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ABSTRACT
In this paper, we propose a Bayesian PG-INLA algorithm which is tailored to both one-
dimensional and multidimensional 2-PL IRT models. The proposed PG-INLA algorithm utilizes
a computationally efficient data augmentation strategy via the Pólya-Gamma variables, which
can avoid low computational efficiency of traditioanl Bayesian MCMC algorithms for IRT models
with a logistic link function. Meanwhile, combined with the advanced and fast INLA algorithm,
the PG-INLA algorithm is both accurate and computationally efficient. We provide details on
the derivation of posterior and conditional distributions of IRT models, the method of intro-
ducing the Pólya-Gamma variable into Gibbs sampling, and the implementation of the PG-INLA
algorithm for both one-dimensional and multidimensional cases. Through simulation studies
and an application to the data analysis of the IPIP-NEO personality inventory, we assess the per-
formance of the PG-INLA algorithm. Extensions of the proposed PG-INLA algorithm to other IRT
models are also discussed.
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1. Introduction

Item response theory (IRT) (see Liu et al., 2018; F.M. Lord, 1980; Reckase, 2009), which often involves large-scale
item level data that could be used to measure many latent variables, is important in data analysis in education,
psychology, and other social science disciplines. IRT models have been extensively studied; see, for instance, in
Chen and Zhang (2020), Embretson and Reise (2000), Thissen and Wainer (2001) and van der Linden and Ham-
bleton (1997), and others. Most of the current IRT models developments use the logistic link and the probit link
function. There are numurous algorithms for estimating the IRT model parameters. Two fundamental mecha-
nisms most frequently used for IRT models are the variants of Expectation–Maximization (EM) algorithms (see
Bock & Aitkin, 1981; Dempster et al., 1977) and the Markov Chain Monte Carlo (MCMC) methods (see Albert
& Chib, 1993; Béguin & Glas, 2001; Cai, 2010a; Edwards, 2010; Jiang & Templin, 2018) such as the Gibbs algorithm
and the Metropolis–Hastings (MH) algorithm.

The EM algorithm is a classical approach to obtain the maximum likelihood estimation for IRT models. The
computational burden of the EM algorithm increases even when the number of latent traits K is only moderately
large, as the computational difficulty of evaluating K-dimensional numerical integrals in the E step increases expo-
nentially with K. Thus, based on the EM algorithm, various methods have been widely proposed, mainly including
the quasi-Monte Carlo EM (QMCEM) algorithm (Niederreiter, 1978), the stochastic EM (StEM) algorithm (Celeux
&Diebolt, 1985; Ip, 2002) and theMonteCarlo EM(MCEM) algorithm (Song&Lee, 2005). TheQMCEMalgorithm
is more often applied to high-dimensional integration, but it is relatively low in efficiency in estimation when com-
pared with some fully Bayesian methods such as the Metropolis–Hastings Robbins–Monro (MH-RM) algorithm
(Cai, 2010a, 2010b).

The Gibbs algorithm and the MH algorithm are the two frequently employed Bayesian sampling algorithms.
While the MH algorithm substitutes a proposal distribution for the true conditional distribution to realize the
MCMC process, the Gibbs sampling is utilized when the full conditional posterior distributions of parameters can
be easily sampled (Lynch, 2007). Because the full conditional posterior distributions of the parameters of the two-
parameter logistic (2-PL) IRT model (F. Lord et al., 1968) have closed forms, Jiang and Templin (2018) proposed a
PG-MCMC algorithm using pure Gibbs sampling to achieve data augmentation by introducing the Pólya-Gamma
variables. However, the algorithm has a lengthy running time.

The maximum marginal likelihood estimation (MMLE), which can be obtained by the EM algorithm, the
QMCEM algorithm and the MH-RM algorithm, remains a tricky numerical issue. The most difficult challenge
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comes from having to approximate difficult high-dimensional intractable integrals in the likelihood function for
the item parameters. In order to simplify the estimation process of the item parameters in the IRT models, we pro-
pose using the integrated nested Laplace approximation (INLA) method (Rue et al., 2009; Sara & Andrea, 2020).
The INLA, which was proposed by Rue et al. (2009), combines Laplace approximation with numerical integra-
tion methods. INLA achieves the accuracy of MCMC and the computational efficiency of variational Bayes (VB)
(Jaakkola & Jordan, 2000), and has been widely used to approximate the posterior distribution in recent years. For
the IRT model, there is few literature about the application of INLA in this field. Mair and Gruber (2022) proposed
a more general explanatory additive IRT model that uses INLA to estimate the parameters in the model, building a
modern Bayesian framework in a fast and accurate way. Murphy (2021) extended the dyadic IRTmodel to multiple
group designs. Due to computational constraints, he used the fast INLA method to perform Bayesian inference.

In this paper, we propose the PG-INLA algorithm, which combines and takes full advantage of the data aug-
mentation strategy of Pólya-Gamma with the INLA, tailored specifically for the 2-PL IRT model. In fact, drawing
50000 points from PG(1, 3.2) is roughly 15 times faster than drawing the same number of points from truncated
normal distribution TN(0, 1), according to a small-scale simulation by Polson et al. (2013). On the other hand,
INLA is quick even for large, complex models and does not experience slow convergence and subpar mixing per-
formance because of its deterministic nature (Sara & Andrea, 2020), which is usually a major problem that prevents
the adoption of MCMC for such large complex models as the multidimensional 2-PL IRT models discussed in this
paper.

The remainder of the paper is structured as follows. The 2-PL IRT model and the key idea of related algorithms
are presented in Section 2. Then in Section 3, the PG-INLA algorithms are proposed in one-dimensional andmulti-
dimensional cases. Section 4 conducts some simulation studies as away to illustrate the accuracy and effectiveness of
the PG-INLA algorithm. A real application of the proposed PG-INLA algorithm is presented in Section 5. Section 6
provides some concluding remarks and possible extensions.

2. 2-PL IRTmodel and related algorithms

Assume that N individuals respond to J items, with Yij representing the reaction from individual i to item j and
Y = (Yij)N×J representing the binary data matrix in which all the elements are either 0 or 1. The 2-PL IRT model
is often used to model binary data which has the form of

P(Yij = 1 | aj, θ i, dj) =
exp(a�j θ i + dj)

1+ exp(a�j θ i + dj)
, (1)

when an item j is parameterized in discrimination/difficulty form, aj is the discrimination parameter, dj is the
difficulty parameter, and θ i is the continuous ability parameter (latent trait) of individual i. Both aj and θ i have
dimension K, and if K ≥ 2, then we obtain a multidimensional 2-PL (M2PL) IRT model (Reckase, 2009).

2.1. INLA algorithm

In contrast to the MCMC, INLA is a fast, accurate and less computationally demanding method for performing
approximate Bayesian inference in latent Gaussian models (Rue et al., 2009). A latent Gaussian model is of the form

y | x,β ∼
N∏
i=1

π(yi | xi,β),

x |β ∼ N(μ(β),Q(β)−1),
β ∼ π(β),

(2)

where y is a vector of observed data, β = (β1, . . . ,βM)� is a vector of hyperparameters, and x represents the latent
Gaussian field with mean μ(β) and precision matrix Q(β). In many cases, it is assumed that observations {yi}Ni=1
belong to an exponential familywithmeanui = g−1(ηi), where ηi is the linear predictor and g−1 is the link function.
To derive themarginal approximate posterior distribution of each component in x andβ , INLA combines analytical
approximations and numerical integration effectively.

Specifically, the core steps of the INLA algorithm for the latent Gaussian models have the following three steps.
For more details on the INLA method, the readers may refer to Rue et al. (2009) and Sara and Andrea (2020).
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Step 1. Derive the nested marginal posterior distribution for each hyperparameter, i.e. π(βm | y), m =
1, 2, . . . ,M, which is

π(βm | y) =
∫

π(β | y) dβ−m, (3)

where β−m is β excluding βm. That is, π(βm | y) is approximated by approximating π(β | y) and integrating out
β−m.More elaborately, the posterior density of the hyperparameter is approximated by using aGaussian approxima-
tion for the posterior of the latent field, π̃G(x |β , y), evaluated at the posterior mode, x∗(β) = argmaxx πG(x |β , y)
(Moraga, 2020; Rue et al., 2009),

π̃(β | y) ∝ π(x,β , y)
π̃G(x |β , y)

∣∣∣∣
x=x∗(β)

. (4)

Then, INLA constructs the following nested approximations

π̃(βm | y) =
∫

π̃(β | y) dβ−m. (5)

Step 2. Similarly, derive the nested marginal posterior distributions for each element xi of the latent field x, which
can be written as

π(xi | y) =
∫

π(xi |β , y)π(β | y) dβ , (6)

by combining analytical approximations to the full conditional distributions π(xi |β , y) and π(β | y) and numerical
integrationwith respect toβ . Thus, this nested formula can be used to approximateπ(xi | y). There are usually three
methods to approximateπ(xi |β , y): a Gaussian, a Laplace, and a simplified Laplace approximation. Combinedwith
Step 1, then we obtain the following nested approximations

π̃(xi | y) =
∫

π̃(xi |β , y)π̃(β | y) dβ . (7)

Step 3. Perform numerical integration. The nested approximations (5) and (7) can be integrated numerically with
respect to β

π̃(βm | y) =
∑
k

π̃((β)k | y)×�k, (8)

π̃(xi | y) =
∑
l

π̃(xi | (β)∗l , y)π̃((β)∗l | y)×�∗l , (9)

where �k and �∗l denote the area weight corresponding to (β)k and (β)∗l , respectively.
For the 2-PL IRT model, each Yij belongs to the binomial distribution given θ i (i = 1, 2, . . . ,N)

Yij ∼ Bin (1, pij),

pij =
exp(a�j θ i + dj)

1+ exp(a�j θ i + dj)
.

(10)

Therefore, the linear predictor is ηij = dj + a�j θ i and g−1 is the logit function. In fact, the likelihood for y depends
on xj = (dj, aj) only through the linear predictor ηij. The R-INLA package provides defaults as in this case with no
integrals as there are no hyperparameters, which simplifies the problem.

Given θ i, i = 1, 2, . . . ,N, the 2-PL IRTmodel is a latent Gaussian model. So we can easily fit the 2-PL IRTmodel
using the INLA algorithm. First we need to obtain the formula object in R according to the form of ηij. For each
item j in this 2-PL IRTmodel, the linear predictor is ηij = dj + a�j θ i, so the formula is yj ∼ 1+ θ1 + θ2 + · · · +
θK , with given θk = (θ1k, θ2k, . . . , θNk)�, k = 1, 2, . . . ,K. And then the latent Gaussian fields, i.e. the intercept dj
and the fixed effects aj1, aj2, . . . , ajK , j = 1, 2, . . . , J, are assigned Gaussian priors N(0.01, 10). Finally, the INLA
would follow the above three steps to obtain the final parameter estimates. A minimum of K(K − 1)/2 restrictions
must be placed on the elements of discrimination parameters aj in order to identify the model. Either multivariate
constraints must be applied (Lawley & Maxwell, 1962), or constraints can be made by setting some elements of
discrimination parameters aj to 0 (McDonald, 2013).
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2.2. Data augmentation with Pólya-Gamma random variable

This section introduces the idea of the data augmentation method, which is particularly useful for the Bayesian
inference of logistic regression. Provided that the number of successes yi(i = 1, 2, . . . ,N) is binomial with suc-

cess probability p = exp(x�
i β)

1+exp(x�
i β)

and the number of trials ni. Polson et al. (2013) demonstrated that the likelihood
contribution of observation j in the logistic regression model can be expressed as

Li(β) =
{
exp(x�

i β)
}yi{

1+ exp(x�
i β)

}ni
∝ exp

(
κix�

i β
) ∫ ∞

0
exp

(
−ωi(x�i β)2

2

)
p(ωi; ni, 0) dωi, (11)

where κi = yi − ni
2 , xi is a vector of predictors for observation i, ωi is a Pólya-Gamma random variable with

parameters (ni, 0) and p(ωi | ni, 0) is its density.
If a random variable γ has a Pólya-Gamma distribution with parameters b>0 and c ∈ R, which is denoted by

γ ∼ PG(b, c), then it is equivalent to an infinite weighted sum of gamma random variables

γ
d= 1
2π2

∞∑
k=1

G(b, 1)
(k− 0.5)2 + c2/(4π2)

, (12)

where G(b, 1) represents the gamma distribution with parameters b and 1.
From Equation (11), we can consider ωi as an augmented random variable for the data yi. Biane et al. (1999)

proved that if we have a prior distribution p(β) for β , then conditioning on a set of Pólya-Gamma random variables
ω = (ω1,ω2, . . . ,ωN)�, the conditional posterior density of β is

p(β |ω, y) ∝ p(β)

N∏
i=1

exp

{
κix�i β − ωi(x�i β)2

2

}

∝ p(β)

N∏
i=1

exp

{
−wi

2

(
x�i θ − κi

ωi

)2
}

∝ p(β) exp
{
−1
2
(z − Xβ)�
(z − Xβ)

}
, (13)

where y = (y1, y2, . . . , yN)�, ω = (ω1,ω2, . . . ,ωN)�, z =
(

κ1
ω1
, κ2

ω2
, . . . , κN

ωN

)�
, X = (x�1 , x�2 , . . . , x�N)� and 
 =

diag (ω1,ω2, . . . ,ωN). Furthermore, if the prior distribution p(β) is set as N(b,B), where b is the mean vector and
B is the covariance matrix, then Gibbs sampling below can be used to draw a posterior sample from the marginal
posterior distribution of β

ωi |β ∼ PG(ni, x�i θ),

β | y,ω ∼ N(μ,�∗).
(14)

According to the conjugacy of the normal distribution between the prior distribution and the poste-
rior distribution, it can be shown that �∗ = (X�
X + B−1)−1 and μ = �∗(X�κ + B−1b), where κ =(
y1 − n1

2
, y2 − n2

2
, . . . , yN − nN

2

)�
(Zeithammer & Lenk, 2006). This forms the basis for subsequent applications

involving the IRT models.

3. PG-INLA algorithm for 2-PL IRTmodels

The PG-INLA algorithm we proposed in this paper is tailored to the 2-PL IRT models including both the one-
dimensional and multidimensional ones. Similar to the EM algorithm, the core idea of this PG-INLA algorithm
is also a two-step iteration: PG step and INLA step. In the PG step, given the estimates of the item parameters aj
and dj, which are obtained from the previous INLA step, we use a computationally efficient data augmentation
strategy to estimate the individual parameters θ i via the Pólya-Gamma distribution (Jiang & Templin, 2018) and
Gibbs sampling. And if we know the estimates of the individual parameters θ i(i = 1, 2, . . . ,N) from the PG step,
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then we can use the INLA algorithm to estimate the item parameters aj and dj easily and accurately. The iteration
stops when the following conditions are met√√√√ J∑

j=1

K∑
k=1

(
a(t)
jk − a(t−1)

jk

)2
/M ≤ ε,

√√√√ N∑
i=1

K∑
k=1

(
θ

(t)
ik − θ

(t−1)
ik

)2
/(N × K) ≤ ε,

(15)

whereM is the number of non-zero elements of aj and ε is a positive number given in advance that is small enough,
and we set it to 0.01 in the subsequent simulation studies.

3.1. One-dimensional 2-PL IRTmodel

For one-dimensional and multidimensional 2-PL IRT models, the Gibbs sampling part of the PG-INLA algorithm
will be different. Bayesian inference of the one-dimensional 2-PL IRT models depends on the MCMC process,
where parameter blocks are exactly used instead of directly sampling from the overall joint likelihood (Jiang&Tem-
plin, 2018). Blocks of parameters are converted into complete conditional forms in order to build Gibbs samplers
for the one-dimensional 2-PL IRTmodels, as shown in Equation (14) (Junker et al., 2017). However, since the con-
ditional posterior distributions lack expressions of closed form, the samplers for θ i cannot adopt the Gibbs samplers
without the use of the Pólya-Gamma data augmentation strategy.

According to Equations (11) and (13), we can derive the Gibbs sampling process for estimating θi for the one-
dimensional 2-PL IRT model using the Pólya-Gamma variables. Using the notations in Section 2, we denote yij
as the actual response of individual i to item j and ωi = (ωi1,ωi2, . . . ,ωiJ)

�. For each θi, the conditional posterior
distribution could be rewritten as follows

p(θi |ωi, aj, dj, yi) ∝ p(θi) exp
{
−1
2
(zi − A1θi)

�
i(zi − A1θi)

}
, (16)

where p(θi) is N(0, 1), 
i = diag (ωi1,ωi2, . . . ,ωiJ), A1 = (a1, a2, . . . , aJ)�, zi =
(

κi1 − d1ωi1

ωi1
,
κi2 − d2ωi2

ωi2
, . . . ,

κiJ − dJωiJ

ωiJ

)�
and κij = yij − 1

2 . With Equations (16) and (14), the use of Gibbs sampling becomes possible by

the new forms of normal conditionals for θi as

θi |ωi, aj, dj, yi ∼ N(V1(A�1 
izi),V1), (17)

where V1 = (A�1 
iA1 + 1)−1. And fro Equation (14), the conditional posterior distribution for ωij is

ωij | θi ∼ PG(1, ajθi + dj). (18)

Given the item parameters estimated from the previous INLA step, we can use Equations (17) and (18) to excute the
Gibbs sampler to obtain the estimates of individual paramters θi. This PG-INLA algorithm is shown inAlgorithm 1.

3.2. Multidimensional 2-PL IRTmodel

The multidimensional 2-PL model can incorporate multiple latent trait variables with the one-dimensional 2-
PL model. The difference of parameter estimation of one-dimensional and multidimensional 2-PL IRT models
is mainly reflected in the identifiability of the model and the sampling of covariance matrix � of θ i. When con-
structing multidimensional item response theory (MIRT) models (Reckase, 2009), it is common to set each item
to measure only a small number of latent traits, and the discrimination parameter aj in each item that does not
measure latent traits is set to 0. Thus, such models become identifiable by these non-estimated parameters.

In our PG-INLA algorithm, when the model is multidimensional, in order to consider the correlation informa-
tion of the latent traits of each dimension, we consider adding the covariance matrix � update iterations in Gibbs
sampling. Conjugate inverse Wishart distribution is often employed in a typical Gibbs sampler to draw samples
from a covariance matrix. However, since we are estimating the individual parameters given the item parameters
and the identifiability of the model, the current estimation on the individual parameters needs to satisfy that the
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Algorithm 1: PG-INLA algorithm procedure (one-dimensional).
input : The observed data y, the highest number of iteration times T before the PG-INLA

algorithm converges, the number of Gibbs sampling iteration times S and burn.in
timesm, and the initial value (θ

(0)
i , a(0)

j , d(0)
j )�.

output: The posterior samples of (θi, aj, dj)�.
for t← 0 to T do

PG step
for i← 1 to N do

parallel computation for each i for s← 1 to S do
θ

(s−1)
i ← θ

(t)
i for j← 1 to J do

ω
(s)
ij ← f (ωij | θ(s−1)

i , a(t−1)
j , d(t−1)

j , y);
end
θ

(s)
i ← f (θi |ω(s)

ij , {a(t−1)
j , j = 1, 2, . . . , J}, {d(t−1)

j , j = 1, 2, . . . , J}, y);
end
θ

(t)
i ←

∑S
s=m+1 θ si /(S−m)

end
INLA step for j← 1 to J do

a(t)
j ← f (aj | {θ(t)

i , i = 1, 2, . . . ,N}, y);
d(t)
j ← f (dj | {θ(t)

i , i = 1, 2, . . . ,N}, y);
end
if Condition (15) is met, then

(θ
(t)
i , a(t)

j , d(t)
j )�

end
end

elements on the diagonal of the covariance matrix are 1. Therefore, the covariance matrix is switched into a cor-
relation matrix with this identifiability condition, thus the inverse Wishart distribution is no longer suitable. An
alternative method is to draw the sample covariance matrix from the inverse Wishart distribution firstly, and then
convert it into a sample correlation matrix (Imai & Dyk, 2005). However, Lynch (2007) showed that the converting
approach is not precise when the sample size is small or the off-diagonal elements are large.

In this paper, we use the MH algorithm proposed by Jiang and Templin (2018) instead of the previous methods
mentioned to sample the correlation parameters σkk′ , k �= k′, k, k′ = 1, 2, . . . ,K, where 
 = (σkk′)K×K is the prior
covariance matrix. The transition kernel for correlation σ

(r)
kk′ is the symmetric distribution N(σ

(r−1)
kk′ , 0.05), where r

indicates current step of sampling iteration. As can be seen from the simulation studies that follow, this approach
guarantees the speed of the algorithm as well as a high estimation accuracy.

Similar to the Gibbs sampling process for the one-dimensional 2-PL IRT model, based on the above discussion,
if θ i is assigned a prior N(0,�), then we can easily obtain the Gibbs sampling process for the M2PL IRT models as
follows

ωij | θ i ∼ PG(1, a�j θ i + dj),

θ i |ωi, σkk′ , aj, dj, yi ∼ N(V2(A�2 
izi),V2),

σkk′ | θ i ∼ N(σkk′ , 0.05),

(19)

where V2 = (A�2 
iA2 +
−1)−1 and A2 = (a�1 , a�2 , . . . , a�J )�. The whole PG-INLA algorithm for the M2PL IRT
models is presented in Algorithm 2.

4. Simulation study

To demonstrate the effectiveness of the suggested PG-INLA algorithm in parameter estimation, we do some sim-
ulation studies in this section. In practice, the EM algorithm is generally effective with 1–3 latent traits, but
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Algorithm 2: PG-INLA algorithm procedure (multidimensional).
input : The observed data y, the highest number of iteration times T before the PG-INLA

algorithm converges, the number of Gibbs sampling iteration times S and burn.in
timesm, the initial value (θ

(0)�
i , a(0)�

j , d(0)
j )�, and 
0.

output: The posterior samples of (θ�i , a�j , dj)� and 
.

for t← 0 to T do
PG step for i← 1 to N do

parallel computation for each i for s← 1 to S do
θ

(s−1)
i ← θ

(t)
i for j← 1 to J do

ω
(s)
ij ← f (ωij | θ (s−1)

i , a(t−1)
j , d(t−1)

j , y);
end

(s) ∼ f (
 | {θ i, i = 1, 2, . . . ,N})
θ

(s)
i ← f (θ i |ω(s)

ij ,

(s), {a(t−1)

j , j = 1, 2, . . . , J}, {d(t−1)
j , j = 1, 2, . . . , J}, y);

end
θ

(t)
i ←

∑S
s=m+1 θ si/(S−m)

end
INLA step for j← 1 to J do

a(t)
j ← f (aj | {θ (t)

i , i = 1, 2, . . . ,N}, y);
d(t)
j ← f (dj|{θ (t)

i , i = 1, 2, . . . ,N}, y);
end
if Condition (15) is met then

(θ
(t)�
i , a(t)�

j , d(t)
j )� and 
(t)

end
end

methods such as the QMCEM algorithm and the MH-RM algorithm should be used when the dimensions are
3 or more. So our simulation studies consist of the following two parts: (1) in the one-dimensional situation,
we compare the PG-INLA algorithm with the EM algorithm to show the accuracy and efficacy of the proposed
method, and (2) in the second part, the proposed PG-INLA is compared with the QMCEM algorithm and the
MH-RM algorithm to show that the PG-INLA algorithm can also be applied to the multidimensional IRT model
effectively.

The R programming language is used throughout these simulation studies to create data, construct algorithms,
define and execute functions, and estimate model parameters. And we use the mirt package for parameter estima-
tion for the EM algorithm, the QMCEM algorithm, and the MH-RM algorithm, which are all marginal maximum
likelihood algorithms. The mirt package provides a toolkit for various mirt-related estimate tasks and has exten-
sive citations in many published works (see Eckes & Baghaei, 2015; Matlock et al., 2018; Zhang et al., 2020). More
specifically, all the tolerance levels (stop criteria) in the mirt are set to 0.01 by default. The PG-INLA algorithm is
carried out at a Linux server with 64-core processors, where the functions for the INLA algorithm are provided by
the R-INLA package.

The point estimates produced by the Bayesian frameworks are referred to as the posterior means throughout all
the simulation studies. Due to the extremely weak correlation between the samples of each θ i, i = 1, 2, . . . ,N and
ωij, i = 1, 2, . . . ,N, j = 1, 2, . . . , J, the Gibbs sampler iteration number is set to 100, where the first 50 iterations are
burned. In fact, the final accuracy of the three parameters is close to the setting of the Gibbs sampling with 5000
iterations.

4.1. One-dimensional 2-PL IRTmodel

We examine the impact of parameter estimation for the EMalgorithm and the PG-INLA algorithmwhen 1000 indi-
viduals respond to 40 items in the simulation study of the one-dimensional 2-PL IRTmodel (i.e.N = 1000, J = 40).
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Following the notations in Equations (16)–(18), the true individual parameter θi is generated by the standard normal
distributionN(0, 1), and the true item parameters aj and dj are yielded by the distributions LN(0.3, 0.2) andN(0, 1),
respectively. This data generation mechanism is suggested in many papers (see Feinberg & Rubright, 201606; Har-
well & Baker, 1991; Jiang & Templin, 2018, for some examples). To compare the estimation accuracy we compute
the root mean squared errors (RMSEs) for the estimates of three parameters over 100 replications. For example, the
RMSE (θ̂) is defined as

RMSE (θ̂) =
√√√√ 1

100
1
N

100∑
n=1

N∑
i=1

(
θ̂

(n)
i − θ∗i

)2
, (20)

where θ̂
(n)
i is the estimate of θi from the nth replications and θ∗i denotes the true value. And similarly, we can define

the RMSEs for the item parameters aj and dj.
Results are summarized in Table 1 and Figures 1 and 2. From Table 1, the RMSEs between the two algorithms

are all very close, which indicates that the parameter estimation from the PG-INLA algorithm is comparable to
that from the EM algorithm. Furthermore, the PG-INLA outperforms the EM algorithm in the estimation of
discrimination parameters aj.

Figure 1 shows the boxplots of themean squared errors (MSEs) for individual parameters θi and item parameters
aj and dj over 100 replications. For instance, the MSE for the estimate of the parameter θ1 is

MSE (θ̂1) = 1
100

100∑
n=1

(
θ̂

(n)
1 − θ∗1

)2
, (21)

where θ̂
(n)
1 is the estimate of θ1 from the nth replications and θ∗1 is the true value. The left, middle, and right panels of

Figure 1 correspond to the three parameters, individual paramteres θi, discrimination parameters aj and difficulty
parameters dj, respectively. In the left panel, the boxplots with labels ‘EM.θ ’ and ‘PGINLA.θ ’ are based on the
MSEs for θ1, θ2, . . . , θN from the EM algorithm and the PG-INLA algorithm, respectively. Similar labels are given
for the boxplots in the middle and right panels. We see that the MSEs of the parameter estimates based on the two
algorithms are quite close.

Figure 2 shows the one-dimensional density plots of the real value of θi, the estimated value of the EM algorithm
and the PG-INLA algorithm, from which it can be seen that the overall distribution of the estimated results of the
PG-INLA algorithm is very close to the real distribution. According to Figures 1 and 2, for all themodel parameters,
the point estimates given by the PG-INLA algorithm and that given by the EM algorithm are almost the same.

4.2. Multidimensional 2-PL IRTmodel

For multidimensional situations, we compare the proposed algorithm with the QMCEM algorithm and the MH-
RM algorithm implemented in themirt package, in two settings: (1)K = 2, J = 80 andN = 1000; and (2)K = 4,

Table 1. The RMSEs for the estimates of the parameters θi , aj and dj
obtained from the EM algorithm and the PG-INLA algorithm.

EM PG-INLA

RMSE(θ̂ ) 0.277 0.287
RMSE(â) 0.127 0.114
RMSE(d̂) 0.079 0.085

Figure 1. Boxplots of MSEs of the estimated parameters for the EM algorithm and the PG-INLA algorithm: (left) MSEs of individual
parameters θi ; (middle) MSEs of discrimination parameter aj ; (right) MSEs of difficulty parameters dj . (a) θi . (b) aj and (c) dj .
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Figure 2. Density plots of the true value of θi , the estimated value of the EM algorithm and the PG-INLA algorithm.

Table 2. The RMSE for aj , dj , θ i and σkk′ , k �= k′ for K = 2 and K = 4.

QMCEM MH-RM PG-INLA QMCEM MH-RM PG-INLA

Algorithm K = 2 K = 4

RMSE(θ̂ ) 0.301 0.293 0.286 0.326 0.311 0.272
RMSE(â) 0.124 0.083 0.101 0.130 0.073 0.084
RMSE(d̂) 0.098 0.087 0.134 0.085 0.138 0.147
RMSE(σ̂ ) 0.091 0.037 0.003 0.097 0.052 0.005
Elapsed time (s) 171.56 61.04 392.78 257.33 156.21 469.92

J = 160 and N = 1000. And we consider a straightforward confirmatory design with 40 items to measure each
latent trait. In other words, items 1-40measure the first latent trait, items 41–80measure the second latent trait, and
so on. The distributions to generate the true non-zero discrimination parameters ajk and the difficulty parameters
dj are the same as those in one-dimensional simulation. The true individual parameters θ i are from a multivariate
normal distribution where the mean vector is 0 and the true correlation among the latent trait dimensions are all
set to 0.6.

The three algorithms are compared using 100 replications of each setting. Table 2 presents the RMSE results of
the three algorithms for all parameters in two different dimensions. For example, the RMSE for a is computed as

RMSE (â) =
√√√√ 1

100
1
M

100∑
n=1

J∑
j=1

K∑
k=1

(
â(n)
jk − a∗jk

)2
, (22)

whereM is the number of non-zero aj, j = 1, 2, . . . , J, â(n)
jk is the estimate of nth replication and a∗jk is the true value.

For the two different dimensions (K = 2 andK = 4), the RMSEs of the three algorithms on the four parameters are
close. Particularly, the PG-INLA algorithm obtains more accurate results of individual parameters θ i and 
 than
those of the QMCEM algorithm and the MH-RM algorithm.

The boxplots of the MSEs for individual parameters θ i, item parameters aj and dj for K = 2 and K = 4 are
presented in Figures 3 and 4, respectively. The corresponding MSE is calculated in a similar way as Equation (21).
Figures 3(a) and 4(a), Figures 3(a) and 4(a) as well as Figures 3(c) and 4(c) correspond to the three parameter, θ i,
aj and dj, respectively. In each panel, the meaning of label is similar to that of label in a one-dimensional simula-
tion study. The boxplots of aj contains only non-zero elements. The PG-INLA algorithm estimation for the item
parameter aj and dj is always better than one of the QMCEM algorithm and the MH-RM algorithm. The robust-
ness of PG-INLA algorithm on individual parameter θ i estimation is implied by the fact that theMSEs of PG-INLA
algorithm on individual parameters θ i does not increase as the dimensionality of latent traits rises.

In general, the PG-INLA algorithm does produce superior or comparable accuracy compared with other two
algorithms. However, from the time taken by the three algorithms to reach the converged state, as shown in Table 2,
we see the PG-INLA algorithm costs themost. On the other hand, Table 2 also indicates that when theMIRTmodel
becomes more complex, the PG-INLA algorithm shows the feature of scalability, as the time increase is relatively
the least among the three algorithms.

5. Application

We further illustrate the performance of the proposed PG-INLA algorithm through an application to a personality
assessment dataset based on an International Personality Item Pool-Neuroticism, Extraversion & Openness (IPIP-
NEO) personality inventory (Johnson, 2014). This is a free public domain version of the popular and widely used
NEO personality inventory (Costa &McCrae, 2008), which is applied to assess the Big Five personality latent traits
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Figure 3. Boxplots of MSEs of the estimated parameters for the QMCEM algorithm, MH-RM algorithm and PG-INLA algorithmwhen
the latent dimension is 2: (left) MSEs of individual parameters θ i ; (middle) MSEs of non-zero discrimination parameter aj ; (right) MSEs
of difficulty parameters dj . (a) θ i . (b) aj and (c) dj .

Figure 4. Boxplots of MSEs of the estimated parameters for the QMCEM algorithm, MH-RM algorithm and PG-INLA algorithmwhen
the latent dimension is 4: (left) MSEs of individual parameters θ i ; (middle) MSEs of non-zero discrimination parameter aj ; (right) MSEs
of difficulty parameters dj . (a) θ i . (b) aj and (c) dj .

(K = 5): neuroticism (N), extraversion (E), openness to experience (O), agreeableness (A), and conscientiousness
(C) (see Chen et al., 2017; Zhang et al., 2020).

The dataset includes 20993 people and 300 items and we use a subset of it, which contains information from
3000 participants who have completed all of the 300 items. Chen et al. (2017) conducted a structured latent factor
analysis using this dataset of 7325 individuals who completed all the items. According to the identifiability theory
provided by Chen et al. (2017), the measurement design matrix has a simple structure, which is a safe design for
model identification. Each item in this design only evaluates one latent trait, and each trait is evaluated by 60 items.
All of the items are on a five-category rating scale, and in order to fit a M2PL IRT model, we binarize them by
merging categories {1, 2, 3} and {4, 5} which was also suggested by Chen et al. (2017).

To further demonstrate the accuracy and efficacy of the PG-INLA algorithm, we also reproduce the results of
Chen et al. (2017) as a comparison. The results are summarized by Figures 5 and 6. Figure 5 shows the boxplots of
the 300 estimated unconstrained loadings, each of the five factors has 60 unconstrained loadings. The left panel is
the results from the PG-INLA algorithm and the right panel is the results from the structured latent factor analysis.
We find that the estimated unconstrained loadings of bothmethods are very close, ignoring the difference in sample
sizes as the sample sizes in both methods are very large. In particular, the medians of the boxplots corresponding
to each latent factor are almost identical and the majority of the estimated unconstrained loadings fall between
0.5 and 2.5. Figure 6 presents the factor correlation matrix calculated with the estimated factor scores, with the
left panel from the proposed PG-INLA algorithm and the right panel from the structured latent factor analysis,
which shows no much difference. Both of them are largely consistent with the research on the Big Five personality
traits by Digman (1997). The convergence time of the PG-INLA algorithm and the structured latent factor analysis
are 1124.86 s and 802.73 s, respectively. From the results above, we see that the results obtained by the PG-INLA
algorithm are close to those from Chen et al. (2017).

6. Conclusion

In this paper, we propose a PG-INLA algorithm for estimating 2-PL IRT model parameters. Thanks to the bene-
ficial properties of the Pólya-Gamma distributions, the Gibbs part of the proposed algorithm could have a faster
sampling. And due to the quick approximation nature of the INLA algorithm itself, the PG-INLA algorithm can
converge with far fewer iterations and have higher efficiency than some fully Bayesian algorithms. Furthermore,
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Figure 5. The boxplots of the 60 estimated unconstrained loadings for each of the five factors for the IPIP-NEO dataset: (left) the
estimated unconstrained loadings from PG-INLA algorithm; (right) the estimated unconstrained loadings from Chen et al. (2017). (a)
PG-INLA and (b) Chen et al.’s algorithm.

Figure 6. The factor correlation matrix between the estimated factor scores for the IPIP-NEO dataset: (left) the factor correlation
matrix fromPG-INLAalgorithm; (right) the factor correlationmatrix fromChenet al. (2017). (a) PG-INLAand (b)Chenet al.’s aogorithm.

the PG-INLA algorithm developed is not only virtually tuning-free and computationally efficient but also produces
estimation that closely resembles the MMLE, which is obtained by the EM algorithm, the QMCEM algorithm
and the MH-RM algorithm. Our simulation studies show that the PG-INLA algorithm is comparable to these
popular MMLE algorithms. In particular, the PG-INLA algorithm outperforms the QMCEM algorithm and the
MH-RMalgorithmwhen the dimensionality of the latent traits space is high. Based on these evidences, the proposed
PG-INLA algorithm has the potential to be used in research for the 2-PL IRT models.

The subsequent research on the PG-INLA algorithm will be expanded in the following directions in the future.
First of all, the 2-PL IRT models used in this paper are for binary response data, where ordinal response data are
usually required because many measurement designs have more than two levels of response. The ordinal response
data could be fitted by the graded response models (GRM) (Samejima, 1968), the generalized partial credit models
(GPCM) (Muraki, 1992) and others. It is possible that the PG-INLA algorithm can be tailored to handle ordinal
IRTmodels, like the GRMs or the GPCMs, as Polson et al. (2013) demonstrated that the Pólya-Gamma strategy can
be extended to a multinomial regression model. Secondly, the three-parameter logistic (3-PL) and four-parameter
logistic (4-PL) IRTmodels are also popular. For example, the 3-PLmodel has onemore guessing parameter than the
2-PLmodel. However, the PG-MCMC algorithm cannot be fully used in 3-PL IRTmodel estimation as its posterior
distributions are not in closed form Jiang and Templin (2018). Nevertheless, if we can use the INLA algorithm to
estimate the guessing parameter simultaneously, then the PG-INLA algorithm can be easily generalized to 3-PL
IRTmodels because of the benefits of keeping the posterior distribution in closed form. Finally, we might be able to
explore the PG-INLA algorithm application onmore complexmodels, such as the ones withmultiple-choice items.
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