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ABSTRACT
A major challenge in spatial transcriptomics (ST) is resolving cellular
composition, especially in technologies lacking single-cell resolution.
The mixture of transcriptional signals within spatial spots complicates
deconvolution and downstream analyses. To uncover the spatial het-
erogeneity of tissues, we introduce SvdRFCTD, a reference-free spatial
transcriptomics deconvolution method, which estimates the cell type
proportions at each spot on the tissue. To fully capture the heterogene-
ity in the ST data, we combine SvdRFCTD with a Bayesian hierarchical
negative binomial model with spatial effects incorporated in both the
mean and dispersion of the gene expression, which is used to explicitly
model the generative mechanism of cell type proportions. By integrat-
ing spatial information and leveragingmarker gene information, SvdR-
FCTD accurately estimates cell type proportions and uncovers complex
spatial patterns.Wedemonstrate the ability of SvdRFCTD to identify cell
types on simulateddatasets. By applying SvdRFCTD tomousebrain and
humanpancreatic ductal adenocarcinomasdatasets,weobserve signif-
icant cellular heterogeneity within the tissue sections and successfully
identify regions with high proportions of aggregated cell types, along
with the spatial relationships between different cell types.
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1. Background

Spatial transcriptomics represents a transformative technology that integrates gene expres-
sion data with spatial information, allowing for a deeper understanding of tissue organization
and function (Ståhl et al., 2016; Williams et al., 2022). Unlike traditional RNA sequencing
methods, which provide bulk gene expression profiles, ST captures gene expression at mul-
tiple spatial locations within a tissue, revealing cellular heterogeneity and spatial patterns
(Larsson et al., 2021). This ability to study gene expression at subcellular and cellular resolu-
tion enables the mapping of tissue structures in unprecedented detail (Vickovic et al., 2019).
However, a significant challenge in ST is that most datasets lack single-cell resolution, with
each spatial spot containing multiple cell types, which complicates the accurate estimation
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of cell type proportions and interactions (Rao et al., 2021). This is particularly problem-
atic when studying tissues with high cellular complexity, where precise knowledge of the
cellular composition is crucial for understanding tissue function and disease mechanisms
(Levy-Jurgenson et al., 2020).

Deconvolutionmethods have emerged as a promising solution to this challenge, aiming to
resolve the cellular composition at each spatial spot by estimating the proportions of different
cell types (Zhang et al., 2023). Most current ST deconvolution methods rely on external ref-
erences, such as single-cell RNA sequencing (scRNA-seq) data and single-nucleus RNA-seq
(snRNA-seq), to provide gene expression profiles for various cell types (B. Li et al., 2022).
For instance, RCTD (Cable et al., 2022) utilized a hierarchical Poisson regression model
for gene expression to infer cell type profiles from the reference dataset. By incorporating
variables that account for platform effects, it effectively addressed estimation issues arising
from batch effects. CARD (Ma&Zhou, 2022) introduced spatial effects into cell type propor-
tions and performs deconvolution through an autoregressive-based deconvolution method.
SpatialDWLS (Dong & Yuan, 2021) used reference features extracted from scRNA-seq to
fit a damped weighted least squares model for inferring cell type composition. In addition,
SPOTlight (Elosua-Bayes et al., 2021) and Cell2location (Kleshchevnikov et al., 2022) are
also recently developed methods. Y. Li and Luo (2024) proposed a reference-based method
for cell type deconvolution by combining spatial relations in ST data via Graph Convolu-
tional Networks (GCN). However, a key assumption of reference-based methods is that cell
type-specific gene expression remains constant, with only the cell type composition varying
(Teschendorff et al., 2017). Therefore, reference-based methods are limited by several fac-
tors, including the availability and quality of reference datasets, as well as platform and batch
effects (H. Li et al., 2023). Additionally, reference-based methods are limited by the cell types
available in the reference, which may not capture all the cell types present in the target tissue
or disease state. As a result, there is a growing need for reference-free methods that do not
rely on external scRNA-seq data but instead leverage inherent gene expression patterns and
prior knowledge to infer cell type composition.

Recent advancements in reference-free approaches have made progress in addressing
these limitations by directly analyzing the spatial transcriptomic data without the need for
scRNA-seq references. These methods rely on prior knowledge of marker genes to infer cell
type proportions, offering a more flexible and scalable solution (H. Li et al., 2023). STdecon-
volve (Miller et al., 2022), as the earliest reference-free deconvolution method, used Latent
Dirichlet Allocation (LDA) to simultaneously infer gene expression profiles and cell type
proportions for each ST spot. However, it relies only on gene co-expression patterns for cell
type decomposition, without utilizing marker gene information, but the external references
are still required later to match the estimated cell types. Thus, it cannot be considered a truly
reference-freemethod. RETROFIT (Singh et al., 2023) was developed to decompose the gene
expression matrix into latent components and matches cell types using a marker gene list,
which is effective. However, it does not take spatial information into account and is unable
to classify cell types that lack defined marker genes. Celloscope (Geras et al., 2023) con-
structed a probabilistic Bayesian framework and incorporates prior qualitative information
from marker genes, providing a more detailed statistical description of cell type propor-
tion and gene expression features. SpatialDeX (X. Liu et al., 2025) uses a regression-based
approach to estimate cell-type proportions in spatial transcriptomics and performs pan-
cancer clustering analysis. However, both Celloscope and SpatialDeX did not account for
spatial information. For these reference-free methods, recognizing the latent spatial patterns
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and tackling the challenges posed by tissue heterogeneity are still open research questions
that need further exploration.

In this study, we introduced SvdRFCTD, a reference-free spatial transcriptomics decon-
volution method, which estimates the cell type proportions at each spot on the tissue. To
fully capture the heterogeneity in the ST data, SvdRFCTD employs a Bayesian hierarchical
negative binomial model with spatial effects incorporated in both the mean and dispersion
of the gene expression, which is used to explicitly model the generative mechanism of cell
type proportions. The estimation of cell type proportion is achieved through the Markov
Chain Monte Carlo (MCMC) method with adaptive Metropolis algorithm. Compared to
other reference-free methods, SvdRFCTD not only effectively identifies the underlying spa-
tial patterns of gene expression and provides a robust explanation for heterogeneity, but
also accurately characterizes the spatial dependency relationships of gene expression. We
illustrate the validity of SvdRFCTD through extensive simulations and applications. For
illustration, we apply the method to the anterior section of the mouse brain and human
pancreatic ductal adenocarcinomas, and find that SvdRFCTD identifies highly clustered cell
types in specific regions, and effectively distinguishes different cell subtypes. And it addition-
ally uncovers numerous spatially co-localized cell types, shedding light on the relationships
between cell types.

2. Methods

2.1. Model specification

For cell type deconvolution of the spatial transcriptomics, there are two ways of understand-
ing the spatial effects of RNA transcripts in tissues. One perspective attributes the spatial
correlation of neighbouring spots to the spatial correlation of cell type proportions, while
another suggests it arises from the spillover effect of gene expression across spots. Existing
deconvolution methods have predominantly adopted the first perspective, while no studies
have explicitly modelled the second. Here we adopt the second perspective by decomposing
gene expression in both mean and scale dimensions to include the spatial effect as a spillover
factor in the model.

Let Yij be the RNA-seq read count for gene j ∈ {1, . . . , J} and spot i ∈ {1, . . . ,N}, where J
is the total number of genes and N is the number of spots. Assuming Yij follows a negative
binomial (NB) distribution, then we model Yij with the following hierarchical model:

Yij ∼ fNB(dieij, ρij), (1)

where di is the total number of cells in spot i, and dieij is the expectation of the distribu-
tion, and ρij is the overdispersion parameter. Let Eij = dieij. The probability mass function
of Equation (1) is

f (yij;Eij, ρij) =
�

(
yij + ρ−1ij

)
�

(
ρ−1ij

)
�(yij + 1)

(
1

1+ Eijρij

)ρ−1ij
(

Eij
ρ−1ij + Eij

)yij

. (2)

Then the conditional mean and variance of Yij are given by

E
(
Yij | eij, ρij

) = dieij = Eij,

Var
(
Yij | eij, ρij

) = Eij + ρijE2ij.
(3)
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Many studies (Allen et al., 2021; Ma & Zhou, 2022) have shown that spatial correlations exist
within tissue domains in spatial transcriptomics. Specifically, both the mean and the disper-
sion of gene expression within a given tissue may exhibit spatial co-localization patterns to
some extent.

Suppose there are a total of K cell types in the tissue, and Yij is a mixture of K cell type
expression profiles. We assume that eij is a random variable defined by

log eij = log

( K∑
k=1

βikμkj

)
+ φ1i, (4)

where βik is the cell type proportion for cell type k ∈ {1, . . . ,K} in spot i, μkj represents the
mean gene expression profile for cell type k, and φ1i is a spot-level spatial random effect for
the mean expression.

To accommodate spatial variation in overdispersion, we assume the following functional
form for ρij

log
(
ρij

) = δj + φ2i, (5)

where δj is a gene-level random effect, which can account for some of the natural variability
such as platform effects. φ2i is a spot-level spatial random effect for the overdispersion.

The spatial random effects φi = (φ1i,φ2i)
� capture potential regional factors that might

similarly affect both the mean and dispersion. For example, areas with high gene expression
may exhibit increased overdispersion, potentially due to extreme counts. To model this rela-
tionship and promote spatial smoothing while sharing information between neighbouring
spots within tissues, we adopt a bivariate intrinsic conditional autoregressive (BICAR) prior
(Mardia, 1988) distribution for φi = (φ1i,φ2i)

�.

φi | φ(−i),� ∼ N2

⎛⎝ 1
mi

∑
l∈∂i

φl,
1
mi

�

⎞⎠ , (6)

wheremi represents the number of neighbours of spot i, ∂i is the set of neighbours for region
i and � is a 2× 2 variance-covariance matrix of φi conditional on the remaining spatial
random effects, φ(−i). Additionally, a sum-to-zero constraint must be applied to {φ1, . . . ,φn}
to ensure the model is identifiable (Mutiso et al., 2022).

FollowingBrook’s lemma (Banerjee et al., 2014), the joint prior distribution for the 2N × 1
spatial random effectsmatrix� = (φ�1 , . . . ,φ�N)� is proportional to themultivariate normal
distribution with formula

�

∣∣∣∣ � ∝ exp
{
−1
2
��

[
Q⊗ �−1

]
�

}
, (7)

where Q = M − A;M = diag(m1,m2, . . . ,mn) and A is N × N adjacency matrix with aii =
0, aij = 1 if regions i and j are neighbours and aij = 0 otherwise. Noting thatM − A is singu-
lar, the joint prior distribution in Equation (7) is improper, but the posterior of � is proper
(Mutiso et al., 2022).

To facilitate the update of the binary spatial random effects, we can decompose
Equation (7) into two univariate conditional priors φhi(h = 1, 2) (Mutiso et al., 2024; Neelon
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et al., 2023). Using the properties of conditional multivariate normal theory, the conditional
prior for the spatial effect, φ1i, i = 1, . . . ,N, is given by

p
(
φ1i | φ2i, τ1i|2i

) ∝ exp
[
−τ1i|2i

2
(
φ1i − μ1i|2i

)2] , (8)

where

τ1i|2i =
[
σ 2

φ1

(
1− ρ2)]−1mi,

μ1i|2i = ρ
σφ1

σφ2

(
φ2i − φ̄2i

)
,

ρ is the correlation between φ1i and φ2i, σφ1 and σφ2 are standard deviations for φ1i and φ2i
respectively, and φ̄2i = 1

mi

∑
l∈∂i φ2l is the prior mean for φ2i. A similar derivation can be

made for the conditional prior of φ2i.
Our primary objective is to estimate the proportions of specific cell types across all spots,

indicated by B, which is an N by K matrix. Each element βik represents the proportion of
cell type k in spot i, with values ranging from 0 to 1. A row in matrix B, labelled as Bi: =
[βi1, . . . ,βiK], illustrates the cell type composition of spot i, and it’s clear that the entries of
each row sum up to 1.

To elucidate the underlying gene expression patterns in different cell types, we developed
a multilayer generation process for the gene expression. We assume the probability of the
existence of cell type k in spot i follows a beta distribution (Geras et al., 2023; Yang et al., 2024)

πik ∼ Beta
(α

K
, 1

)
, (9)

where α is a hyperparameter which can represent the average number of cell types present
in a spot, and K is the total number of cell types in the tissue.

Let Zik denote whether the cell type k is present in the spot i, and the distribution of Zik is
as follows

Zik ∼ Bernoulli (1,πik) . (10)

Let θik denote the unnormalized abundance of type k in spot i, and its distribution depends
on Zik.

θik|Zik = 1 ∼ gamma(a, b),

θik|Zik = 0 ∼ gamma(a0, b0).
(11)

The choice of a, b, a0, b0 will result in a larger sampling value for θik|Zik = 1 than for θik|
Zik = 0.

For spot i, the abundance of cell type k can represent the proportion of this type in spot i.
Thus, we can calculate the cell type proportion βik from θik

βik = θik∑K
k=1 θik

. (12)

Moreover, to avoid estimation issues caused by an excessive number of parameters, we split
μkj into different components as

μkj = μ0 +Mkjλkj, (13)
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whereMkj is the marker gene indicator, withMkj = 1 if gene j is a marker gene for cell type
k and Mkj = 0 otherwise. λkj > 0 denotes the average expression level of gene j in cell type
k. Here we adopted flat priors for μ0 and λkj.

2.2. Parameter inference

For posterior computation, we implement the MCMC sampling with adaptive Metropo-
lis (AM) algorithm (Haario et al., 2001). The AM algorithm is an enhanced version of the
Metropolis-Hastings algorithm that dynamically adjusts the proposal distribution’s covari-
ancematrix during sampling to improve efficiency, particularly in high-dimensional or com-
plex target distributions. Suppose we have multivariate random variables x1, . . . , xn, and the
full conditional distribution of xi is given as P(xi | x−i) := P(xi | x1, . . . , xi−1, xi+1, . . . , xn).
In a hierarchical model, the full conditional distribution of a node/variable depends on the
distribution of parent, child, and co-parent nodes/variables, which are also called Markov
blanket of xi, denoted as MB(xi). Thus, P(xi | x−i) = P(xi | MB(xi)), which denotes that the
conditional distribution of xi given the values of all other variables equals the conditional
distribution given the values of the variables from its Markov blanket. This step is crucial in
facilitating the simplification of the derivation process.

Then we can perform iterative sampling procedure to update xi, i = 1, . . . ,N one by one,
up until convergence. For each iteration t, we determine whether the formula P(xi | MB(xi))
is in closed form and accordingly decide the approach for updating. If it is in a closed form,
we can sample a new x∗i directly from P(xi | MB(x(t−1)

i )). And if the formula is too com-
plex to allow for direct sampling, we can employ theMetropolis-Hastings (MH) accept-reject
method. Assume there is a function g proportional to P(xi | MB(xi))

P (xi | MB(xi)) ∝ g (xi) . (14)

A candidate value x∗i is sampled from a predefined proposal distribution q(· | x(t−1)
i ), and

then either accepted with probability given by

r = min

(
1,

g (x∗) q
(
x(t−1) | x∗)

g
(
x(t−1)) q (

x∗ | x(t−1))
)
, (15)

and x(t)
i ← x∗i , or the previous value is held, x

(t)
i ← x(t−1)

i . And if we utilize a symmetric
proposal distribution, the acceptance probability above can be simplified as

r = min

(
1,

g (x∗)
g
(
x(t−1))

)
. (16)

After updating xi, the new value is immediately utilized, allowing us to sequentially sample
other variables.

The outline of the MCMC algorithm is provided below.



STATISTICAL THEORY AND RELATED FIELDS 7

(1) Updating πik | Zik ∼ Beta(πik| α
K + Zik, 2− Zik), the posterior is derived as follows

P (πik | Zik) ∝ P(Zik | πik)P(πik)

∝ �( α
K + 1)

�( α
K )�(1)

π
α
K−1
ik π

Zik
ik (1− πik)

1−Zik]

∝ π
α
K+Zik−1
ik (1− πik)

1−Zik . (17)

(2) Update Zik. As Zik is a discrete, binary random variable, it suffices to consider its two
possible values, 0 and 1.

P (Zik | θik,πik) ∝ P (Zik | πik) P (θik | Zik)
∝ π

Zik
ik (1− πik)

1−Zik
(
θa−1ik e−bθik

)Zik (
θ
a0−1
ik e−b0θik

)1−Zik
∝

(
πikθ

a−1
ik e−bθik

)Zik [
(1− πik)θ

a0−1
ik e−b0θik

]1−Zik
,

i.e.,

P (Zik = 1 | θik,πik) =
πikθ

a−1
ik e−bθik

πikθ
a−1
ik e−bθik + (1− πik)θ

a0−1
ik e−b0θik

,

P (Zik = 0 | θik,πik) =
(1− πik)θ

a0−1
ik e−b0θik

πikθ
a−1
ik e−bθik + (1− πik)θ

a0−1
ik e−b0θik

.

(18)

(3) Update θik. For a given spot i and cell type k, the target distribution for unnormalized
cell type abundance θik is given as

P(θik | Y ,Z,μ, δ,�1,�2)

∝
J∏

j=1
P

(
Yij | θik,μ, δ,�1,�2

) K∏
k=1

P (θik | Zik)

∝
J∏

j=1

�
(
yij + ρ−1ij

)
�

(
ρ−1ij

)
�(yij + 1)

(
1

1+ Eijρij

)ρ−1ij
(

Eij
ρ−1ij + Eij

)yij

×
K∏

k=1

(
θa−1ik e−bθik

)Zik (
θ
a0−1
ik e−b0θik

)1−Zik
. (19)

Since θik > 0, we choose the truncated normal distribution TN(μ, σ) for the proposal
distribution of θik to calculate the acceptance probability in Equation (15), as it allows
for effective control over the step size and is well-suited for proposing values for non-
negative variables. Then, we obtain the cell type proportion βik = θik/

∑K
k=1 θik.

(4) Update μkj, which equals to μ0 +Mkjλkj, whereMkj is known. The prior of μ0 is aver-
age expression of all non-marker genes, and the prior of λik is average expression of all
marker genes. Since μ0 > 0 and λkj > 0, the truncated normal proposal distribution is
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also used here to calculate the acceptance probability.

P (μ0 | λ,Y , θ , δ,�1,�2) ∝
N∏
i=1

fNB(dieij, ρij)P(μ0),

P
(
λkj | μ0,Y , θ , δ,�1,�2

) ∝ N∏
i=1

fNB(dieij, ρij)P(λkj).

(20)

(5) Update δj. Assuming a normal prior for δj, then the proposal distribution is given as

P
(
δj | λ,Y , θ ,μ,�1,�2

) ∝ N∏
i=1

fNB(dieij, ρij)P(δj). (21)

(6) Update φ1i. Given the conditional prior of φ1i | φ2i by Equation (8), the full conditional
of φ1i is

P(φ1i | Y , θ , δ,μ,�2) ∝
J∏

j=1
fNB(dieij, ρij)P (φ1i | φ2i)

∝
J∏

j=1
fNB(dieij, ρij) exp

[
−τ1i|2i

2
(
φ1i − μ1i|2i

)2] , (22)

and we use a random walk MH step with a symmetric univariate t proposal density
centred at the previous φ1i. The acceptance ratio in Equation (16) is

rφ1i =
fNB(die

(p)
ij , ρij) exp

[
− τ1i|2i

2

(
φ

(p)
1i − μ1i|2i

)2]
fNB(die

(t)
ij , ρij) exp

[
− τ1i|2i

2

(
φ

(t)
1i − μ1i|2i

)2] , (23)

where φ
(p)
1i and φ

(t)
1i are proposal and current values of φ1i at current iteration t.

(7) Update φ2i.

P(φ2i | Y , θ , δ,μ,�1) ∝
J∏

j=1
fNB(dieij, ρij)P (φ2i | φ1i)

∝
J∏

j=1
fNB(dieij, ρij) exp

[
−τ2i|1i

2
(
φ2i − μ2i|1i

)2] , (24)

and the acceptance ratio is similar to Equation (23).
(8) Update �. Assuming an inverse Wishart distribution IW(ν0, S0) for the prior of �, we

update the random effects covariance matrix,�, from a conjugate IW distribution given
by

� | � ∼ IW (ν0 + N − 1, S0 + S�∗) , (25)

where S�∗ = �∗�Q�∗ and �∗ = [�1,�2] is the N × 2 random effects matrix centred
at its mean.
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Denote � = {π ,Z, θ ,μ0,λ, δ,φ1,φ2,�}. The MCMC procedure is a combination of the
Gibbs Sampler and theMetropolis-Hastings algorithm, and we summarize it in Algorithm 1.

Algorithm 1MCMC procedure for hierarchical model parameters
Input: Count matrix, Y ; number of cells, d; marker gene indicator matrix,M; initial values
of parameters �(0); number of iterations, T
Output: �(1), . . . ,�(T)

1: for t = 1, . . . ,T do
2: sample π (t) from P(π | MB(π (t−1))) showed in Equation (17)
3: sample Z(t) from P(Z | MB(Z(t−1))) showed in Equation (18)
4: update θ (t)←− MH(θ (t−1)) based on Equation (19)
5: update μ

(t)
0 ←− MH(μ

(t−1)
0 ) based on Equation (20)

6: update λ(t)←− MH(λ(t−1)) based on Equation (21)
7: update δ(t)←− MH(δ(t−1)) based on Equation (22)
8: update φ

(t)
1 ←− MH(φ

(t−1)
1 ) based on Equation (23)

9: update φ
(t)
2 ←− MH(φ

(t−1)
2 ) based on Equation (24)

10: update �(t)←− MH(�(t−1)) based on Equation (25)
11: end for
12: return �(1), . . . ,�(T)

In Algorithm 1, the number of cells, d = {d1, . . . , dN}, can be provided as estimates
from external methods or inferred directly within the algorithm. Details are presented in
Section 2.4. The MH(·) step can be performed following Algorithm 2.

Algorithm 2MH step in Algorithm 1
Input: Current state of parameter, x(t−1)
Output: New state of parameter, x(t)

1: Draw proposal sample x∗ ∼ q(· | x(t−1))
2: Evaluate acceptance probability r
3: Generate u ∼ U(0, 1)
4: if r � u then
5: x(j)← x∗
6: else
7: x(j)← x(j−1)
8: end if
9: return x(t)

The default parameter settings are listed in Table 1.

2.3. Proposal distribution and adaptive step size

Let �(x) denote the cumulative distribution function of the standard normal distribution
N(0, 1), evaluated at x. Additionally, let q(y | x) represent the proposal distribution, which
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Table 1. Default values of SvdRFCTD’s parameters.

Parameter Default value

(a, b) (10, 1)
(a, b) (0.1, 1)
α > K

K+1
Step-size forμ0 0.05
Step-size for θ 0.1
Step-size for δ 0.1
Step-size for φ1 and φ2 0.17
Burn-in 40,000
Number of iterations 50,000
Thinning 10

specifies the conditional probability of proposing a new state y given that the previous
state was x. During the iteration process of the Metropolis-Hastings sampling, we choose
the truncated normal distribution TN(· | σ) and symmetric t distribution as the proposal
distributions. The truncated normal proposal distribution is given as

q(y | x) = 1
C

1√
2πσ

exp
(
− (y− x)2

2σ 2

)
, y > 0, (26)

where C = �( xσ ) is a normalizing constant. By Equation (15), the acceptance ratio is

q(x | y)
q(y | x) =

1
σ
√
2π

exp
(
− (x−y)2

2σ 2

)
1
C1

1
σ
√
2π

exp
(
− (y−x)2

2σ 2

)
1
C2

= C2

C1
= �

( x
σ

)
�

( y
σ

) . (27)

The variance parameter σ controls the sampler’s step size and impacts convergence speed. Its
selection is crucial, as excessively large or small step sizes degrade inference performance. To
enhance efficiency, we assign different step sizes to different variables and adjust them during
an initial burn-in phase to maintain an optimal acceptance ratio of 0.23 (Brooks et al., 2011;
Graves, 2011). Starting with an arbitrary step size, we update it after a fixed number of iter-
ations, depending on the dataset, based on the acceptance ratio. If the ratio falls below the
target, we reduce the step size as σ ← (1− ε)σ ; otherwise, we increase it as σ ← (1+ ε)σ ,
where ε controls the adjustment magnitude. This adaptation is applied only during burn-in.

2.4. Cell counting

Recording the results of simulation in Section 3.1, the best choice of di in Equation (1) is the
number of cells. There are a few approaches commonly used to estimate cell numbers in each
spatial spot.

(1) Infer the cell numbers by deconvolution methods of gene expression, such as
Cell2location (Kleshchevnikov et al., 2022), SPOTlight (Elosua-Bayes et al., 2021).

(2) Integrate with single-cell data and mapping scores to infer the number of cells per
spot, by methods like STalign (Clifton et al., 2023), Tangram (Biancalani et al., 2021),
CytoSPACE (Shannon et al., 2003).

(3) Use histological staining or nuclear staining images of the tissue to preform image-
basedmethods, with tools like CellProfiler (Carpenter et al., 2006) orQuPath (Bankhead
et al., 2017).
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In this article, if the number of cells per spot is not given by the data analyzed, it can
either be supplied as estimates derived from external methods or estimated directly within
the algorithm. Here, a MH step with TN distribution as proposal is performed for di, with
the prior distribution set to a constant value.

P (di | Y , θ ,μ, δ,�1,�2) ∝
J∏

j=1
P

(
Yij | θ ,μ, δ,�1,�2

)
P (di) . (28)

2.5. Performance evaluationmetrics

(1) Pearson Correlation Coefficient (PCC). For each cell type k, the PCC value is calculated
as follows

PCCk =
E

[(̃
xk − ũk

)
(xk − uk)

]
σ̃kσk

, (29)

where xk and x̃k represent the ground truth and predicted proportions of cell type k
across N spots, respectively. Similarly, uk and ũk are their corresponding mean pro-
portions, while σk and σ̃k denote the standard deviations. A higher PCC for cell type
k indicates better prediction accuracy.

(2) Root Mean Squared Error (RMSE). We can compute both per-spot RMSE and over-
all RMSE for estimation of cell type proportion, as defined in Equations (2) and (3),
respectively.

RMSEi =
√√√√ 1

K

K∑
k=1

(
x̃ik − xik

)2, (30a)

RMSEoverall =
√√√√ 1

N × K

N∑
i=1

K∑
k=1

(
x̃ik − xik

)2, (30b)

where xik and x̃ik are the cell type proportion of cell type K in spot i in the ground truth
and the predicted result, respectively. A lower RMSE value indicates better prediction
accuracy.

(3) Weighted F1 score (F1 score). For each spot, the dominant cell type can be inferred
according to the cell type proportion estimated, and F1 score is used to measure the
accuracy compared to the true dominant cell type. For each cell type k, calculate F1
score as

F1k = 2 · Precisionk · Recallk
Precisionk + Recallk

,

Precisionk = TPk
TPk + FPk

,

Recallk = TPk
TPk + FNk

,

(31)
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where TPk, FPk and FNk are true positives, false positives and false negatives for category
k, respectively. And then we can obtain a weighted F1 score

F1weighted =
K∑

k=1
wk · F1k, (32)

where wk = Nk
Ntotal

, with Nk being the number of samples in cell type k and Ntotal being
the total number of samples.

(4) Moran’s I coefficient. The coefficient is used to quantify spatial autocorrelation based on
both feature locations and feature values simultaneously. And it indicates whether the
variables are spatially distributed in a random pattern or whether they are significantly
clustered (positive correlation) or discrete (negative correlation). For a given cell type k,
the formula of Moran’s I coefficient is given as

Ik = N
S0

∑N
i=1

∑N
j=1 wij (xik − x̄k)

(
xjk − x̄k

)∑N
i=1 (xik − x̄k)2

,

S0 =
N∑
i=1

N∑
j=1

wij,

(33)

where N represents the total number of spatial spots, wij is the spatial weight between
spot i and j, xik denotes the expression level of cell type k in spot i, and x̄k is the mean
expression level of cell type k across all spots. The coefficient Ik > 0 indicates positive
spatial autocorrelation, i.e. similar expression values are clustered together. Ik ≈ 0 indi-
cates no spatial autocorrelation, i.e. random pattern. Ik < 0 indicates negative spatial
autocorrelation (dispersed pattern), i.e. dissimilar expression values are close together.
For a given cell type, Moran’s I is computed by considering the expression levels of
that cell type across all spatial spots, assessing whether its expression exhibits clustering,
randomness, or dispersion.

3. Simulation study

3.1. Explore the appropriatemodel form in simulation

In order to verify the validity of SvdRFCTD, we conducted a series of simulations, for which
we knew the ground truth about the underlying cell type composition. In this article, we
used a publicly available single cell RNA-seq (scRNA) data set in mouse kidneys (J. Liu
et al., 2023) to construct simulated ST data, which was profiled using the VizgenMultiplexed
Error-Robust Fluorescence in situ Hybridization(MERFISH) platform (Chen et al., 2015).
The mouse kidney dataset comprises the expression profiles of 304 genes across 126,241
cells, categorized into eight cell types. Figure 1(a) shows the spatial visualization of single-
cell mouse kidney data, with cell types annotated. The marker genes of each cell types are
collected from the existing literature (Miao et al., 2021) and the CellMarker 2.0 database (Hu
et al., 2023), and will be used to SvdRFCTD and other reference-free deconvolution meth-
ods. The marker genes used in simulation study are listed in Supplementary Table S1. The
data generated by pooling single cells from original ST data can serve as the gold standard for
model evaluation. To simulate spatial transcriptomics (ST) data, we partitioned the single-
cell data from the mouse kidney dataset into 2474 spatially contiguous squares. Within each
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(a)

(c) (d)

(b)

Figure 1. Spatial visualization, cell typeproportions,model performance, and inferreddominant cell types
on simulated mouse kidney ST data. (a) Spatial visualization of single-cell MERFISH data from the mouse
kidney, annotated with cell types. (b) The scatter plot shows the proportion of cell types at each spot on
simulated dataset. (c) RMSE for five model formulations, with di representing either the number of cells or
the transcript count in spot i. (d) The dominant cell type on each spot inferred by SvdRFCTD. The colours
corresponding to each cell type are consistent with those in (a) and (b).

square, we aggregated the gene expression of the cells to mimic the spots observed in ST
data. Given that the cell type labels for all single cells within each spot are provided, we can
get ground truth of cell type proportion on each spot accordingly (see Figure 1(b)). The per-
formance of the models are evaluated by measuring various metrics between the true values
and the estimation. In simulation study, we firstly utilize the simulated ST data to explore the
appropriate form of the model, and then compare the performance of SvdRFCTDwith other
seven existing deconvolution methods.

For the first scenario, we consider several model settings, focussing on exploring the
decomposition of the mean for gene expression, i.e. Equation (4). Specifically, we examine
whether to perform deconvolution of gene expression mean on a linear scale or a log scale,
and whether to include non-spatial spot-specific effect, gene-specific effects, or both. The
mean model formulas considered includes the following types.

M1. Deconvolve the mean of gene expression on a log scale without non-spatial spot-
specific and gene-specific effects. The formula is the same as Equation (4), given
by

log eij = log

( K∑
k=1

βikμkj

)
+ φ1i. (34)
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M2. Deconvolve the mean of gene expression on a linear scale without non-spatial spot-
specific and gene-specific effects. The formula is

eij =
K∑

k=1
βikμkj + φ1i. (35)

M3. Deconvolve on a log scale with non-spatial spot-specific effect ζi. The formula is given
by

log eij = ζi + log

( K∑
k=1

βikμkj

)
+ φ1i. (36)

M4. Deconvolve on a log scale with gene-specific effect γj. The formula is given by

log eij = γj + log

( K∑
k=1

βikμkj

)
+ φ1i. (37)

M5. Deconvolve on a log scale with non-spatial spot-specific ζi and gene-specific effects γj.
The formula is given by

log eij = ζi + γj + log

( K∑
k=1

βikμkj

)
+ φ1i. (38)

For eachmodel formula, we consider two settings for di, total transcript count or the num-
ber of cells in spot i. In the MCMC framework, for models M2–M5, we accordingly adjust
the form of the likelihood and sample the newly introduced variables. For the non-spatial
spot-specific effect ζi, assuming a normal prior, its proposal distribution is given as

P (ζi | λ,Y , θ ,μ,�1,�2) ∝
J∏

j=1
fNB(dieij, ρij)P(ζi). (39)

Similarly, for gene-specific effect γj, assuming a normal prior, its proposal distribution is
given as

P
(
γj | λ,Y , θ ,μ,�1,�2

) ∝ N∏
i=1

fNB(dieij, ρij)P(γj). (40)

We randomly select a region of the simulated ST data which contains 599 spots. By evaluating
RMSE of the results of each formula (see Figure 1(c)), we find that when the model only
includes spot-specific random effects(M1, M2 and M3), setting di to the number of cells in
spot yields better estimation performance. In contrast, when the model incorporates gene-
specific random effects with or without spot-specific random effects(M4 or M5), setting di
to the transcript count of spot i provides better estimates. When di is set to the number of
cells, the estimation performance of M1, M2, and M3 is comparable. However, the linear
formulation in M2 requires additional constraints on parameters to ensure the mean of gene
expression remains positive, while M3 demands more computational time. Overall, M1 in
Equation (34) with di set as the number of cells, achieves the best performance. In other
words, performing deconvolution on a linear scale or incorporating additional redundant
random effects reduces the estimation accuracy.
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3.2. SvdRFCTD outperformed existingmethods in realistic settings

By using simulated ST data from all 2474 spots, we compare SvdRFCTD’s performance to
seven previously published deconvolution methods: Celloscope, RETROFIT, STdeconvolve,
CARD-free, RCTD, SpatialDWLS and CARD. Among these, Celloscope, RETROFIT, STde-
convolve, and CARD-free are reference-free deconvolution methods, whereas the remaining
methods, RCTD, SpatialDWLS, and CARD, are reference-based and rely on a reference
scRNA-seq dataset to derive gene expression profiles for the analyzed cell types. We catego-
rized STdeconvolve as a reference-free deconvolutionmethod because it does not usemarker
genes or reference scRNA-seq data for cell type decomposition. However, it still requires
reference scRNA-seq data or ground truth information to match cell types in its results,
meaning it is not strictly a reference-free method. Reference-based methods often outper-
form reference-free methods because they leverage additional information from reference
scRNA-seq datasets, which provide detailed gene expression profiles for specific cell types.
To examine the performance of the abovemethods in amore realistic situationwhere an ideal
reference dataset is unavailable, we collected single-cell RNA-seq data inmouse kidneys from
the TabulaMuris Senis (TMS) cell atlas (Almanzar et al., 2020). The TMS scRNA-seq dataset
contains 19,101 cells across 27 cell types. From this, we selected 13,761 cells corresponding
to the cell types that matched the simulated dataset to construct the reference dataset. We
also obtain marker genes from the dataset as the input for reference-free methods.

For each spot, the dominant cell type can be determined based on the cell type with the
highest proportion (see Figure 1(d)). This can be compared with the spatial visualization
shown in Figure 1(a,b), which represent the true single-cell MERFISH data with annotated
cell types and the proportion of cell types at each spot in the simulated dataset, respectively.
The comparison shows that the SvdRFCTD results are, to some extent, consistent with the
true data presented in Figure 1(a,b), demonstrating the model’s ability to accurately capture
the spatial distribution and proportions of cell types.

Based on the results of simulation, SvdRFCTD demonstrated superior performance com-
pared to most methods, ranking as the best among reference-free approaches and achieving
results comparable to reference-based methods. The performance of each method was eval-
uated by RMSE, PCC and F1 score. We evaluated per-spot RMSE between the predicted
and ground truth cell type proportions (see Figure 2(a)), where SvdRFCTD has the best
performance in reference-free methods and demonstrates the smallest variability among
all methods. RMSE across genes and spots is also calculated (see Figure 2(b)) and the
results are generally consistent to per-spot RMSE. We calculate F1 score to measure the
degree of alignment between the estimated and true values (see Figure 2(c)). In terms of
F1 score, reference-based methods perform significantly better than reference-free methods,
and SvdRFCTDalso outperforms other reference-freemethods. In terms of PCC, SvdRFCTD
achieved the best performance among all methods (see Figure 2(d)), indicating a strong cor-
relation between the estimated and true cell type proportions. Celloscope and RETROFIT
also achieved favourable results in terms of PCC. In contrast, reference-based methods no
longer hold an absolute advantage in assessing the similarity of cell type estimations. The
performance differences between reference-based and reference-free deconvolution meth-
ods can be attributed to several factors. Reference-based methods utilize scRNA-seq data,
offering a more comprehensive representation of cell types, which enhances the accuracy of
cell-type proportion estimation, as reflected in higher F1 score and lower RMSE. In con-
trast, reference-free methods depend on predefined gene sets, which may not fully capture
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(a)

(c) (d)

(b)

Figure 2. Comparison of SvdRFCTDwith other methods on simulatedmouse kidney ST data. (a) RMSE per
spot between the predicted and the ground truth cell type proportions using different methods. The blue
bars represent reference-free methods, and the orange bars represent reference-basedmethods. (b) RMSE
across genes and spots between the predicted and the ground truth cell type proportions using different
methods. The blue bars represent reference-free methods, and the orange bars represent reference-based
methods. (c) The F1 score between the ground truth and the dominant cell types inferred by different
methods. The blue bars represent reference-free methods, and the orange bars represent reference-based
methods. (d) PCC between the predicted and the ground truth cell type proportions.

cell-type heterogeneity. However, PCC tends to favour reference-free methods, likely due to
their robustness against systematic biases in scRNA-seq data and their reliance on a smaller
subset of genes, which helpsmitigate the impact of noise. Additionally, reference-basedmeth-
ods may be more susceptible to overfitting or biases arising from incomplete scRNA-seq
references, limiting their generalizability. Figure 3(a) shows the heatmap of the PCC between
the true cell type proportions and those inferred by SvdRFCTD (see Figure 3(b)), demon-
strating a high degree of similarity between the two. For each cell type, we illustrate the cell
type proportions across the entire tissue (see Figure 4). At each spot, a stronger red colour
indicates a higher proportion of that cell type at that location. From Figure 4, we can also
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Figure 3. Comparison of true and inferred cell type proportion correlations on simulatedmouse kidney ST
data. (a) PCC of true cell type proportions. (b) PCC of cell type proportions inferred by SvdRFCTD.

Figure 4. Spatial distribution of inferred cell type proportions by SvdRFCTD on simulated mouse kidney
ST data.

clearly observe that different cell types exhibit distinct spatial distribution patterns across the
tissue. Thus, the validity of SvdRFCTD is verified.

3.3. Sensitivity analysis of SvdRFCTD formarker genes

To assess the robustness of SvdRFCTD under different marker gene selection strategies, we
designed three experimental settings: (1) Setting 1, where marker genes were selected to
match those used in Section 3.2 from the TMS marker gene set; (2) Setting 2, where the
number of marker genes per cell type was limited to a maximum of 10; and (3) Setting 3,
where the number of marker genes per cell type was further restricted to a maximum of
5. We applied SvdRFCTD, Celloscope, and RETROFIT to deconvolve cell type proportions
across these settings and evaluated their performance using RMSE, PCC, and F1 score. We
did not include STdeconvolve and CARD-free in this comparison. STdeconvolve does not
utilize marker gene information during deconvolution and cell type matching, meaning its
predictions remain unchanged regardless of themarker gene selection. CARD-free fails when
the average number of unique marker genes per cell type is less than 20, making it unusable
in Settings 2 and 3.
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Across all evaluationmetrics, SvdRFCTD outperformed the other methods, achieving the
lowest RMSE, the highest and most stable PCC, and the highest F1 score, despite some vari-
ability in the latter. Figure 5(a) presents the RMSE per spot under different marker gene
settings, where SvdRFCTD consistently demonstrated the best performance and exhibited
strong robustness across all three settings. A similar trend is observed in Figure 5(b), which
shows RMSE across genes and spots. As the number of marker genes per cell type decreased,
the RMSE of SvdRFCTD progressively decreased, mirroring the trend seen with Celloscope.
In contrast, RETROFIT displayed a different pattern, reaching its highest RMSE in Set-
ting 2 and exhibiting relatively large fluctuations across settings. Figure 5(c) illustrates the
PCC under different marker gene settings. SvdRFCTD not only achieved the highest PCC
but also maintained remarkable stability, whereas RETROFIT showed substantial variation
across settings. Finally, Figure 5(d) presents the F1 score under differentmarker gene settings.
Although SvdRFCTD exhibited some variability, it achieved the highest F1 score, reflecting
its superior classification accuracy in identifying dominant cell types.

As shown in Figure 5, reducing the number of marker genes per cell type led to per-
formance improvements across all metrics for SvdRFCTD and the other two reference-free
deconvolution methods. This is likely because the removed marker genes were not the most
strongly expressed, cell type-specific genes, and their exclusion helped reduce noise from
redundant information.

These results underscore the robustness and effectiveness of SvdRFCTD in reference-free
deconvolution. It consistently outperforms existing methods in RMSE, PCC, and F1 score
while exhibiting greater stability across differentmarker gene settings. Notably, although per-
formance improves with optimized marker selection, SvdRFCTD remains the most reliable
method regardless of themarker gene constraints, making it well-suited for applications with
limited marker information.

4. Case study

4.1. Application of SvdRFCTD to the anterior section of themouse brain dataset

We applied our method to sagittal mouse brain dataset generated using the 10X Visium pro-
tocol. The dataset contains a pair of replicates from the anterior regions of the brain, labelled
‘anterior1/2’. Our analysis focuses on the ‘anterior1’ dataset, which contains 3355 spots in the
tissue, with a median of 4772 genes per spot. From this dataset, we selected 2696 spots and
179 marker genes to perform SvdRFCTD, and the marker genes are collected from the pre-
vious study (Zeisel et al., 2018), which are listed in Supplementary Table S2. To evaluate the
performance of SvdRFCTD, we compare its results with those obtained using other deconvo-
lution methods, including Celloscope, RETROFIT, RCTD, SpatialDWLS and CARD. Here,
we do not include STdeconvolve and CARD-free as comparative methods because STdecon-
volve requires ground truth of proportions for cell type assignment, and CARD-free exhibits
insufficient accuracy. The single-cell reference dataset for these reference-basedmethods was
obtained from the Allen Mouse Brain Atlas, which is different from the spatial transcrip-
tomics dataset analyzed here. Consequently, two cell types present in the marker list of the
spatial transcriptomics dataset are not found in the reference dataset, so we simply exclude
these two cell types from the comparison.

Unlike the simulated spatial transcriptomics datasets, the realistic dataset does not have
ground truth that specifies the exact cell type composition at each location. Therefore, we
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(a) (b)

(c) (d)

Figure 5. Sensitivity analysis of SvdRFCTD on simulatedmouse kidney ST data. (a) RMSE per spot between
the predicted and the ground truth cell type proportions using different methods under different marker
gene settings. (b) RMSE across genes and spots between the predicted and the ground truth cell type pro-
portions using different methods under different marker gene settings. (c) PCC between the predicted and
the ground truth cell type proportions under different marker gene settings. (d) The F1 score between
the ground truth and the dominant cell types inferred by different methods under different marker gene
settings.

use the clusters identified by the 10X Genomics platform (see Figure 6) for comparison with
the deconvolution results. We calculate the PCC values between the cell type proportions
estimated by SvdRFCTD and those obtained using other methods (see Figure 7(a)), which
reflects the similarity of the results between SvdRFCTD and the other methods. The results
show that SvdRFCTD exhibits a higher similarity with reference-free methods, while also
maintaining consistency with reference-basedmethods. Specifically, we examine the similar-
ity between SvdRFCTD and RCTD results for the same cell type and observe a high degree of
consistency across most cell types (see Figure 7(b)). This demonstrates that the performance
of SvdRFCTD is comparable to existing deconvolution methods.

SvdRFCTD clearly reflects the similarity of spatial location of cell type proportions across
the tissue. Figure 7(c) shows the PCC values for all pairs of cell type proportions estimated
by SvdRFCTD, which allows us to assess the spatial co-occurrence and exclusivity of dif-
ferent cell types. These cell types can be categorized by function and origin as Neuronal
cells(dopaminergic neurons, DOPA; GABAergic neurons, GABA; subtype of GABAergic
neurons, GABA-sub; glutamatergic neurons, GLUT), Glial cells(astrocytes, ASC; olfactory
ensheathing glia, OEG; oligodendrocytes, OLG; microglia, MG), Endothelial and choroid
plexus-associated cells(endothelial cells, EC; choroid plexus epithelial cells, CPC), Vascular
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Figure 6. Hematoxylin and eosin (H&E) staining image of the sagittal anterior region (left), and it is
coloured by cluster from the 10x Genomics platform(right).

(a) (d)

(b) (c)

Figure 7. SvdRFCTD is applied to cell type decomposition on the anterior mouse brain (sagittal section).
(a) PCC between SvdRFCTD and the othermethods. (b) PCC for each pair of cell type proportions estimated
by SvdRFCTD and RCTD. (c) PCC for all pairs of cell type proportions estimated by SvdRFCTD. (d) Moran’s I
coefficient for cell types indicated by SpatialDWLS, RETROFIT and SvdRFCTD. The cell type in this dataset
contains ASC, astrocytes; CPC, choroid plexus epithelial cells; DOPA, dopaminergic neurons; EC, endothe-
lial cells; GABA, GABAergic neurons; GABA-sub, GABAergic neurons subtype; GLUT, glutamatergic neurons;
OEG, olfactory ensheathingglia;OLG, oligodendrocytes;MG,microglia; VLMC, vascular and leptomeningeal
cells.
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and perivascular supporting cells(vascular and leptomeningeal cells, VLMC). Figure 7(c)
shows that the spatial co-localization of astrocytes (ASC) with dopaminergic neurons
(DOPA), endothelial cells (EC), glutamatergic neurons (GLUT), and microglia (MG), is
consistent with previous studies (Erö et al., 2018; Langlieb et al., 2023). Astrocytes pro-
vide metabolic support, maintain blood-brain barrier (BBB) integrity, and regulate synaptic
functions, influencing both excitatory and inhibitory neurons (GLUT and GABA, respec-
tively). The end-feet of astrocytes envelop the outer walls of cerebral blood vessels, working
alongside endothelial cells to maintain BBB function. Together, they regulate blood flow and
respond to neural activity (Abbott et al., 2006). Under inflammatory or injury conditions,
astrocytes interact with microglia (MG), releasing inflammatory mediators to coordinate
neural repair (Liddelow et al., 2017). In the case of dopaminergic neurons (DOPA), astro-
cytes regulate dopamine levels by clearing its metabolic byproducts, thereby maintaining the
balance of neural networks (Chinta & Andersen, 2008). Additionally, dopaminergic neu-
rons regulate the activity of glutamatergic neurons (GLUT) andGABAergic neurons (GABA)
through dopamine release (Tritsch et al., 2012). Their co-localization in certain regions is also
evident in Figure 8. GABAergic neurons (GABA) and glutamatergic neurons (GLUT) are
inhibitory and excitatory neurons, respectively. They form well-defined network partitions
in different cortical layers, collectively maintaining the balance of excitation and inhibition
within neural networks. GABA_sub is a specialized subset of GABAergic neurons, which
also exhibit notable spatial co-occurrence (Markram et al., 2004). However, they display
significant differences in proportions across different brain regions (see Figure 8).

SvdRFCTD effectively maps different cell types to distinct regions of the brain, as shown
in Figures 8 and 9. GLUT, GABA, and ASC are broadly distributed across the cortex, cere-
bellum, and hippocampus. OEG cells, on the other hand, are predominantly located in the
olfactory bulb, where they serve as the primary projection neurons responsible for trans-
mitting olfactory information. OLG cells, which produce myelin to enhance neuronal signal
conduction efficiency, are often concentrated in specific brain regions. In contrast, MG cells,
as the immune cells of the central nervous system, are tasked with monitoring and clearing
pathogens or damage. As a result, they are widely distributed throughout the entire brain.
And EC forms the primary component of the blood-brain barrier, regulating the exchange of
substances between the bloodstream and brain tissue. Consequently, they are distributed rel-
atively evenly across the brain. To verify the spatial autocorrelation exists or not for each cell
type, we also calculate Moran I’s coefficient, which takes values from -1 to 1, where -1 indi-
cates perfect dispersion, 0 perfect randomness (no autocorrelation), and 1 signifies perfect
clustering of similar values. Consequently, higher Moran’s I values suggest that the inferred
cell types are spatially clustered. As shown in Figure 7(d), most cell types show high spatial
autocorrelation, but the coefficients for EC and MG are relatively low, consistent with our
earlier discussion. The dominant cell type on each spot inferred by SvdRFCTD, Celloscope,
RETROFIT, RCTD, SpatialDWLS, and CARD is shown in Figure 9, which visually illustrates
the cell types aggregated in each region of the brain.

4.2. Application of SvdRFCTD to the coronal section of themouse brain dataset

Further, we performed SvdRFCTD on coronal mouse brain slice which is orthogonal to the
sagittal section analyzed above. The marker genes used in coronal mouse brain dataset are
listed in Supplementary Table S3. The hematoxylin and eosin (H&E) stained image of the
coronal anterior region is shown in Figure 10, coloured by clusters from the 10x Genomics
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Figure 8. Heatmaps of spatial cell type composition in the anterior mouse brain (sagittal section) esti-
mated by SvdRFCTD.

Figure 9. Dominant cell type inference in the anterior mouse brain (sagittal section) by SvdRFCTD and
other methods.
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Figure 10. Hematoxylin and eosin (H&E) staining image of the coronal anterior region (left), and it is
coloured by cluster from the 10x Genomics platform(right).

platform without explicit cell type annotations. This dataset largely comprises the same cell
types as the sagittal data, including oligodendrocytes, astrocytes, GABAergic neurons, glu-
tamatergic neurons, choroid plexus epithelial cells, endothelial cells, microglia, and vascular
and leptomeningeal cells. Additionally, we incorporated cholinergic neurons(CHOL), pep-
tidergic cells(PEPTI), granule cells(GRANULE), and the GLUT subtypes GLUT_cortex and
GLUTmid. However, the single-cell reference dataset lacks CHOL, PEPTI, and GRANULE
cell types, which impacts the comparison. For instance, the absence of granule cells may lead
the reference-based methods to overestimate the proportion of GLUTmid cells in the same
region. Nevertheless, SvdRFCTD still shows consistency with most methods in terms of cell
type proportion estimation (see Figures 11(a) & 13).

SvdRFCTD gives an insight into the spatial co-occurrence relationships of cell types from
the PCC values of the estimated cell type pairs (see Figure 11(b)). GLUT, an excitatory
neuron, is distributed throughout the brain,while its two subtypes differ in their spatial distri-
bution. GLUT_cortex is concentrated in the cerebral cortex, where it is responsible for higher
cognitive functions, while GLUTmid is located in the midbrain and surrounding regions,
where it plays a role in motor control and regulation of the dopamine system. From the
PCC plot we can see the negative spatial correlation between these two subtypes, which is
also clearly visible in the cell type distribution heatmap (see Figure 12). The only cell types
that show a positive correlation with the distribution of GLUT_cortex are GABA and granule
cells, while other cell types show some degree of different distribution patterns. Relative stud-
ies suggest that GLUT_cortex neurons are concentrated in the cortex and provide excitatory
signals, while GABA neurons are distributed in different cortical layers and locally modulate
the excitatory activity of GLUT_cortex (Murata et al., 2019). Granule cells in the olfactory
bulb are inhibitory neurons that primarily regulate the activity of excitatory projection neu-
rons (such as GLUT neurons) via GABA signalling, and are located in the deep layers of the
olfactory bulb, close to the excitatory neurons (Erö et al., 2018). CHOL are concentrated in
the basal forebrain, where they regulate memory functions in the cortex and hippocampus.
PEPTI, located in the hypothalamus, play a key role in regulating neuroendocrine functions.
They together form an interconnected regulatory network that influences neural activity
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(a)

(b)

(c)

Figure 11. SvdRFCTD is applied to cell type decomposition on the anterior mouse brain (coronal section).
(a) PCC for each pair of cell type proportions estimated by SvdRFCTD and Celloscope. (b) PCC for all pairs of
cell type proportions estimated by SvdRFCTD. (c) Moran’s I coefficient for cell types indicated by SpatialD-
WLS, RETROFIT and SvdRFCTD. The cell types contains OLG, oligodendrocytes; OEG, olfactory ensheathing
glia; ASC, astrocytes; GABA, GABAergic neurons; GLUT, glutamatergic neurons; CPC, choroid plexus epithe-
lial cells; EC, endothelial cells; MG, microglia; VLMC, vascular and leptomeningeal cells; CHOL, cholinergic
neurons; PEPTI, peptidergic cells; GRANULE, granule cells.

in multiple regions, including the cortex and hypothalamus (Zaborszky et al., 2012). These
findings from existing research are consistent with our results.

Furthermore, SvdRFCTD effectively identifies region-specific cell types and structure of
the tissue. Moran’s I coefficients for cell types are shown in Figure 11(c), indicating spa-
tial clustering for GLUTmid, GLUT_cortex, and OLG, while EC and MG exhibit spatial
dispersion. These results are consistent with the Moran’s I analysis in Section 4.1. SvdR-
FCTD successfully identifies region-specific cell types (see Figure 12). The peptidergic cells
were accurately localized in the hypothalamus, consistent well with their role in regulating
neuroendocrine function and hormone secretion in this region (Lein et al., 2007). Similarly,
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Figure 12. Heatmaps of spatial cell type composition in the anterior mouse brain (coronal section)
estimated by SvdRFCTD.

granule neurons were correctly mapped to the dentate gyrus of the hippocampus, a key area
involved in memory formation and spatial navigation. Additionally, the medium spiny neu-
rons were precisely mapped to the basal ganglia, consistent with their critical role in motor
control and reward processing (Caligiore et al., 2019). SvdRFCTD effectively visualizes the
structure of the tissue in the dominant cell type plot (see Figure 13), which highlights the cell
type with the highest proportion at each spot. This visualization offers a clear and intuitive
depiction of the cellular composition across various brain regions, including fiber tracts, ven-
tricles, cortex, thalamus, and hypothalamus. These regions, annotated based on anatomical
images from the Allen Brain Atlas, are distinctly and accurately identified by SvdRFCTD. In
comparison, Celloscope provides a less detailed characterization of GRANULE in the cor-
responding regions and fails to capture the complex structure of the midbrain. Meanwhile,
RCTD and CARD significantly underestimate the proportions of GLUTmid and PEPTI in
the relevant areas while overestimating those of ASC and OLG. These results highlight the
effectiveness of SvdRFCTD in capturing region-specific cellular distributions.
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Figure 13. Dominant cell type inference in the anterior mouse brain (coronal section) by SvdRFCTD and
other methods.

4.3. Application of SvdRFCTD to human pancreatic ductal adenocarcinomas dataset

Next, we applied our methods to human pancreatic ductal adenocarcinoma (PDAC) dataset
(Moncada et al., 2020). The PDAC dataset comprises 428 spots, 1628 genes, and 20 cell
types or subtypes. The marker genes were obtained from a sample-matched scRNA-seq
dataset generated using the inDrop platform (Moncada et al., 2020), which are listed in
Supplementary Table S4. The dataset includes annotations for four main anatomical tissue
regions (cancer, pancreatic, ductal, and stromal regions) provided by histologists based on
H&E staining and the region annotations are also validated in the original study (Moncada
et al., 2020) (see Figure 14(a)).

SvdRFCTD effectively identified highly concentrated cell types in specific regions. By
comparing the proportions of cell types in each region with those in other areas, we find
that the ductal region exhibits a high proportion of ductal cells, including subtypes such
as terminal ductal-like ductal cells, CRISP3-high centroacinar-like ductal cells, MHC Class
II-expressing ductal cells, and APOL1-high hypoxic ductal cells (see Figure 14(b)). The pan-
creatic region shows a significant enrichment of acinar cells (see Figure 14(c)), while the
cancer region was dominated by cancer cells, including Cancer Clone A and Cancer Clone B
(see Figure 14(d)). These differences were statistically significant, with t-test p-values <0.05.
This pattern is also evident in the heatmaps of cell type distribution (see Figure 15(a)) and
the dominant cell type plot (see Figure 15(b)). Specifically, Figure 15(a) reveals a spatially
structured distribution of cell types across spots, highlighting distinct regional enrichment
patterns. In Figure 15(b), the dominant cell type assigned to each spot by SvdRFCTD aligns
well with known anatomical and functional structures, further supporting the method’s
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(a)

(b) (c) (d)

Figure 14. SvdRFCTD is applied to cell type decomposition on human pancreatic ductal adenocarcinomas
dataset. (a) Hematoxylin and eosin (H&E) staining image of the PDAC tissue, the regions are annotated by
original research. (b) A comparison of the predicted proportion of acinar cells in the spots of the pancreatic
region and the spots of the non-pancreatic region. (c) A comparison of the predicted proportion of Ductal
cells in the spots of the Ductal region and the spots of the non-Ductal region. (d) A comparison of the
predicted proportion of Cancer cells in the spots of the Cancer region and the spots of the non-Cancer
region. The cell types contain Acinar cells; Ductal cells; Cancer cells; Fibroblasts; mDcs, myeloid dendritic
cells; Tuft cells; pDCs, plasmacytoid dendritic cells; Endocrine cells; Endothelial cells; Macrophages; Mast
cells; T cells and natural killer (NK) cells; Monocytes; RBCs, Red blood cells.

accuracy, which represents that SvdRFCTD provides a refined resolution of cell type het-
erogeneity, particularly in boundary regions where transitions between different cell types
occur.

Additionally, we observe that a subset of ductal cells extended into the cancer region. This
finding is supported by a comparison of the proportions of ductal subtypes between cancer
and non-cancer regions, which shows a slightly higher proportion of ductal high hypoxic
cells in the cancer region (see Figure 16(a)). This observation is biologically plausible as
some ductal cells may be relocated to the tumour-adjacent regions or transition into cancer-
like phenotypes during tumorigenesis. In particular, ductal high hypoxic cells could play a
critical role by secreting specific factors, such as VEGF and immunosuppressive molecules,
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(a)

(b)

Figure 15. SvdRFCTD is applied to cell type decomposition on human pancreatic ductal adenocarcinomas
dataset. (a) Heatmaps represents spatial composition of cell types across spots estimated by SvdRFCTD. (b)
The dominant cell type on each spot inferred by SvdRFCTD, RETROFIT, SpatialDWLS and CARD respectively.

to promote nutrient supply, reshape the tumour microenvironment, and regulate immune
responses, which ultimately facilitate cancer cell adaptation and survival (Hwang et al., 2024).

SvdRFCTD explores the spatial co-occurrence relationships between cell types (see
Figure 16(b)). We observe a co-occurrence of cancer clone A cells with macrophages B and
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(a)

(b)

Figure 16. SvdRFCTD is applied to cell type decomposition on human pancreatic ductal adenocarcinomas
dataset. (a) PCC for each pair of cell type proportions estimated by SvdRFCTD. (b) Comparisons of cell type
proportions inferred by SvdRFCTD in cancer region v.s. non-cancer region.
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fibroblasts. This observation is validated by comparing the proportions of macrophages and
fibroblasts between cancer and non-cancer regions, showing that these cell types are more
abundant in cancer regions (see Figure 16(a)). Macrophages B, are commonly located in
the tumour core and are closely associated with both cancer cells and fibroblasts. These
macrophages play a critical role in supporting tumour immune evasion by promoting an
immunosuppressivemicroenvironment (Yu et al., 2024). Fibroblasts, on the other hand, con-
tribute to tumour progression by secreting extracellular matrix (ECM) proteins (such as
collagen) and pro-inflammatory factors (Du et al., 2024). These interactions enable fibrob-
lasts to collaborate with ductal cells and immune cells to actively remodel the tumour
microenvironment (TME). For comparison, when analyzing the PDAC data, the CARD
method reached an opposite conclusion regarding the distribution of Macrophages B in
cancer and non-cancer regions and failed to capture the spatial distribution of fibroblasts
(Ma & Zhou, 2022). We also observe a spatial co-occurrence between endothelial cells and
fibroblasts. This is likely due to their coordinated roles in shaping the TME: fibroblasts pro-
vide structural support and signalling cues for angiogenesis, while endothelial cells form the
vascular network essential for nutrient supply and waste removal in the tumour (Morvaridi
et al., 2015; Nielsen et al., 2016). Together, these findings highlight the intricate spatial and
functional interplay among cancer cells, immune cells, and stromal components in PDAC
tissues.

5. Discussion

SvdRFCTD demonstrates outstanding performance in cell type decomposition through
extensive simulations and real data analyses. Using the mouse kidney simulated ST dataset,
we investigate the optimal model structure and find that avoiding redundant spatial-specific
and gene-specific effects improves performance. Additionally, using the total number of
cells in each ST spot, rather than total transcripts, enhances accuracy due to the signif-
icant variation in cell numbers across spots. When compared with other deconvolution
methods, including Celloscope, RETROFIT, RCTD, SpatialDWLS, and CARD, SvdRFCTD
achieves results comparable to reference-based methods across multiple evaluation metrics.
Notably, it outperforms all other methods in Pearson Correlation Coefficient (PCC) when
compared to true cell type proportions. To further assess the robustness of SvdRFCTD, we
conducted a sensitivity analysis under different marker gene selection strategies. The results
show that SvdRFCTD consistently outperforms other reference-free methods and remains
the most reliable method regardless of marker gene constraints. In analyses of three real ST
datasets, SvdRFCTD accurately estimates cell type proportions, consistent with other meth-
ods, while clearly capturing tissue anatomical structures and identifying regions with high
cellular aggregation. It also reveals spatially coexisting cell types, shedding light on complex
inter-cellular relationships.

SvdRFCTD shows its ability to differentiate between cell subtypes when sufficient marker
genes are available for definition. For example, in the PDAC dataset, several subtypes of
GLUT cells are distinguished. While the overall spatial distribution of GLUT cells shows
limited correlation with cancer cells, the ductal high hypoxic GLUT cells are predominantly
located in the cancer region of the tissue. These cells play a pivotal role in supporting
the development of cancer cells, highlighting their functional significance in the tumour
microenvironment.
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A key advantage of SvdRFCTD is the ability to account for spatial effects by borrowing
information from neighbouring spots and its independence from reference data. By incorpo-
rating spillover effects into both themean and dispersion components, SvdRFCTDeffectively
captures spatial relationships. TheMoran’s I tests in the case study also support the similarity
of cell type composition between neighbouring locations. While reference-based methods
assume constant cell-type-specific gene expression, this assumption is often violated due
to batch effects and sample variability, reducing their accuracy. In contrast, reference-free
methods like SvdRFCTD avoid this issue.

There are also limitations to SvdRFCTD. First, its use of MCMC for parameter estimation
is computationally intensive, making it less scalable for large datasets. Approximate infer-
ence methods like INLA could be explored to improve efficiency. Second, the model does
not incorporate covariates or account for spatial effects on cell type proportions, focussing
only on spillover effects between spots. Expanding its spatial modelling capabilities could
enhance performance. Lastly, the accuracy of SvdRFCTD heavily depends on the selection
of input marker genes, requiring sufficient prior knowledge on the dataset. Despite its limi-
tations, SvdRFCTD provides a valuable tool for advancing our understanding of the cellular
architecture in tissues. Future developments focussing on scalability, covariate integration,
and enhanced spatial modelling will further expand its applicability and impact in the field
of spatial transcriptomics.
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