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ABSTRACT
Machine learning algorithms have demonstrated outstanding perfor-
mance for disease diagnosis. Kernel function selection plays a crucial
role in effectively transforming the nonlinear nature of input data.
To enhance breast cancer diagnosis, we propose a novel ensemble
algorithm, namely, AUC-Ada-L1MKL-WSVM,which integratesWeighted
Support VectorMachines (WSVM), AdaBoost, andMulti-Kernel Learning
(MKL). This ensemble algorithm introduces twomain innovations. First,
it simultaneously updates theweights of training samples and the com-
bined kernel function during classification. Second, it incorporates an
AUC-basedapproach to adjust training sampleweights, effectively con-
trolling the growth rate of misclassified sample weights in AdaBoost.
Experimental results are provided to demonstrate the effectiveness of
ourmethod, which achieves an AUC score of 97.21% and an accuracy of
97.64% on the WDBC dataset, and an AUC of 97.53% and an accuracy
of 97.46% on the WBC dataset. Comparative analysis further confirms
that our ensemble algorithm outperforms four benchmark models in
classification accuracy.
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1. Introduction

According to the data from theWorldHealthOrganization in 2020, breast cancer has become
the most prevalent cancer worldwide, thereby posing a significant threat to women’s health.
Because its pathogenesis is not well understood, many patients remain unaware of their con-
dition until the disease has progressed to an advanced stage. Missing the optimal treatment
window puts lives at risk. Therefore, early detection of breast cancer is crucial for effective
medical treatment and disease control. However, even for experienced doctors, distinguish-
ing between malignant and benign breast tumors using traditional diagnostic techniques
remains challenging. In response, machine learning has emerged as a powerful tool in the
biomedical field, demonstrating significant potential in early breast cancer detection. Conse-
quently, researchers are actively developingmachine learning-basedmethods for early breast
cancer diagnosis to assist doctors in tumor classification (Aymaz, 2025; Ghani et al., 2019; Jha
et al., 2017).
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Among various approaches,machine learning algorithms based on image analysis, such as
mammograms, histological images, and ultrasound imaging have been enhanced by neural
networks, leading to significant breakthroughs in breast cancer diagnosis (Aljuaid et al., 2022;
Barnett et al., 2021; J. L. Li et al., 2017; Ragab et al., 2021). Additionally, some diagnostic
methods rely on features extracted from these images. Two well-known examples are the
WisconsinDiagnostic BreastCancer (WDBC) andWisconsinBreastCancer (WBC)datasets.
In this paper, we focus on machine learning algorithms that leverage these extracted features
to enhance diagnostic accuracy.

SVM and its extended models have been widely used in disease diagnosis due to their
strong generalization ability (Ali et al., 2024; Sahu &Mohanty, 2021; Sharma et al., 2021; J. J.
Wang et al., 2023). For SVM, the kernel function is a critical factor influencing classification
performance (Le & Clarke, 2022). Many studies have focussed on traditional single-kernel
learning, butMKL has been shown to significantly improve the interpretability of SVMmod-
els (Bach et al., 2004). The classification performance of SVM largely depends on the selection
of kernel functions and sample weight allocation. To address these challenge, Rakotoma-
monjy andGrandvalet (2008) proposed theMKLmethod, which enhances SVM adaptability
by automatically selecting optimal kernel functions.Meanwhile, some studies have attempted
to improve SVM classification performance through sample weighting strategies. For exam-
ple, X. C. Li et al. (2008) proposed anAdaBoost-based SVMapproach that incorporates SVM
into the resampling stage, thereby improving classification accuracy.

In recent years, researchers have further explored the combination of SVMkernel function
optimization and weighting strategies. Ramirez-Morales et al. (2023) employed a Genetic
Algorithm for automatic kernel selection to improve the generalization ability of SVM. F.
Wang et al. (2019) enhanced AdaBoost-SVM by incorporating feature learning and pro-
posed a training framework based on kernel parameter tuning to improve classification
performance. Luo et al. (2020) introduced a weighted SVM ensemble model based on an
AdaBoost-SVM structure, incorporating sample weighting to handle imbalanced datasets.

However, existingmethods still have twomajor limitations. First, most studies focus solely
on kernel function optimization or sample weighting, without effectively integrating the
advantages of both approaches. For instance, Xie et al. (2022) proposed a regression model
that combines these two strategies, but its application in classification tasks remains unex-
plored. Second, AdaBoost increases the weights of hard-to-classify samples during training.
However, these weights tend to grow exponentially, leading to severe weight imbalance
among training samples. This imbalance adversely affects model stability and generalization
capability.

To address these challenges, this paper introduces AUC-Ada-L1MKL-WSVM, a multi-
kernel weighted SVM ensemble algorithm designed for breast cancer diagnosis. Thismethod
integrates sample reweighting strategies into the MKL framework, thereby improving model
robustness in classification tasks. Furthermore, we develop an AUC-based AdaBoost weight
update strategy to mitigate sample weight imbalance during training. Experimental results
confirm that AUC-Ada-L1MKL-WSVM surpasses existing methods in breast cancer classi-
fication, demonstrating its practical performance. Our main contributions are as follows.

(1) We propose a novel ensemble algorithm for early breast cancer diagnosis, which inte-
grates MKL with an enhanced sample weighting strategy. This unified approach simul-
taneously exploits kernel optimization and adaptive weighting to improve classification
performance.
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(2) We introduce a refined sampleweightingmechanismbased onAUC,whichmitigates the
issue of weight imbalance in AdaBoost, leading tomore stable and generalizablemodels.

(3) Extensive empirical evaluations on benchmark breast cancer datasets demonstrate that
our algorithm achieves higher AUC and classification accuracy than conventional
methods.

The paper is structured as follows. Section 2 reviews SVM, their extended models,
ensemble algorithms for breast-cancer diagnosis, and core concepts of machine-learning
classification. Section 3 details the methodology of the study and the evaluationmetrics used
to gauge performance. Section 4 introduces the proposed ensemble algorithm, AUC-Ada-
L1MKL-WSVM, which subsumes L1MKL-SVM, L1MKL-WSVM, and Ada-L1MKL-WSVM
as special cases. Section 5 summarizes the experimental setup and results. Section 6 concludes
the study and outlines future research directions.

2. Literature review

This section reviews SVM and its extensions in breast cancer diagnosis, highlighting their
advantages over traditional laboratory tests. Additionally, recent ensemble algorithms for
breast cancer diagnosis are also discussed.

2.1. SVM and its extendedmodels for breast cancer diagnosis

Research on single-kernel SVM has gained traction, yielding significant advancements in
breast cancer diagnosis. For example, Asri et al. (2016) compared SVM against K nearest
neighbour, Naive Bayes, and Decision tree classifiers using the WBC dataset, with SVM
outperforming the rest in terms of accuracy. Akay (2009) proposed a model that combines
feature selection with SVM. Experimental results indicated that SVM with five selected fea-
tures achieved an accuracy of 99.51% on the WBC dataset. Chen et al. (2011) proposed a
model combining rough set theory with SVM, where a rough set reduction algorithm was
used for feature selection. The effectiveness of this model has been confirmed on the WBC
dataset. Zheng et al. (2014) presented a model that combines k-means and SVM. The model
obtains an accuracy of 97.38% on the WDBC dataset. In addition, some researchers have
investigated extended variants of SVM for breast cancer diagnosis. Polat and Güneş (2007)
employed least squares SVM for breast cancer diagnosis. The model achieved an accuracy of
98.53%. Liu et al. (2019) utilized a cost-sensitive SVM model combined with feature selec-
tion for classification. However, a single kernel function cannot effectively transform the
nonlinear nature of input data into a more expressive feature space. Some researchers have
conducted studies on multi-kernel SVM in response to this challenge. For example, Sannasi
Chakravarthy et al. (2022) presented a hybrid model of mixture kernel SVM based on ebola
optimization algorithm and applied it to the WDBC dataset.

Though SVM-based models have shown efficacy in breast cancer diagnosis, their perfor-
mance is highly dependent on the fine-tuning of critical parameters, such as the kernel type
and associated hyperparameters. In this study, we focus on optimizing the selection of these
key parameters.
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2.2. Ensemble algorithms for breast cancer diagnosis

Three well-known basic ensemble algorithms are Bagging, Boosting and Stacking. Their
purpose is to reduce the bias and variance of classification models. Several studies have
explored the application of these ensemble techniques in breast cancer diagnosis (Kapila
& Saleti, 2023). For example, Abdar et al. (2020) proposed a two-layer nested ensemble
model, in which the second-layer meta-classifier incorporates two or three different algo-
rithms. Experimental results on the WDBC dataset showed that this model outperformed
individual base models. Nanglia et al. (2022) developed a heterogeneous ensemble model
that combines k-nearest neighbours, SVMs, and decision trees for breast cancer diagnosis.

In ensemble learning, the use of ROC curves instead of accuracy has gained increas-
ing attention as a more comprehensive performance metric (Gao et al., 2006; Levesque
et al., 2012). Gao and Sun (2007) demonstrated that an AUC-based learning strategy can
improve the effectiveness of conventional model parameter tuning. Nonetheless, most exist-
ing approaches focus on adjusting model parameters based on ROC curves, rather than
modifying the importance of training samples accordingly. As an improvement, H. F. Wang
et al. (2018) proposed an ensemblemodel that integrates twelve pre-tuned SVMs, usingAUC-
based criteria to guide the combination process. Experimental results show that this ensemble
algorithm reduces variance and enhances accuracy in breast cancer diagnosis. However, it is
noteworthy that these studies do not explore how ROC curves can be leveraged to adjust the
importance of training instances.

3. Relatedmethods

In this section, we first introduce twomodels related to SVM, namelyWeighted Support Vec-
tor Machine (WSVM) and Boost-SVM. These two models provide us with the main ideas of
our ensemble algorithm. Secondly, we introduce some evaluation indicators for classification
models used in this article.

3.1. WSVM

In SVM, the regularization coefficient is identical for all samples. However, the importance
of individual samples may vary significantly. WSVM, in contrast to standard SVM, assigns
different weights to training samples to address class imbalance and varying sample impor-
tance. Each sample should be assigned a weight based on its importance. In practice, it is
desirable that important samples are correctly classified. For less significant samples, it is
acceptable to tolerate their misclassification (Lin &Wang, 2002). Yang et al. (2005) extended
SVM by introducing sample-specific weight factors into the regularization term, resulting in
the WSVM.

Let S = {(xi, yi), xi ∈ X, yi ∈ {−1, 1}, i = 1, . . . ,N} be a training dataset, where X is a n-
dimensional feature space. Then WSVM is given by

min
1
2
‖w‖2 + C

N∑
i=1

λiξi

s.t.

{
yi(〈w,φ(xi)〉 + b) ≥ 1 − ξi, i = 1, 2, . . . ,N,
ξi ≥ 0, i = 1, 2, . . . ,N,

(1)
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Table 1. Kernel functions and default parameters settings.

Kernel type Functions Default parameters

Linear κ(xi , xj) = 〈xi , xj〉
Polynomial κ(xi , xj) = (〈xi , xj〉 + 1)d d = 1

Gaussian κ(xi , xj) = exp(− ‖xi−xj‖2
σ 2 ) σ = 1

Sigmoid κ(xi , xj) = tanh(〈xi , xj〉 + b) b = 1

where C is the regularization coefficient (larger C allocates higher penalties for misclassi-
fication), ξi is the slack variable, b is the intercept, λi is the weight of the training sample,
and φ(xi) is the map function. Furthermore, the commonly used kernel functions and their
default parameter settings are presented in Table 1.

In our ensemble algorithm, we adopt the idea of WSVM, which considers the importance
of the samples. Detailed explanations can be found in Yang et al. (2005).

3.2. Boost-SVM

Compared with SVM, WSVM assigns different weights to training samples to handle class
imbalance and variations in sample importance. However, WSVM still suffers from limited
performance improvement when facing complex data distributions or noisy instances, as the
weight adjustment alone may not sufficiently adapt the model. To address this limitation,
ensemble methods have been introduced. Zhang and Ren (Zhang & Ren, 2008) proposed an
ensemble algorithm, Boost-SVM, which integrates SVM into the AdaBoost framework. This
approach enhances the classification performance of SVM by iteratively adjusting sample
weights during training. Detailed explanations can be found in Kashef (2021).

The flow of Boost-SVM is given in Algorithm 1. In our ensemble algorithm, we also adopt
the resampling idea of Boost-SVM. In addition, we have discovered the limitation of updating
rules in Boost-SVM, which provides us with room for improvement.

3.3. Evaluation indicators

It is well known that many evaluation metrics are derived from the confusion matrix, which
consists of two classes, labelled as positive (+1) and negative (−1). In this study, we utilize
three evaluation metrics based on the confusion matrix: accuracy (ACC), sensitivity (SE),
and specificity (SP). Additionally, we employ the AUC as an evaluation metric. A higher
AUC value indicates a stronger classification ability of the model. Therefore, AUC is used
to further assess the performance of our proposed algorithm. For more details on the ROC
curve and AUC, please refer to relevant literature (H. F. Wang et al., 2018).

4. The proposed ensemble algorithm

In this section, we introduce a new ensemble algorithm, AUC-Ada-L1MKL-WSVM. The
algorithm is developed in the following steps. First, we incorporate the idea of MKL by
using the L1 norm to combine multiple base kernels into a composite kernel for SVM.
This allows adaptive selection of the optimal base kernels and their parameters, resulting
in L1MKL-SVM. Next, we extend L1 MKL-SVM by introducing sample weighting factors,
forming L1MKL-WSVM. The kernel function weights are solved using the Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA). We then integrate L1MKL-WSVMwith FISTA
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Algorithm 1 Boost-SVM Algorithm
Input: Training dataset S = {(xi, yi)}Ni=1, where xi represents the feature vector and yi ∈

{−1, 1} denotes the class label.
Output: Final ensemble classifier: F(x).
1: Initialize: Set initial sample weights Di = 1

N ,∀i ∈ {1, . . . ,N}.
2: for t = 1 to T do
3: Sample training instances according to the distribution Dt

i and train an SVM
classifier.

4: Obtain the weak classifier: gt(x) : X → {−1, 1}.
5: Compute the classification error:

errort = ∑N
i=1 D

t
iI(gt(xi) 	= yi).

6: Compute the weight of the classifier:

αt = 1
2
ln

(
1 − errort
errort

)
. (2)

7: Update the sample weights:

Dt+1
i = Dt

i exp(−yiαtgt(xi))
Zt

, ∀ i ∈ {1, . . . ,N}. (3)

8: Normalize Dt+1
i using the normalization constant Zt .

9: end for
10: Return: Final ensemble classifier:

F(x) = sign

( T∑
t=1

αtgt(x)

)
. (4)

into AdaBoost to update sample weights dynamically, resulting in Ada-L1MKL-WSVM.
Finally, to address weight distortion caused by AdaBoost, we propose AUC-Ada-L1MKL-
WSVM, which enhances weight adaptation and classification performance.

While WSVM, MKL, and AdaBoost are well-established methods, our approach aims to
integrate them in a unified framework rather than simply combining them. Themain novelty
is the use of an AUC-guided joint update for both kernel weights and sample weights. This
design allows the model to adapt at two levels simultaneously, which is different from exist-
ing MKL or AdaBoost frameworks. By doing so, the method reduces the negative influence
of noisy or minority samples and improves robustness in imbalanced medical data, such as
breast cancer diagnosis.

4.1. L1MKL-SVM

MKL improves the predictive capacity of the model to a moderate extent by incorporating
the unique characteristics of different kernel functions through a weighted combination of
these basic kernel functions.
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A commonly acknowledged fact is that the use of the L1 norm results in sparse weights for
the combined kernel function, and it can enhance the computational efficiency of the model.
Thus, we introduce the L1 norm into the objective function of SVM. This yields the so-called
L1MKL-SVM, i.e.,

min
1
2

⎛⎝ Q∑
q=1

‖wq‖)2
⎞⎠ + C

N∑
i=1

ξi + γ ‖D‖1

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q∑
q=1

yi[〈wq,
√
dqφq(xi)〉 + b] ≥ 1 − ξi, i = 1, 2, . . . ,N,

ξi ≥ 0, i = 1, 2, . . . ,N,
dq ≥ 0, q = 1, 2, . . . ,Q,

(5)

where γ is the regularization coefficient, and D = {dq | q = 1, 2, . . . ,Q} are the weights of
the combined kernel function. Since the product of dq and wq is nonconvex, we apply the
variable transformation w′

q = √
dqwq to reformulate (5) as

min
1
2

Q∑
q=1

‖w′
q‖2
dq

+ C
N∑
i=1

ξi + γ ‖D‖1

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q∑
q=1

yi[〈w′
q,φq(xi)〉 + b] ≥ 1 − ξi, i = 1, 2, . . . ,N,

ξi ≥ 0, i = 1, 2, . . . ,N,
dq ≥ 0, q = 1, 2, . . . ,Q.

(6)

It should be noted that (6) can be solved via convex optimization algorithm (Xie et al., 2022).

4.2. L1MKL-WSVM

In order to also consider the importance of each training sample, we add the weights λ of the
training samples to L1MKL-SVM. This yields the so-called L1MKL-WSVM, i.e.,

min
1
2

Q∑
q=1

‖w′
q‖2
dq

+ C
N∑
i=1

λiξi + γ ‖D‖1

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q∑
q=1

yi[〈w′
q,φq(xi)〉 + b] ≥ 1 − ξi, i = 1, 2, . . . ,N,

ξi ≥ 0, i = 1, 2, . . . ,N,
dq ≥ 0, q = 1, 2, . . . ,Q.

(7)

When λi = 1, L1MKL-WSVM degenerates to L1MKL-SVM.
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Let

M(D) = 1
2

Q∑
q=1

‖w′
q‖2
d̃q

+ C
N∑
i=1

λiξ̃i (8)

and (̃b, ξ̃ , w̃′) be an optimal solution of

min
1
2

Q∑
q=1

‖w′
q‖2
dq

+ C
N∑
i=1

λiξi

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Q∑
q=1

yi[〈w′
q,φq(xi)〉 + b] ≥ 1 − ξi, i = 1, 2, . . . ,N,

ξi ≥ 0, i = 1, 2, . . . ,N,
dq ≥ 0, q = 1, 2, . . . ,Q.

(9)

It follows from (1) that

M(D) = −1
2

N∑
i=1

N∑
j=1

αiαjyiyj
Q∑

q=1
dqκq(xi, xj) +

N∑
i=1

αi, (10)

where αi is the Lagrange multiplier, and κ(xi, xj) = 〈φ(xi),φ(xj)〉 is the kernel function.
Then, we can reformulate (7) as below.

min Z(D) = M(D) + γ ‖D‖1, D ≥ 0. (11)

One can easily verify that (11) is a compound objective optimization problem. Further-
more, due to the non-differentiability of ‖D‖1, we can utilize the notion of the proximal
gradient (Nesterov, 2013) to solve it. In this work, FISTA is employed to update D (Beck
& Teboulle, 2009).

Furthermore, we can obtain the gradient ofM(D) from

∇M(d(t−1)
q ) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyjκq(xi, xj). (12)

For more details please refer to Xie et al. (2022).

4.3. Ada-L1MKL-WSVM

To concurrently update the weights of the training samples, we embed FISTA into
Algorithm 1, and an ensemble algorithm is established, namely Ada-L1MKL-WSVM.

The steps of Ada-L1MKL-WSVM are as follows.
Step 1: Construct a basic classifier by training a group of training samples withMKL-SVM.
Step 2: Calculate the classification error rate of the basic classifier from (2).
Step 3: Update the new weights Dt+1

i of each training subset from (3).
Step 4: Obtain a new training subset by resampling the classification samples from Dt+1

i .
Step 5: Calculate the weights of the combined kernel function on the new training subset.
Step 6: Obtain a strong classifier by combining the basic classifiers acquired during each

iteration.
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Table 2. Sensitivity analysis of the quantile parameter τ on the WDBC dataset.

τ AUC ACC SP SE

0.1 0.9680 ± 0.0026 0.9730 ± 0.0022 0.9880 ± 0.0012 0.9250 ± 0.0052
0.2 0.9690 ± 0.0025 0.9740 ± 0.0021 0.9890 ± 0.0014 0.9400 ± 0.0052
0.3 0.9714 ± 0.0028 0.9759 ± 0.0023 0.9915 ± 0.0012 0.9512 ± 0.0054
0.4 0.9694 ± 0.0028 0.9743 ± 0.0024 0.9912 ± 0.0015 0.9402 ± 0.0053
0.5 0.9685 ± 0.0025 0.9735 ± 0.0021 0.9860 ± 0.0015 0.9450 ± 0.0052

4.4. AUC-Ada-L1MKL-WSVM

In Ada-L1MKL-WSVM, the weights of the training samples are updated based on the clas-
sification error rate of each weak classifier, as referred to in (3). Given that the classification
error rate is constrained to be less than 0.5, Ada-L1MKL-WSVM inherently focuses more
attention on training samples that are incorrectly classified. Notably, when a training sample
is consistently misclassified across iterations, the weight assigned to that sample increases
exponentially, potentially leading to serious distortion in the sample weights.

To mitigate the aforementioned issue, we introduce an enhancement to Ada-L1MKL-
WSVM by combining AUC to update sample weights. Unlike the error rate, which only
accounts for the correctness of classification, AUC provides a probabilistic evaluation of a
sample being assigned to a particular class and is particularly advantageous when dealing
with imbalanced class distributions. In this case, AUC offers a more discriminating metric
than error rate.

The core innovation involves the substitution of

αt = τ ∗ AUCt (13)

with (2), where AUCt is the AUC value of the t-th weak classifier.
Since the quantile parameter τ plays a central role in shaping the asymmetric margin

of the proposed model, we further performed a sensitivity analysis to ensure reproducibil-
ity and fair comparison. Using the same 10-fold cross-validation splits, we evaluated τ ∈
{0.1, 0.2, 0.3, 0.4, 0.5} on the WDBC dataset and reported ACC, AUC, SE, and SP as mean ±
SD over the ten folds.

As shown in Table 2, τ = 0.3 achieves the highest ACC (0.9759 ± 0.0023) and AUC
(0.9714 ± 0.0028), together with the best sensitivity–specificity balance. These results indi-
cate that the asymmetric margin induced by τ = 0.3 aligns well with the underlying class
distribution, and therefore we adopt τ = 0.3 as the default setting in all subsequent experi-
ments.

In this article, we choose τ = 0.3. It should be noted that if the current base classifier’s
AUC is greater than 0.5 or hasn’t reached the maximum number of iterations, the next
iteration will be performed; otherwise, the next iteration will not proceed.

The variation range of αt in (13) is smaller than that in (2). This can effectively control
the speed of the weight increase for erroneous samples in the next iteration and reduce the
weight difference between samples in two adjacent iterations.

This refinement leads to our proposed ensemble algorithm, named AUC-Ada-L1MKL-
WSVM. The flow chart is shown in Algorithm 2. And in Algorithm 2, η represents the
learning rate for updating kernel weights, k(1) specifies the number of initial kernels cho-
sen at the beginning of the optimization, and tol denotes the tolerance threshold that serves
as the stopping criterion for convergence.
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Algorithm 2 AUC-Ada-L1MKL-WSVM
Input: Training samples S;
1: L(0) = l (l ≥ 1), η = 2, k(1) = 1, C, γ , tol, τ .

Output: The strong classifier: F(x) = sign(
∑T

t=1 αtgt(x)).
2: Initialize: D(0) = (d(0)

1 , . . . , d(0)
Q ) = (1/Q, . . . , 1/Q).

3: Initialize Dt
i = (w1,w2, . . . ,wN) = ( 1

N ,
1
N , . . . ,

1
N ).

4: H(1) = D(0).
5: for t = 1 to . . . do
6: Train MKL-SVM based on Dt

i , and obtain a classifier gt(x).
7: Calculate the AUC value of gt(x).
8: if AUC > 1

2 then
9: αt = τ · AUCt .
10: else
11: break.
12: end if
13: Optimize D through FISTA. See Xie et al. (2022).
14: end for

Given the importance of Algorithm 2, we provide a more detailed textual description of
its workflow to complement the pseudocode. The algorithm starts by initializing kernel and
sample weights, and then iteratively trains MKL-SVM classifiers. In each iteration, the AUC
value of the weak classifier is calculated to determine the update coefficient αt . If the classi-
fier achieves anAUCgreater than 0.5, the sampleweights are updated accordingly; otherwise,
the iteration is terminated. Meanwhile, the kernel weights are optimized using FISTA until
convergence under the tolerance criterion. This process is repeated until themaximumnum-
ber of iterations is reached, and all weak classifiers are finally combined to form the strong
classifier.

In this framework, AUC is adopted as the guiding metric because it highlights the rank-
ing of high-risk (malignant) samples, which is of practical importance in early diagnosis.
Although AUC does not directly reflect the confusionmatrix, it provides a probabilistic eval-
uation particularly suitable for imbalanced medical data. At the same time, we acknowledge
that other measures, such as the Matthews Correlation Coefficient (MCC) (Chicco & Jur-
man, 2020), can also provide valuable insights into classification performance. As part of
future work, we plan to investigateMCC-based weight updating as a complementary strategy
to further enhance model stability and accuracy.

5. Experiment and results

5.1. Dataset description

In this paper, we choose the WDBC 1 and WBC 2 datasets which are freely accessible in the
UCI repository. The overview of each dataset is given in Table 3. Sixteen samples containing
missing values of attributes in the WBC dataset are deleted.

1 https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic.
2 https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original.

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
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Table 3. Dataset description.

Dataset Characteristic number Sample size Missing value

WDBC 30 569 0
WBC 9 699 16

Figure 1. The workflow of our experiment AUC-Ada-L1MKL-WSVM.

For theWDBC dataset, 357 samples are malignant and 212 are benign, while for theWBC
dataset, 241 samples are malignant and 458 are benign after removing 16 instances with
missing values. Although the imbalance ratio is moderate in both datasets, it still poses chal-
lenges for detectingmalignant cases. Therefore, the use of weighted SVM can help emphasize
these critical but relatively fewermalignant instances, which is important for improving early
cancer diagnosis.

5.2. Data preprocessing

In order to eliminate the impact of dimensionality, we use the max-min normalization
method to normalize the WDBC and WBC datasets, i.e.,

ãi,j = ai,j − amin
i

amax
i − amin

i
, (14)

where ai,j is the j-th value corresponding to the i-th feature, and amax
i and amin

i are the
maximun and minimum values of the i-th feature, respectively.

5.3. Workflow

The workflow of our experiment is shown in Figure 1. The experiment in this paper is per-
formed on a personal computer with Intel(R) Core(TM) i7-12700K @ 3.60GHz and 32GB
memory. The operating system is Windows 10 and the program is implemented in Python
3.10.9.
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Table 4. Parameter settings and definitions.

Parameter Value Definition

C [1, 10, 100] SVM regularization parameter
σ [100, 50, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001] Gaussian kernel parameter
d [1, 2] Polynomial kernel degree
β 0.009 FISTA stopping tolerance
l 100 FISTA step size
b 1 Sigmoid kernel bias
γ [0.01, 0.1, 1] Regularization parameter

5.4. Parameter settings

For SVM related parameters, based on the characteristics of the dataset, the range of values
forC in this experiment is set to [1,10,100]. The parametersσ , d, and b are themain adjustable
parameters of the Gaussian kernel function, Polynomial kernel function, and Sigmoid kernel
function of SVM, respectively. For the Sigmoid kernel function,we choose the Sigmoid kernel
function with its default parameters. For Gaussian kernel functions, we choose ten Gaussian
kernel functions with values of 100, 50, 5, 1, 0.5, 0.1, 0.05, 0.001, 0.005 and 0.001, respectively.
For polynomial kernel functions, we choose two polynomial kernel functions with being 1
and 2, respectively.

Regarding the parameters of FISTA, based on the characteristics of the dataset, for the
stopping criteria, the tolerance value tol is set to 0.009, which also notifies the convergence.
The maximum number of iterations is set to 7, and the step size of the internal gradient that
controls the convergence speed is set to 100.

For the regularization parameter γ , we set its values to [0.01, 0.1, 1]. For each combination
of C and γ , we use the grid search method to select the best combination.

To sum up, we selected ten Gaussian kernel functions with varying parameters, two poly-
nomial kernel functions with varying parameters, and one Sigmoid kernel function. The
parameter settings for our experiment are shown in Table 4.

The parameter settings used in this studywere selected based on preliminary experiments,
where several candidate valueswere tested and the reported configurations showed stable and
effective performance across both datasets. Although these settings are empirical, they repre-
sent practical tuning commonly adopted in machine learning experiments. We acknowledge
that more systematic data-driven or automated parameter selection strategies could further
enhance robustness, and this will be an interesting direction for future work.

5.5. Numerical results and analysis

To evaluate model performance more robustly, we perform ten-fold cross-validation with
fifty replications for each model. The performance indicators are computed as follows:

Pk = 1
10

10∑
k=1

Pk, (15)

P = 1
50

50∑
k=1

Pk, (16)
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Table 5. Experimental results for the WDBC dataset (mean± standard deviation).

Model AUC (%) ACC (%) SP (%) SE (%)

SVM 97.07 ± 0.004 97.53 ± 0.003 98.99 ± 0.007 95.15 ± 0.003
Boost-SVM 96.26 ± 0.005 96.52 ± 0.005 97.61 ± 0.005 94.91 ± 0.010
L1MKL-SVM 97.06 ± 0.003 97.53 ± 0.003 99.08 ± 0.004 95.04 ± 0.006
Ada-L1MKL-WSVM 96.81 ± 0.006 97.23 ± 0.005 98.53 ± 0.005 95.09 ± 0.010
AUC-Ada-L1MKL-WSVM 97.15 ± 0.004 97.61 ± 0.003 99.16 ± 0.003 95.13 ± 0.001

Table 6. Experimental results for the WBC dataset (mean± standard deviation).

Model AUC (%) ACC (%) SP (%) SE (%)

SVM 96.81 ± 0.002 96.93 ± 0.001 97.28 ± 0.004 96.35 ± 0.001
Boost-SVM 97.08 ± 0.004 96.72 ± 0.005 95.65 ± 0.008 98.52 ± 0.008
L1MKL-SVM 97.01 ± 0.003 97.09 ± 0.003 97.35 ± 0.002 96.08 ± 0.006
Ada-L1MKL-WSVM 95.18 ± 0.006 95.87 ± 0.004 97.59 ± 0.003 92.76 ± 0.113
AUC-Ada-L1MKL-WSVM 97.09 ± 0.002 97.20 ± 0.002 97.53 ± 0.002 96.64 ± 0.004

where Pk represents the values of AUC, ACC, SP, and SE for the k-th partition, Pk denotes the
average performance across the ten folds, and P is the final performance measure averaged
over fifty replications.

The AUC, ACC, SP, and SE of each model in the WDBC and WBC datasets are reported
in Tables 5 and 6, respectively. In this section, the third model, denoted as L1MKL-SVM, is
implemented within the L1-norm multiple kernel learning framework with fixed and equal
sample weights, and therefore, serves as the equal sample-weight baseline. In contrast, Ada-
L1MKL-WSVM and AUC-Ada-L1MKL-WSVM introduce an iterative sample reweighting
scheme that increases the weights of misclassified or hard malignant samples, aiming to
enhance the sensitivity of the classifier.

The results presented in Tables 5 and 6 show that AUC-Ada-L1MKL-WSVM consistently
achieves the best overall performance in terms of AUC and ACC on both datasets without
additional feature extraction. For the WDBC dataset, AUC-Ada-L1MKL-WSVM attains the
highest AUC (97.15%) andACC (97.61%), while also slightly improving SP and SE compared
with L1MKL-SVM (SP: 99.16% vs. 99.08%; SE: 95.13% vs. 95.04%). For the WBC dataset,
AUC-Ada-L1MKL-WSVMagain achieves the highestAUC (97.09%) andACC (97.20%), and
increases SE from 96.08% to 96.64% relative to L1MKL-SVM, while maintaining a higher SP
(97.53% vs. 97.35%).

Inspection of Table 6 further indicates that Boost-SVM yields the highest SE, but suffers
from the lowest SP,whereasAda-L1MKL-WSVMexhibits the opposite pattern,with the high-
est SP and the lowest SE. In contrast, AUC-Ada-L1MKL-WSVM provides a more balanced
trade-off between SE and SP, attaining simultaneously high values on both metrics. Over-
all, AUC-Ada-L1MKL-WSVM surpasses Ada-L1MKL-WSVM in most performance aspects
across both datasets.

It is worth noting that ensemble learning does not always ensure improved perfor-
mance. For example, Boost-SVMmay underperform standard SVMwhen the base classifiers
are highly correlated, since the lack of diversity reduces the effectiveness of boosting and
noisy samples may be overweighted. Similarly, Ada-L1MKL-WSVM can sometimes perform
worse than L1MKL-SVM, as the mismatch between early sample weight updates and kernel
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Table 7. Comparison of existing model results for the WDBC
dataset.

Model ACC (%)

WAUCE (H. F. Wang et al., 2018) 97.68
EOA-mK-SVM (Sannasi Chakravarthy et al., 2022) 97.19
eGauss+with PCA (Škrjanc et al., 2022) 95.99
LR-KPCA–LS-SVM (Zhang et al., 2021) 96.00
Fuzzy-ID3+FUZZTDBD (Idris & Ismail, 2021) 94.53
IRFRE (S. Wang et al., 2020) 95.09
AUC-Ada-L1MKL-WSVM 97.61

Table 8. Comparison of existing model results for the WBC
dataset.

Model ACC (%)

WAUCE (H. F. Wang et al., 2018) 97.10
AK-Boosted C5.0 (Zhang et al., 2021) 95.60
Fuzzy-ID3+FUZZTDBD (Idris & Ismail, 2021) 94.36
IRFRE (S. Wang et al., 2020) 96.44
FA+ELM (Kaya & Kuncan, 2022) 97.25
RBFNN (Osman & Aljahdali, 2020) 97.00
AUC-Ada-L1MKL-WSVM 97.20

optimization may bias the model toward local patterns instead of capturing the global dis-
tribution. These observations highlight the importance of designing more robust weighting
and kernel adaptation strategies.

In what follows, we compare the performance of AUC-Ada-L1MKL-WSVM with other
models in different literatures for the WDBC and WBC datasets. The raw accuracy metrics
of these extant models are systematically presented in Tables 7 and 8, respectively.

Tables 7 and 8 show that the accuracy of our proposed ensemble algorithm is superior to
most other models in the literature. For the WDBC dataset, MKL was applied in EOA-mK-
SVM (Sannasi Chakravarthy et al., 2022) and ultimately achieved an accuracy of 97.19%.

The experimental results indicate that considering both MKL and the weight of training
samples simultaneously is effective. The PCA feature extraction technique was also used in
eGuss+with PCA (Škrjanc et al., 2022), and achieved accuracies of 95.99%, respectively.

For the WBC dataset, by comparing the numerical results with the above model, it is
shown that our improvement of using SVM as the benchmark model is meaningful. This is
because SVM is a very suitable classification model for breast cancer diagnosis. At the same
time, we combine the idea of MKL and resampling based on SVM, and improve the resam-
pling method. Overall, our ensemble algorithm provides a more effective method for breast
cancer diagnosis.

It should be noted that ourmethod does not always surpass all existing approaches. On the
WDBC dataset, the WAUCE method achieves slightly higher accuracy by integrating multi-
ple pre-tuned SVMs and using multi-model voting to reduce variance, which is particularly
effective for small-sample data. On the WBC dataset, the FA+ELM method benefits from
factor analysis, which reduces noise in low-dimensional features and thus enhances the per-
formance of ELM. By contrast, AUC-Ada-L1MKL-WSVM focuses on joint optimization of
kernels and sample weights, which tends to offer greater advantages in higher-dimensional
or more complex scenarios. These observations explain the discrepancies and highlight the
specific contexts where our method is most suitable.



STATISTICAL THEORY AND RELATED FIELDS 15

6. Conclusions

In this paper, we have developed an AUC-based multi-kernel weighted SVM ensemble
algorithm, named AUC-Ada-L1MKL-WSVM, for breast cancer diagnosis. Our ensemble
algorithmnot only updates theweights of the training samples, but also optimizes theweights
of the combined kernel function. Furthermore, we employ AUC as an optimization criterion
to effectively control the weight growth rate of misclassified samples, ensuring improved
model stability and generalization. To validate our method, we then applied our ensemble
algorithm to the WDBC and WBC datasets, evaluating classification performance across
four key metrics: AUC, accuracy, specificity and sensitivity to evaluate our classification
performance. Our algorithm achieved outstanding results, with respective performance val-
ues of AUC 97.15%, accuracy 97.61%, specificity 99.16%, sensitivity 95.13% on the WDBC
and WBC datasets, respectively. These findings demonstrate the efficacy of our proposed
ensemble algorithm in breast cancer classification.

In addition, while this work mainly adopts AUC as the guiding metric, we acknowledge
that other measures such as MCC could also provide complementary insights. Exploring
MCC-based weight updating will be an important direction for our future research.
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