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ABSTRACT
We consider sparsity selection for the Cholesky factor L of the inverse covariance matrix in
high-dimensional Gaussian DAG models. The sparsity is induced over the space of L via non-
local priors, namely the product moment (pMOM) prior [Johnson, V., & Rossell, D. (2012).
Bayesian model selection in high-dimensional settings. Journal of the American Statistical Asso-
ciation, 107(498), 649–660. https://doi.org/10.1080/01621459.2012.682536] and the hierarchi-
cal hyper-pMOM prior [Cao, X., Khare, K., & Ghosh, M. (2020). High-dimensional posterior
consistency for hierarchical non-local priors in regression. Bayesian Analysis, 15(1), 241–262.
https://doi.org/10.1214/19-BA1154]. We establish model selection consistency for Cholesky fac-
tor undermore relaxed conditions compared to those in the literature and implement anefficient
MCMC algorithm for parallel selecting the sparsity pattern for each column of L. We demonstrate
the validity of our theoretical results via numerical simulations, and also use further simulations
to demonstrate that our sparsity selection approach is competitive with existing methods.
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1. Introduction

Covariance estimation and selection is a fundamental
problem in multivariate statistical inference. In recent
years, high-throughput data from various applications
is being generated rapidly. Several promising methods
have been proposed to interpret the complexmultivari-
ate relationships in these high-dimensional datasets. In
particular, methods inducing sparsity in the Cholesky
factor of the inverse have proven to be very effective in
applications. These models are also referred to as Gaus-
sian DAG models. In particular, consider i.i.d. obser-
vations Y1,Y2, . . . ,Yn obeying a multivariate normal
distributionwithmean vector 0p and covariancematrix
�. Let � = LD−1LT be the unique modified Cholesky
decomposition of the inverse covariance matrix � =
�−1, where L is a lower triangular matrix with unit
diagonals, and D is a diagonal matrix with all diago-
nal entries being positive. A given sparsity pattern on L
corresponds to certain conditional independence rela-
tionships, which can be encoded in terms of a directed
acyclic graph D on the set of p variables as follows: if
the ith and jth variables do not share an edge inD, then
Lij = 0 (see Section 2 formore details). In this paper, we
focus on imposing sparsity on theCholesky factor of the
inverse covariance matrix through a class of non-local
priors.

Non-local priors were first introduced by Johnson
and Rossell (2010) as densities that are identically zero
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whenever a model parameter is equal to its null value
in the context of hypothesis testing. Non-local pri-
ors discard spurious covariates faster as the sample
size n increases compared with local priors, while pre-
serving exponential learning rates to detect nontrivial
coefficients. These non-local priors including the prod-
uct moment (pMOM) non-local prior are extended
to Bayesian model selection problems in Johnson
and Rossell (2012) and Shin et al. (2018) by imposing
non-local priors on regression coefficients. Wu (2016)
andCao et al. (2020) consider a fully Bayesian approach
with the pMOM non-local prior and an appropriate
Inverse-Gamma prior on the hyperparameter (the so-
called hyper-pMOM prior), and discuss the potential
advantages of using hyper-pMOM priors and establish
model selection consistency in regression setting.

In the context of Gaussian DAG models, Altamore
et al. (2013) deal with structural learning for Gaussian
DAGmodels from an objective Bayesian perspective by
assigning a prior distribution on the space of DAGs,
together with an improper product moment prior on
the Cholesky factor corresponding to each DAG. How-
ever, objective priors are often improper and cannot be
used to directly compute the Bayes factors, even when
the marginal likelihoods are strictly positive and finite.
The authors therefore utilize the fractional Bayes factor
(FBF) approach and implement an efficient stochastic
search algorithm to deal with data sets having sam-
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ple size smaller than the number of variables. Cao
et al. (2019) further establish consistency results under
these objective priors under rather restrictive condi-
tions.

To the best of our knowledge, a rigorous investiga-
tion of high-dimensional posterior consistency proper-
ties with either pMOMprior or the hyper-pMOMprior
has not been undertaken for either undirected graphi-
cal models or DAG models. Hence, our first goal was
to investigate if high-dimensional consistency results
could be established under these two more diverse and
algebraically complex class of non-local priors in the
Gaussian DAG model setting. Our second goal was to
investigate if these consistency results can be obtained
under relaxed or comparable conditions. Our third goal
was to develop efficient algorithms for exploring the
massive candidate space containing 2p(p−1)/2 models.
These were challenging goals of course, as the posterior
distributions are not available in closed form for both
the pMOM prior and the hyper-pMOM prior.

As the main contributions of this paper, we establish
high-dimensional posterior ratio consistency for Gaus-
sian DAGmodels with both the pMOM prior as well as
the hyper-pMOM prior on the Cholesky factor L, and
under a uniform-like prior on the sparsity pattern in L
(Theorems 4.2–7.3). Following the nomenclature in Lee
et al. (2019) and Niu et al. (2019), this notion of consis-
tency also referred to as consistency of posterior odds
implies the maximal ratio between the marginal poste-
rior probability assigned to a ‘non-true’ model and the
posterior probability assigned to the ‘true’ model con-
verges to zero. That also indicates that the true model
will be the posterior mode with probability tending to
1. As indicated in Shin et al. (2018), since the pMOM
priors already induce a strong penalty on the model
size, it is no longer necessary to penalize larger mod-
els through priors on the graph space like Erdos–Renyi
prior (Niu et al., 2019), beta-mixture prior (Carvalho
& Scott, 2009), or multiplicative prior (Tan et al., 2017).
Also, through simulation studies where we implement
an efficient parallel MCMC algorithm for exploring the
sparsity pattern of each column of L, we demonstrate
that the models studied in this paper can outperform
existing state-of-the-art methods including both penal-
ized likelihood and Bayesian approaches in different
settings.

The rest of the paper is organized as follows.
Section 2 provides background material regarding the
Gaussian DAG model and introduces the pMOM
Cholesky distribution. In Section 3,we present our hier-
archical Bayesian model and the parameter class for
the inverse covariance matrices. Model selection con-
sistency results for both the pMOM Cholesky prior
and the hyper-pMOMCholesky prior are stated in Sec-
tions 4 and 7 respectively, with proofs provided in the
supplement. In Section 6 we use simulation experi-
ments to illustrate the model selection consistency, and

demonstrate the benefits of our Bayesian approach and
computation procedures for Cholesky factor selection
vis-a-vis existing Bayesian and penalized likelihood
approaches.We end our paper with a discussion session
in Section 8.

2. Preliminaries

In this section, we provide the necessary background
material fromgraph theory,GaussianDAGmodels, and
also introduce our pMOM Cholesky prior.

2.1. Gaussian DAGmodels

We consider the multivariate Gaussian distribution

Y ∼ Np(0,�−1), (1)

where� is a p × p inverse covariance matrix. Any pos-
itive definite matrix � can be uniquely decomposed as
� = LD−1LT, where L is a lower triangular matrix with
unit diagonal entries, and D is a diagonal matrix with
positive diagonal entries. This decomposition is known
as themodified Cholesky decomposition of� (Pourah-
madi, 2007). By considering this decomposition, one
can place an appropriate prior over the diagonals of
D to construct a hierarchical model. In addition, the
unit diagonals resulting from the modified Cholesky
decomposition can benefit the posterior calculation
and proof of consistency.

A directed acyclic graph (DAG) D = (V ,E) con-
sists of the vertex set V = {1, . . . , p} and an edge set
E such that there is no directed path starting and end-
ing at the same vertex. As in Ben-David et al. (2016)
and Lee et al. (2019), we will without loss of general-
ity assume a parent ordering, where that all the edges
are directed from larger vertices to smaller vertices.
Applications with natural ordering of variables include
estimation of causal relationships from temporal obser-
vations, or settings where additional experimental data
can determine the ordering of variables, and estima-
tion of transcriptional regulatory networks from gene
expression data (Huang et al., 2006; Khare et al., 2017;
Shojaie & Michailidis, 2010; Yu & Bien, 2017). The set
of parents of i, denoted by pai(D), is the collection of all
vertices which are larger than i and share an edge with
i.

A Gaussian DAG model over a given DAG D
denoted by ND consists of all multivariate Gaussian
distributions which obey the directed Markov prop-
erty with respect to a DAG D. In particular, if Y =
(Y1, . . . ,Yp)

T ∼ Np(0,�) andNp(0,� = �−1) ∈ ND ,
then Yi ⊥ Y{i+1,...,p}\pai(D) |Ypai(D), for each 1 ≤ i <

p. For the connection between the Cholesky factor L
and the underlyingDAGD, if� = LD−1LT is themod-
ified Cholesky decomposition of �, then Np(0,�−1) is
a Gaussian DAG model over D if and only if Lij = 0
whenever i /∈ paj(D).
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2.2. Notations

Consider the modified Cholesky decomposition � =
LD−1LT, where L is a lower triangular matrix with all
the unit diagonal entries andD = diag {d1, d2, . . . , dp},
where di(1 ≤ i ≤ p)’s are all positive and di represents
the ith diagonal entry of D. We introduce latent binary
variables Z = {Z21,Z31, . . . ,Zp1,Z32,Z42, . . . ,Zp,p−1}
for 1 ≤ j < k ≤ p to indicate whether Lkj is active, i.e.,
Zkj = 1 if Lkj �= 0 and 0, otherwise.

In this way, we are viewing the binary variable Z
as the indicator for the sparsity pattern in L. For each
1 ≤ j ≤ p − 1, let Zj = {Zkj : k > j,Zkj = 1}, a subset
of {j + 1, j + 2, . . . , p}, be the index set of all non-zero
components in {Zj+1,j, . . . ,Zp,j}. Zj explicitly gives the
support of the Cholesky factor and the sparsity pattern
of the underlying DAG. Denote |Zj| = ∑p

k=j+1 Zkj as
the cardinality of set Zj for 1 ≤ j ≤ p − 1.

For any p × p matrix A, denote AS1,S2 as a sub-
set of A defined by rows in set S1 and columns in
set S2. Following the definition of Z, for any p × p
matrix A, denote the column vectors AZj,j = (Akj)k∈Zj
and Aj∪Zj,j = (Ajj,AT

Zj,j)
T. Also, let AZj,Zj = (Aki)k,i∈Zj ,

Aj∪Zj,j∪Zj =
(

Aii AT
Zj,j

AZj,j AZj,Zj

)
.

In particular, Ap∪Zp,p = Ap∪Zp,p∪Zp = App.
Next, we provide some additional required nota-

tions. For x ∈ R
p, let ‖x‖r = (

∑p
j=1 |xj|r) 1

r and ‖x‖∞
= maxj |xj| represent the standard lr and l∞ norms.
For a p × p matrix A, let eig1(A) ≤ eig2(A) ≤ . . . ≤
eigp(A) be the ordered eigenvalues of A and denote
‖A‖max = max1≤i,j≤p |Aij|, ‖A‖(r,s) = sup{‖Ax‖s : ‖x‖r
= 1}, for 1 ≤ r, s < ∞. In particular, ‖A‖(1,1) = maxj∑

i |Aij|, ‖A‖(∞,∞) = maxi
∑

j |Aij| and ‖A‖(2,2) =
eigp(A)1/2.

2.3. pMOMCholesky prior

Johnson and Rossell (2012) introduce the product
moment (pMOM) non-local prior for the regression
coefficients with density given by

mp(2π)−
p
2 (τσ 2)−rp− p

2 |Ap| 12

× exp

(
−βT

p Apβp

2τσ 2

) p∏
i=1

β2r
i . (2)

Here Ap is a p × p nonsingular matrix, r is a pos-
itive integer referred to as the order of the density
and mp is the normalizing constant independent of
τ and σ 2, where τ is some positive constant. Vari-
ations of the density in (2), called the piMOM and
peMOM density, have also been developed in John-
son and Rossell (2012), Rossell et al. (2013) and Shin
et al. (2018). Adapted to our framework, we place the

following non-local prior on the Cholesky factor L
corresponding to pMOM prior for a certain sparsity
pattern Z,

π(LZj,j | dj,Zj)

= m|Zj|(2π)−
|Zj|
2 (τdj)−r|Zj|−

|Zj|
2 |AZj,Zj |

1
2

× exp

{
− (LZj,j)TAZj,ZjLZj,j

2τdj

}∏
i∈Zj

L2rij , (3)

for j = 1, 2, . . . , p − 1, where similarly, Ap is a p × p
positive definite matrix, r is a positive integer, τ >

0, and m|Zj| is the normalizing constant independent
of τ and dj, but dependent on |Zj|. m|Zj| can not be
explicitly written in closed form by can be bounded
below and above by a function of |Zj|. We refer to (3)
as our pMOM Cholesky priors. To introduce a hier-
archical model on the Cholesky parameter (L,D), we
will impose an Inverse-Gamma prior on the diagonal
entries ofD. Note that to obtain our desired asymptotic
consistency results, appropriate conditions for all the
aforementioned hyperparameters will be introduced in
Section 4.1.

3. Model specification

Let Y1,Y2, . . . ,Yn ∈ R
p be the observed data and S =

1
n
∑n

i=1 Y iYT
i denote the sample covariance matrix.

The class of pMOM Cholesky distributions (3) can be
used for Bayesian sparsity selection of the Cholesky
factor through the following hierarchical model,

Y | D, L ∼ Np

(
0, (LD−1LT)−1

)
, (4)

LZj,j | dj,Zj ind∼ pMOM Cholesky, 1 ≤ j < p, (5)

dj
ind∼ Inverse-Gamma(α1,α2), 1 ≤ j ≤ p.

(6)

The proposed hierarchical model now has five hyper-
parameters: the scale parameter τ > 0, the order r
and positive definite matrix A in model (5) for the
pMOM Cholesky prior, the shape parameter α1 and
scale parameter α2 inmodel (6) for the Inverse-Gamma
prior on dj. Further restrictions on these hyperparam-
eters to ensure desired consistency will be specified in
Section 4.1.

Remark 3.1: Note that in the currently presented hier-
archical model, we have not assigned any specific form
to the prior over the sparsity patterns of L (essentially
the space of Z). Some standard regularity assumptions
for this prior will be provided later in Section 4.1. In
fact, we will essentially impose a uniform-like prior on
Z. Because of the strong penalty induced on the model
size by the pMOM prior, it is no longer necessary to
penalize larger models through priors on the graph
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space like the Erdos–Renyi prior (Niu et al., 2019), the
complexity prior (Lee et al., 2019), or the multiplicative
prior (Tan et al., 2017).

Note that under the hierarchical model (4)–(6), we
can conduct posterior inference for the sparsity pat-
tern of each column of L independently, which will
benefit the computation significantly in the sense that
it allows for parallel searching. In order to show the
posterior ratio consistency π(Zj |Y), we need the fol-
lowing lemma that establishes the marginal posterior
probability.

Lemma 3.1: Under the hierarchical model (4)–(6), the
resulting (marginal) posterior probability for Zj (1 ≤ j <

p) is given by

π(Zj |Y) ∝ π(Zj)m|Zj||AZj,Zj |
1
2 τ−r|Zj|−

|Zj|
2

1

|nS̃Zj,Zj |
1
2

×
∫ ∞

0
d−( n

2+r|Zj|+α1+1)
j

× exp

(
− S̃j |Zj + 2α2

2dj

)
E|Zj|

⎛
⎝∏

i∈Zj
L2rij

⎞
⎠ ddj,

(7)

where m|Zj| is some normalized constant independent of
dj, S̃ = S + A

nτ , S̃j |Zj = S̃jj − (S̃Zj,j)T(S̃Zj,Zj)−1S̃Zj,j, and
E|Zj|(.) denotes the expectation with respect to a multi-
variate normal distribution with mean −(S̃Zj,Zj)−1S̃Zj,j,
and covariance matrix dj(S̃Zj,Zj)−1.

Here we provide the proof of Lemma 3.1.

Proof of Lemma 3.1: By (4)–(6) and Bayes’ rule, under
the pMOM Cholesky prior, the resulting posterior
probability for Zj is given by,

π(Zj |Y) ∝ π(Zj)
∫ ∞

0

∫
π (Y | D, L) π(LZj,j | dj,Zj)

× π(dj) dLZj,j ddj

∝
∫ ∞

0

∫
exp

{
−n(Lj∪Zj,j)TSj∪Zj,j∪ZjLj∪Zj,j

2dj

}

× d−( n2+α1+1)
j e

− α2
dj m|Zj|(2π)−

|Zj|
2

× (τdj)−r|Zj|−
|Zj|
2 |AZj,Zj |

1
2

× exp

{
− (LZj,j)TAZj,ZjLZj,j

2τdj

}

×
∏
i∈Zj

L2rij dLZj,j ddj. (8)

Note that(
Lj∪Zj,j

)T
Sj∪Zj,jLj∪Zj,j

=
(
1,
(
LZj,j

)T)( Sjj
(
SZj,j

)T
SZj,j SZj,Zj

)(
1, LZj,j

)
.

Therefore, it follows from (8) that
∫ ∏

i∈Zj
exp

{
−n(Lj∪Zj,j)TSj∪Zj,j∪ZjLj∪Zj,j

2dj

}

× exp

{
− (LZj,j)TAZj,ZjLZj,j

2τdj

}∏
i∈Zj

L2rij dLZj,j

=
∫ ∏

i∈Zj
L2rij exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−

(
LZj,j + (S̃Zj,Zj)−1SZj,j

)T
S̃Zj,Zj

(
LZj,j + (S̃Zj,Zj)−1SZj,j

)
2dj/n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× exp

{
−Sjj − (SZj,j)T(S̃Zj,Zj)−1SZj,j

2dj/n

}
dLZj,j,

where S̃Zj = SZj +
AZj
nτ . Hence, by (8), we have

π(Zj |Y)

∝ π(Zj)
∫ ∞

0

∫
π (Y | D, L) π(LZj,j | dj,Zj)

× π(dj) dLZj,j ddj

∝ π(Zj)m|Zj||AZj,Zj |
1
2 τ−r|Zj|−

|Zj|
2

1

|nS̃Zj,Zj |
1
2

×
∫ ∞

0
d−( n2+(r− 1

2 )|Zj|+α1+1
)

j

× exp

(
−nS̃j |Zj + 2α2

2dj

)
E|Zj|

⎛
⎝∏

i∈Zj
L2rij

⎞
⎠ ddj.

(9)

�

In particular, these posterior probabilities can be
used to select amodel by computing the posteriormode
defined by

Ẑj = argmaxZjπ(Zj |Y). (10)

4. Main results

In this section we aim to investigate the high-
dimensional asymptotic properties for the proposed
model in Section 3. For this purpose, we will work
in a setting where the data dimension p = pn and
the hyperparameters vary with the sample size n and
pn ≥ n. Assume that the data is actually being gen-
erated from a true model specified as follows. Let
Yn
1,Y

n
2, . . . ,Y

n
n be independent and identically dis-

tributed multivariate variate Gaussian vectors with
mean 0pn and true covariance matrix �n

0 = (�n
0)

−1,
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where �n
0 = Ln0(D

n
0)

−1(Ln0)
T is the modified Cholesky

decomposition of �n
0. The sparsity pattern of the true

Cholesky factor Ln0 is uniquely encoded in the true
binary variable set denoted as Zn

0 .
In order to establish our asymptotic consistency

results, we need the following mild assumptions
with corresponding discussion/interpretation. Denote
dn = max1≤j≤p−1 |Zn

0 j| as the maximum number of
non-zero entries in each column of Ln0. Let sn =
min1≤j,i≤p,i∈Zj |(Ln0)ij| as the smallest (in absolute value)
non-zero off-diagonal entry in Ln0, and can be inter-
preted as the ‘signal size’. For sequences an and bn,
an ∼ bn means an/bn → c for some constant c>0. Let
an = o(bn) represent an/bn → 0 as n → ∞.

4.1. Assumptions

Assumption 1: There exists ε0 ≤ 1, such that for every
n ≥ 1, 0 < ε0 ≤ eig1(�

n
0) ≤ eigpn(�

n
0) ≤ ε−1

0 .

Assumption 2: dn
√
log pn/n → 0 as n → ∞.

Assumption 3: dn log pn/(s2nn) → 0 as n → ∞.

Assumption 4: For each Zj(1 ≤ j < p), a uniform
prior is placed over all models of size less than or
equal to qn, i.e., π(Zj) ∝ I(|Zj| ≤ qn), where qn =
o(
√
n/ log pn).

Assumption 5a: The hyperparameters Apn , τ , α1, α2
in (5) and (6) satisfy 0 < a1 < eig1(Apn) ≤ eig2(Apn) ≤
. . . ≤ eigpn(Apn) < a2 < ∞ and 0 < α1,α2, τ < a2.
Here a1, a2 are constants not depending on n.

Assumption 1 has been commonly used for establish-
ing high-dimensional covariance asymptotic proper-
ties (Banerjee & Ghosal, 2014, 2015; Bickel & Lev-
ina, 2008; El Karoui, 2008; Xiang et al., 2015). Assump-
tion 2 essentially allow the number of variables pn to
grow slower than en/d

2
n compared to previous literatures

with rate en/d
4
n (Banerjee & Ghosal, 2014, 2015; Xiang

et al., 2015). Assumption 2 also states the maximum
number of parents for all the nodes for the true model
(i.e., dn) must be at a smaller order than

√
n/ log pn.

Assumption 3 also known as the ‘beta-min’ condi-
tion provides a lower bound for the minimum values of
Ln0 that is needed for establishing consistency. This type
of condition has been used for the exact support recov-
ery of the high-dimensional linear regressionmodels as
well as Gaussian DAG models (Khare et al., 2017; Lee
et al., 2019; Yang et al., 2016). Assumption 4 essentially
states that the uniform-like prior on the space of the
2pn(pn−1)/2 possible models, places zero mass on unre-
alistically large models. Since Assumption 2 already
restricts dn to be o(

√
n/ log pn), Assumption 4 does not

affect the probability assigned to the true model. See

similar assumptions in Johnson and Rossell (2012) and
Shin et al. (2018) in the context of regression.

Assumption 5a is standard which assumes the eigen-
values of the scale matrix in the pMOMCholesky prior
are uniformly bounded in n. Note that for the default
value of Apn = Ipn , Assumption 5a is immediately sat-
isfied. See similar assumptions in Shin et al. (2018) and
Johnson andRossell (2012). This assumption also states
the hyperparameter τ in pMOM Cholesky prior and
α1,α2 in the Inverse-Gamma prior are bounded by a
constant.

For the rest of this paper, pn, �n
0, �

n
0 ,L

n
0,D

n
0,Z

n
0 ,Z

n,
dn, sn will be denoted as p, �0, �0, L0, D0, Z0,Z, d, s
by leaving out the superscript for notational conve-
nience. Let P�0 and E�0 denote the probabilitymeasure
and expected value corresponding to the ‘true’ model
specified in the beginning of Section 4, respectively.

4.2. Posterior ratio consistency

Since the posterior probabilities in (7) are not available
in closed form,weneed to leverage the following lemma
that gives the upper bound for the Bayes factor between
any ‘non-true’ model Zj and the true model Z0j. Proof
for this lemma will be provided in the supplement.

Lemma 4.1: Under Assumptions 1–5a, for each 1 ≤ j <

p, the Bayes factor between any ‘non-true’ model Zj and
the true model Z0j under the pMOM Cholesky prior will
be bound above by,

π(Y |Zj)
π(Y |Z0j)

≤ ((Mτ)r+1/2n1/2)−(|Zj|−|Z0j|)

× |S̃j∪Z0 j,j∪Z0 j |S̃j |Z0j
|S̃j∪Zj,j∪Zj |S̃j |Zj

(V|Zj|−1)r|Zj|( s
2
)2r|Z0j|

× 

(n
2 + (

r − 1
2
) |Zj| + α1

)


(n
2 + (

r − 1
2
) |Z0j| + α1

)
× (nS̃j |Z0 j/2 + α2)

n
2+(r− 1

2 )|Z0j|+α1

(nS̃j |Zj/2 + α2)
n
2+(r− 1

2 )|Zj|+α1

+ ((Mτ)r+1/2n1/2)−(|Zj|−|Z0j|)

× |S̃j∪Z0 j,j∪Z0 j |S̃j |Z0j
|S̃j∪Zj,j∪Zj |S̃j |Zj

× n−r|Zj|( s
2
)2r|Z0j|



(
n−|Zj|

2 + α1

)


(n
2 + (

r − 1
2
) |Z0j| + α1

)

× (nS̃j |Z0 j/2 + α2)
n
2+(r− 1

2 )|Z0j|+α1

(nS̃j |Zj/2 + α2)
n−|Zj|

2 +α1

,

(11)

for some positive constant M, where V = (SZj,j)T

× (S̃Zj,Zj)−2SZj,j.
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The upper bound for the Bayes factor in Lemma 4.1
can be used to prove posterior ratio consistency. This
notion of consistency implies that the true model will
be the posterior mode with probability tending to 1.

Theorem 4.2: Under Assumptions 1–5a, the following
holds: for all 1 ≤ j < p,

max
Zj �=Zj0

π(Zj |Y)

π(Z0j |Y)

P�0−→ 0, as n → ∞.

Proof of this result is provided in the supplement.
If one is interested in a point estimate of Zj, the most
apparent choice would be the posterior mode defined
as

Ẑj = argmaxZjπ(Zj |Y). (12)

By noting that maxZj �=Z0j
π(Zj |Y)

π(Z0j |Y)
< 1 ⇒ Ẑj = Z0j, we

have the following corollary.

Corollary 4.1: Under Assumptions 1–5a, the posterior
mode Ẑj is equal to the true model Z0j with probability
tending to 1, i.e., for all 1 ≤ j < p,

P�0(Ẑj = Z0j) → 1, as n → ∞.

4.3. Strongmodel selection consistency

Next we establish a stronger notion of consistency
(compared to Theorem 4.2) that is referred to as strong
selection consistency. which implies that the posterior
mass assigned to the true model Z0j converges to 1 in
probability (Lee et al., 2019; Narisetty & He, 2014). For
achieving the strong selection consistency, we need the
following assumption instead of Assumption 5a on τ .
Proof for this theorem is provided in the supplement.

Assumption 5b: The hyperparameters Ap, τ , α1, α2
in (5) and (6) satisfy 0 < a1 < eig1(Ap) ≤ eig2(Ap) ≤
. . . ≤ eigp(Ap) < a2 < ∞, 0 < α1,α2 < a2 and τ ∼
p2κ/(r+1/2), for some κ > 1. Here a1, a2 are constants
not depending on n.

Theorem 4.3: Under Assumptions 1–5b, the following
holds: for all 1 ≤ j < p,

π(Z0j |Y)
P�0−→ 1, as n → ∞.

Remark 4.1: Not that neither Theorem 4.2 nor
Corollary 4.1 requires any restriction on the rate of the
scale parameter τ in the pMOM Cholesky prior that
will be growing, this requirement is only needed for
Theorem 4.3. As noted in Johnson and Rossell (2012),
the scale parameter τ is of particular importance, as
it reflects the dispersion of the non-local prior den-
sity around zero, and implicitly determines the size of
the regression coefficients that will be shrunk to zero.

Shin et al. (2018) treat τ as given, and consider a set-
ting where p and τ vary with the sample size n. In
the context of linear regression, they show that high-
dimensional model selection consistency is achieved
under the peMOM prior under the assumption that τ

grows larger than log p.

4.4. Comparisonwith existingmethods

We compare our results and assumptions with those
of existing methods in both Bayesian and frequen-
tist literature. Assumption 2 is a weaker assumption
for high-dimensional covariance asymptotic than other
Bayesian approaches including Xiang et al. (2015) and
Banerjee and Ghosal (2014, 2015). However, compared
with methods based on penalized likelihood, Assump-
tion 2 is stronger than the condition d log p/n < c0 for
some constant c0 in Yu and Bien (2017) and van deGeer
and Bühlmann (2013), which also study the estimation
of Cholesky factor for Gaussian DAG models with and
without the known ordering condition, respectively. In
terms of undirected graphical models, Assumption 2
is also more restrictive compared to the complexity
assumptions log p = o(n) in Cai et al. (2011) and n >

dc1 log p for some constant c1 in Zhang and Zou (2014).
Interested readers may also find Assumption 4

to be stronger compared with Condition (P) in Lee
et al. (2019) where qn ∼ n(log pn)−1{(log n)−1 ∨ c2}
for some constant c2. This is actually a result of the
uniform-like prior imposed on the Zj. If we replace the
uniform prior with the Erdos–Renyi prior or the com-
plexity prior, this restriction can be relaxed to encom-
pass a larger class of models. However, the simulation
results will be compromised by always favouring the
sparest model, since the penalty on larger models has
already been induced through the pMOM prior itself.

In the context of estimating DAGs using non-local
priors, Altamore et al. (2013) deal with structural
learning for Gaussian DAG models from an objec-
tive Bayesian perspective by assigning a prior distribu-
tion on the space of DAGs, together with an improper
pMOM prior on the Cholesky factor corresponding
to each DAG. The authors in Altamore et al. (2013)
proposed the FBF approach, but did not take the
opportunity to examine the theoretical consistency. The
major contributions of this paper are to fill the gap
of high-dimensional asymptotic properties for pMOM
and hyper-pMOM priors in Gaussian graphical mod-
els, and to develop efficient algorithms for exploring the
massive candidate space containing 2p(p−1)/2 models, as
we discuss in the next section.

5. Computation

In this section, we will take on the task to illustrate
the computational strategy for the proposed model.
The integral formulation in (7) is quite complicated,
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and the posterior probabilities can not be obtained in
closed form. Hence, we use the Laplace approximation
to compute π(Zj |Y). Detailed formulas are provided
in the supplement. A similar approach to compute pos-
terior probabilities based on Laplace approximations
has been used in Johnson and Rossell (2012) and Shin
et al. (2018). In practice, when the computation bur-
den for Laplace approximation becomes intensive as p
increases, we also suggest using the upper bound of the
posterior ((A.5) in the supplement) as an approxima-
tion, since our proofs are based on these upper bounds
and the consistency results are therefore already guar-
anteed. Based on these approximations, we consider the
following MCMC algorithm for exploring the model
space:

(1) Set the initial value Zcurr.
(2) For each j = 1, . . . , p − 1,

(a) Given the current Zcurr
j , propose Zcand

j by
either
(i) changing a non-zero entry inZcurr

j to zero
with probability (1 − αZ) or

(ii) changing a zero entry in Zcurr
j to one with

probability αZ .
(b) Compute

pa = min

{
1,

π(Zcand
j |Y)q(Zcurr

j |Zcand
j )

π(Zcurr
j |Y)q(Zcand

j |Zcurr
j )

}
.

(c) Draw u ∼ U(0, 1). If pa > u, Set Zcurr
j =

Zcand
j .

(d) Repeat (a)–(c) until a sufficiently long chain is
acquired.

Note that the inference for Z, the steps 2-(a) and
2-(d) in the above algorithm can be parallelized for
each column of Z. For more details about the parallel
MCMCalgorithm,we refer the interested readers to Lee
et al. (2019), Bhadra and Mallick (2013) and Johnson
and Rossell (2012). The above algorithm is coded in R
and publicly available at https://github.com/xuan-cao/
Non-local-Cholesky.

6. Simulation studies

In this section, we demonstrate our main results
through simulation studies. To serve this purpose, we
consider several different combinations of (n, p) includ-
ing both the low-dimensional and high-dimensional
cases. For each fixed p, a p × p lower triangular matrix
with unit diagonals is constructed. In particular, we
randomly choose 4% or 8% of the lower triangular
entries of the Cholesky factor and set them to be non-
zero values according to the following three scenar-
ios. The remaining entries are set to zero. We refer to
this matrix as L0. The matrix L0 also reflects the true
underlying DAG structure encoded in Z0.

(1) Scenario 1: All the non-zero off-diagonal entries in
L0 are set to be 1.

(2) Scenario 2: All the non-zero off-diagonal entries in
L0 are generated from N(0, 1).

(3) Scenario 3: Each non-zero off-diagonal entry is set
to be 0.25, 0.5 or 0.75 with equal probability.

Next, we generate n i.i.d. observations from the
N(0p, (L−1

0 )TL−1
0 ) distribution, and set the hyperpa-

rameters as r = 2,Ap = Ip, α1 = α2 = 0.01. The above
process ensures all the assumptions are satisfied. Since
our posterior ratio consistency in Theorem 4.2 and
strong model selection consistency in Theorem 4.3
require different constraints on the scale parameter τ ,
we also consider three values for τ : (a) τ = 1; (b) τ = 2;
(c) τp = p2.01. Then, we perform model selection on
the Cholesky factor using the four procedures outlined
below.

(1) Lasso-DAG with quantile based tuning: We imple-
ment the Lasso-DAG approach in Shojaie and
Michailidis (2010) by choosing penalty parame-
ters (separate for each variable i) given by λi =
2n− 1

2 
−1( 0.1
2p(i−1) ), where 
(·) denotes the cumu-

lative distribution function of the standard nor-
mal distribution. This choice is justified in Sho-
jaie and Michailidis (2010) based on asymptotic
considerations.

(2) ESC Metropolis–Hastings algorithm: We imple-
ment the Rao-Blackwellized Metropolis–Hastings
algorithm for the empirical sparse Cholesky (ESC)
prior introduced in Lee et al. (2019) for exploring
the space of the Cholesky factor. The hyperparam-
eters and the initial states are taken as suggested
in Lee et al. (2019). Each MCMC chain for each
row of the Cholesky factor runs for 5000 iterations
with a burn-in period of 2000. All the active com-
ponents in L with inclusion probability larger than
0.5 are selected.

(3) FBF Fractional Bayes factor approach: We imple-
ment the stochastic search algorithm based on
fractional Bayes factors for non-local moment
priors suggested in Altamore et al. (2013). The
stochastic search algorithm is similar to that
proposed by Scott and Carvalho (2008), which
includes re-sampling moves, local moves and
global moves. The rationale can be summarized
by saying that edgemoves which already improved
some models are likely to improve other models as
well. The final model is constructed by collecting
the entries with inclusion probabilities greater than
0.5.

(4) pMOM Cholesky MCMC algorithm: We ran the
MCMC algorithm outlined in Section 5 with αZ =
0.5 for each combination and data set to conduct
the posterior inference for each column of Z. The

https://github.com/xuan-cao/Non-local-Cholesky
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initial value for Z is set by thresholding the modi-
fied Cholesky factor of (S + 0.3I)−1 (S is the sam-
ple covariance matrix) and setting the entries with
absolute values larger than 0.1 to be 1 and 0 oth-
erwise. Each MCMC chain runs for an iteration of
10,000 times with a burn-in period of 5000, which
gives us 5000 posterior samples. In our simula-
tion settings, we use four separate cores for par-
allel computing. We construct the final model by
collecting the entries with inclusion probabilities
greater than 0.5.

The model selection performance of these four
methods is then compared using several different mea-
sures of structure such as false discovery rate, true
positive rate andMathews correlation coefficient (aver-
age over 100 independent repetitions). False Discovery
Rate (FDR) represents the proportion of true non-zero
entries among all the entries detected by the given
procedure, True Positive Rate (TPR) measures the pro-
portion of true non-zero entries detected by the given
procedure among all the non-zero entries from the true
model. FDR and TPR are defined as

FDR = FP
TP + FP

, TPR = TP
TP + FN

.

Mathews Correlation Coefficient (MCC) is commonly
used to assess the overall performance of binary classi-
fication methods and is defined as

MCC = TP × TN − FP × FN√
(FP + TN)(TP + FN)(TN + FP)(TN + FN)

,

where TP, TN, FP and FN correspond to true positive,
true negative, false positive and false negative, respec-
tively. Note that the value of MCC ranges from −1 to 1
with larger values corresponding to better fits (−1 and
1 represent worst and best fits, respectively). One would
like the FDR values to be as close to 0 and TPR values
to be as close to 1 as possible. The results are provided
in Tables 1–6, corresponding to different simulation
settings.

Note that this cutoff value of 0.5 for obtaining the
posterior estimator in our MCMC procedure is a natu-
ral default choice and could be changed in different con-
texts. However, it turns out that compared with other
methods, our results are quite robust with respect to
the thresholding value as we draw out the ROC curves
under the setting with 4% non-zero entries given in
Figure 1. In particular, we observe the fixed τ2 pMOM
Cholesky model overall outperforms the other three
methods including the pMOMmodel with growing τp,
especially when n and p increase.

It is clear that our hierarchical Bayesian approach
with pMOMCholesky prior under two different values
of τ outperforms Lasso-DAG, ESC and FBF approaches

based on almost all measures. The FDR values for
our Bayesian pMOM Cholesky approaches are mostly
below 0.3 except when p = 1000, while the ones for the
other methods are around or beyond 0.5. The TPR val-
ues for the proposed approaches are all beyond 0.6 in
most cases, while the ones for the penalized likelihood
approaches and other two Bayesian approaches are all
below 0.55 inmost scenarios. For themost comprehen-
sive measure ofMCC, our proposed Bayesian approach
outperforms all the other three methods under all the
cases of (n, p) and two different sparsity settings. It
is also worthwhile to compare the simulation perfor-
mance between three different values of τ under the
pMOM Cholesky prior. We can tell that the higher
order of τp though could guarantee the strong model
selection consistency (Theorem 4.3), compared with
the constant τ1 and τ2 case, the selection performance
slightly suffers from the strong penalty induced by both
the pMOM prior itself and the larger τp value. The per-
formance under τ = 1 and τ = 2 are very similar with
a slightly better performance given by τ = 1. Hence,
from a practical standpoint, one would prefer treating
τ as a smaller constant (not growing with p) for better
estimation accuracy.

It is also meaningful to compare the computational
runtime between differentmethods. In Figure 2, we plot
the run time comparison among our pMOM Cholesky
approach, ESC and FBF. We can see that the run time
for pMOM is significantly lessened compared to ESC
and FBF, especially under the setting where we ran each
ESC-based chain for 5000 iterations, while for pMOM,
we ran 10,000 iterations. The computational cost of ESC
is also extremely expensive in the sense that it requires
not only additional run time, but also larger memory
(more than 30GB when p > 900).

Overall, this experiment illustrates that the pro-
posed hierarchical Bayesian approach with our pMOM
Cholesky prior can be used for a broad yet computa-
tionally feasible model search, and at the same time
can lead to a much more significant improvement in
model selection performance for estimating the spar-
sity pattern of the Cholesky factor and the underlying
DAG.

7. Results for hyper-pMOMCholesky prior

In the generalized linear regression setting, Wu (2016)
proposes a fully Bayesian approach with the hyper-
pMOM prior where an appropriate Inverse-Gamma
prior Inverse-Gamma(λ1, λ2) is placed on the param-
eter τ in the pMOM prior. Following the nomenclature
inWu (2016), we refer to the followingmixture of priors
as the hyper-pMOM Cholesky prior,

LZj,j | dj,Zj ind∼ pMOM Cholesky, 1 ≤ j < p, (13)
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Table 1. Model selection performance table under Scenario 1 with 4% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.91 0.55 0.14 0.76 0.50 0.31 0.69 0.51 0.36 0.04 0.90 0.93 0.05 0.90 0.92 0.08 0.67 0.78
200 100 0.96 0.57 0.10 0.81 0.43 0.26 0.75 0.41 0.30 0.04 0.89 0.93 0.05 0.89 0.91 0.10 0.65 0.77
500 100 0.98 0.67 0.08 0.88 0.28 0.17 0.80 0.32 0.25 0.13 0.87 0.86 0.14 0.84 0.85 017 0.62 0.72
200 200 0.96 0.66 0.10 0.83 0.57 0.28 0.74 0.59 0.36 0.01 0.99 0.98 0.02 0.98 0.98 0.03 0.91 0.94
400 200 0.98 0.76 0.08 0.87 0.46 0.23 0.79 0.43 0.28 0.03 0.97 0.97 0.02 0.97 0.97 0.03 0.91 0.94
1000 200 0.98 0.85 0.06 0.88 0.35 0.16 0.82 0.38 0.23 0.14 0.91 0.89 0.14 0.90 0.88 0.17 0.78 0.80

Note: pMOM-τ1: pMOM Cholesky with τ = 1; pMOM-τ2: pMOM Cholesky with τ = 2; pMOM-τp : pMOM Cholesky with τ = p2.01.

Table 2. Model selection performance table under Scenario 1 with 8% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.88 0.62 0.13 0.76 0.37 0.23 0.71 0.48 0.32 0.06 0.79 0.85 0.04 0.76 0.84 0.10 0.45 0.62
200 100 0.94 0.68 0.11 0.85 0.28 0.16 0.75 0.35 0.27 0.15 0.72 0.77 0.15 0.70 0.76 0.15 0.49 0.64
500 100 0.98 0.81 0.08 0.92 0.16 0.09 0.78 0.31 0.26 0.29 0.72 0.71 0.29 0.71 0.70 0.38 0.42 0.51
200 200 0.94 0.79 0.13 0.85 0.40 0.21 0.74 0.45 0.30 0.06 0.90 0.92 0.05 0.90 0.92 0.06 0.76 0.84
400 200 0.97 0.84 0.10 0.91 0.31 0.15 0.79 0.33 0.24 0.28 0.78 0.75 0.28 0.74 0.72 0.31 0.54 0.60
1000 200 0.98 0.87 0.08 0.94 0.27 0.13 0.83 0.29 0.21 0.53 0.61 0.52 0.54 0.58 0.51 0.45 0.44 0.49

Table 3. Model selection performance table under Scenario 2 with 4% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.93 0.56 0.11 0.75 0.41 0.28 0.67 0.44 0.35 0.08 0.75 0.83 0.08 0.75 0.83 0.14 0.58 0.70
200 100 0.96 0.64 0.11 0.80 0.32 0.24 0.73 0.39 0.31 0.13 0.75 0.80 0.13 0.75 0.79 0.23 0.55 0.64
500 100 0.98 0.69 0.08 0.86 0.24 0.17 0.78 0.31 0.26 0.19 0.72 0.76 0.20 0.70 0.75 0.28 0.53 0.61
200 200 0.95 0.60 0.11 0.83 0.45 0.26 0.74 0.46 0.33 0.06 0.84 0.88 0.06 0.84 0.88 0.08 0.76 0.83
400 200 0.98 0.75 0.08 0.86 0.37 0.21 0.79 0.38 0.27 0.14 0.82 0.84 0.13 0.83 0.84 0.15 0.73 0.79
1000 200 0.98 0.71 0.06 0.92 0.23 0.13 0.83 0.35 0.22 0.33 0.74 0.71 0.32 0.74 0.71 0.28 0.65 0.68
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Table 4. Model selection performance table under Scenario 2 with 8% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.86 0.89 0.24 0.75 0.32 0.23 0.64 0.41 0.32 0.07 0.73 0.80 0.09 0.71 0.78 0.18 0.49 0.62
200 100 0.93 0.82 0.16 0.81 0.26 0.19 0.73 0.32 0.26 0.13 0.69 0.75 0.14 0.69 0.75 0.25 0.53 0.61
500 100 0.96 0.94 0.13 0.89 0.18 0.16 0.81 0.26 0.22 0.43 0.54 0.56 0.41 0.53 0.56 0.42 0.37 0.46
200 200 0.91 0.79 0.14 0.84 0.35 0.21 0.74 0.40 0.29 0.07 0.81 0.86 0.08 0.80 0.85 0.13 0.68 0.76
400 200 0.97 0.81 0.11 0.87 0.29 0.17 0.79 0.31 0.24 0.20 0.78 0.79 0.18 0.78 0.79 0.22 0.67 0.71
1000 200 0.97 0.93 0.09 0.90 0.27 0.14 0.85 0.25 0.21 0.55 0.56 0.55 0.55 0.53 0.54 0.61 0.33 0.35

Table 5. Model selection performance table under Scenario 3 with 4% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.79 0.53 0.31 0.62 0.51 0.41 0.52 0.54 0.51 0.03 0.70 0.82 0.05 0.69 0.81 0.13 0.39 0.58
200 100 0.86 0.55 0.26 0.67 0.45 0.37 0.58 0.51 0.47 0.08 0.73 0.82 0.07 0.71 0.80 0.20 0.34 0.51
500 100 0.91 0.54 0.21 0.75 0.34 0.31 0.63 0.45 0.40 0.10 0.72 0.81 0.11 0.71 0.81 0.23 0.32 0.50
200 200 0.86 0.64 0.27 0.71 0.59 0.41 0.60 0.63 0.48 0.03 0.91 0.94 0.03 0.91 0.94 0.04 0.73 0.84
400 200 0.91 0.65 0.24 0.76 0.50 0.35 0.67 0.53 0.41 0.03 0.89 0.92 0.03 0.89 0.92 0.04 0.70 0.81
1000 200 0.95 0.66 0.18 0.82 0.38 0.27 0.73 0.44 0.35 0.11 0.83 0.86 0.11 0.82 0.86 0.07 0.68 0.79

Table 6. Model selection performance table under Scenario 3 with 8% non-zero entries.

Lasso-DAG ESC FBF pMOM-τ1 pMOM-τ2 pMOM-τp

p n FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC FDR TPR MCC

100 100 0.79 0.42 0.23 0.67 0.39 0.31 0.76 0.43 0.37 0.05 0.66 0.78 0.07 0.67 0.78 0.15 0.49 0.48
200 100 0.80 0.41 0.21 0.75 0.32 0.26 0.65 0.37 0.33 0.08 0.69 0.79 0.08 0.67 0.78 0.21 0.29 0.46
500 100 0.95 0.52 0.15 0.79 0.31 0.22 0.75 0.29 0.27 0.26 0.58 0.65 0.25 0.55 0.64 0.23 0.32 0.49
200 200 0.85 0.56 0.21 0.71 0.48 0.34 0.67 0.48 0.36 0.04 0.89 0.92 0.03 0.89 0.92 0.05 0.73 0.84
400 200 0.94 0.53 0.14 0.80 0.39 0.28 0.73 0.38 0.30 0.04 0.90 0.93 0.04 0.89 0.92 0.05 0.69 0.81
1000 200 0.97 0.63 0.10 0.85 0.34 0.21 0.82 0.31 0.22 0.36 0.61 0.62 0.35 0.62 0.62 0.31 0.43 0.55
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Figure 1. ROC curves for sparsity selection. Top: n = 100; bottom: n = 200. (a) p = 100, (b) p = 200, (c) p = 500, (d) p = 200, (e)
p = 400 and (f ) p = 1000.

Figure 2. Run time comparison.

dj
ind∼ Inverse-Gamma(α1,α2), 1 ≤ j ≤ p, (14)

τ ∼ Inverse-Gamma(λ1, λ2), (15)

where λ1 and λ2 are positive constants.
Note that as indicated in Wu (2016) and Cao

et al. (2020), compared to the pMOM density in (2)
with given τ , the marginal hyper-pMOM now pos-
sesses thicker tails that induce prior dependence. In
addition, this type of mixture of priors could achieve
better model selection performance especially for small
samples (Liang et al., 2008).

By (13)–(15), underthe hyper-pMOM Cholesky
prior, the resulting posterior probability for Zj is given
by,

π(Zj |Y)

∝ π(Zj)m|Zj||AZj,Zj |
1
2

×
∫ ∞

0

∫ ∞

0
τ−r|Zj|−

|Zj|
2 −(λ1+1) e−

λ2
τ

1

|nS̃Zj,Zj |
1
2

× d−( n2+(r− 1
2 )|Zj|+α1+1

)
j
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× exp

(
−nS̃j |Zj + 2α2

2dj

)
E|Zj|

⎛
⎝∏

i∈Zj
L2rij

⎞
⎠ ddj dτ ,

(16)

where S̃Zj,Zj = SZj,Zj +
AZj ,Zj
nτ , S̃j |Zj = S̃jj − (S̃Zj,j)T ×

(S̃Zj,Zj)−1S̃Zj,j, and E|Zj|(.) denotes the expectation with
respect to amultivariate normal distributionwithmean
−(S̃Zj,Zj)−1S̃Zj,j, and covariance matrix dj(nS̃Zj,Zj)−1.
Since these posterior probabilities are still not avail-
able in closed, we have the following lemma that pro-
vides the upper bound for the Bayes factor under the
following assumption.

Assumption5c: ThehyperparametersAp,α1,α2, λ1, λ2
in (13)–(15) satisfy 0 < a1 < eig1(Ap) ≤ eig2(Ap) ≤
. . . ≤ eigp(Ap) < a2 < ∞ and 0 < α1,α2, λ1, λ2 < a2.
Here a1, a2 are constants not depending on n.

Lemma 7.1: Under Assumption 1–5c, for each 1 ≤ j <

p, the Bayes factor between any ‘non-true’ model Zj and
the true model Z0j under the hyper-pMOM Cholesky
prior will be bound above by,

π(Y |Zj)
π(Y |Z0j)
≤ (Mn1/2)−(|Zj|−|Z0j|)

× (|Zj|−1V)r|Zj|

( s2 )
2r|Z0j|



(n
2 + (

r − 1
2
) |Zj| + α1

)


(n
2 + (

r − 1
2
) |Z0j| + α1

)
× 
(r |Zj| + |Zj|

2 + λ1)


(r|Z0j| + |Z0 j|
2 + λ1)

× (nS̃j |Z0 j/2 + α2)
n
2+(r− 1

2 )|Z0j|+α1

(nS̃j |Zj/2 + α2)
n
2+(r− 1

2 )|Zj|+α1

× (λ2 + c3|Z0j|/n + c4)r|Z0j|+
|Z0j|
2 +λ1

(λ2 − c2|Zj|/(2n))r|Zj|+
|Zj|
2 +λ1

+ (Mn1/2)−(|Zj|−|Z0j|) n−r|Zj|( s
2
)2r|Z0j|

×


(
n−|Zj|

2 + α1

)


(n
2 + (

r − 1
2
) |Z0j| + α1

) 
(r|Zj| + |Zj|
2 + λ1)


(r|Z0j| + |Z0 j|
2 + λ1)

× (nS̃j|Z0j/2 + α2)
n
2+(r− 1

2 )|Z0j|+α1

(nS̃j |Zj/2 + α2)
n−|Zj|

2 +α1

× (λ2 + c3|Z0j|/n + c4)r|Z0j|+
|Z0j|
2 +λ1

(λ2 − c2|Zj|/(2n))r|Zj|+
|Zj|
2 +λ1

, (17)

for some constants M, c2, c3, c4 > 0.

The upper bound in (17) can be used to show the
posterior ratio consistency illustrated in the following
theorem.

Theorem 7.2: Under Assumptions 1–5c, if we assume
λ1 and λ2 are some fixed positive constants, the following
holds under the hyper-pMOMCholesky prior: for all 1 ≤
j < p,

max
Zj �=Z0j

π(Zj |Y)

π(Z0j |Y)

P�0−→ 0, and P�0(Ẑj = Z0j) → 1,

as n → ∞.

In order to achieve strong model selection consis-
tency, we need the following assumption on the hyper-
parameter λ2 instead of Assumption 5c.

Assumption5d: ThehyperparametersAp,α1,α2, λ1, λ2
in (13)–(15) satisfy 0 < a1 < eig1(Ap) ≤ eig2(Ap) ≤
. . . ≤ eigp(Ap) < a2 < ∞, 0 < α1,α2, λ1 < a2 and
λ2 ∼ p2κ/(r+1/2), for some κ > 1. Here a1, a2 are con-
stants not depending on n.

The next theorem establishes the strong selection
consistency under the hyper-pMOM Cholesky prior.
See proofs for Theorems 7.2 and 7.3 in the supplement.

Theorem 7.3: Under Assumptions 1–5d, for the hyper-
pMOM Cholesky prior, the following holds: for all 1 ≤
j < p,

π(Z0j |Y)
P�0−→ 1, as n → ∞.

Note that for the hyper-pMOM Cholesky prior with
the extra layer of prior on τ , theNewton-type algorithm
used for optimizing the likelihood could be quite time
consuming, and the estimation accuracy will be com-
promised, especially when the size of the model and
the dimension p are large. Therefore, from a practical
standpoint, we would still prefer the pMOM Cholesky
prior for carrying out the model selection.

8. Discussion

In this paper, we investigate the theoretical consis-
tency properties for the high-dimensional sparse DAG
models based on proper non-local priors, namely the
pMOM Cholesky and the hyper-pMOM Cholesky pri-
ors. We establish both posterior ratio consistency and
strong model selection consistency under comparably
more general conditions than those in the existing lit-
erature. In addition, by putting a uniform-like prior
over the space of sparsity pattern for Cholesky factors,
we avoid the potential issues of the model being stuck
in rather sparse space caused by the priors over the
graph space aiming to penalize larger models like the
Erdos–Renyi prior, the beta-mixture prior or the mul-
tiplicative prior. Also, through simulation studies where
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we implement an efficient parallel MCMC algorithm
for exploring the sparsity pattern of each column of
L, we demonstrate that the models studied in this
paper can outperform existing state-of-the-art meth-
ods including both penalized likelihood and Bayesian
approaches in different settings.
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