x]1) T po(1)
=log>——— =y x+log——.
P gt 7 ® pa ()
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Table 3. Bootstrap results for the estimation of y . = (y1, y2) when X ~ N(0, 1).

(r1,72) =(=3,1) (172 =(Q0,-1)

71 72 7 72
Methods SD SE CcpP SD SE CcpP SD SE CcpP SD SE CcpP
n = 500
SPL 0.358 0441 0965 0.322 0.376 0955 0.294 0.525 0970 0.340 0.488 0.990
LSE1 1435 179.201 0945 0855 79.646 0.955 0.332 9.578 0960 0.375 13332 0.985
LSE2 9.188 195765 0955 3.838 94.047 0960 0.478 100294 0970 0.719 139.556 0.965
MLE 0.370 0.720 0975 0.289 0482 0975 0.284 0397 0935 0314 0431 0.970
DRU 0.957 1.222 0960 3.449 3.849 0955 0312 0.524 0940 0.350 0.501  0.955
DRW 0.366 0.508 0975 0.296 0.402 0970 0.276 0.444 0955 0.311 0463 0.955
ITT 0.296 0.321 0910 0.224 0.241 0940 0.072 0.072 0.000 0.081 0.086 0.000
n = 1000
SPL 0.247 0.263 0.930 0.232 0.230 0940 0.225 0.288 0.980 0.251 0.276  0.955
LSE1 0.390 43724 0960 0.319 20307 0.940 0.206 0.240 0950 0.223 0.265 0.950
LSE2 0.699 143.123 0.955 0485 68301 0950 0.260 1290 0.970 0.320 1.249 0.965
MLE 0.254 0.282 0.965 0.205 0.224 0965 0.204 0.234 0955 0.221 0.242 0.930
DRU 0.332 0.360 0965 0.541 0.523 0955 0.238 0.290 0.955 0.267 0.292 0.930
DRW 0.265 0.284 0.965 0.211 0.226 0960 0.212 0.244 0955 0.233 0.254 0.950
ITT 0.208 0217 0.840 0.160 0.165 0935 0.048 0.050 0.000 0.061 0.061  0.000

Table 4. The simulated results for the estimation of ¥ . = (y1, y2) when models are specified incorrectly.

4l V2

Methods Bias RMSE SD SE CcP Bias RMSE SD SE CcP IAE
SPL —0.012 0.189 0.189 0.201  0.960 0.082 0.355 0.345 0346 0960 0316
LSE1 —0.010 0.249  0.249 27.297 0975 0.054 0.421 0.417 59.955 0955 0.379
LSE2 —0.069 0394 0388 111.842 0.960 0.164 0.627 0.605  247.602  0.975 -
MLE —0.007 0.172  0.172 0.190  0.965 0.065 0.299 0.292 0306 0980 0.279
DRU 1358 9912 9.818 3.601  0.980 4.180 28.852  28.548 5289 0985 4.586
DRW —-0.010 0173  0.173 0.194  0.970 0.072 0.312 0.303 0328 0985 0.278
ITT 0.071  0.761  0.145 0.159 0930 —0.333 0.392 0.207 0.198 0550 0.371

Nevertheless, we continue to fit linear models for estimating the CLRR. We set 6 = 0.5, and
consider (e, ;) = (—3,—0.5,—2,0.1), with y, =y, = (-3,1) and y, = (—1,2). The
sample size is set to n = 500, and the results are based on L = 200 Monte Carlo simula-
tions, with 200 bootstrap samples drawn in each simulation. The results are summarized in
Table 4.

Analysis of these results reveals that the Bias, SD, and RMSE of SPL are all negligible.
MLE and DRW, which also rely on misspecified models, yield similarly small values for these
metrics. The coverage probability (CP) of SPL is approximately 96%, indicating that the use
of linear models to approximate the true underlying functions is reasonably adequate in this
setting. In contrast, LSE1 and LSE2 exhibit relatively small SDs but large biases, while DRU
suffers from both large bias and large SD, suggesting that these estimators are unstable. The
ITT estimator remains biased, resulting in a substantially low CP of only 55%.

5. Application to OHIE data

In this section, we apply the proposed SPL method to analyze a real dataset from the Ore-
gon Health Insurance Experiment (OHIE) (Baicker et al., 2013). The OHIE data are available
at https://www.nber.org/oregon/. In January 2008, in response to the expansion of Medicaid
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under the Affordable Care Act, Oregon reopened its Medicaid-based health insurance pro-
gram for eligible residents, allowing a limited number of individuals to enroll within a short
period. This constituted a natural experiment: individuals who met the OHIE eligibility cri-
teria were given the opportunity to apply for Medicaid only if they were randomly selected
through a lottery, while those not selected had no such opportunity. Approximately two years
after the experiment ended, researchers conducted follow-up surveys and collected interview
data from 12229 adults. The OHIE dataset provides a valuable framework for evaluating the
effects of Medicaid coverage on various health outcomes within the previously uninsured
population. Although numerous studies have used the OHIE data to assess the impact of
expanded health coverage on a range of outcomes, most have overlooked the issue of non-
compliance between individuals who were selected for the program and those who actually
enrolled (Baicker et al., 2013; Finkelstein et al., 2012; Hattab et al., 2024), with the exception
of Qiu et al. (2021).

The treatment variable D and the instrumental variable Z are binary indicators of Medi-
caid coverage and lottery selection, respectively. If an individual was selected in the lottery,
then Z = 1, and if they decided to complete the application process and eventually enrolled in
Medicaid after selection, then D = 1. Notably, those selected in the lottery could choose not
to enroll in Medicaid by not applying. Theoretically, individuals not selected in the lottery had
no opportunity to receive Medicaid, but in practice, some had already enrolled in Medicaid
before the lottery results were announced. These individuals are classified as ‘always-takers.”
The outcome variables of interest are the Mental Component Summary (MCS) and the Phys-
ical Component Summary (PCS), which are measured on a 0-100 scale, with higher scores
indicating better health. In the medical community for MCS and PCS, a score of 50 is widely
recognized as the average level of health; therefore, we code scores greater than or equal to
50 as 1 and those less than 50 as 0 (Jenkinson et al., 1993; Ware & Sherbourne, 1992). Due
to the absence of MCS and PCS results for 25 individuals in the follow-up data, we opted for
a straightforward approach by excluding these individuals from the analysis. Therefore, the
size of OHIE data is 12204.

Suppose there is no interference between individuals, Assumption (AO0) is satisfied. For
compliers who are not selected, it is still possible to observe favorable MCS and PCS out-
comes, which supports Assumption (Al). Because the lottery influences individuals health
only indirectly through its effect on Medicaid enrollment, this lends support to Assump-
tion (A2). Assumptions (A3) and (A4) are justified by the random nature of the lottery and
the experimental design aimed at expanding healthcare coverage. In addition, given that
(1/m) 3", Zi0.522, Assumption (A6) appears reasonable. The observed correlation between
lottery assignment and Medicaid enrollment is 0.066 (p-value < 2.2e-16). Following Strobl
et al. (2019), we test the conditional independence assumption and obtain a p-value of 1.3e-
15, which provides evidence for Assumption (A4) (i.e., Cov(Z, D | X) # 0). Finally, since
individuals selected by the lottery are more likely to enroll in Medicaid, Assumption (A5) is
also plausible.

Based on the preliminary results from Hattab et al. (2024), we choose four variables as
covariates: Gender, Age, whether the individual is classified as high-risk (based on pre-
randomization diagnoses of diabetes, hypertension, hyperlipidemia, myocardial infarction,
or congestive heart failure, denoted as Risk), and whether the individual had a pre-existing
diagnosis of depression (Dep). Following the methodology outlined in Baicker et al. (2013),
we categorize Age into three groups: 19-34 (0), 35-49 (1), and 50-64 (2). Table 5 presents
the characteristics of the OHIE data. The columns represent four covariates and two outcome
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Table 5. Characteristics of the OHIE data.

Z=0D=0 Z=0D=1 Z=1D=0 Z=1D=1

(noo = 5635) (no1 = 195) (no = 4473) (n17 = 901) p-values
Gender 1.21e—05
Female 459 2.1 36.4 15.6 <22e—16
Male 46.5 0.9 36.9 15.6 <22e—16
Age 5.81e—06
19-34 47.0 1.8 37.8 13.5 <22e—16
35-49 46.0 1.7 36.6 15.6 <22e—16
50-64 453 1.3 35.2 18.2 <22e—-16
Risk 0.238
Low 46.1 1.6 371 15.2 <22e—16
High 46.2 1.6 35.6 16.5 <22e—-16
Dep 6.53e—07
No 45.7 1.4 38.2 14.8 <2.2e—-16
Yes 471 2.0 337 17.2 <22e—-16
MCS 9.49e—06
Bad 47.5 1.6 349 16.1 <2.2e—-16
Good 44.2 1.7 394 14.8 <22e—-16
PCS 1.18e—12
Bad 46.5 1.8 344 17.2 <2.2e—-16
Good 457 13 39.7 13.3 <22e—-16

variables, with cell values showing the percentage(%) of each variable across the four (Z, D)
groups. p-values associated with each covariate category reflect the heterogeneity testing
results between these groups. Notably, with the exception of Risk (p-value = 0.238), both
Gender (p-value = 1.21e—05), Age (p-value = 5.81e—06), and Dep (p-value = 6.53e—07)
demonstrate significant heterogeneity. Specifically, the p-values corresponding to different
values of covariates and outcomes reflect the significance levels across the various (Z, D)
groups. All p-values are below 2.2e—16, indicating significant heterogeneity across the dif-
ferent latent principal strata to some extent. Combined with the estimated proportion of
noncompliers being 0.735, these findings suggest that naive methods (e.g., AT, PP, ITT) that
ignore principal stratification structures are inadequate for accurately capturing the under-
lying complexities. When targeting conditional local treatment effects, instrumental variable
methods are essential for proper identification and estimation.

Finkelstein et al. (2012) found that Medicaid coverage improves self-reported health as
measured by mental and physical component scores. To investigate heterogeneity in treat-
ment effects across subgroups, we estimate CLRR for MCS and PCS using the four baseline
covariates. Here we focus on the hetergeneity to find which subgroup benefits from Medicaid
coverage. The analysis employs B = 500 nonparametric bootstrap samples to construct 95%
confidence intervals, with results presented in Tables 6 and 7. The corresponding bootstrap
results are visualized using boxplots in Figure 3(a,b).

As shown in Table 6, our method yields a point estimate y . = (0.021,0.183,0.491, —0.470,
—0.214). Notably, the 95% confidence interval for Age remains entirely positive, provid-
ing moderately strong evidence that older individuals benefit more from Medicaid in terms
of mental health. Figure 3(a) reveals negative bootstrap estimates for the risk covariate in
our SPL method, suggesting (though not statistically significant) that low-risk individuals
and males may derive greater mental health benefits. In contrast, LSE1 and LSE2 produce
markedly different results, calling their reliability into question. While MLE, DRU, and DRW
are consistent with SPL, they do not provide strong evidence for any covariate. The ITT
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Table 6. Estimates of parameters in CLRR and their 95% Confidence Intervals on MCS.

Intercept Gender Age Risk Dep
SPL 0.021 0.183 0.491 —0.470 —0.214
(—0.391,0.575) (—0.574,0.966) (0.082, 1.080) (—1.240,0.572) (—1.099,0.793)
LSE1 —0.097 0.189 —0.033 —0.256 —1.274
(—0.345,0.147) (—0.056,0.425) (—0.178,0.108) (—0.561,0.033) (—1.560, —1.022)
LSE2 0.546 —0.229 0.479 —0.731 1.218
(0.004,1.501) (—1.515,0.626) (—0.211, 2.486) (—3.590,0.369) (0.397,2.972)
MLE 0.229 0.183 0.302 —0.304 —0.115
(—0.147,0.627) (—0.442,0.565) (—0.215,0.470) (—0.850,0.347) (—0.474,1.527)
DRU 0.179 0.082 0.164 —0.406 0.154
(=0.197,0.705) (—0.398,0.557) (—0.112,0.465) (—1.022,0.134) (—0.462,0.932)
DRW 0.209 0.027 0.167 —0.39%4 0.159
(=0.155,0.762) (—0.439,0.535) (—0.240,0.503) (—1.018,0.167) (—0.460, 1.610)
ITT 0.039 0.008 0.042 —0.100 0.045
(—0.031,0.116) (—0.082,0.089) (—0.012,0.097) (—0.222,0.004) (—0.097,0.176)

Table 7. Estimates of parameters in CLRR and their 95% Confidence Intervals on PCS.

Intercept Gender Age Risk Dep
SPL 0.314 —0.275 0.300 0.055 —0.783
(—0.194,1.051) (—0.903,0.201) (—0.074,0.667) (—0.526,0.894) (—1.419,—0.253)
LSE1 0.250 0.150 —0.493 —0.462 —0.757
(0.020,0.530) (—0.119,0.378) (—0.655, —0.355) (—0.768, —0.124) (—1.045, —0.487)
LSE2 0.214 —0.459 0.695 0.573 0.103
(—0.339,0.905) (—1.321,0.138) (0.258,1.651) (—0.550, 18.642) (—0.547,0.784)
MLE 0.285 —0.103 0.065 0.033 —0.395
(—0.041,0.777) (—0.686,0.066) (—0.249,0.320) (—0.409, 1.062) (—0.764,0.108)
DRU 0.299 —0.239 0.064 0.203 —0.385
(—0.012,0.804) (—0.679,0.135) (—0.232,0.370) (—0.392,1.148) (—0.833,0.051)
DRW 0.295 —0.249 0.071 0.083 —0.345
(—0.054,0.771) (—0.698,0.111) (—0.221,0.384) (—0.494,0.979) (—0.800,0.109)
ITT 0.052 —0.048 0.018 0.047 —0.077
(—0.008,0.123) (—0.129,0.025) (—0.045,0.078) (—0.071,0.186) (—0.190,0.014)

estimates are close to zero, and the 95% confidence intervals further suggest a lack of het-
erogeneity. This is consistent with the findings in Hattab et al. (2024) that most subgroups
exhibited no statistically significant impacts on MCS despite substantial overall effects.

When investigating the conditional effect on PCS, heterogeneity becomes more pro-
nounced. In Table 7, our method yields . = (0.314, —0.275, 0.300, 0.055, —0.783). Unlike
the MCS results, the 95% confidence interval for Dep is less than 0, suggesting that indi-
viduals with depression benefit less in terms of physical health from Medicaid. Figure 3(b)
demonstrates that the bootstrap estimates of our SPL method for both the Intercept and Age
are positive, while those for both Gender and Dep are negative. This indicates that older,
female beneficiaries without depression derive greater physical health benefits, a finding cor-
roborated by Hattab et al. (2024). Similar to the MCS case, LSE1 and LSE2 yield disparate
results, further undermining their credibility.

Overall, this study reveals heterogeneous patterns of Medicaid effects across Age, Gender,
Risk and Dep through different subgroup analyses, although the heterogeneity in all consid-
ered outcomes is relatively low. Interestingly, the effects of gender on MCS and PCS appear
to be in opposite directions, which is new to the literature.
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6. Conclusion

CLRR is a widely used and highly regarded measure of causal effect in causal analysis involv-
ing binary outcomes, particularly in health and medical research. In this paper, we introduce
a novel semiparametric two-step likelihood-based estimation procedure, termed SPL, for
evaluating CLRR in RCTs with a binary outcome and noncompliance. As the traditional
identification of CLRR in (3) is unsuitable for binary outcomes, our SPL approach subtly
re-expresses CLRR in terms of two constants, p.(1) and p.; (1), and two functions, g.o(x|1)
and g (x|1). By reducing the number of required posited models from six to three density
ratio models, the SPL approach enhances robustness in estimation and significantly improves
computational efficiency. This method is especially advantageous in scenarios characterized
by limited pre-existing data information, as it aims to capture the underlying treatment effects
with greater reliability and robustness.

The data structure considered in this paper aligns with at least three common scenarios in
the literature: (1) randomized trials in which noncompliance is either permitted or unavoid-
able, e.g., the FILMS trial (Lois et al., 2008) and the COPERS trial (Taylor et al., 2016), (2)
natural experiments, e.g., the OHIE in Section 5, and (3) encouragement experiments, e.g.,
the moving to opportunity for Fair Housing Demonstration Project from the Department
of Housing and Urban Development (Matsouaka & Tchetgen Tchetgen, 2017), where treat-
ment uptake is influenced by randomized encouragement rather than direct assignment. In
the first two scenarios, noncompliance in randomized experiments arises due to unavoidable
constraints, such as ethical or moral considerations. Natural experiments are not originally
designed for causal inference, but happen to contain a naturally occurring instrumental
variable in the data. Under both settings, it is more appropriate to adopt a retrospective
approach.

This paper focuses solely on causal effect for compliers, which represents a genuine cause-
and-effect relationship, restricted to the complier population. As the most commonly used
method in clinical studies, ITT ignores the actual treatment and is influenced by the causal
effect on noncompliers, i.e., selection bias. It is worth noting the causal effect for compliers
is essential and aligns with real-world needs. For instance, in the realm of marketing, com-
pliers refer to the target audience members who are particularly sensitive to the marketing
campaign and, consequently, garner focussed attention. However, identifying compliers is
challenging in practice, and is an interesting direction worth further exploring (Kennedy
et al., 2020).

A fundamental assumption in this paper is the independence assumption, i.e., Z L
{D(0), D(1), Y(0), Y(1), X}. As an anonymous referee, the proposed SPL method may be
extended to the case where on the conditional independence (unconfoundedness) assump-
tion,i.e.,Z L {D(0), D(1), Y(0), Y(1)} | X, holds. This extension generalizes our SPL method
for estimating CLRR in randomized controlled trials to stratified randomized designs and
observational studies. However, under the unconfoundedness assumption,

px|Z=2S8S=s) #px|S=s), s=an,c
px|IZ=2S=s5Y=y)#px|S=sY=y), s=an,cq

which makes the estimations of immediate parameters and CLRR more challenging. We leave
this topic for future research.
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