Taylor & Francis
@ - Taylor & Francis Group

STAT[ST[E,’:ETHEORY Statistical Theory and Related Fields

RELATED FIELDS

® < ()

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tstf20

Intrinsic Bayesian estimation of linear time series
models

Shawn Ni & Dongchu Sun

To cite this article: Shawn Ni & Dongchu Sun (2021) Intrinsic Bayesian estimation
of linear time series models, Statistical Theory and Related Fields, 5:4, 275-287, DOI:
10.1080/24754269.2020.1744073

To link to this article: https://doi.org/10.1080/24754269.2020.1744073

@ Published online: 02 Apr 2020.

\]
CA/ Submit your article to this journal

||I| Article views: 22

A
& View related articles &'

PN

(!) View Crossmark data (&

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=tstf20


https://www.tandfonline.com/action/journalInformation?journalCode=tstf20
https://www.tandfonline.com/loi/tstf20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24754269.2020.1744073
https://doi.org/10.1080/24754269.2020.1744073
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tstf20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2020.1744073
https://www.tandfonline.com/doi/mlt/10.1080/24754269.2020.1744073
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2020.1744073&domain=pdf&date_stamp=2020-04-02
http://crossmark.crossref.org/dialog/?doi=10.1080/24754269.2020.1744073&domain=pdf&date_stamp=2020-04-02

STATISTICAL THEORY AND RELATED FIELDS
2021,VOL. 5,NO. 4, 275-287
https://doi.org/10.1080/24754269.2020.1744073

Taylor & Francis
Taylor &Francis Group

W) Check for updates

Intrinsic Bayesian estimation of linear time series models

Shawn Ni? and Dongchu SunP:€

Department of Economics, University of Missouri, Columbia, MO, USA; PSchool of Statistics, East China Normal University, Shanghai,
People’s Republic of China; ‘Department of Statistics, University of Missouri, Columbia, MO, USA

ABSTRACT

Intrinsic loss functions (such as the Kullback-Leibler divergence, i.e. the entropy loss) have been
used extensively in place of conventional loss functions for independent samples. But applica-
tions in serially correlated samples are scant. In the present study, we examine Bayes estimator of
Linear Time Series (LTS) model under the entropy loss. We derive the Bayes estimator and show
that it involves a frequentist expectation of regressors. We propose a Markov Chain Monte Carlo
procedure that jointly simulates the posteriors of the LTS parameters with frequentist expecta-
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tion of regressors. We conduct Bayesian estimation of an LTS model for seasonal effects in some

U.S. macroeconomic variables.

1. Introduction

To analyse dynamics of multi-variate economic sys-
tems, researchers frequently employ Linear Time Series
(LTS) models (see for example, Sims, 1980 and the
ensuing literature). Bayesian inference of such mod-
els often requires point estimate of parameters because
reporting the entire posterior distribution is made dif-
ficult by a prohibitively large number of parameters. A
critical aspect in Bayesian estimation is the choice of
loss function.

In this study, we derive Bayes estimator of LTS mod-
els based on the intrinsic loss. We illustrate a com-
putational problem arising from serial correlation in
the models when applying the intrinsic loss and our
solution to the problem.

A loss function L(@,é) measures the distance
between the parameter 6 and its estimate 6. Such a met-
ric is often specified for convenience given the problem
at hand instead of grounding on a general principle.
Bernardo and Juédrez (2003) noted that for inferen-
tial purposes, what matters most is not the distance
between 6 and 6, instead it is the intrinsic loss - the
distance between the probability model f (x | §) (corre-
sponding to the estimate §) and f (x | 6) (corresponding
to the actual parameter 0). Robert (1994, 1996) pro-
posed using the logarithmic divergence (also known as
the Kullback-Leibler divergence or the entropy loss)
as the intrinsic loss. The intrinsic loss has a number
of desirable properties not generally possessed by con-
ventional loss functions. For example, it is invariant
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to transformation of data x or parameter # and has
the additive property that the loss of the sum of two
independent data sets is the sum over the two losses
corresponding to each data set.

The intrinsic loss has been used for independent
samples for Bayesian estimation. It has also be used
in various contexts for time series data. For instance,
Kitamura and Stutzer (1997) used the Kullback-Leibler
distance to derive a frequentist estimator for nonlin-
ear models. Solo et al. (2001) used the Kullback-Leibler
distance for evaluation of signal processing model.
Robertson et al. (2005) used the entropy divergence for
evaluation of forecasting density. Fernandez-Villaverde
and Rubio-Ramirez (2004) used the Kullback-Leibler
distance to evaluate dynamic equilibrium models in
economics. However, employing the intrinsic loss for
Bayesian estimation of time series models leads to tech-
nical challenges.

To illustrate the difference of the intrinsic loss in
independent models and serially correlated models,
consider the following examples. First, suppose y =
{y1,...,yr}, where y; (t = 1,..., T) are independently
identically distributed (iid) N(p,1) and we are inter-
ested in estimating the mean parameter p under the
entropy loss

(3171 = [ og {%}ﬂy | )y

1010}

= Fyiplog {f(y B
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By the assumption on the model f(y | p) exp{—% X
Zle(yt — p)?}). 1t is easy to verify that «(p | p) =
(T/2)(p — p)?. In this case, the intrinsic loss coincides
with the commonly used quadratic loss, which implies
that the Bayes estimator of p is the posterior mean.
Now consider an AR(1) model: y; = py;—1 + €, for
t=1,..., T, where ¢ is iid N(0, 1), and p is the only
unknown parameter.
The entropy loss is still

x<ﬁ|p>=f {f(y'p)}f(

ol
_ fylp)
= Eyiolog {f( |p>}

but now f is the density of the AR variable. Substitute
in the distribution of data

52 &
k(p|p)= MEymZy?_l = (p — £)*8(y0, p)

2
t=1

where

$(y0, 0)

1 T
2
5 le Zyt—l

T
Z{ 2(t-1) 2+1+p2+.__+p2(t—2)}
t=1

-

It is obvious that § (o, p) is an increasing function of p?
and is nonnegative for any p. A Bayes estimator (which
is called a generalised Bayes estimator if the prior is
improper) minimises the Bayesian posterior expected
loss. If the entropy loss is employed, the Bayes esti-
mator for p with a given initial condition y is g =
argmin E,|,[8(y0, 0)(p — £)*] = Epp{8(yo, )0} /Eply
{6 (0, p)}. Note that if p is positive, p and &(yo, p) are
positively correlated. It follows that the Bayes estima-
tor under the entropy loss for a positive p is larger
than the posterior mean. It is well known that the MLE
(and the posterior mean under constant prior) of pyy is
biased downward, especially when the true parameter
is close to unity (see MacKinnon & Smith, 1998) Note
that under the constant prior Zthl y?_, is the posterior
precision (i.e. the inverse of posterior variance) for p.
Hence the weight for the square of estimation error in
the intrinsic loss function, §(yo, p) = Eyp Zthl yf_l,
is larger in the region of p where the posterior preci-
sion is high. It is in the spirit of Zellner’s (1978, 1998)
‘precision of the estimation’ loss. This is in contrast
of quadratic loss that imposes the same weight on all
regions of p.

Now we turn to the model of interest. The LTS of
a p dimensional column endogenous variable y, and

1(1-p%T, 1 1—p?T
- T — .
2{1—p2y0+1—,02( 1—p2

a g dimensional column exogenous (predetermined)

variable xo; (t = 1, ..., T) has the form:
L
Yo =xoBo+ ) ¥ Bi+e (1)
j=1

where L is a known positive integer, By is a g X p
unknown matrix, B;j is an unknown p x p matrix,
€1,...,€rareiid N,y (0, X) errors,and X is an unknown
p X p positive definite matrix.

A special case of the above LTS model is all of the
lag coefficients By, ..., By are zero (i.e. all regressors
(with g > p) are exogenous variables.) The exogenous
variables may be functions of time. For example, in
modelling of climate temperature or holiday consumer
spending, seasonal dummies may be introduced in the
model. In economic applications, these exogenous vari-
ables may also be variables of government policies.
Another special case is xqp; is a 1 X p constant vector
with elements of unity. The regressors only include lags
of the variable y,. The LTS model becomes a Vector
AutoRegression (VAR), which is commonly used for
modelling of macroeconomic time series.

We can rewrite Equation (1) in the familiar matrix
form

Y =X® +e, (2)
where
x) X1
X=: (X0, X1);  Xo B
Xy Xo1
Yo R (i)
Xi=1 : N E
/ /
Yr_1 Yr_L
BO /
y €
By B, | !
® = = ;s Y= :], e=]:
/ /
B; T €

Here X and X; are T x gand T x Lp; the former does
not depend on parameters X and ®, but the latter does.
Y and € are T x p matrices, ® isa (g + Lp) x p matrix
of unknown parameters, x; is a 1 X (q + Lp) row vec-
tor,and Xisa T x (q + Lp) matrix of observations. The
likelihood function of (®, X)) based on Y is then

fY|e,%)
1 1 &
(e |Z|—T/2 exp {_5 Z(}’t - xtq))z_l(}’t - xtq))/}
t=1

1 1 —1 ’

(3)

Here and hereafter etr(A) is exp(tr(A)) of a matrix A.



The present paper achieves two goals. The first one
is derivation of the Bayes estimator of LTS model under
the entropy loss. We show that the entropy loss on
(®,X) is non-separable in X and @, which can be
written as the sum of losses pertaining to the covari-
ance matrix ¥ and normalised estimation error of ®.
The form of the ®-part of the entropy loss for LTS
istr(Z ' (® — ®)Ecxj0.5)(X'X)(® — ®)}, where ¥ is
the Bayes estimator of X. Under the entropy loss, the
Bayes estimator distinctly differs from the posterior
mean and differs from that of the iid multivariate nor-
mal model. The part of the intrinsic loss function asso-
ciated with the regression coefficients turns out to be
related with a conventional loss function. For estima-
tion of a matrix parameter such as ® in the simultane-
ous equations context, Zellner (1978, 1998) proposed a
‘precision of estimation’ loss that can also be written as
tr{Z~1(® — ®)'(X'X)(® — ®)}. However, in Zellner’s
simultaneous equations model, X'X is taken as given,
but in LTS the predetermined variable X'X depends on
parameters (®, X).

The second goal concerns numerical estimation of
the intrinsic Bayes estimator via Markov Chain Monte
Carlo (MCMC). We propose a general algorithm that
generate regressors as latent parameters in simulation
of posteriors of parameters of LTS models. Data aug-
mentation in this study differs from that in Tanner
and Wangs 1987 seminal paper in motivation and
implementation. Tanner and Wang use data augmenta-
tion to alter the likelihood function for easier MCMC
simulation of the posteriors. In this study, the likeli-
hood function of the generated data is the same as the
likelihood of the sample data. Here, data augmenta-
tion does not make it easier for posterior simulation.
Instead, it makes it possible to compute frequentist
moment Ex¢,5)(X'X) of the LTS variables. The fre-
quentist moment, simulated jointly with parameters,
is used to produce Bayes estimates under the entropy
loss.

Besides the choice of loss function, the choice of
prior also plays a pivotal role in Bayesian estimation.
Jeffreys prior on X (see Zellner, 1971) is a noninfor-
mative prior for X that gives rise to conditional pos-
teriors in well known distributions. Ni et al. (2007)
conducted Bayesian estimation of VAR model under
the entropy loss, using the Jefferys prior for X. How-
ever, despite its popularity the Jeffreys prior is known
for producing unsatisfactory results in multi-parameter
settings. In this study we simulate the LTS model under
a combination of normal prior on regression parame-
ters and Yang and Berger (1994) reference prior on X.
The conditional posteriors of X are simulated using a
Metropolis-Hastings algorithm. Our empirical applica-
tion shows that despite the fact that LTS models involve
a large number of parameters and a large number of
latent variables, the data-augmentation algorithm is
quite efficient.
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In Section 2 of the paper, we derive the Bayes esti-
mator of LTS models under the entropy loss function
and discuss computation of the weighting matrix in
the Bayes estimator. In Section 3, we present a general
algorithm using generated data as latent parameters. In
Section 4, we lay out the MCMC algorithm for com-
puting (®, X) in the LTS model. In Section 5, we first
compare intrinsic Bayes estimator with other estimators
in a numerical example and then estimate a LTS model
using seasonally unadjusted macroeconomic data. In
Section 6 we offer concluding remarks.

2. Entropy loss function for theiid
multivariate and LTS models

2.1. Entropy loss function for the iid model

We first consider the entropy loss function (Robert,
1994, p. 74) for a multivariate normal distribution.
Let Y = (x1,x2,...,x7) be a random sample from
Np(p, Z). One can compute the entropy loss function
as

L(jt, %5, %)

P(xlu,Z)}
=11 - - ,x)d
/Og{pum,z) peel i %) dx

- g {tr(zi‘l) —log =7 = p
+ @ -wE - w).

Here p(x | p, X) is the density of N, (u, X). Clearly, the
loss function has two parts. One part is related to the
means ji and g (with X as the weighting matrix), and
the other part is related to ¥ and X. The following fact
states that Bayes estimator for p is the posterior mean
of u but that of X is larger than the posterior mean of
X

Fact 2.1: Under the entropy loss L, the generalised Bayes
estimator of (), X) is

g = E{p| Y},

Yijg = E(Z [ Y) +var(u | Y).

Note that Y represents data, expectation E(.) and
variance var(.) are with respect to the posterior distri-
bution. The proof is in the appendix.

2.2. Entropy loss functions for LTS models

Recall that for the LTS model (2), the likelihood func-
tion of (®, X) is of the form (3). The entropy loss for
the LTS model is

~ ~ Y|, X
L(®,%;®,Y) = Ey|e,x) log !f( | ) } , (4)

f(Y]®%)



278 (&) S.NIANDD.SUN

where for computing the expectation on the right-hand
side, (®, %) is not a function of Y. The entropy loss
L(®,%; ®,X) can be decomposed into two parts. One
part measures the loss associated with the covariance
matrix only, while the second part measures the loss of
coefficients @, but related to the covariance matrix X as
well. Because y, — X;® (t = 1,...,T) areiid Ny(0, X),
we have

Exjex) (Y —X®) =0,
Exjo.5) (Y — X®)X®} =0,
Exe5) (Y — X®) (Y — X®)} = TX.

Then

12T 2etr{— L (Y-X®)Z "1 (Y-X )}
Ex|e,x)log — ) =~ =1 F
12|~ T 2etr{—3(Y-X®)X (Y—X®)'}
T Sl
) o .

+ ot [E(qu,,z) {(Y _Xx®)S (v —X<I>)’}]

T Sve—1 T < -1
= S (og|EE7| —p) + Str(EX )

1 o _
+ St [E(X|¢,z> {X(<I> —®T '@— <I>)’X’”

H

== {tr(f‘IZ) “log|E 'z —p}
1 o _ _~

+Str {2 '@ — B) Exjo.s) (X'X)(® — <I>)} .

The result of this derivation can be summarised by the

following lemma.

Lemma 2.1: The entropy loss function for the LTS model
is

T( -1 <1
E{tr(): ¥) —log|E '3 —p}
1 ~_1 ~, ~
+ Etr{E (@ — &) WD — <I>)}, (5)
where
1
W= 7E(X|<I>,>:)(X/X)- (6)

This Lemma can be proved using algebra similar to
that in the iid case. However, there is an important dif-
ference. For the LTS model, Bayes estimators involve
matrix W, a frequentist expectation of X'X for given
parameters (@, X). For the iid case, no such term is
present. The next theorem gives the form of the Bayes
estimators under the entropy loss.

Theorem 2.1: The generalised Bayes estimator of
(®, X) under the entropy loss is

—~ —1
&= {EW D] EWe| V), (7)

£r=EC V) +E[(@ - Bp' W@ -8y | ¥].
®)

The above theorem can be proved similarly as
Fact 2.1.

Under the special case with no lag coefficients in
the regression, we have W = Exje,5)(X'X) = X, X0,
which is not a function of X and ®. It follows that the
Bayes estimator of £ g is the posterior mean, as it is for
the iid model. This observation is stated in the following
remark.

Remark 1: If B; = 0 for j > 0, then
®; =E(®|Y),

. 1
Zp=E(Z | Y) + - X(XoVar(® | Y).

However, the Bayes estimator for the LTS model is
generally different from the iid case. The Bayes estima-
tor ®5 for the LTS model is not the posterior mean.
To compare the estimator ) g with the posterior mean,
note that in general

S=FE@|Y)+ {E(W| Y)}_ICOV(W,<1> |Y).

Because W = E(x|¢,x)(X'X) and ® are likely to be pos-
itively correlated, the Bayes estimator of @ under the
intrinsic loss is likely to be larger than the posterior
mean. It is known that MLE and the posterior mean of
® under a diffuse prior is likely to have a downward
bias when the true parameters are closed to random
walk, a typical pattern of macroeconomic data. The
form of Bayes estimator of ® based on the intrinsic loss
is helpful in correcting the bias in the posterior mean.

The estimator in LTS model involves the frequentist
expectation W. The W matrix depends on specifica-
tions of the regressors X. If the regressors are specified
as functions of lags of Y, the computation for W matrix
becomes nontrivial.

Using notation in Equation (1), the frequentist
expectation matrix W can be written as
Ecxio.z) (X'X) = (E X6X0/ E(x|<1>,>:)(X§)X1)>.

x|0,3z) (X1X0) Exje,3) (X X1)

For exogenous variables X, there is no need deriv-
ing general closed-form expression for the terms in
the above matrix as functions of parameter ® and X.
On the other hand, due to the serial correlations of
¥,» computation of E(x|e 3)(X]X1) is not straightfor-
ward. In the presence of exogenous variables no ana-
lytical expression for W is available. In the following,
we discuss approaches to Bayesian estimation under the
entropy loss for the general LTS model.



3. Approaches of computing the expectation
Ex|e,5) (X'X)

Theorem 2.1 shows that under the entropy loss the
Bayes estimator for (®,X) involves the frequentist
expectation W = E(xj¢,3)(X'X), and we need to com-
pute the posterior moments E(W | Y), E(W® | Y),
and E(®@'W® | V).

The frequentist expectation E(x|#,x)(X'X) depends
on ® and X. For the LTS model E(xj9,5)(X'X) does
not have an analytical form and needs to be computed
numerically for a given (®,X). We use Y and X to
denote observed data in the LTS model (2). We generate
Y* and X* from the same model in (2) given parameters
® and X, in order to compute Ex|e,5)(X'X). There is
only one observed data set Y and X but there are many
sets of generated Y* and X*. Suppose ® and X need to
be simulated by an MCMC algorithm, then Y* and X*
need to be generated for each draw of ® and X.

One approach to computing Exje,x)(X'X) is
straight forward but time-consuming: for each @
and X drawn in the kth MCMC cycle we gener-
ate many sets of X* and use the average of X* X*
to approximate E(x|¢,5)(X'X). While this approach is
possible in theory its high computational cost ren-
ders it infeasible in practice. For practical purposes, we
must take an alternative approach to compute Bayes
estimates.

Fortunately, we have an alternative approach that
does not require much additional computational cost
beyond simulating (@, ). Suppose we simulate one
set of data X from the LTS model in each MCMC
cycle with simulated parameters of (®j_;, Xx_1), and
then simulate the parameters of the next MCMC cycle
(®, Xx) conditional on both the sample data X and
the simulated data X}. We will demonstrate that the
posterior moments such as E(W | Y),E(W® | Y), and
E(®W® | Y) can be computed through simulated
parameters (®g, Xy) and the jointly simulated data X},
(for k =1,...,M). The simulated data are in essence
latent parameters. They are not the subject of our inter-
ests per se but are useful for simulation of parameter
of interest (i.e. the frequentist expectation W). Data
augmentation is not uncommon in Bayesian simula-
tions, but as we noted in the introduction, this data-
augmented simulation approach differs from its other
uses in the econometrics and statistics literature. One
question of practical importance remains though: The
number of elements in simulated matrix X} has the
dimension of T x Lp, which can be quite large. Do we
have to simulate very long Markov chains to assure the
averages are good approximates of the posterior mean?
Fortunately, our numerical results show that the answer
to the question is “no”.

In the following we propose a general algorithm
that formalises the data-augmentation idea discussed
above.
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3.1. A general algorithm using data as latent
parameters

Suppose that observed data X has the density f(x | 6),
where parameter vector 6 is unknown. A prior 77 () can
be informative or noninformative. Let X* be a random
vector (or a matrix) with the density f(x* | ). Let h(6)
be a function of the parameters 6. We are interested in
the posterior mean of the quantity Ex+j9)g(X*, h(6))
given the data X.
Our algorithm is based on the following fact:

E{Ex+9)g (X", h(6)) | X}

/ { / g h®)f (x| 0)dx" | f(X | 6)7(6)d8

/f(X | 6)7(0)do

://g(x*,h(a))n(x*,O | X) dx*de,

where
f&10O)f(X|0)m(0)
[ [r& 105 1om@rasas
9)

7(x*,0 | X) =

If we have a random sample (X},0%),k=1,...,M,
from the joint distribution of (9), we can estimate
E(E(x*j0){g(X*,0)}h(0) | X) by using the result

E[E{g(X*, h(0)) | 8} | X] = Ex+p1x) (g(X*, h(0))}

5>
S WA
M k=1

The problem becomes to generate observations from
the joint distribution of (X*,#) given the data X. For
this task the following MCMC method can be used.

Suppose that at the beginning of cycle k we have
(Xi_p ak—l)-

Simulating full conditional posterior: We sample from

70 | X, X) o f(X* | O)f (X | )7 (D).

Step 1. Simulate Xi ~ f(x* | 0x_1).
Step 2. Simulate 6 ~ 7 (6 | X}, X) oc f(X} | 0)f (X |
0)7(0).

4. Bayesian estimation of (®, X) in LTS models
4.1. Priors

The Bayes estimator of LTS depends on the prior of
(®,X) We assume prior independence so the prior
for 7(®,X) is (@) (%), the product of priors for
® and X.

For estimation of regression coefficient @, a pop-
ular informative prior of ¢ = vec(®) is the normal
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distribution, N(¢y, Mo), with hyperparameters ¢, and
M():

—-1/2 1 Iag—1
TN ($) o [Mo| " exp \ =2 (d — o) My " ($ — o) ¢ -
(10)

A popular class of non-informative prior on X is
7p(2) o 1/|Z Y2, If b = p+1, m,(E) becomes the
Jeffreys prior (see Zellner, 1971)

Ni et al. (2007) examined intrinsic Bayes estimator
under prior 7,(¢h, X) = N (@) (X).

In the appendix we show posteriors 7 (X | X*, X)
and 7 (® | X*, X) can be obtained in analytical form.

As mentioned in the introduction, in multiple-
parameter settings the Jeffreys prior often has undesir-
able properties. Bernardo (1979) proposed an approach
of deriving a reference prior by breaking a single multi-
parameter problem into a consecutive series of prob-
lems with fewer numbers of parameters. For exam-
ples where the reference priors produce more desir-
able estimates than the Jeffreys priors, see Berger
and Bernardo (1992) and Sun and Berger (1998),
among others. In estimating the variance-covariance
matrix ¥ based on an iid random sample from a normal
population with known mean, Yang and Berger (1994)
re-parameterised matrix ¥ as O’'D O, where D is a
diagonal matrix the elements of which are the eigen-
values of X (in increasing or decreasing order) and O
is an orthogonal matrix. The following reference prior
is derived by giving vectorised D higher priority over
vectorised O:

1

TR(Y) x
A 21Ty <iejep (i — dj)

, (11)

where d; > d, > .-+ > d, are the eigenvalues of X.

For numerical and empirical exercise in the is study
we use the normal-reference prior 7n(¢p)r(X). The
conditional densities under the normal-reference prior
are in the appendix. Ni and Sun (2003) proved that
the posteriors of (®, X) are proper under the normal-
reference prior. But the conditional posterior 7 (X |
®, X*, X) does not have an analytical form and must be
sampled numerically.

4.2. Asimulation algorithm for LTS models under
the normal-reference prior

We employ an MCMC method to sample from the pos-
terior. In particular, we use the Gibbs sampling method
(cf. Gelfand & Smith, 1990). The following algorithm
simulates the posteriors of LTS parameters conditional
on both the sample and generated data.

Suppose that at cycle k, we have (®_1, X_1) (with
an initial draw of X and ®, e.g. the MLE.)

Algorithm MCMC:

Step 1. Generate Y} | X1, ®f_1.

Simulate yZ:t ~ N(xy,Bo + ZZ-LZI yZ:t_ Br_1i>
Yi_1),fort =1,...,T. Define

/ * +
« X1 V-1 " Vi—L
yk>1 x/ y*/ “e. y*/
02 k0 k,1—L
Yi=| : | andX} = o i
o
kT +

x/ */ PR
or Ye,1—1 """ YiT-L

Step 2. Generate ®| X1, Y7, Y.
Simulate ¢, = vec(®) ~ N(fy, Vi), where

we=Vil{Z;}, ® XX
Ak _
+ X X)) ek + My ' bols (12)

A —1
dunek = vee| (XX +X7X;) (XY +x7'77) .
(13)
Vi=iMy'+ 30 @ XX+ X(X0) . (14)

Steps 3 to 6 generate Xy |Xg_1, @, Y, Y.

Step 3: Calculate Sy = S(®x) + S*(®y) = (Y — X X
@) (Y — X&) + (Y* — X*®) (Y* — X*®;). De-
compose X_; = ODO’, where O is an orthogonal
matrix, D = diag(dy,...,dp) andd; > d - -+ > dp. Let
df = log(d)),

D = diag(d},...,d;) and X , =OD'0.

Step 4: Select a random symmetric p X p matrix
V, with elements, vij = z;/,/>",, Z,» Where zj ~
N(0,1) (1 <i<j<p, the other elements of V are
defined by symmetry).

Step 5: Generate A ~ N(0,1) and set ¥ = X} | +
AV. Decompose ¥ = QC*Q/, where Q is an orthogo-
nal matrix, C* = diag(c{,...,¢;) and ¢f > ¢5--- > .
Compute

p
Be=TY (df —c})
i=1

1
+ Etr[{(expzz_lrl — (exp W) 18]

+ Z log(df — df) — Zlog(c’f — cf).

i<j i<j

Step 6: Define C = diag(exp(c’f), . ,exp(c;)) and
¥ = QCQ'. Simulate u ~ uniform(0, 1) and let

%,
Ek B : Zk—l’

if u < min{1, exp(Br)},
otherwise.

Note the acceptance probability exp(Bx) = 7 (V| Pk,
Y., Y)/m(Zk-1]®k Y}, Y), where the conditional pos-
terior 7 (X|®, Y*,Y) is given in (A14). To accelerate the
convergence, we repeat Step 6 up to five times until a
new candidate is accepted.



4.3. Computing the posterior average loss

From Lemma 2.1, given the estimate (®, %), which
is computed for a given data sample Y, we write
the posterior average loss E(@E)wL(a,fj, ®,3) as
Ew@,5)vL1(X; X) + E@,3)vL2(%, @, X, ). We de-
compose the Xy in the kth MCMC cycle as X} =
QD Q’, where Dy is the diagonal matrix that consists
of eigenvalues of Xy: Dy = diag(dg1, dk2, - - ., dip), and
Q is an orthogonal matrix with QQ' = I.

The posterior average loss under the intrinsic
loss can be computed using the posterior draws of
(P, X k,Xz) generated by the MCMC procedure (k =
1,2,...,M), with

E{(¢,2)|Y)Ll(§; Y)

—~ T ~_ .
= E((<I>,z>|Y){5{tr(E Y) —loglX X —p}
M
T ~—11

M p
= 1
+10g|z|_P_MZZIOg|dki|}; (15)

k=1 i=1
E((Q,Z)IY)Lz(a, 3, 0,%)

& 1 a1 ~ R
=Eq@mmtrlE {(® - D) W(d — ®)}]
1 1 X
o1
=3 {tr(Z 7 § @k/x’,;’xzq>k>

M
a1 1 ,
+tr(<1>z ¢ k§_lxi X;>}

M
PURPYS | ,
—tr| X <I>—E XX @), 16
f( Mk_l k Xk k) (16)

where W = E(X|¢,2)(X/X).

Note that all terms in the posterior entropy loss are
functions of simulated X, ®, and X* over the MCMC
cycles. The moments of the simulated parameters can
be computed in the MCMC cycles, just as the posterior
mean, without the need of storage of all of the simulated
parameters.

5. A numerical example and an empirical
study

5.1. A numerical example

In this section we first simulate data from an LTS model
ye=c+ @ _x)B+ e (17)

fort = 1,...,T. The dimension of the VAR variable y,
is 5. The exogenous variable x; is a scalar representing
seasonal cycles, withx; = 0,5, = 1,53 =0, x4 = —1,
and x; = x;_4 for t > 4.
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Now we let the true parameters be

10000

02000
X=100300]{,

00040

00005

0 0 0 0 0

05 0 0 0 0

0 05 0 0 0
B=]0 0 05 0 0

0 0 0 05 0

0 0 0 0 05

0.1 02 03 04 05

The last row of matrix B are the parameters of the
seasonal dummies. The discussion in Section 2 shows
with this parameter setting there is no closed-form
expression of the frequentist expectation E(X'X|X, ®)
and we need to simulate E(x|¢,3)(X'X) using the data-
augmentation algorithms proposed in Section 4.

We generate one data sample (T) of 100 observations
from the LTS model with the above parameters for X
and ®. The MLE of the parameters are

0.93201 0.12358 —0.08462 0.27246 —0.11782
0.12358 1.76018 0.02217 —0.16508 0.26475
—0.08462 0.02217 2.44980 —0.07874 —0.01940 |,
0.27246 -0.16508 -0.07874 3.44815 —0.80056
-0.11782 0.26475 —0.01940 —0.80056 4.03612

—0.05633 0.14700 0.01158 0.16497 0.26224
0.51936  0.24397 0.21705 —0.1209 —0.25149
0.0214  0.41804 —0.03495 0.06221 0.28700

—0.04826 —0.03265 0.50279 —0.03351 —0.10127

—0.06176 0.01439 0.14174 0.37051 —0.01758
—0.0194 —-0.0014 —0.08389 0.01734 0.39826
0.15900 0.22462 —0.21547 —0.01671 1.06891

PyLE =

We conduct the simulation with a diffuse prior on ®
and the Yang-Berger reference prior on X. The length
of MCMC cycles set at 100,000. The intrinsic Bayes
estimates are

1.25871 0.17644 —0.08826 0.26711 —0.13247
0.17644 2.33691 0.00497 —0.15278 0.28849

fg = | —0.08826 0.00497 2.97993 —0.03929 —0.07036 |,
0.26711 —0.15278 —0.03929 3.76133 —0.74181
—0.13247 0.28849 —0.07036 —0.74181 4.57260

(18)

—0.05655 0.09316 —0.00092 0.11812 0.16943
0.46112 0.18679 0.13921 —0.09552 —0.13973
0.02891 0.37594 —0.01426 0.05658 0.18949

®p = | —0.04417 —0.03156 0.45267 —0.0236 —0.10665

—0.05809 0.02705 0.11909 0.33560 0.02602

—0.02400 0.00105 —0.08313 0.02921 0.34976

0.11188 0.08832 —0.08980 0.04434 0.34897
(19)

The acceptance rate for the Metropolis step
employed for sampling of ¥ from the posterior condi-
tional on other parameters and data is 24%.
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Table 1. Posterior average loss of the estimates in the Example.

EL, EL, EL =E(L1+Ly)
MLE (®mie, ZmLE) 11.2940 22.6213 339154
Posterior mean (®mean, X Mean) 75414  17.7350 25.2764
Intrinsic Bayes estimator (®g, X¢g)  7.9295 13.6053 21.5348

Notes: The loss functions are (2, ) = (T/2){tr():§71) —log |):§71|

—ph and L(E 8, Z,8) = JE (@ — ) Exjaz) X X)(® —
3)}]. The posterior average loss for L1 and L, are computed by (15)
and (16).

Now we compare the Bayes estimator with the MLE
and posterior mean. The posterior mean obtained using
Option 1 is

1.17992  0.16657 —0.08449 0.25618 —0.12700
0.16657 2.20489 0.00476 —0.14659 0.27587

-~

Y Mean = | —0.08449 0.00476 2.81882 —0.03801 —0.06557 |,
0.25618 —0.14659 —0.03801 3.57382 —0.71561
—0.12700 0.27587 —0.06557 —0.71561 4.35069
(20)
—0.0599 0.09731 —0.00193 0.12276 0.17558
0.43287 0.18741 0.14185 —0.09236 —0.13907
0.02772  0.35030 —0.01270 0.05628 0.19118
$Mean = | —0.04650 —0.03116 0.42790 —0.02733 —0.10462

—0.05718 0.02602 0.12006 0.31275 0.02437

—0.02373 —0.00041 —0.08285 0.02851 0.32792

0.11167 0.08778 —0.08838 0.04414 0.34923
@1

It is known that the posterior mean of ¥ minimises
the expected posterior loss of L;. But it does not min-
imise the intrinsic loss because the estimator of X also
influences the weight of ® related loss in L,. Table 1
reports the average posterior loss of the MLE, posterior
mean, and the Bayes estimator for the data sample gen-
erated in the example. The Bayes estimator improves
L,-related risk with a tradeoff of larger L;-related risk.
Table 1 shows that the Bayes estimator induces lower
posterior risk than the posterior mean by making the
L,-related risk substantially lower and the L;-related
risk only slightly higher. Both posterior mean and the
Bayes estimator dominate the MLE.

5.2. An empirical study: seasonal effects in a
macroeconomic model

We now turn to an empirical application of the Bayesian
estimation under the entropy loss. We estimate an LTS
consisting of seasonal dummies and four macroeco-
nomic variables: the return of Standard and Poor 500
stock price index (which represents weighted stock
prices of large companies), the 3-month Treasury Bill
rate, the growth rate of payroll (including government
jobs as well as private sector jobs), and the growth rate
of industrial production (in that order). All series are
measured in percentage terms. The series are monthly
data from 1970:1 to 2002:12 and are not seasonally-
adjusted. The payroll data are obtained from the Bureau

of Labor Statistics, the rest series are obtained from the
Federal Reserve Board. There are 12 column dummy
variables, representing January to December.

The role of seasonal fluctuations in business cycles
has been noted by a number of economists. Barky
and Miron (1989) argued that for the U.S. economy the
characteristics of seasonal fluctuations are similar to the
conventional characterisations of business cycles. Cec-
chetti et al. (1997) estimated production function of
various industries based on how their responses to sea-
sonal shocks vary with the state of business cycle. Ghy-
sels (1988) showed that univariate seasonal adjustment
of endogenous variables is not harmless because infor-
mation on the interactions among endogenous vari-
ables will be lost. Miron and Beaulieu (1996) provided a
survey on econometric and economic issues on under-
standing business cycles through seasonal fluctuations.
In the finance literature, numerous studies argue that
stock returns appear to have a seasonal components.
Rozeft and Kinney (1976) documented a celebrated
“turn of the year” effect, which refers to the seemingly
abnormally high returns in January and July, especially
for stocks with small-market capitalisations. A number
of theories have been developed to explain the phe-
nomenon. Reinganum (1983) attributed the high stock
return in January to the end of year tax-loss selling in
December. Chang and Pinegar (1989) found that indus-
trial production trails the seasonal movement of stock
returns by one month. The reported point estimates of
the seasonal effects in the literature are model depen-
dent and based on OLS or MLE. We will estimate the
seasonal effects. Our primary interest lies in compar-
ison of posterior mean with Bayes estimate under the
entropy loss.

In this section, we employ an LTS model

Yi= @YY P+ € (22)
fort =1,...,T. The dimension of the VAR variable y,
is four. The exogenous variable xo; = (xo£,1, - - - > X01,12)
is a 12-dimensional vector representing seasonal cycles,
with xo;,; equals 1 if period i is January, and 0 otherwise;
X0i,12 = 1 if period i is December and 0 otherwise.

Based on the Schwarz criterion, for each sample
period the lag length L of the LTS is 2. The Yang-Berger
reference prior is applied to the covariance matrix X.
The prior for the LTS coefficient ¢ is a rather dif-
fuse N(0, My). Here M is a diagonal matrix with 10.0
being the diagonal element for parameters correspond-
ing to the dummy variables and 2.0 being the diagonal
element for parameters corresponding to the lag coef-
ficients. We draw the posterior from M MCMC cycles
after 0.1 x M burn-in runs. The MCMC length M is set
at 50, 000, 100, 000, and 1, 000, 000.

Under algorithm MCMC, reducing the length of
MCMC cycles to 100, 000 or 50, 000 from 1, 000, 000
makes little difference. The MLE, posterior mean, and



Bayes estimate of the covariance matrix X are as fol-
lows. As dictated by the theoretical result, the Bayes
estimate under the entropy loss, X is larger than the
posterior mean X pjean-

19.775 —0.335 —0.094 0.059
iMLE _ —0.335 0.254 0.055 0.011
—0.094 0.055 0.937 0.070
0.059 0.011 0.070  0.044

With M = 1,000, 000, the posterior mean and entropy-
based Bayes estimates are

20.908 —0.354 —0.100 0.063
$ o — —0.354 0271  0.058 0.012
ean —0.100 0.058  0.996 0.075
0.063  0.012  0.075 0.048

22729 —0.384 —0.101 0.078

S, — —0.384 0295  0.057 0.012
—0.101 0.057 1.074 0.081

0.078  0.012  0.081 0.052

The posterior standard deviations of the elements of the
covariance matrix are

1.538 0.124 0.235 0.052
0.124 0.020 0.027 0.006
0.235 0.027 0.074 0.012
0.052 0.006 0.012 0.003

The difference between estimates fMean and ¥ pislarge
relative to the posterior standard deviations.

The above point estimates and standard deviations
are similar to those with M = 50, 000. The MCMC
algorithm yields posteriors with few outliers. This is
because in Step 2 the MCMC algorithm, ¢ is gener-
ated from an average of sample data and generated data,
instead of sample data alone. A few outliers in the pos-
terior may affect the posterior mean slightly but can
change the posterior risk and the Bayesian estimate sub-
stantially because the few explosive parameters carry
disproportionately large weights in the posterior aver-
age loss.

The intrinsic Bayes estimate dominates the posterior
mean by a large margin in terms of posterior expected
loss. The large difference in the posterior expected loss
is mainly due to the difference in the ®-related risk,
i.e. the quadratic term in (5). This difference in risk is
approximately

1 P —~
Etr[):ElE{ab _dn'W
o~ /\_1 ~ —~
x (@ = &) | VIT;' (S5 — Sasean) |
which is proportional to the frequentist expectation W,
and the latter is comparable to X'X. X'X is quite large

in this application, largely due to the strong serial cor-
relation of the 3-month Tbill rates. As a result, with a
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larger ¥ the Bayesian estimate substantially reduces the
posterior risk, compared with the posterior mean. Sim-
ulation with M = 1, 000, 000 shows that the posterior
average loss of the posterior mean estimate (3230.6) is
larger than that of the intrinsic Bayes estimate (69.7).
The lower overall posterior average loss of the intrinsic
Bayes estimate is achieved by substantially lowering the
risk of the quadratic part, from 3225.3 for the posterior
mean to 61.8. The first term of the loss related to X of
the intrinsic Bayes estimate is slightly larger (7.9) com-
pared to that under the posterior mean estimate (5.3).
Asisnoted earlier, the intrinsic Bayes estimate improves
®-related loss with a tradeoff of larger X -related loss.
The empirical result shows that the Bayesian estimate
induces lower posterior average loss than the posterior
mean by making the ®-related loss substantially lower
and the X -related loss only slightly higher.

We now turn to compare the estimates of the regres-
sion coefficient ®. Table 2 reports the MLE, posterior
mean, the intrinsic Bayes estimate, and posterior stan-
dard deviations. As a consequence of applying a rather
diffuse prior, the posterior mean ®jpfeqy is quite similar
to the MLE. For stock returns of Standard and Poor 500
index, MLE and the posterior mean estimate indicate
a moderate positive seasonal factor in January, which
is smaller than the seasonal factor of March, April,
October, November, and December. Most surprisingly,
October registers the largest seasonal gain, despite the
fact that the sample included the 1987 October sell off.
The data of recent years suggest that the estimates of
seasonality in large capitalisation stock returns are quite
sensitive to the sample period and regression model.
In comparison to the MLE and the posterior mean,
the intrinsic Bayesian estimate shows a smaller Jan-
uary effect and much smaller end-of-the-year positive
seasonal returns. The sum of the seasonal coefficients
of the MLE is above 11% while that of the intrinsic
Bayesian estimates is about half as much. The large dis-
crepancy between the posterior mean and the intrinsic
Bayesian estimate s casts doubt on the robustness of the
seasonality of returns of Standard and Poor 500 stock.

Compared to the stock return, the seasonality of
industrial production growth rate is much more robust.
The most distinct pattern is a steep decline in July fol-
lowed by a surge in August; then weakness in the end
of the year precedes a strong rebound in February. The
strong showing of industrial production in February
and August is consistent with the pattern reported in
Chang and Pinegar (1989) while the predicted indus-
trial production by Standard and Poor stock returns is
quite small. The magnitude of the seasonal effects by
the entropy-loss-based Bayesian estimates is on average
slightly larger than that of the posterior mean.

Lastly, we examine the estimates of the employment
growth rate equation. The most prominent seasonal
patterns are the decline in January followed by a
rebound in February and March and the weakness in
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Table 2. Estimates of three equations.

Stock return equation

IP growth equation

Payroll growth equation

MLE PMean (SD) BE MLE PMean(SD) BE MLE PMean (SD) BE
Jan 1.507 1.469 (1.093) 0.986 0.701 0.701 (0.243) 0.680 —2.019 —2.019 (0.053) —2.054
Feb 0.737 0.743 (2.344) 0.784 3.980 3.961 (0.532) 3.977 0.842 0.840 (0.117) 0.892
Mar 1.780 1.749 (2.355) 1.662 0.179 0.186 (0.537) 0.123 0.912 0.912 (0.118) 0.955
Apr 1.534 1.461 (1.170) 0.905 —1.286 —1.281 (0.262) —1.416 0.518 0.518 (0.057) 0.466
May 0.370 0.304 (1.381) —0.356 —0.138 —0.134 (0.312) —0.226 0.485 0.485 (0.068) 0414
June 0.242 0.195 (1.412) —0.444 2.092 2.095 (0.318) 2.003 0.455 0.455 (0.070) 0.381
July 0.637 0.585 (1.338) —0.019 —4.589 —4.584 (0.298) —4.759 —1.284 —1.284 (0.066) —1.352
Aug 0.822 0.753 (1.830) 0.485 5.270 5.257 (0.414) 5.251 0.262 0.261 (0.091) 0.255
Sept —1.881 —1.846 (1.798) —1.964 1.021 1.025 (0.405) 0.998 1.040 1.041 (0.089) 1.049
Oct 2.162 2.072 (1.377) 1.583 —0.409 —0.403 (0.308) —-0.614 0.155 0.155 (0.067) 0.106
Nov 1.891 1.815 (1.240) 1.271 —1.332 —1.33 (0.278) —1.464 —0.011 —0.011 (0.061) —0.075
Dec 1473 1.419 (1.149) 0.884 —0.792 —0.792 (0.257) —0.843 0.017 0.017 (0.056) —0.031
stock —0.012 —0.011 (0.052) 0.025 0.013 0.013 (0.011) 0.012 0.000 0.000 (0.002) 0.001
int1 —0.581 —0.580 (0.384) —0.518 0.152 0.153 (0.084) 0.132 0.030 0.030 (0.018) 0.025
ip1 —0.198 —0.201 (0.243) —0.208 0.052 0.052 (0.054) 0.076 0.021 0.021 (0.012) 0.021
empl 0.292 0.310 (1.017) 0.543 1.072 1.063 (0.231) 1.100 0.218 0.217 (0.051) 0.255
stock2 —0.040 —0.039 (0.052) —0.002 0.009 0.009 (0.011) 0.009 0.000 0.000 (0.002) 0.000
int2 0.589 0.594 (0.386) 0.587 —0.207 —0.207 (0.085) —0.176 —0.036 —0.036 (0.019) —0.028
ip2 —0.382 —0.373 (0.241) —0.365 —0.087 —0.087 (0.053) —0.064 0.046 0.046 (0.012) 0.045
emp2 0.008 0.019 (0.973) 0.198 —0.038 —0.036 (0.222) —0.006 0.183 0.183 (0.049) 0.219

Notes: stock lag 1, int lag 1, ip lag 1, and emp lag 1 represent the first lag of stock return, the first lag 3-month Tbill rate, the first lag of industrial production
growth, and the first lag of private sector payroll growth. The lag 2 variables are the second lag of the corresponding variables. Estimates are obtained with

MCMC cycle size M = 1, 000, 000.

July followed by a recovery in September. The esti-
mated seasonality in payroll growth is somewhat differ-
ent from that of the industrial production growth. Note
that in year 2002 about 83% of the payroll consists of
service sector jobs while 85% of industrial production
concerns the manufacture sector. The subject of interest
is the point estimates. Similar to the industrial produc-
tion equation, the entropy-loss-based Bayes estimates
for the payroll growth rate equation are similar to the
posterior mean.

In summary, the Bayesian estimates based on the
entropy loss show a qualitatively similar seasonal
pattern to that of the posterior mean estimates for
industrial production and employment growth but a
distinctly different one for stock returns. The poste-
rior average loss of the Bayes estimates with respect to
the entropy loss is substantially smaller than that of the
posterior mean.

6. Concluding remarks

In this paper we investigate properties of Bayes estima-
tors of LTS model (@, X) derived from the entropy loss
function. These estimators are distinctly different from
the multivariate iid model because of the serial corre-
lation of the time series variables. Bayesian computa-
tion under the entropy loss requires simulating a fre-
quentist moment of the regressors. We propose a data-
augmenting algorithm for simulation of posteriors and
computation of Bayes estimators under the entropy loss
and a normal-reference prior. The algorithm that draws
from the full conditional posterior is shown to be quite
efficient. A novel approach taken in this paper concerns
generating data in an MCMC as latent parameters. This
idea may be useful for other contexts for simulating

complicated posterior moments. Our empirical appli-
cation to a macroeconomic problem shows that the
Bayes estimates under the entropy loss can differ sub-
stantially from the posterior mean.
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Appendix. Proof of Fact 2.1 and posterior
properties

A1 Proof of Fact 2.1

Proof: Let (f, ¥) denote an arbitrary estimator of (g, X).
For the entropy loss function L and posterior 7 (u, X | Y),
the expected posterior loss is

L~ T - j=—1, .
R(mEIY):EE{(M—M)E (i — 1)

+tr(EE ) —log|=E 7! —p}.

The Bayes estimator, which minimises the expected poste-
rior loss, can be derived through conditions on first-order
derivatives. Note that because X is symmetric,

OR(i, %) < -
—— =2E(Z(n — .
o (Z(—mw)
Let the derivative be 0 yields ft;g = E(u | Y).
The following identities are known (e.g. Harville, 1998,
p. 327) for symmetric matrices A and B,

3log(|A

% =247 — diaga™)),

dtr(AB™!

% = —2(B"'AB™Y) + diag(B"'AB™).

Here diag(A) is a diagonal matrix, whose diagonal elements
are these from A. Using the conclusion that the estimator for
1 is the posterior mean, we have E{(fiqg — 1) (ftiig — 1) |
Y} = var(p | Y). Taking this result to the derivative with
respect to X, we have

OR(fiig> Z)
3>
T <-1 O - | <-1
:EE{—ZE var(u|V)E " +diagE var(u| )T

23728 Y diag E ' T H428 T - diag(i‘l)}.
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= g{ziﬂa— [E(T | Y)4var(e | V)IE D+
— diag(E (T = [B(E | V)+var(e | IE D).
The derivative is 0 when
I=[E(Z|Y)+var(u | VI,

which yields /Z\iid =EX|Y)+var(u | Y). [ |

A2 Posterior properties

A2.1 (0 | X*, X) under normal prior for ® and
Jeffreys type prior for X

A commonly used noninformative prior for X is the Jeffreys
prior 77(X) o< |E|~®+VD/2 The prior for ¥ in the RATS sta-
tistical package is a modified version of the Jeffreys prior,
T4 (X) o ||~ EHDP/2=1 Zellner’s maximum data informa-
tive (MDI) prior, mp (%) o |Z|~1/2. For analysis on prior
choice in VAR models see Ni and Sun (2003), and Sun
and Ni (2004). We consider a class of joint priors,

(¢, ) = N (P, (X)), (A1)

where 7n(¢) is the normal prior for ¢ given by (10), and
7 (X) (b € R) is given by

(%) (A2)

1
|Z|b/2

Note that 7y, Tna, and wap are special cases of (A2) when
bequalstop+1, (L + 1)p + 2 and 1, respectively.

We propose using the posterior quantities conditional on
the simulated data X*, h(@ | X*, X), instead of the marginal
posterior, h(# | X), as the estimator of h(f). Note that the
posterior

%
f(¢,Z|X)X)O<W

x etr {—%(Y—X‘I))Zfl(Y—X‘I’)/}

X etr {—%(Y*—X*‘I’)Z_I(Y*—X*‘I’)/}
1

xexp {36~ 90 M5 6~ 9.

We would like to express the posterior of X in terms of X*.
Integrating out @ results in

FZ1X5X)

B |M0 ) (X/X_’_X*/X*)fl'l/Z
- |E|T+b/2

x etr {—%2—1 (Y — X®p) (Y — X®p)
X exp {—%(«i ~$0) Mo+ £ ® (X'X

+ XX - 90))

1 A ~
X exp {_5(¢M — Tl e (X))
+ X @y - dan) |
where the lower case defines the vec operator: ¢ = vec(®),
o= (X’X + XX TN XY + XF'YH), &y = (X'X)"1X'Y,
and @, = (X¥X*)"1X*'Y*,

The posterior f(®, X | X*, X) has a closed form when the
prior for ¢ can be written as N (¢, Mo) with
My =X ® R, (A3)

where 2 is a Lp+1 by Lp+ 1 known covariance matrix.
In the extreme case of 2y~ — 0, Mal — 0 and the prior
approaches a constant prior. Under the assumption (A3), we
have

f(Z | X*,X) o [ + (XX + XX NP2

b—Lp—1 1
=T F etr <—£VE_1>,

V(X, X")

where

= @y — O3 (XX + XX @y — By
+(® — @) [ + XX+ XX 1(® — @)
+ (Y = X®)) (Y — XByy)
+(Y*

—X*®)) (Y — X*®))).

(| X5 X) ~ IW{V,2T + b— (L + 1)p — 2}. The mean
of X | X*, XisVX,X*)/QT +b—(L+1)p—2—p—1) =
VX, X*)/QT + b — (L + 2)p — 3). The posterior mean X |
X is estimated byZ 212X, X)/M.

The marginal posterior of f (® | X*, X) can be obtained by
integrating out X in f(®, X | X*, X). It is easy to verify that

1
F(®,% | X, X) o |27 T8 2etr (—EU):”)
1
= |x|" VD 2oy <—5U):*1> , (A4)

where the degree of freedom v = 2T+ b — p — 1 and

= (®— ") (R0 +X'X+X¥X*)(®—®Y)+V(X, X*),
(A5)

@ = (o '+ X' X+ XX N (R @0+ XY + X' YH).

(A6)
It follows from (A4) that
f(® ] X*X) oc |UITY?
= [(@ - @) (2!
FX'X 4+ XX (@ — 9 + VL XH| T, (A7)

which follows a matrix version of the Student-t distribution.
The mean of ® | X*, X is ®"“. To calculate the intrinsic Bayes
estimator, note that the frequentist expectation W can be esti-
mated by Y XX /M. The posterior mean E(W® | X) is

estimated by Z]]\il XX (X!, X)/M.



A2.2 Conditional posteriors under normal prior
for ® and the Yang-Berger reference prior for X

Fact A.1: Consider the normal prior for ¢ given in (10). The
conditional density of ¢ given (X;Y) is Ny(fp, V), where

Ky = &MLE + {Mal + 271 ® (X/X)}ilMo_l(qso - &MLE);

(A8)
Vu={M"+Z7'@XX)", (A9)

where
bure = vec{ X' X)'X'Y). (A10)

Fact A.2: Consider the normal prior for ¢ given in (10). The
conditional density of ¢ given (X;Y,Y*) is ~ N(@y, Vi,
where

Vii={M;' + 27 @ X'X + X*'X%)} 71,
bi = ViI{Z ' © XX + X X)) yr + My ' éol;

N -1
S = vec{ (X’X + X*’x*) (X’Y + X*’Y*) }

Fact A.3: The conditional density of X given (¢,Y) is
etr{—1X718(®)}
(12 T @i~ dp

1<i<j<p

where S(®) = (Y — X®)'(Y — X®).

T(X|P,Y) x , (A11)

Fact A.4: The conditional density of X given (¢, Y, Y™) is
etr{—1Z71(S(®) + §*(®))}
DAEaai [ NCAEH

1<i<j<p

where $¥(®) = (Y* — X*®)(Y* — X*®).

7(Z|®, Y, Y*) . (A12)

STATISTICAL THEORY AND RELATED FIELDS . 287

We have shown how simulated data facilitate computa-
tion of a frequentist moment in the Bayes estimator. In the
appendix, we will show that the simulated data can also be
used to reduced the variance of MCMC, making the simula-
tion more efficient.

For simulation of X, we adopt a hit-and-run algorithm
used in Yang and Berger (1994). In implementing the
algorithm, we consider a one-to-one transformation X* =
log(X),or X = exp(Z*¥) in the sense that

o) i
)::Z(Z,)].
P

The reason for simulating ¥ as exp(X¥) is to ensure the gen-
erated ¥ matrices are positive definite. It can be shown that
the conditional posterior density of £* given (®, Y) is

7(T¥|®,Y)
etr{(—71Z*| — 3 (expZ*) "' S(®))

l_[1<](df - df) ’
(A13)

=7 (X*|S$(®))

and that the conditional posterior density of X* given
(¢,Y,Y*) is then

7(Z*|®,Y,Y*) = 7(T*|S(®), $*(®))
etr[—T|Z*| — 1 (expZ*) " {S(®) + §*(®)}]
X
[T — )

where £* = O'D*0, O is an orthogonal matrix, D* =
diag(d?, .. .,d;), with df > ... > d;f. Note that exp(T*) =
0’ exp(D*)0.

,» (Al4)
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