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ABSTRACT
The innovative doubly randomized delayed start (DRDS) design has been implemented to tackle
the well-known challenge of a high placebo response rate in clinical trials. This design begins
with a conventional parallel design phase (period 1), followed by a subsequent phase (period
2) where subjects initially assigned to placebo and who did not respond are re-randomized to
either the test drug or placebo. Chi, G. Y., Li, Y., Liu, Y., Lewin, D., & Lim, P. (2016 On clinical tri-
als with a high placebo response rate. Contemporary Clinical Trials Communications, 2, 34–53.
https://doi.org/10.1016/j.conctc.2015.10.002) introduced a new statistical methodology with a
conditional probability structure to account for the specific characteristics of the DRDS design.
However, some critical formulas in Chi et al. (2016, p. 38) for this probability structure are incor-
rect. Here, we correct these formulas and provide a comprehensive technical background on
deriving the probability structure for a DRDS design to support these corrections.
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1. Introduction

Ahigh placebo response rate, which contributes to the high failure rate of trials, is a significant andwell-documented
challenge frequently encountered in clinical trials, especially in fields such as neurology, psychiatry, and pain man-
agement. Hegerl and Mergl (2010) provided an intuitive visual representation to elucidate the mechanism of high
placebo response rates. A novel sequential parallel comparison design (SPCD) framework, which was aimed at
increasing the efficiency of placebo-controlled psychiatric clinical trials, was proposed by Fava et al. (2003) to
address this issue of high placebo response rate. The approach involves an initial standard parallel design period (i.e.,
period 1), followed by a second period (i.e., period 2) where subjects who were originally randomized to placebo
and did not respond are re-randomized to either the test drug or placebo. SPCD is also sometimes referred to as the
doubly randomized delayed start (DRDS) design (Liu et al., 2012). In this short communication, we use the term
DRDS to align with the practice from Chi et al. (2016).

TheDRDSdesign has been recognized by regulatory agencies as an innovative approach.However, these agencies
have raised concerns regarding the various proposed statistical analysis methods and the clinical interpretability of
the results. Chi et al. (2016) provided a comprehensive summary of these key issues and introduced a new statistical
methodology that differs from the existing methods. Specifically, the currently available methods treat the second
period of a DRDS design as an independent trial from period 1. In contrast, the proposal by Chi et al. (2016)
incorporates a conditional probability structure for period 2, reflecting that subjects in period 2 are placebo non-
responders from period 1 who were re-randomized to either the test drug or placebo. It is noted that some of the
critical formulas for the probability structure in Chi et al. (2016, p. 38) are inaccurate. In this short communication,
we provide corrections to these formulas and offer a general technical background for deriving the probability
structure of a DRDS design to support these corrections.

The structure of this short communication is as follows. Section 2 introduces the technical notations used to
present the probability structure of a DRDS design. Section 3 presents the results for the probability structure. The
Appendix provides the general technical background for deriving the probability structure of a DRDS design.

2. General notations

Consider a trial employing a DRDS design, as illustrated in Figure 1. At the beginning of period 1, N subjects
are randomly allocated to either the test (t) group or the placebo (p) group, with n1,t subjects assigned to the test
group and n1,p subjects assigned to the placebo group. Let Y1,t and Y1,p represent the continuous clinical response
variables of interest under the test group and the placebo group, respectively. Both are normally distributed, with
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Figure 1. Basic study flow based on a DRDS design and its observed variables for each treatment group in each period.

Y1,t ∼ N(μ1,t , σ 2
1,t) and Y1,p ∼ N(μ1,p, σ 2

1,p). At the end of period 1, a pre-specified criterion will be applied to
determine the response status of subjects in the placebo group who completed the period. Specifically, those in the
placebo group identified as responders – i.e., if Y1,p ≥ c – along with those who discontinued period 1 early, will
be excluded from the second period of the study. In contrast, n2 subjects in the placebo group who are classified as
non-responders–i.e., Y1,p < c–will be re-randomized to either the test or placebo group at the beginning of period
2, with n2,t subjects in the test group and n2,p subjects in the placebo group.

Suppose that all subjects in the placebo group at the end of period 1 were re-randomized in period 2 to the
test group in period 2. Let Y2,t represent the clinical response variables of interest which follows a normal dis-
tribution, Y2,t ∼ N(μ2,t , σ 2

2,t). In this case, the pair of variables (Y1,p,Y2,t) follows a bivariate normal distribution
with a correlation of ρt = Corr(Y1,p,Y2,t). Similarly, if all subjects in the placebo group at the end of period 1 were
re-randomized to the placebo group in period 2, let Y2,p denote the clinical response variables of interest, which fol-
lows a normal distribution, Y2,p ∼ N(μ2,p, σ 2

2,p). In this scenario, the pair of variables (Y1,p,Y2,p) follows a bivariate
normal distribution with a correlation of ρp = Corr(Y1,p,Y2,p). The bivariate normal distributions for the pairs of
(Y1,p,Y2,t) and (Y1,p,Y2,p) are represented as follows:

(Y1,p,Y2,t) ∼ N
((

μ1,p
μ2,t

)
,
(

σ 2
1,p ρtσ1,pσ2,t

ρtσ1,pσ2,t σ 2
2,t

))
,

(Y1,p,Y2,p) ∼ N

((
μ1,p
μ2,p

)
,

(
σ 2
1,p ρpσ1,pσ2,p

ρpσ1,pσ2,p σ 2
2,p

))
.

However, according to the DRDS design, the subjects observed during period 2 are those who were assigned to the
placebo group in period 1 and had an outcome value below a pre-defined threshold c, i.e., non-responder defined
as Y1,p < c. As a result, the variables observed in period 2 are not Y2,t or Y2,p, but rather Y2,t|Y1,p < c or Y2,p|Y1,p <

c, which aligns with the framework of using singly truncated bivariate normal distributions. We will present its
probability structure using this framework in the next section.

3. Probability structure of a DRDS design

For the pair with right truncation at Y1,p < c, (Y1,p,Y2,t|Y1,p < c), its singly truncated bivariate normal distribution
can be expressed as follows:

(Y1,p|Y1,p < c,Y2,t|Y1,p < c)

∼ N

((
μ1,p|Y1,p<c
μ2,t|Y1,p<c

)
,

(
σ 2
1,p|Y1,p<c Cov(Y1,p,Y2,t|Y1,p < c)

Cov(Y1,p,Y2,t|Y1,p < c) σ 2
2,t|Y1,p<c

))
. (1)
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Similarly, for the pair with right truncation at Y1,p < c, (Y1,p,Y2,p|Y1,p < c), its singly truncated bivariate normal
distribution is

(Y1,p|Y1,p < c,Y2,p|Y1,p < c)

∼ N

((
μ1,p|Y1,p<c
μ2,p|Y1,p<c

)
,

(
σ 2
1,p|Y1,p<c Cov(Y1,p,Y2,p|Y1,p < c)

Cov(Y1,p,Y2,p|Y1,p < c) σ 2
2,p|Y1,p<c

))
, (2)

where Cov(Y1,p,Y2,t|Y1,p < c) = ρt|Y1,p<cσ1,p|Y1,p<cσ2,t|Y1,p<c, and Cov(Y1,p,Y2,p|Y1,p < c) = ρp|Y1,p<cσ1,p|Y1,p<c
σ2,p|Y1,p<c in Equations (1) and (2), respectively. Defining τ = (c − μ1,p)/σ1,p, the elements of interest in Equa-
tions (1) and (2) are given by

μ1,p|Y1,p<c = μ1,p − σ1,p
φ (τ)

� (τ)
,

μ2,t|Y1,p<c = μ2,t − ρtσ2,t
φ (τ)

� (τ)
,

μ2,p|Y1,p<c = μ2,p − ρpσ2,p
φ (τ)

� (τ)
,

σ 2
1,p|Y1,p<c = σ 2

1,p

[
1 − τφ (τ)

� (τ)
−

(
φ (τ)

� (τ)

)2
]
,

σ 2
2,t|Y1,p<c = σ 2

2,t

[
1 − ρ2

t
τφ (τ)

� (τ)
− ρ2

t

(
φ (τ)

� (τ)

)2
]
,

σ 2
2,p|Y1,p<c = σ 2

2,p

[
1 − ρ2

p
τφ (τ)

� (τ)
− ρ2

p

(
φ (τ)

� (τ)

)2
]
,

Cov(Y1,p,Y2,t|Y1,p < c) = ρtσ1,pσ2,t

[
1 − τφ (τ)

� (τ)
−

(
φ (τ)

� (τ)

)2
]
,

Cov(Y1,p,Y2,p|Y1,p < c) = ρpσ1,pσ2,p

[
1 − τφ (τ)

� (τ)
−

(
φ (τ)

� (τ)

)2
]
,

ρt|Y1,p<c = ρt

√√√√√
⎧⎨⎩ρ2

t + (
1 − ρ2

t
) [

1 − τφ (τ)

� (τ)
−

(
φ (τ)

� (τ)

)2
]−1

⎫⎬⎭
−1

,

ρp|Y1,p<c = ρp

√√√√√
⎧⎨⎩ρ2

p + (
1 − ρ2

p
) [

1 − τφ (τ)

� (τ)
−

(
φ (τ)

� (τ)

)2
]−1

⎫⎬⎭
−1

.

All of these identities can be readily derived from the general technical results presented in the Appendix. With the
underlying conditional probability structure for a DRDS design as described above, the adjusted treatment effect
estimation and its hypothesis testing can proceed based on the methods proposed by Chi et al. (2016).
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Appendix

This appendix offers a general technical background for deriving the probability structure of a DRDS design, using notation that
differs slightly from the main text. Additionally, since single truncation is a specific instance of double truncation, the technical
background begins with the broader context of double truncation, with the single truncation case addressed appropriately at
the end of this section.

Given a univariate random variable X that follows a standard normal distribution, the probability density function (pdf)
and cumulative distribution function (cdf) are represented by φ(x) and �(x), respectively. It is known that φ′(x) = −xφ(x)
and �′(x) = φ(x). If we define Y1 = μ1 + σ1X, then Y1 follows a normal distribution with mean μ1 and variance σ 2

1 , i.e.,
Y1 ∼ N(μ1, σ 2

1 ). Now, consider the doubly truncated normal distribution where Y1 is restricted to the interval A = [a, b]
with −∞ < a < b < ∞. The probability of Y1 lying withinA is given by �((b − μ1)/σ1) − �((a − μ1)/σ1). The pdf of the
resulting truncated distribution is then expressed as f (y1;μ1, σ1|a ≤ y1 ≤ b) = [σ−1

1 φ((y1 − μ1)/σ1)]/[�((b − μ1)/σ1) −
�((a − μ1)/σ1)], the moment generating function (mgf) for this truncated distribution can then be derived as follows:

MY1(t) = E
(
etY1 |Y1 ∈ A) = R exp

(
μ1t + t2σ 2

1
2

)
,

where

R =
[
�

(
b − μ̃

σ1

)
− �

(
a − μ̃

σ1

)]
[� (τb) − � (τa)]−1 ,

μ̃ = μ1 + tσ 2
1 , τb = b − μ1

σ1
, τa = a − μ1

σ1
.

With the mgf, we can readily obtain E(Y1|Y1 ∈ A) = μ1 − σ1P and Var(Y1|Y1 ∈ A) = σ 2
1 (1 − Q − P2) (Johnson et al., 1994,

p. 156–158), where

P = φ (τb) − φ (τa)

� (τb) − � (τa)
; Q = τbφ (τb) − τaφ (τa)

� (τb) − � (τa)
.

Now, we define Y2 = μ2 + σ2X, and then Y2 follows a normal distribution with mean μ2 and variance σ 2
2 , i.e., Y2 ∼

N(μ2, σ 2
2 ). Assume that Y1 and Y2 jointly follow a bivariate normal distribution with correlation ρ, represented by (Y1,Y2) ∼

f (y1, y2;μ1,μ2, σ 2
1 , σ

2
2 , ρ). We are interested in the distribution of Y2 and relevant statistic, such as correlation between Y2 and

Y1, given that Y1 falls within the interval A. Here, truncation is applied only to Y1, while Y2 remains untruncated, that is,
a ≤ Y1 ≤ b and −∞ < Y2 < ∞.

In the following, we presented two methods for deriving these expected results, both of which use the findings in Kotz
et al. (2000, p. 311–312, 315) as a starting point.

A.1 Method 1: based on the technique fromKotz et al. (2000)

This is a relatively straightforward technique without intensive computation. For the bivariate normal distribution of (Y1,Y2),
the conditional distribution of Y2 given Y1 = y1 is also normally distributed, and can be expressed as follows:

Y2|Y1 = y1 ∼ N
(

μ2 − ρμ1
σ2

σ1
+ ρ

σ2

σ1
y1, σ 2

2 (1 − ρ2)

)
.

We then have the following identities

E(Y2) = E[E(Y2|Y1)] = E
(

μ2 − ρμ1
σ2

σ1
+ ρ

σ2

σ1
Y1

)
= μ2 − ρμ1

σ2

σ1
+ ρ

σ2

σ1
E(Y1),

E(Y1Y2) = E(Y1E(Y2|Y1)) = E
[
Y1

(
μ2 − ρμ1

σ2

σ1
+ ρ

σ2

σ1
Y1

)]
=

(
μ2 − ρμ1

σ2

σ1

)
E(Y1) + ρ

σ2

σ1
E(Y2

1 ),

https://doi.org/10.1177/0269881109106930
https://doi.org/10.1080/10543406.2012.678234
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E(Y2
2 ) = E(E(Y2

2 |Y1)) = E
[
Var(Y2|Y1) + (E(Y2|Y1))

2]
= σ 2

2 (1 − ρ2) +
(

μ2 − ρμ1
σ2

σ1

)2

+ 2
(

μ2 − ρμ1
σ2

σ1

)
ρ

σ2

σ1
E(Y1) + ρ2 σ 2

2
σ 2
1
E(Y2

1 ),

Var(Y2) = E(Y2
2 ) − (E(Y2))

2 = σ 2
2 (1 − ρ2) + ρ2 σ 2

2
σ 2
1

[
E(Y2

1 ) − (E(Y1))
2]

= σ 2
2

[
(1 − ρ2) + ρ2

σ 2
1
Var(Y1)

]
,

Cov(Y1,Y2) = E(Y1Y2) − E(Y1)E(Y2) = ρ
σ2

σ1

[
E(Y2

1 ) − (E(Y1))
2] = ρ

σ2

σ1
Var(Y1),

Corr(Y1,Y2) = Cov(Y1,Y2)√
Var(Y1)

√
Var(Y2)

= ρ

√(
ρ2 + (1 − ρ2)σ 2

1
Var(Y1)

)−1

.

Clearly, by substituting E(Y1) and Var(Y1) in these identities with the previously derived expressions E(Y1|Y1 ∈ A) = μ1 −
σ1P and Var(Y1|Y1 ∈ A) = σ 2

1 (1 − Q − P2) from the univariate truncated distribution, we can readily obtain the desired
results for the distribution of Y2 given that Y1 falls within the interval A. These include E(Y2|Y1 ∈ A), Var(Y2|Y1 ∈ A), and
Corr(Y1,Y2|Y1 ∈ A). These results are identical to those obtained using an alternative method involving the mgf, which will
be presented subsequently.

A.2 Method 2: based onmoment generating function

With the specified truncation on Y1 as a ≤ Y1 ≤ b, the pdf of the resulting truncated distribution for (Y1,Y2) is then expressed
as f (y1, y2;μ1,μ2, σ 2

1 , σ
2
2 , ρ|a ≤ y1 ≤ b) = f (y1, y2)[�(τb) − �(τa)]−1, and themgf of this truncated bivariate distribution for

(Y1,Y2) can then be derived as follows:

M(Y1,Y2)(t1, t2) = E
(
et1Y1+t2Y2 |Y1 ∈ A

)
= [� (τb) − � (τa)]−1

∫ ∞

−∞

∫ b

a
et1y1+t2y2 f (y1, y2)dy1dy2

= R̃ exp(A),

where

A = t1μ1 + t2μ2 + 1
2

(
t21σ

2
1 + 2t1t2ρσ1σ2 + t22σ

2
2
)
,

R̃ =
[
�

(
b − μ̃1

σ1

)
− �

(
a − μ̃1

σ1

)]
[� (τb) − � (τa)]−1 ,

μ̃1 = μ1 + t1σ 2
1 + t2ρσ1σ2.

From the mgf, the first, the second, and mixed derivatives in terms of t1 and t2 can be obtained as follows:

∂

∂t1
M(Y1,Y2)(t1, t2) = μ̃1R̃ exp(A) − σ1P̃ exp(A),

∂

∂t2
M(Y1,Y2)(t1, t2) = μ̃2R̃ exp(A) − ρσ2P̃ exp(A),

∂2

∂t21
M(Y1,Y2)(t1, t2) = σ 2

1 R̃ exp(A) + μ̃1

[
μ̃1R̃ exp(A) − σ1P̃ exp(A)

]
−

[
μ̃1σ1P̃ exp(A) + σ 2

1 Q̃ exp(A)
]
,

∂2

∂t22
M(Y1,Y2)(t1, t2) = σ 2

2 R̃ exp(A) + μ̃2

[
μ̃2R̃ exp(A) − ρσ2P̃ exp(A)

]
−

[
μ̃2ρσ2P̃ exp(A) + ρ2σ 2

2 Q̃ exp(A)
]
,

∂2

∂t1∂t2
M(Y1,Y2)(t1, t2) = ρσ1σ2R̃ exp(A) + μ̃1

[
μ̃2R̃ exp(A) − ρσ2P̃ exp(A)

]
−

[
μ̃2σ1P̃ exp(A) + ρσ1σ2Q̃ exp(A)

]
,
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where

μ̃2 = μ2 + t2σ 2
2 + t1ρσ1σ2,

P̃ =
[
φ

(
b − μ̃1

σ1

)
− φ

(
a − μ̃1

σ1

)]
[� (τb) − � (τa)]−1 ,

Q̃ =
[(

b − μ̃1

σ1

)
φ

(
b − μ̃1

σ1

)
−

(
a − μ̃1

σ1

)
φ

(
a − μ̃1

σ1

)]
[� (τb) − � (τa)]−1 .

By substituting t1 = 0 and t2 = 0 into these identities, we have A = 0 and μ̃1 = μ1. This allows us to easily derive the desired
results as below for the distribution of both Y2 and Y1, given that Y1 falls within the intervalA.

E(Y1|Y1 ∈ A) = ∂

∂t1
M(Y1,Y2)(t1, t2)

∣∣∣∣
t1=0,t2=0

= μ1 − σ1P,

E(Y2|Y1 ∈ A) = ∂

∂t2
M(Y1,Y2)(t1, t2)

∣∣∣∣
t1=0,t2=0

= μ2 − ρσ2P,

E(Y2
1 |Y1 ∈ A) = ∂2

∂t21
M(Y1,Y2)(t1, t2)

∣∣∣∣
t1=0,t2=0

= σ 2
1 + μ2

1 − 2μ1σ1P − σ 2
1 Q,

E(Y2
2 |Y1 ∈ A) = ∂2

∂t22
M(Y1,Y2)(t1, t2)

∣∣∣∣
t1=0,t2=0

= σ 2
2 + μ2

2 − 2ρσ2μ2P − ρ2σ 2
2 Q,

E(Y1Y2|Y1 ∈ A) = ∂2

∂t1∂t2
M(Y1,Y2)(t1, t2)

∣∣∣∣
t1=0,t2=0

= μ2 (μ1 − σ1P) + ρσ1σ2

(
1 − μ1

σ1
P − Q

)
,

Var(Y1|Y1 ∈ A) = E(Y2
1 |Y1 ∈ A) − [E(Y1|Y1 ∈ A)]2 = σ 2

1
(
1 − Q − P2) ,

Var(Y2|Y1 ∈ A) = E(Y2
2 |Y1 ∈ A) − [E(Y2|Y1 ∈ A)]2 = σ 2

2
(
1 − ρ2Q − ρ2P2) ,

Cov(Y1,Y2|Y1 ∈ A) = E(Y1Y2|Y1 ∈ A) − E(Y1|Y1 ∈ A)E(Y2|Y1 ∈ A)

= ρσ1σ2
(
1 − Q − P2) ,

Corr(Y1,Y2|Y1 ∈ A) = Cov(Y1,Y2|Y1 ∈ A)√
Var(Y1|Y1 ∈ A)

√
Var(Y2|Y1 ∈ A)

= ρ

√(
ρ2 + 1 − ρ2

1 − Q − P2

)−1
.

A.3 Single Truncation

Up to this point, our discussion has focussed on the double trunction ofY1 wtihin the intervalA = [a, b]. Now, let’s examine its
special cases of single truncation for Y1. There are two specific scenarios: (1) setting a = −∞, which results in right truncation;
(2) letting b = ∞, which leads to left truncation. The previously discussed results regarding the truncated distribution for both
Y1 andY2 apply to all forms of truncation ofY1, as long asY2 remains untruncated. The key difference is that, for right trunction,
P and Q should be replaced with Pr and Qr , respectively, as defined below. Similarly, for left truncation, P and Q should be
substituted with Pl and Ql, respectively.

Right truncation, A = (−∞, b] : Pr = φ (τb)

� (τb)
; Qr = τbφ (τb)

� (τb)
;

Left truncation, A = [a,∞) : Pl = − φ (τa)

1 − � (τa)
; Ql = − τaφ (τa)

1 − � (τa)
.
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