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ABSTRACT
In the era of big data, divide-and-conquer, parallel, and distributed inference methods have
become increasingly popular. How to effectively use the calibration information from each
machine in parallel computation has become a challenging task for statisticians and computer
scientists. Many newly developed methods have roots in traditional statistical approaches that
make use of calibration information. In this paper, we first review some classical statistical
methods for using calibration information, including simple meta-analysis methods, parametric
likelihood, empirical likelihood, and the generalized method of moments. We further investi-
gate how thesemethods incorporate summarizedor auxiliary information fromprevious studies,
related studies, or populations. We find that the methods based on summarized data usually
have little or nearly no efficiency loss compared with the corresponding methods based on all-
individual data. Finally, we review some recently developed big data analysis methods including
communication-efficient distributed approaches, renewal estimation, and incremental inference
as examples of the latest developments in methods using calibration information.
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1. Introduction

Statistical inferencewith big data can be extremely chal-
lenging owing to the high volume and large variety of
observed quantities. Currently, one of the most popular
approaches to this problem in statistics and computer
science is the divide-and-conquer paradigm. The basic
idea of this method is to break down a problem recur-
sively into two or more sub-problems of the same or
related type, such that each sub-problem becomes sim-
ple enough to be solved easily. The solution to the
original problem is the optimal combination of the
solutions to the sub-problems. A closely related statisti-
cal method is called parallel and distributed inference.
In essence, large amounts of observed data are stored in
different machines in a distributed manner. The com-
putation is often relatively inexpensive in eachmachine.
Then, communication is essential to enable assem-
bly of the available results from all machines. Many
related references can be found in, for example, Jor-
dan et al. (2019). Although many new statistical meth-
ods have been developed for big data analysis, most
of them have roots in traditional statistical methods of
combining auxiliary information.

Combining information from similar studies has
been and will continue to be an extremely impor-
tant strategy in statistical inference. The most popular
example of suchmethods is meta-analysis, in which the
published results of multiple similar scientific studies

are pooled to produce an enhanced estimate without
using the raw individual data from each study. We refer
to Borenstein et al. (2009) for a comprehensive intro-
duction to meta-analysis. For various reasons such as
privacy or capacity of computer storage, inmassive data
inference, only summarized data rather than the origi-
nal individual data may be available. This poses a very
challenging problem: how to conduct efficient updated
inference by making full use of the summarized data?
In recent years, many methods of combining informa-
tion have been developed in economic studies, machine
learning, and distributed statistical inference. The goal
of this paper is to selectively review a few popularmeth-
ods that are able to integrate information in different
disciplines.

Utilizing external summary data or auxiliary infor-
mation to obtain more accurate inference is an old
and effective method in survey sampling. Owing to
restrictions such as cost effectiveness or convenience,
the variable of interest Y may be available for only a
small portion of individuals. However, the explanatory
variable X associated with Y may readily be available
for all individuals. Cochran (1977) presented a com-
prehensive discussion on regression-type estimators
making use of the summarized information from X.
Chen and Qin (1993), Wu and Sitter (2001), and Chen
et al. (2002) used empirical likelihood (EL;Owen, 1988)
to incorporate such information in finite populations.
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With advances in technology, many summarized
statistical results have become available in public
domains. For example, many aggregated demographic
and socioeconomic status data are provided in the US
census reports. The Surveillance, Epidemiology, and
End Results (SEER) program of the National Can-
cer Institute provides population-based cancer survival
statistics such as covariate-specific survival probabil-
ities. Imbens and Lancaster (1994) combined micro
and macro data in economic studies through the
generalized method of moments (GMM). Chaudhuri
et al. (2008) showed that inclusion of population-level
information could reduce bias and increase the effi-
ciency of the parameter estimates in a generalized linear
model setup. Wu and Thompson (2020) published an
excellent monograph on combining auxiliary informa-
tion in survey sampling.

In this paper, we consider two situations. In the first,
the summarized information from different studies was
derived using the same statistical model. Second, the
summarized information was derived using statistical
models that were similar but not exactly the same. In
general, combining information in the former case is
easier. The latter case is more complex, as one has to
take into consideration the heterogeneity among differ-
ent studies.

The rest of this paper is organized as follows. In
Section 2, we briefly review two simple and popular
meta-analysis methods for combining similar results.
In Section 3, we review Owen’s (1988) EL method
and Qin & Lawless’s (1994) over-identified parameter
problem as examples of general tools for synthesiz-
ing information from summarized data. In particular,
we present a new way of deriving the lower informa-
tion bound for the over-identified parameter problem.
Section 4 discusses enhanced inference by utilizing aux-
iliary information. Section 5 presents results on more
flexible meta-analyzes where information on differ-
ent covariates are available in similar studies. Calibra-
tion of information from previous studies is described
in Section 6. We discuss methods of using disease
prevalence information for more efficient estimation
in case–control studies in Section 7. The popular
communication-efficient distributed statistical infer-
ence method used in machine learning is discussed in
Section 8. Renewal estimation and incremental infer-
ence is briefly presented in Section 9. Finally, some
further discussion is presented in Section 10.

2. Two simple information-combining
methods

2.1. Convex combination

Suppose that θ̂1 and θ̂2 are two asymptotically unbi-
ased estimators for θ from two independent studies,
and that they satisfy θ̂i ∼ N(θ , σ 2

i ), i = 1, 2. The most

straightforward way of combining θ̂1 and θ̂2 is a convex
combination,

θ̂ = αθ̂1 + (1 − α)θ̂2, 0 < α < 1.

The asymptotic variance of θ̂ is σ 2 = α2σ 2
1 + (1 −

α)2σ 2
2 , which takes its minimum at α = σ 2

2 /(σ
2
1 + σ 2

2 ).
This suggests combining θ̂1 and θ̂2 by

θ̂ = σ 2
2

σ 2
1 + σ 2

2
θ̂1 + σ 2

1
σ 2
1 + σ 2

2
θ̂2 = θ̂1/σ

2
1 + θ̂2/σ

2
2

1/σ 2
1 + 1/σ 2

2
,

an inverse-variance weighting estimator. In general, σ 2
1

and σ 2
2 are unknown; we may replace them by their

estimators σ̂ 2
1 and σ̂ 2

2 , respectively, which leads to

θ̂ = σ̂ 2
2

σ̂ 2
1 + σ̂ 2

2
θ̂1 + σ̂ 2

1
σ̂ 2
1 + σ̂ 2

2
θ̂2 = θ̂1/σ̂

2
1 + θ̂2/σ̂

2
2

1/σ̂ 2
1 + 1/σ̂ 2

2
.

As an alternative method, we may use the maximum
likelihood method to argue that this is the best estima-
tor.We can treat θ̂i as an direct observation from θ̂i | θ ∼
N(θ , σ 2

i ), i = 1, 2. Then, the log-likelihood (regarding
σ 2
1 and σ 2

2 as known constants) is

−(θ̂1 − θ)2/(2σ 2
1 )− (θ̂2 − θ)2/(2σ 2

2 ).

Maximizing this likelihood with respect to θ or setting
the score function to be zero, we end up with the same
inverse-variance weighting estimator.

2.2. Random-effectmeta-analysis

Dersimonian and Laird (1986) proposed a moment-
based estimation method using a random-effect model
for meta-analysis. Let θ̂i be an estimator of θi from the
ith study, i = 1, 2, . . . ,K. For example, θ̂i could be the
estimated mean response from the ith study. When the
sample size ni in the ith study is reasonably large, we
may assume that

θ̂i | θi ∼ N(θi,w−1
i ), θi ∼ N(θ , τ 2), i = 1, 2, . . . ,K,

where thew−1
i s are treated as known.Although the nor-

mal models hold to be true approximately, we assume
that they are all true for ease of theoretical development.
The goal here is to better estimate θ by combining the
results from all the studies.

Unconditionally, we have θ̂i ∼ N(θ ,w−1
i + τ 2).

Consider the following inverse-variance weighting esti-
mator for θ :

θ̂ =
∑K

i=1 θ̂iwi∑K
i=1 wi
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with variance Var(θ̂) =∑K
i=1 w

2
i (w

−1
i + τ 2)/

(
∑K

i=1 wi)
2. Define

Q =
K∑
i=1

wi(θ̂i − θ̂ )2

=
K∑
i=1

wi(θ̂i − θ)2 − (θ̂ − θ)2
K∑
i=1

wi.

We can easily check that

E(Q) = (K − 1)+ τ 2

⎛
⎝ K∑

i=1
wi −

K∑
i=1

w2
i

/ K∑
j=1

wj

⎞
⎠ ,

which implies that a natural estimator of τ 2 is

τ̂ 2 = Q − (K − 1)∑K
i=1 wi −

∑K
i=1 w

2
i

/∑K
j=1 wj

.

For small sample sizes, there is no guarantee that
this estimator is non-negative; one may replace it by
max(τ̂ 2, 0).

Alternatively, wemay estimate τ using the likelihood
approach. The joint likelihood based on the θ̂is is

�(θ , τ) = −1
2

K∑
i=1

(θ̂i − θ)2

τ 2 + w−1
i

− 1
2

K∑
i=1

log(τ 2 + w−1
i ).

Maximizing � with respect to θ and τ 2 gives their
maximum likelihood estimators (MLEs).

Lin and Zeng (2010) compared the relative efficiency
of using summary statistics versus individual-level data
in meta-analysis. They found that in general there was
no information loss when using the summarized infor-
mation compared with inference based on the original
individual data when available.

3. Empirical likelihood and general estimating
equations

In this section we briefly review Owen’s (1988)
EL and Qin & Lawless’ (1994) estimating equations
approaches, as those methods represent general tools
for assembly of information from different sources.
The maximum likelihood method for regular para-
metric models is among the most popular methods
in statistical inference, as it has many nice proper-
ties. However, model mis-specification is a major con-
cern, as a mis-specified model may lead to biased
results. For the case when the underlying distribution
is multinomial, Hartely and Rao (1968) proposed a
mean constrained estimator for the population total in
survey sampling problems. To mimic the parametric
likelihood but discard parametric model assumptions,
Owen (1988, 1990) proposed the EL method, which is
a natural generalization of the multinomial likelihood

when the number of categories is equal to the sample
size. The EL approach can be thought of as a boot-
strap that does not resample, or as a likelihood without
parametric assumptions (Owen, 2001).

3.1. Definition of empirical likelihood

Suppose that X1, . . . ,Xn are n independent and identi-
cally distributed observations from X, with cumulative
distribution F. For convenience, we assume there are no
ties, i.e., any two observations are unequal to each other.
The techniques developed below can be easily adapted
to handle ties. Let dF(Xi), i = 1, 2, . . . , n, be the jumps
of F(x) at the observed data points. The nonparametric
likelihood is L(F) =∏n

i=1 pi. It is clear that if any pi =
0, then L(F)=0, and if

∑n
i=1 pi<1, then L(F) < L(F∗),

where F∗(x) =∑n
i=1 piI(Xi ≤ x)/

∑n
i=1 pi. According

to the likelihood principle (that parameters with larger
likelihoods are preferable), one need only consider
the distribution functions F(x) with pi > 0 and

∑n
i=1

pi = 1.
If we maximize the log-likelihood

�(F) =
n∑

i=1
log pi (1)

subject to the constraints

n∑
i=1

pi = 1, pi ≥ 0, (2)

then we obtain pi = 1/n, i = 1, 2, . . . , n. Therefore, the
maximum EL estimator of F is Fn(x) =∑n

i=1 piI(Xi ≤
x) = n−1∑n

i=1 I(Xi ≤ x). This is why the empirical
distribution is called the nonparametric MLE of F(x).

Suppose we are interested in constructing a confi-
dence interval for μ = E(X) = ∫ x dF(x), the mean of
X. Since we have discretized F at each of the observed
data points, the integral becomesμ =∑n

i=1 piXi. Next,
we maximize the nonparametric log-likelihood subject
to an extra constraint:

n∑
i=1

pi(Xi − μ) = 0. (3)

Maximizing the log-likelihood (1) subject to con-
straints (2) and (3), the Lagrange multiplier method
gives the profile log-likelihood of μ,

�n(μ) = −
n∑

i=1
log{1 + λ�(Xi − μ)} − n log n, (4)

where λ is the solution to
∑n

i=1(Xi − μ)/{1 + λ�(Xi −
μ)} = 0.

We can treat �n(μ) as a parametric likelihood of μ.
Based on this likelihood, the maximum EL estimator of
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μ is μ̂ = X̄ = n−1∑n
i=1 Xi, which is exactly the sample

mean. We define the likelihood ratio function as

Rn(μ) = 2
{
max
μ
�n(μ)− �n(μ)

}

= 2{�n(X̄)− �n(μ)}.
Under the regularity conditions specified in Owen
(1988, 1990), as n goes to infinity, Rn(μ0) converges to
the χ2 distribution with p degrees of freedom, where p
is the dimension of μ, and μ0 is the true value of μ.

3.2. General estimating equations

The original EL was mainly used to make infer-
ence for linear functionals of the underlying pop-
ulation distribution such as the population mean
(Owen, 1988, 1990). Qin and Lawless (1994) applied
this method to general estimating models, which
greatly broadened its applications. Specifically, suppose
the population of interest satisfies a general estimating
equation

E{g(X, θ)} = 0, (5)

for a r × 1 vector-valued function g and some θ , which
is a p × 1 parameter to be estimated. We assume r ≥
p as otherwise the true parameter value of θ would be
undefined.

For general estimating equations with r>p or over-
identified models, Hansen (1982) proposed the cele-
brated GMM, which has become one of themost popu-
lar methods in the econometric community. In essence,
the GMMminimizes{ n∑

i=1
g(Xi, θ)

}�

	−1

{ n∑
i=1

g(Xi, θ)

}

with respect to θ , where 	 is the variance matrix
of the estimating equation g(X, θ). If 	 is unknown,
we may replace it by the sample variance 	̂ =
1
n
∑n

i=1 g(Xi, θ̃ )g�(Xi, θ̃ ), where θ̃ is an initial and con-
sistent estimate of θ .

Instead of GMM, Qin and Lawless (1994) used the
EL to make inferences for parameters defined by a gen-
eral estimating equation. For discretized F(x) satisfy-
ing (2), equation (5) becomes

n∑
i=1

pig(Xi, θ) = 0. (6)

Maximizing the log-likelihood (1) subject to (2)
and (6), we have the following profile log-likelihood of
θ (up to a constant):

�n(θ) = −
n∑

i=1
log{1 + λ�g(Xi, θ)},

where λ is the Lagrange multiplier determined by∑n
i=1 g(Xi, θ)/{1 + λ�g(Xi, θ)} = 0. We then estimate

θ by the maximizer θ̂ = argmaxθ �n(θ), whose limit-
ing distribution is established in the following theorem.
Hereafter, we use∇θ to denote the differentiation oper-
ator with respect to θ .

Theorem 3.1 (Qin & Lawless, 1994): Denote g =
g(X, θ0) and ∇θ�g = ∇θ�g(X, θ0). Suppose that (1)
E(gg�) is positive definite, (2) ∇θ�g(X, θ) is continu-
ous in a neighbourhood of θ0, (3) ‖∇θ�g(X, θ)‖ and
‖g(X, θ)‖3 can be bounded by some integrable function
G(X) in this neighbourhood, and (4) E(∇θ�g) is of full

rank. Then, as n → ∞,
√
n(θ̂ − θ)

d−→ N(0,V), where
d−→ means ‘convergence in distribution’ and

V = {E (∇θg�) (Egg�)−1
E
(∇θ�g

)}−1 . (7)

3.3. Calculation of the information bound

Assuming that the parameter of interest satisfies the
general estimating equation E{g(X, θ)} = 0, we next
consider how well we can estimate θ based on this
model, andwhether themaximumEL estimator is opti-
mal. To answer these questions, we consider an ideal
situation, where the probability function X has a para-
metric form f (x, θ), which is known up to θ . We define

h(x, η, θ) = exp{η�g(x, θ)}f (x, θ)/∫
exp{η�g(t, θ)}f (t, θ)dt,

implicitly assuming that
∫
exp{η�g(t, θ)}f (t, θ) dt <

∞. Clearly, h(x, η, θ) is an enlarged parametric model
of f (x, θ) as it reduces to f (x, θ) when η = 0. As the
parametric form f (x, θ) is unknown in practice, we
anticipate that any estimator based on themoment con-
straints E{g(X, θ)} = 0 should have a variance that is
no less than that of the MLE derived from the enlarged
model. We show that even if the form of f (x, θ) is avail-
able, the MLE of θ based on h(x, η, θ) has the same
asymptotic variance as the maximum EL estimator.

With the parametric model h, we can estimate θ by
maximizing L(θ , η) =∏n

i=1 h(Xi, η, θ) with respect to
(θ , η). We denote the resultingMLE by (η̃, θ̃ ). We show
in Section 3.4 that under some regularity conditions on
h (see, e.g., Theorems 14 and 23 of van de Vaart (2000),
as n → ∞,

√
n(θ̃ − θ)

d−→ N(0,V), (8)

where V is defined in (7). In general, the parametric
form f (x, θ) is unknown; hence, we expect that the best
estimator of θ should have an asymptotic variance at
least as large asV. As themaximumEL estimator of θ of
Qin and Lawless (1994) has asymptotic variance V, we
conclude that it achieves the lower information bound.
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Remark 3.2: If g(x, θ) is an unbounded function of x
for each θ , we may construct a new density

h(x, θ , η) = ψ{η�g(x, θ)}f (x, θ)∫
ψ{η�g(x, θ)}f (x, θ) ,

where ψ(x) = 2(1 + e−2x)−1 with ψ(0) = ψ ′(0) = 1.
Clearly, ψ is bounded. We may go through the same
derivations to get the same conclusion.

Remark 3.3: Back andBrown (1992) established a sim-
ilar result by constructing an exponential family. In
particular, they defined h(x, θ) = exp{ξ�(θ)g(x, θ0)−
a(θ)}f0(x), where f0(x) = f (x, θ0) and ξ(θ) is deter-
mined implicitly by the following conditions: ξ(θ0) =
0, a(θ0) = 0,

∫
exp{ξ�(θ)g(x, θ0)− a(θ)}f0(x) = 1, and∫

g(x, θ) exp{ξ�(θ)g(x, θ0)− a(θ)}f0(x) dx = 0. In
Back & Brown’s approach, ξ(θ) is determined implic-
itly by the above constraint equation, whereas in our
new approach, η is an independent parameter.

3.4. A sketched proof of (8)

The log-likelihood based on the enlarged model is
�(θ , η) =∑n

i=1 log{h(Xi, η, θ)}, where

log{h(x, η, θ)} = η�g(x, θ)+ log f (x, θ)

− log
[∫

exp{η�g(t, θ)}f (t, θ) dt
]
.

If log{h(x, η, θ)} satisfies the conditions of Theorem 14
of van de Vaart (2000) on mθ (x), then (θ̃ , η̃) is consis-
tent with (θ0, 0).

Result (8) follows from Theorem 23 of van de
Vaart (2000). With tedious algebra, we find that

∇θ log{h(x, θ0, 0)} = 0, ∇η log{h(x, θ0, 0)} = g(x, θ0),

E∇θθ� log{h(X, θ0, 0)} = 0,

E∇ηη� log{h(X, θ0, 0)} = −E(gg�),

E∇ηθ� log{h(X, θ0, 0)}
= E∇θ�g(X, θ0)− E{∇θ�g(X, θ0)

+ g(X, θ0)∇θ� log f (X, θ0)}.

Under some mild assumptions, such as that∫
g(x, θ)f (x, θ) dx = 0 holds for θ in a neighbourhood

of θ0, differentiating both sides with respect to θ leads
to

E{∇θg(X, θ)} + E{∇θg(X, θ)∇θ log f (X, θ)} = 0,

whichmeansE∇ηθ� log{h(X, θ0, 0)} = E{∇θ�g(X, θ0)}.
As (θ̃ , η̃) is consistent with (θ0, 0), by Theorem 5.23 of

van de Vaart (2000), we have

√
n
(
θ̃ − θ0
η̃ − 0

)
=
(

0 E(∇θg�)
E(∇θ�g) −E(gg�)

)−1

×

⎛
⎜⎝

0

n−1/2
n∑

i=1
g(Xi, θ0)

⎞
⎟⎠+ op(1).

(9)

This, together with the fact that n−1/2∑n
i=1 g(Xi, θ0)

d−→ N(0,E(gg�)) as n goes to infinity, implies (8).

3.5. Empirical entropy family

Again we assume that the available information is
given by the estimating equation E{g(X, θ)} = 0. The
enlarged parametric model h(x, η, θ) satisfies

∫
h(x, η, θ)g(x, θ) dx = 0

only if η = 0. Naturally, one may require η = η(θ) to
satisfy

∫
g(x, θ) exp{η�g(x, θ)}f (x, θ) dx = 0.

It is often too restrictive to assume a known under-
lying parametric model f (x, θ) in the construction
of the enlarged parametric model h(x, η, θ). We may
replace the cumulative distribution function F(x, θ) =∫ x
−∞ f (t, θ) dt by the empirical distribution Fn(x) =
n−1∑n

i=1 I(Xi ≤ x). In this situation, η = η(θ) is the
solution to

∑n
i=1 g(xi, θ) exp{η�g(xi, θ)} = 0.

Let H(x, η, θ) = ∫ x−∞ h(t, η, θ) dt. For fixed param-
eter values (η, θ), the jump of H at x = Xi is

dH(Xi, η, θ) = exp{η�(θ)g(Xi, θ)}/⎡
⎣ n∑

j=1
exp{η�(θ)g(Xj, θ)}

⎤
⎦ ,

and the likelihood becomes

n∏
i=1

dH(Xi, η, θ) =
n∏

i=1

exp{η�(θ)g(Xi, θ)}∑n
j=1 exp{η�(θ)g(Xj, θ)} .

In fact, this is equivalent to the EL
∏n

i=1 pi, where
the pis minimize the Kullback–Leibler divergence
(up to a constant) or minus the exponential titling
likelihood

∑n
i=1 pi log(pi) subject to the constraints∑n

i=1 pi = 1, pi ≥ 0, and
∑n

i=1 pig(Xi, θ) = 0. See
Susanne (2007) for more details. We call this the empir-
ical entropy family induced by the estimating equation
E{g(X, θ)} = 0.
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4. Enhancing efficiency using auxiliary
information

In this section, we discuss methods of incorporating
auxiliary information to enhance estimation efficiency.
This aspect was also investigated by Qin (2000). We
assume a parametric model f (y | x,β) for the condi-
tional density function of Y given X and leave the
marginal distributionG(x) ofX unspecified.Wewish to
make inferences forβ when some auxiliary information
is summarized through an estimating equation

E{φ(X,β)} = 0.

For example, if we know the mean μ of Y, then we can
construct an estimating equation E(Y − μ) = 0. We
can take

φ(X,β) =
∫
(y − μ)f (y |X,β) dy

=
∫

yf (y |X,β) dy − μ.

Furthermore, we allow that the response Y may have
missing values. LetD be the non-missingness indicator,
which takes the value 1 ifY is available, and 0 otherwise.
We assume a missing-at-random model

pr(D = 1 |Y = y,X = x) = pr(D = 1 |X = x) = π(x),

whereπ(x) depends only on x.We denote the observed
data by (di, diyi, xi) (i = 1, 2, . . . , n) and pi = dG(xi).
The likelihood of (β ,G) is

L =
n∏

i=1
{π(xi)f (yi | xi,β) dG(xi)}di [{1 − π(xi)} dG(xi)]1−di

=
n∏
j=1

{π(xj)}dj{1 − π(xj)}1−dj ·
n∏

i=1
{f (yi | xi,β)}di · pi.

We can maximize this likelihood subject to the con-
straints

n∑
i=1

pi = 1, pi ≥ 0,
n∑

i=1
piφ(xi,β) = 0.

As
∏n

j=1{π(xj)}dj{1 − π(xj)}1−dj is not a function of
β , the profile hybrid empirical log-likelihood (up to a
constant) is

�(β) =
n∑
i=1

[di log f (yi | xi,β)− log{1 + λ�φ(xi,β)}],

(10)

where λ is the Lagrange multiplier determined by

n∑
i=1

φ(xi,β)
1 + λ�φ(xi,β)

= 0. (11)

For the special case where data are missing com-
pletely at random, i.e., π(x) is a constant function of x,
Qin (2000) established the following theorem.

Theorem 4.1: Let β0 be the true parameter value, let
β̂ be the maximum hybrid EL estimator, i.e., the maxi-
mizer of (10), and let λ̂ be the corresponding Lagrange
multiplier. Denote φ = φ(X,β0), ∇βφ = ∇βφ(X,β0),
and

J = −E
{
di∇ββ� log f (yi | xi,β0)

}
= Var

{
di∇β log f (yi | xi,β0)

}
.

Under some regularity conditions, when n goes to infinity,
we have

√
n((β̂ − β0)

�, λ̂�)�
d−→ N(0,	),

where	 = diag(	11,	22) with

	11 = {J + E(∇βφ�)(Eφφ�)−1
E(∇β�φ)}−1,

	22 = {E(∇βφ�)J−1
E(∇β�φ)+ E(φφ�)}−1.

(12)

Remark 4.2: Imbens and Lancaster (1994) studied the
same problem using GMM. In particular, they directly
combined the conditional score estimating equation
∇β log f (y | x,β) and φ(x,β). Even though the first-
order large-sample results are the same, the hybrid EL
based approach is more appealing as it respects the
parametric conditional likelihood and replaces only the
marginal likelihood with the EL. See Qin (2000) for
numerical comparisons of results of the two methods.

5. Combining summary information: a more
flexible method for meta-analysis

Developing systematic methods for combining pub-
lished information is one of the main goals of meta-
analysis, which has become increasingly popular since
little extra cost is needed. Themain restriction inmeta-
analysis is that all studies must include the same vari-
ables in their analyzes. The only difference allowed is in
the sample sizes. Thus, studiesmust be discarded if they
contain different variables from those in other studies.

Summarized information is often available from
publications such as census reports and results of
national health studies. For reasons including confiden-
tiality, it is typically not possible to gain access to the
original data, only the summarized reports. Suppose we
are interested in conducting a new study that may con-
tain some new variables of interest that are not available
in the summarized information, for example, a genetic
study involving newly discovered biomarkers or genes.
Below we discuss a more flexible method that could be
used to combine published information and individual
study data for enhanced inference in such cases. Chat-
terjee et al. (2016) discussed a related problem on the
utilization of auxiliary information. As Han and Law-
less (2016) pointed out, however, their methodology
and theoretical results had already been developed by
Imbens and Lancaster (1994) and Qin (2000) in the
absence of selection bias in sampling.
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We consider two cases. (I) The sample size for the
summarized information ismuch larger than that of the
new study. (II) Sample sizes from the two data sources
are comparable. In Case I, we can treat the summarized
information as known, i.e., the variation in the sum-
marized data is negligible compared with the variation
in the new study. In Case II, we have to take the varia-
tion in the summarized information into consideration
as it is comparable to the variation in the new study.
We focus on Case I in this section and study Case II
in Section 6.

5.1. Setup and solution

Suppose that the summarized results were obtained
from statistical analyzes of response Y and covari-
ate variables X (although the original data are not
available), and that the new study includes an extra
covariate Z in addition to (Y ,X). We are interested
in fitting a parametric model f (y | x, z,β) for the con-
ditional density function of Y given X and Z. Let
(y∗

1, x
∗
1), . . . , (y

∗
N , x

∗
N) be the historic data even though

they are unavailable. The published information can be
summarized in two ways:

(I) h̄ = N−1∑N
i=1 h(y

∗
i , x

∗
i ) is known; and

(II) γ ∗ is the solution of an estimating equation∑N
i=1 h(y

∗
i , x

∗
i , γ ) = 0, where the function

h(y, x, γ ) is known up to γ .

Let (y1, x1, z1), . . . , (yn, xn, zn) be observed data
from the new study. The basic assumption is that
(yi, xi), i = 1, 2 . . . , n, and (y∗

i , x
∗
i ) have the same distri-

bution. To utilize the summarized information, we can
define estimating functions

g = (g1, g3), g1(y, x, z) = ∇β log f (y | x, z,β),
g3(y, x) = h(y, x)− h̄

in Scenario (I), and

g = (g1, g3), g1(y, x, z) = ∇β log f (y | x, z,β),
g3(y, x) = h(y, x, γ ∗)

in Scenario (II). We consider only the situation where
n/N → 0. In other words, the variation in the auxiliary
information is negligible.

The EL approach amounts to maximizing∑n
i=1 log pi subject to the constraint

n∑
i=1

pig(yi, xi, zi,β) = 0, pi ≥ 0,
n∑

i=1
pi = 1.

According to Qin and Lawless (1994), the asymptotic
variance of the maximum EL estimator β̂ based on

estimating equation g is

[E(∇βg�){E(gg�)}−1
E(∇β�g)]−1,

where ∇βg = ∂g(y, x, z,β)/∂β|β=β0 , g = g(y, x, z,β0),
and β0 is the truth of β . we denote

A = E(gg�) =
(
A11 A12
A�
12 A22

)
,

A22.1 = A22 − A�
12A

−1
11 A12.

Equivalently, the asymptotic variance can be written as

[E(∇βg�
1 )A

−1
11 E(∇β�g1)

+ E(∇βg�
1 )A

−1
11 A12A−1

22.1A21A−1
11 E(∇β�g1)]−1,

or (J + A12A−1
22.1A21)

−1, where A11 = J is Fisher’s
information matrix.

In the above approach, the estimating equation g3 =
h(y, x)− h̄ does not involve the parameter β . However,
there are ways to achieve higher efficiency. For example,
we define g2(x, z,β) = ψ(x, z,β) with

ψ(x, z,β) = E{h(Y ,X) |X = x,Z = z}

−h̄ =
∫

h(y, x)f (y | x, z,β) dy − h̄.

Then, E{g2(x, z,β)} = 0. If we combine the empirical
log-likelihood based on the estimating equation g2 and
the log-likelihood

∑n
i=1 log f (yi | xi, zi,β) as in the pre-

vious section (see Equation (12)), then the asymptotic
variance of the resulting MLE β̂ is given by

{J + E(∇βψ�)(Eψψ�)−1
E(∇β�ψ)}−1.

In general, this approach can achieve better efficiency.

5.2. A comparison

Given two pairs of estimation functions, {g1, g3} and
{g1, g2}, we may wonder combining which pair leads to
a better estimator if we directly compare their asymp-
totic variance formulae. Alternatively, we may enquire
whether we should combine all three constraints g =
(g1, g2, g3) together. Write g12 = g�

21 = (g1, g2), a =
E{h�(y, x)∇β log f (y | x, z,β)}, and

E(gg�) =
⎛
⎝ J 0 a

0 E(ψψ�) E(ψψ�)
a� E(ψψ�) E(hh�)

⎞
⎠

=
(
B11 B12
B�
12 B22

)
,

B11 =
(
J 0
0 E(ψψ�)

)
, B12 =

(
a

E(ψψ�)

)
.
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Using results from Qin and Lawless (1994) and(
B11 B12
B21 B22

)−1
=
(
I −B−1

11 B12
0 I

)(
B−1
11 0
0 B−1

22.1

)

×
(

I 0
−B21B−1

11 I

)

with B22.1 = B11 − B�
12B

−1
11 B12, we find that the asymp-

totic variance of β̂ obtained by combining the three
estimating equations and

∑n
i=1 log f (yi | xi, zi,β) is

[J + E(∇βψ�){E(ψψ�)}−1
E(∇β�ψ)

+ E(∇βg21)B−1
11 B12B

−1
22.1B21B

−1
11 E(∇β�g12)]−1.

It can be shown that E(∇βg) = (−J,E(∇βψ), 0) and
E(∇βg12) = (−J, a). Immediately, we have

E(∇βg12)B−1
11 B12 = (−J, a)

(
J−1 0
0 {E(ψψ�)}−1

)

×
(

a
E(ψψ�)

)
= 0,

which implies that the asymptotic variance in the case
where g1, g2, and g3 are combined is the same as that in
the case where g1 and g2 only are combined. This indi-
cates that taking g3 into account leads to no efficiency
gain in the estimation of β .

The method of combining g2 and the parametric
likelihood

∏n
i=1 f (yi | xi, zi,β) is better than that of

combining g1, g3, and the parametric likelihood. To see
this, recall that the asymptotical variances for theMLEs
of β with the two methods are

V1 = {J + E(∇βψ�)(Eψψ�)−1
E(∇β�ψ)}−1.

and

V2 = (J + A12A−1
22.1A21)

−1.

It suffices to show that V2 − V1 ≥ 0, namely, V2 − V1
is non-negative definite.

5.3. Proof of V2 − V1 ≥ 0

For convenience, we assume that E(h) = 0. As
E(∇βψ�) = A12 and ψ = E(h |X,Z), it suffices to
show that

A22.1 − E(ψψ�) = (A22 − A21A−1
11 A12)

− E[{E(h |X,Z)}⊗2] ≥ 0. (13)

Let E∗ and Var∗ denote E(· |X,Z) and Var(· |X,Z),
respectively. As
(
A11 A12
A21 A22

)
= E

{(
g1
h

)⊗2
}

= E

{
Var∗

(
g1
h

)}
+ Var

{
E∗
(
g1
h

)}

and E∗(g1) = 0, it follows that

(
A11 A12
A21 A22

)
≥ Var

{
E∗
(
g1
h

)}

= E

(
0 0
0 E∗(h)E∗(h�)

)
.

Multiplying both sides by (−A21A−1
11 , I) from the left

and by (−A21A−1
11 , I)

� from the right, we arrive at

A22 − A21A−1
11 A12 ≥ E{E∗(h)E∗(h�)},

that is, inequality (13) holds, which implies
V2 − V1 ≥ 0.

6. Calibration of information from previous
studies

We consider calibration of information using para-
metric likelihood, EL (Owen, 1988), and GMM
(Hansen, 1982). When only summary information
from previous studies is available, these three well-
known methods can be used to calibrate such sum-
mary information and to make inferences about the
unknown parameters of interest. We may wonder
whether doing so results in efficiency loss compared
with inferences based on the pooled data if they
were all available. Zeng and Lin (2015) found that
parametric-likelihood-based meta-analysis of summa-
rized information retained first-order asymptotic effi-
ciency compared with analysis based on individual
data. We show here that EL and GMM also possess
this property. This is extremely important, as individual
data may involve privacy issues, whereas summarized
information does not.

6.1. Efficiency comparison

Suppose that (Yij,Xij) (j = 1, 2, . . . , ni; i = 1, 2, . . . ,K)
are independent observations from the same popu-
lation. We consider two scenarios according to the
model’s assumption about the population.

(I) The conditional probability function (i.e., the
probability density/mass function of a continu-
ous/discrete random variable) of Y given X has a
parametric form f (y | x,β).

(II) The population satisfies E{g(Y ,X,β)} = 0.

Here, β is a finite-dimensional unknown parameter,
and β∗ is its true value. Assume that data are available
batch by batch, and that ni/n = ρi ∈ (0, 1), where n =∑K

i=1 ni. For the ith batch (i = 1, 2, . . . ,K) of data:
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(a) under assumption (I), the parametric log-
likelihood function of β is

�i,PL(β) =
ni∑
j=1

log{f (Yij |Xij,β)};

(b) under assumption (II), we define an empirical log-
likelihood function

�i,EL(β) = sup

⎧⎨
⎩

ni∑
j=1

log(nipj) : pj ≥ 0,
ni∑
j=1

pj = 1,

×
ni∑
j=1

pjg(Yij,Xij;β) = 0

⎫⎬
⎭

= −
ni∑
j=1

log{1 + λ�
i g(Yij,Xij;β)}

− ni log(ni),

where λi satisfies
∑ni

j=1
g(Yij,Xij;β)

1+λ�
i g(Yij,Xij;β)

= 0;
(c) under assumption (II), we define the objec-

tive function of the GMM method (GMM log-
likelihood for short) as

�i,GMM(β) = −
⎧⎨
⎩

ni∑
j=1

g(Yij,Xij;β)

⎫⎬
⎭

�

�−1

⎧⎨
⎩

ni∑
j=1

g(Yij,Xij;β)

⎫⎬
⎭ ,

where � = Var{g(Y ,X,β∗)} and β∗ is the true
value of β . In practice, β∗ is generally replaced by a
consistent estimator of β in the expression for �.
Using the true value β∗ of β does not affect the
theoretical analysis presented in this section.

Let �i(β) = �i,PL(β), �i,EL(β), or �i,GMM(β). Under
certain regularity conditions, it can be verified that for
β = β∗ + Op(n−1/2),

�i(β) = U�
i
√
ni(β − β∗)

− ni
2
(β − β∗)�V(β − β∗)+ op(1). (14)

In Case (a),

Ui = n− 1
2

i

ni∑
j=1

∇β log{f (Yij |Xij,β∗)},

V = Var[∇β log{f (Y |X,β∗)}].
In Case (b)

Ui = n− 1
2

i

ni∑
j=1

g(Yij,Xij;β∗), V = A12A−1
22 A21,

where

A =
(

0 E{∇βg�(Y ,X;β∗)}
E{∇β�g(Y ,X;β∗)} E{g(Y ,X;β∗)g(Y ,X;β∗)}

)

≡
(
A11 A12
A21 A22

)
.

In Case (c),

Ui = −{E∇θg�(Y ,X,β∗)}�−1n− 1
2

i

ni∑
j=1

g(Yij,Xij,β∗),

V = {E∇θg�(Y ,X,β∗)}�−1{E∇β�g(Y ,X,β∗)}.

We denote the MLE of β based on the rth batch of
data by β̂i = argmax �r(β). The above approximation
implies that

√
ni(β̂i − β∗) = V−1Ui + op(1)

d−→ N(0,V−1).

When the Kth batch of individual data are available,
we no longer have access to the individual data of the
previousK−1 batches but only have summarized infor-
mation (β̂i, 	̂i), i = 1, 2, . . . ,K − 1, where β̂i is the
MLE based on the ith batch of data and 	̂i = V−1/ni +
o(n−1). We can define an augmented log-likelihood

�A(β) = �K(β)− 1
2

K−1∑
i=1
(β̂i − β)�	̂−1

i (β̂i − β)

and the corresponding MLE β̂A = argmax �A(β). For
β = β∗ + Op(n−1/2), using the approximation in (14),
we have

�A(β) = U�
K
√
nK(β − β∗)− nK

2
(β − β∗)V(β − β∗)

− 1
2

K−1∑
i=1

ni(β − β∗)�V(β − β∗)

+
K−1∑
i=1

ni(β̂i − β∗)�V(β − β∗)+ C + op(1)

= n−1/2
K∑
i=1

√
niU�

i · √
n(β − β∗)

− n
2
(β − β∗)�V(β − β∗)+ C + op(1),

where the constant C differs in different equations.
For comparison, based on the pooled data, in Case

(a) we define the parametric log-likelihood as

�PL(β) =
K∑
i=1

ni∑
j=1

log{f (Yij |Xij,β)};
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in Case (b) we define the empirical log-likelihood func-
tion as

�EL(β) = sup

⎧⎨
⎩

K∑
i=1

ni∑
j=1

log(npij) : pij ≥ 0,

×
K∑
i=1

ni∑
j=1

pij = 1,
K∑
i=1

ni∑
j=1

pijg(Yij,Xij;β) = 0

⎫⎬
⎭

= −
K∑
i=1

ni∑
j=1

log{1 + λ�g(Yij,Xij;β)}

−
K∑
i=1

ni log(ni),

where λ satisfies
∑K

i=1
∑ni

j=1
g(Yij,Xij;β)

1+λ�g(Yij,Xij;β)
= 0; and in

Case (c) we define the GMM log-likelihood as

�GMM(β) = −
⎧⎨
⎩

K∑
i=1

ni∑
j=1

g(Yij,Xij;β)

⎫⎬
⎭

�

�−1

×
⎧⎨
⎩

K∑
i=1

ni∑
j=1

g(Yij,Xij;β)

⎫⎬
⎭ .

Let the log-likelihood based on the pooled data be
�pool(β) = �PL(β), �EL(β), and �GMM(β) in Cases (a),
(b), and (c), respectively. Then, it can be shown that

�pooled(β) = n−1/2
K∑
j=1

√
njU�

j · √
n(β − β∗)

− n
2
(β − β∗)�V(β − β∗)+ C + op(1),

for some constant C. Let β̂pooled = argmax �pooled(β).
By comparing �pooled(β) and �A(β), we obtain

�pooled(β) = �A(β)+ C + op(1)

and
√
n(β̂A − β∗) = √

n(β̂pooled − β∗)+ op(1)

= V−1 · n−1/2
K∑
j=1

√
njU�

j + op(1)

d−→ N(0,V−1).

This indicates that compared with themethods, includ-
ing parametric likelihood, EL, and GMM, based on all
individual data, the calibration method based on the
last batch of individual data and all summary results of
the previous batches has no efficiency loss.

6.2. When nuisance parameters are present

For batch i, assume that the data (Yij,Xij) (j =
1, 2, . . . , ni) satisfy either pr(Yij = y |Xij = x) =

f (y | x,β , γi) or E{g(Y ,X,β , γi)} = 0, where β is com-
mon but γi is a batch-specific parameter. We define
�r(β , γr) in the same way as �r(β). Let (β̂i, γ̂i) be the
MLE of (β , γi) based on the ith batch of data, and
assume that approximately

((β̂i − β)�, (γ̂i − γi)
�)� ∼ N(0, 	̂i)

with 	̂i = (	̂i,rs)1≤r,s≤2.
We have two ways of combining information from

previous studies. If we use all the previous summary
information, we can define

�
(1)
A (β , γ1, . . . , γK)

= �K(β , γK)− 1
2

K−1∑
i=1
((β̂i − β)�, (γ̂i − γi)

�)

× 	̂−1
i ((β̂i − β)�, (γ̂i − γi)

�)�.

As β̂i | γ̂i ∼ N(β , 	̂i,11·2), where 	̂i,11·2 = 	̂i,11 −
	̂i,12	̂

−1
i,22	̂i,21, using only this summary information,

we can define

�
(2)
A (β , γK) = �K(β , γK)− 1

2

K−1∑
i=1
(β̂i − β)�	̂−1

i,11·2(β̂i − β).

Below we show that the MLEs of β based on these two
likelihoods are actually equal to each other. In other
words, there is no efficiency loss when estimating β
based on �(2)A (β , γK) instead of �(1)A (β , γ1, . . . , γK).

To see this, it suffices to show that

sup
γ1,...,γK−1

�
(1)
A (β , γ1, . . . , γK) = �

(2)
A (β , γK). (15)

We denote the inverse matrix of 	i by 	−1
i =

(	rs
i )1≤r,s≤2, where

	11
i = 	−1

i,11·2, 	21
i = −	−1

i,22	i,21	
−1
i,11·2,

	12
i = −	−1

i,11·2	i,12	
−1
i,22,

	22
i = 	−1

i,22 +	−1
i,22	i,21	

−1
i,11·2	i,12	

−1
i,22.

It can be seen that

�
(1)
A (β , γ1, . . . , γK)

= �K(β , γK)− 1
2

K−1∑
i=1
(β̂i − β)�	11

i (β̂i − β)

+
K−1∑
i=1
(β̂i − β)�	12

i (γi − γ̂i)

− 1
2

K−1∑
i=1
(γi − γ̂i)

�	22
i (γi − γ̂i).

Setting ∂�(1)A (β , γ1, . . . , γK)/∂γi = 0 (1 ≤ i ≤ K − 1)
gives

(γi − γ̂i) = (	22
i )

−1	21
i (β̂i − β).
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Putting this back into �(1)A (β , γ1, . . . , γK) gives

sup
γ1,...,γK−1

�
(1)
A (β , γ1, . . . , γK)

= �K(β , γK)− 1
2

K−1∑
i=1
(β̂i − β)�

× {	11
i −	12

i (	
22
i )

−1	21
i }(β̂i − β)+ C

= �K(β , γK)− 1
2

K−1∑
i=1
(β̂i − β)�	−1

i,11·2(β̂i − β)+ C,

where we used the definition of 	i,11·2 in the last
equation. We arrive at Equation (15) after comparing
this with the definition of �(2)A (β , γK).

7. Using covariate-specific disease prevalent
information

As discussed in the previous section, summarized
statistics from previous studies can sometimes be uti-
lized to enhance the estimation efficiency in a current
study. This is especially important in the big data era,
when many types of information can be found through
the internet. More specifically, suppose the prevalence
of a disease is known at various levels of a known
risk factor X. In this section, we combine this type of
information in a case–control biased sampling setup.

7.1. Induced estimating equations under
case–control sampling

Case–control sampling is among the most popular
methods in cancer epidemiological studies. This is
mainly because it is the most convenient, economic,
and effective method. In the study of rare diseases in
particular, one has to collect large samples in order to
get a reasonable number of cases by using prospec-
tive sampling, which may not be practical. Using
case–control sampling, a pre-specified number of cases
(n1) and controls (n0) are collected retrospectively from
case and control populations, respectively. Typically,
this can be accomplished by sampling cases from hos-
pitals and controls from the general disease-free popu-
lation.

For a given risk factor X, let Fi(x) = pr(X ≤ x |
D = i) for i = 0, 1. GivenX in a range (a, b], the disease
prevalence is

pr(D = 1 | a < X ≤ b) = φ(a, b),

where φ(a, b) is known. Using Bayes’ formula, we have

φ(a, b) = π
∫ b
a dF1(x)

pr(a < X ≤ b)
,

1 − φ(a, b) = (1 − π)
∫ b
a dF0(x)

pr(a < X ≤ b)

with π = pr(D = 1). It follows that

∫ b

a
dF1(x) = 1 − π

π

φ(a, b)
1 − φ(a, b)

∫ b

a
dF0(x),

or

E1 [I(a < X ≤ b)]

= 1 − π

π

φ(a, b)
1 − φ(a, b)

E0[I(a < X ≤ b)],

whereE0 andE1 denote the expectation operators with
respect to F0 and F1, respectively.

We assume that given covariates X and Y, the under-
lying diseasemodel is given by the conventional logistic
regression

pr(D = 1 | x, y) = exp(α∗ + xβ + yγ + yxξ)
1 + exp(α∗ + xβ + yγ + yxξ)

.

(16)

Let α = α∗ − η with η = log{(1 − π)/π}. It can be
shown (see Qin, 2017) that this is equivalent to the
exponential tilting model

f1(x, y) = f (x, y |D = 1)

= exp(α + xβ + yγ + yxξ)f0(x, y),

where f0(x, y) = f (x, y |D = 0). As a consequence,

E0
{
I(a < X ≤ b) exp(η + α + βX + γY + ξXY)

}
= 1 − π

π

φ(a, b)
1 − φ(a, b)

E0[I(a < X ≤ b)]

or

E0
{
I(a < X ≤ b) exp(α + βX + γY + ξXY)

− φ(a, b)
1 − φ(a, b)

I(a < X ≤ b)
}

= 0. (17)

we denote

g0(X,Y) = exp(η + α + βXi + γYi + ξXiYi)− 1

and the summarized auxiliary information equations as

gi(X,Y) = I(ai−1 < X ≤ ai)

× exp(α + βX + γY + ξXY)

− φ(ai−1, ai)
1 − φ(ai−1, ai)

I(ai−1 < X ≤ ai)

with i = 1, 2, . . . , I. Then E0{g(X,Y)} = 0, where
g(X,Y) = (g0(X,Y), g1(X,Y), . . . , gI(X,Y))�.
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7.2. Empirical likelihood approach

The log-likelihood is

� =
n∑

i=1
di(η + α + βxi + γ yi + ξxiyi)+

n∑
i=1

log(pi),

(18)

where pi = dF0(xi), i = 1, 2, . . . , n, and the constraints
are

pi ≥ 0,
n∑

i=1
pi = 1,

n∑
i=1

pig(xi, yi) = 0.

The profile log-likelihood is

� =
n∑

i=1
di(η + α + βxi + γ yi + ξxiyi)

−
n∑

i=1
log{1 + λ�g(xi, yi)},

where the Lagrange multiplier λ is determined by

n∑
i=1

g(xi, yi)
1 + λ�g(xi, yi)

= 0.

Finally, the underlying parameters can be obtained by
maximizing �.

If the overall disease prevalence probability π =
pr(D = 1) is known, then η = log{(1 − π)/π} is
known. On the other hand, if it is unknown but I ≥ 1,
then π is identifiable. If I>1, then we have an over-
identified equation problem. This can be treated as a
generalization of the EL method for estimating func-
tions (Qin & Lawless, 1994) for biased sampling prob-
lems. Qin et al. (2015) considered the case where η is
unknown and I ≥ 1.

Let ω = (η,α,β , γ , ξ , λ) and let ω̂ be its maximum
EL estimator. As the first estimating function g0 corrects
biased sampling in a case–control study, the remaining
estimating functions g1, . . . , , gI are used for improving
efficiency. When n goes to infinity, it can be shown that
the limit of λ is a (I + 1)-dimensional vector where the
first component is limn→∞(n1/n) and the remainder
are all zero. Qin et al. (2015) showed that if ρ = n1/n0
remains constant as n → ∞ and ρ ∈ (0, 1), then under
suitable regularity conditions

√
n(ω̂ − ω0) is asymp-

totically normally distributed with mean zero. More-
over, the estimation of the logistic regression parame-
ters (β , γ , ξ) improves as the number I of estimating
functions increases. This means that a richer set of aux-
iliary information leads to better estimators. In prac-
tice, however, this consideration must be balanced with
the numerical difficulty of solving a larger number of
equations.

Notably, auxiliary information is informative for
estimating β and ξ but not for estimating γ . This can

be observed through the following equations:∫
I(a < x < b) exp(α + βx + γ y + ξxy) dF0(x, y)

=
∫

I(a < x < b) exp{α + βx + s + ξx(s/γ )}

dF0(x, s/γ ).

As the underlying distribution F0(x, y) is unspecified,
we can treat F0(x, s/γ ) as a new underlying distribution
F∗
0 (x, s). With F∗

0 profiled out, the auxiliary information
equation does not involve γ if ξ = 0.Hence, even if ξ �=
0, the information for γ is minimal as γ and ξ cannot
be separated.

7.3. Generalizations

The simulation results of Qin et al. (2015) indicate
that when covariate-specific auxiliary information is
employed, the estimator of the coefficient β of X has
the maximum variance reduction, whereas the vari-
ance reductions for other coefficients are small. If the
auxiliary information

pr(D = 1 | bj−1 < Y ≤ bj) = ψj, j = 1, 2, . . . , J

is also available, we can combine them through estimat-
ing equations

gi(X,Y) = I(ai−1 < X ≤ ai) eα+βX+γY+ξXY)

− φ(ai−1, ai)
1 − φ(ai−1, ai)

I(ai−1 < X ≤ ai),

hj(X,Y) = I(bj−1 < Y ≤ bj) eα+βX+γY+ξXY

− ψ(bj−1, bj)
1 − ψ(bj−1, bj)

I(bj−1 < Y ≤ bj).

It would be more informative if the auxiliary informa-
tion pr(D = 1 | a < X < b, c < Y < d) is available.

7.4. More on the use of auxiliary information

Under a logistic regression model, the case and control
densities are linked by the exponential tilting model

pr(x, y |D = 1)

= pr(x, y |D = 0) exp(α + xβ + yγ + ξxy). (19)

Suppose that for the general population E(X) = μ1,
E(Y) = μ2, and E(XY) = μ3 are all known, and π =
pr(D = 1) is known or can be estimated using exter-
nal data. Under the exponential tilting model (19), the
density f (x, y) in the general population and the density
pr(x, y |D = 0) in the control population are linked by

pr(x, y) = {π eα+xβ+yγ+ξxy + (1 − π)}pr(x, y |D = 0).

As a consequence

E(X) = E0[X{π eα+Xβ+Yγ+ξXY + (1 − π)}] = μ1,

whereE0 is an expectation with respect to pr(x, y |D =
0). Leth(x, y) = (x − μ1, y − μ2, xy − μ3)with known
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μ1,μ2, and μ3. The log-likelihood under case–control
data is still (18), where the pis satisfy the following
constraints:

n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

pi eα+xiβ+yiγ+xiyiξ = 1,

n∑
i=1

pih(xi, yi){π eα+xiβ+yiγ+xiyiξ + (1 − π)} = 0.

More generally, any information in the general popu-
lation such as E[ψ(Y ,X)] = 0 can be converted to an
equation for the control population,

E0[{π eα+Xβ+Yγ+ξXY + (1 − π)}ψ(Y ,X)] = 0.

Therefore, the results developed byQin et al. (2015) can
be applied. The results of Chatterjee et al. (2016) for
case–control data can be considered as a special case of
Qin et al. (2015).

8. Communication-efficient distributed
inference

In the era of big data, it is commonplace for data ana-
lyzes to run on hundreds or thousands of machines,
with the data distributed across those machines and no
longer available in a single central location. Recently,
parallel and distributed inference has become pop-
ular in the statistical literature in both frequentist
and Bayesian settings. In essence, the data-parallel
procedures are intended to break the overall dataset
into subsets that are processed independently. To the
extent that communication-avoiding procedures have
been discussed explicitly, the focus has been on one-
shot or embarrassingly parallel approaches that use
only one round of communication in which estima-
tors or posterior samples are first obtained in paral-
lel on local machines, then communicated to a centre
node, and finally combined to form a global estima-
tor or approximation to the posterior distribution (Lee
et al., 2017; Neiswanger et al., 2015; X. Wang & Dun-
son, 2015; Y. Zhang et al., 2013). In the frequentist
setting, most one-shot approaches rely on averaging (Y.
Zhang et al., 2013), where the global estimator is the
average of the local estimators. Lee et al. (2017) extends
this idea to high-dimensional sparse linear regression
by combining local debiased Lasso estimates (van de
Geer et al., 2014). Recent work by Duchi et al. (2015)
shows that under certain conditions, these averaging
estimators can attain the information-theoretic com-
plexity lower bound for linear regression, and at least
O(dk) bits must be communicated in order to attain
the minimax rate of parameter estimation, where d is
the dimension of the parameter and k is the number of
machines. This result holds even in the sparse setting
(Braverman et al., 2016).

The method of Jordan et al. (2019) proceeds as fol-
lows. Suppose the big data consists of N observations
and there are kmachines. For convenience of presenta-
tion, we assume that each machine has n observations,
i.e., N = nk. Denote the full-data likelihood by

�N(θ) = 1
k

k∑
j=1

�j(θ),

where �j(θ) is the log-likelihood based on the data from
the jth machine. For θ near its target value θ̄ ,

�N(θ) = �N(θ̄)+ ∇θ �N(θ)
∣∣∣
θ=θ̄

(θ − θ̄ )+ RN(θ),

�1(θ) = �1(θ̄)+ ∇θ �1(θ)
∣∣∣
θ=θ̄

(θ − θ̄ )+ R1(θ),

where RN(θ) and R1(θ) are remainders. Observing that
RN ≈ R1, define a surrogate log-likelihood

�̄(θ) = �N(θ̄)+ (θ − θ̄ )�∇θ �N(θ)
∣∣∣
θ=θ̄

+
{
�1(θ)− �1(θ̄ )− (θ − θ̄ )�∇θ �1(θ)

∣∣∣
θ=θ̄

}
.

Ignoring the constant terms, the surrogate log-likelihood
is

�̄(θ) = �1(θ)+ θ�
{
∇θ �N(θ)

∣∣∣
θ=θ̄

− ∇θ �1(θ)
∣∣∣
θ=θ̄

}
.

The score equation based on the surrogate likelihood is

∇θ �̄(θ) = ∇θ �1(θ)
+
{
∇θ �N(θ)

∣∣∣
θ=θ̄

− ∇θ �1(θ)
∣∣∣
θ=θ̄

}
= 0.

Let θ̂ be the solution. Expanding it at θ0 and using the
fact that

N−1{∇θθ��1(θ0)− ∇θθ��N(θ0)} → 0 in probability,

we can easily show that if θ̄ − θ0 = Op(N−1/2) then

(θ̂ − θ0) = {∇θθ��N(θ0)
}−1 ∇θ �N(θ0)+ op(N−1/2).

If we let θ̄ be the MLE based on �1(θ), the surrogate
log-likelihood can be simplified to

�̄(θ) = �1(θ)+ θ�∇θ �N(θ̄ ),
because ∇θ �1(θ̄) = 0.

If the dimension of θ is high, one may add a penalty
function in the surrogate log-likelihood and estimate
θ by θ̃ = argmaxθ∈�{�̄(θ)− λ‖θ‖1}, where ‖θ‖1 is
the L1-norm of θ . Similarly, Bayesian inference can be
adapted to the surrogate likelihood as well.

Duan et al. (2020) proposed distributed algorithms
that account for heterogeneous distributions by allow-
ing site-specific nuisance parameters. The proposed
methods extend the surrogate likelihood approach (Jor-
dan et al., 2019; J. Wang et al., 2017) to the heteroge-
neous setting by applying a novel density ratio tilting
method to the efficient score function. Asymptotically,
the approach described in Section 6.2 on nuisance
parameters is equivalent to that of Duan et al. (2020).
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9. Renewal estimation and incremental
inference

Let U(D1,β) = ∇βM(D1,β) be a score function of
β based on some objective function M(D1,β) from
the first batch of data, where M can be either the
log-likelihood M(D1,β) =∑n1

i=1 log f (y1i | x1i,β) or a
pseudo log-likelihood.

Let β̂1 be the solution to U(D1,β) = 0, when only
the first batch of data D1 is available. Let D2 denote
the second batch of data. If both of them are avail-
able, we let β̂2 be the solution to the pooled score
equation, U(D1,β)+ U(D2,β) = 0. Clearly, β̂2 is the
most efficient estimator of β when D1 and D2 are both
available.

If D2 is available but D1 is not, with only some sum-
mary information β̂1 and 	̂1 in its place, how can we
utilize the summary information efficiently? It is not
feasible to estimate β by directly solving

U(β) ≡ U(D1,β)+ U(D2,β) = 0,

which involves the individual data of the unavailable
D1. Luo and Song (2020) consider expanding U(D1,β)
at β = β̂1, i.e.,

U(D1,β) = U(D1, β̂1)+ (β − β̂1)
�∇βU(D1, β̂1)

+ O(‖β − β̂1‖2)

for β close to β̂1. As U(D1, β̂1) = 0, it follows that

U(β) = U(D2,β)+ (β − β̂1)
�∇βU(D1, β̂1)

+ O(‖β − β̂1‖2).
Luo and Song (2020) propose obtaining an updated
estimator of β by solving

(β − β̂1)
�∇βU(D1, β̂1)+ U(D2,β) = 0. (20)

Alternatively, we may understand this renewal estima-
tion strategy in the manner of H. Zhang et al. (2020),
who propose estimating β by maximizing

n2∑
i=1

log f (y2i | x2i,β)− 1
2
n1(β̂1 − β)�	(β̂1 − β),

(21)

where 	 = E{∇β log f (Y |X,β)∇β� log f (Y |X,β)} is
the Fisher information. If both batches are available, the
score for β is

S(β) =
n1∑
i=1

∇β log f (y1i | x1i,β)+
n2∑
i=1

∇β log f (y2i | x2i,β).

After recording β̂1 and 	, we no longer have the raw
data {(y1i, x1i), i = 1, 2, . . . , n1}. As

β̂1 − β = −n−1
1 	−1

n1∑
i=1

∇β log f (y1i | x1i,β)+ op(n
−1/2
1 ),

differentiating (21) with respect to β gives

n2∑
i=1

∇β log f (y2i | x2i,β)− n1	(β̂1 − β)

=
n1∑
i=1

∇β log f (y1i | x1i,β)

+
n2∑
i=1

∇β log f (y2i | x2i,β)+ op(n1/2).

Here, we have assumed that n1 = O(n2) = O(n). This
indicates that estimating β by maximizing (21) results
in no efficiency loss asymptotically compared with the
MLE based on all individual data, where the latter is
infeasible in the current situation.

10. Concluding remarks

Rapid growth in hardware technology has made data
collection much easier and more effective. In many
applications, data often arrive in streams and chunks,
which leads to batch-by-batch data or streaming data.
For example, web sites served by widely distributed
web servers may need to coordinate many distributed
clickstream analyzes, e.g., to track heavily accessed web
pages as part of their real-time performance monitor-
ing. Other examples include financial applications, net-
work monitoring, security, telecommunications data
management, manufacturing, and sensor networks
(Babcock et al., 2002; Nguyen et al., 2021). The continu-
ous arrival of such data inmultiple, rapid, time-varying,
possibly unpredictable and unbounded streams not
only yields many fundamentally new research prob-
lems but provides contains various forms of auxiliary
information.

Assembling information from different data sources
has become indispensable in big data and artificial intel-
ligence research. Statistical tools play an essential part
in updating information. In this paper, we have pre-
sented a selective review of several traditional statisti-
cal methods, includingmeta-analysis, calibration infor-
mation methods in survey sampling, and EL together
with over-identified estimating equations and GMM.
We have also briefly reviewed some recently developed
statistical methods, including communication-efficient
distributed statistical inference and renewal estima-
tion and incremental inference, which can be regarded
as the latest developments of calibration information
methods in the era of big data. Although these meth-
ods were developed in different fields and in different
statistical frameworks, in principle, they are asymptot-
ically equivalent to well-known methods developed for
meta-analysis. Thesemethods result in almost no or lit-
tle information loss compared with the case when full
data are available.
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Finally, we apologize to people whose work has inad-
vertently have been left out of our reference list.
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