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ABSTRACT
This paper introduces a new family of distributions defined in terms of quantile function. The
quantile function introduced here is the sumof quantile functions of life time distributions called
Burr III andWeibull. Different distributional characteristics and reliability properties are included
in the study. Method of Least Square and Method of L-moments are applied to estimate the
parameters of the model. Two real life data sets are used to illustrate the performance of the
model.
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1. Introduction

The distribution function or the quantile function can be applied to describe a probability distribution. The con-
cepts and approaches based on distribution functions are traditionally used in themajority areas of statistical theory,
despite the fact that both the distribution function and the quantile function provide the same information about
the distribution with different interpretations. Quantile-based research has mostly been used when the traditional
approach is difficult or unable to generate the required findings. Moreover, quantile functions have a lot of distinct
characteristics that distribution functions do not possess, making the former highly interesting in some practical
situations. This special feature includes: (a) the sum (product) of two quantile function is again a quantile function;
(b) the randomnumbers can easily be generated froma quantile function; (c) the quantile function of order statistics
contains explicit general distribution forms; (d) dealingwith inference purposes, statistics based onquantiles are fre-
quentlymore robust than those based onmoments in the distribution functionmethod. Inmany situations, quantile
functions give a clear analysis and in some cases like characterizations, solutions are available only in terms of
quantile functions that are not invertible to distribution functions. Hastings Jr et al. (1947) developed a family of dis-
tributions via a quantile function, which was an important development in depicting quantile functions to describe
statistical data. Further information and application of quantile function can be obtained from Gilchrist (2000),
Nair and Sankaran (2009), Nair et al. (2013), Sankaran et al. (2016), Sankaran and Unnikrishnan Nair (2009), and
Parzen (1979) etc. Various forms of quantile function were explained by Ramberg and Schmeiser (1972). Govin-
darajula (1977) made a new quantile function by combining the weighted sum of the quantile functions of two
power distributions. Sankaran and Dileep Kumar (2018) developed a new quantile function based on the sum of
half logistic and exponential geometric distribution. A quantile-based test for exponentiality against decreasing
mean residual quantile function and new better than used in expectation classes of alternatives was conducted by
Sreelakshmi et al. (2018).

The importance of Weibull distribution in reliability analysis is due to its ability to describe the various forms of
failure time data. Many studies are already conducted to describe the properties, applications and generalizations of
Weibull distribution including a review ofWeibull distribution given by Hallinan Jr (1993). Various generalizations
of Weibull distribution are given by Lai et al. (2003) and Mudholkar and Kollia (1994) etc. Weibull distribution has
certain limitations in reliability analysis due to its monotonic behaviour in the failure rate function. This limitation
can be overcome by making use of another lifetime distribution called Burr III distribution. The two-parameter
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Burr type III distribution was initially described by Burr (1942). The Burr type III distribution has a wide range of
applications in statistical modelling including survival and reliability study, finance, forestry, environmental studies
etc. In the study of income and wage distribution, it is known as the Dagum distribution (Dagum, 2008), and in the
meteorological literature, it is known as the kappa-distribution (Mielke, 1973). The hazard rate function of the BIII
distribution has a decreasing or unimodal shape.

The primary goal of this study is to offer a new quantile function that can be used in reliability analysis. The
proposed quantile function is the sum of quantile functions of Weibull and Burr III distributions. The shapes of
the proposed model include decreasing, left skewed, right skewed and symmetrical. The hazard function also con-
tains various shapes such as increasing, decreasing, linear, and upsidedown bathtub shapes for different choices of
parameters. The suggested model has a number of advantages over the existing quantile functions, including the
ability to give awide range of distributional forms for various parameter choices. Additionally, the flexible behaviour
of the hazard quantile function makes the quantile function suitable for modelling different types of lifetime data.
The recommended quantile function is found to be more flexible and tractable than its parent models since it cov-
ers almost all shapes for hazard quantile function, that are not encountered in the case of Burr III and Weibull
models.

For a non-negative random variable X with the distribution function F(x), the quantile functionQ(u) is defined
by,

Q(u) = F−1(u) = inf{x : F(x) ≥ u}, 0 ≤ u ≤ 1.

The quantile density function indicated by q(u) is the derivative of quantile functionQ(u). IfF(x) is right continuous
and strictly increasing, then

F(Q(u)) = u,

so that F(x) = u implies x = Q(u). For the probability density function f (x) of X, we have,

f (Q(u))q(u) = 1.

The suggested quantile function is obtained by taking the sum of quantile functions of Burr III and Weibull
distributions. The survival and quantile functions of Burr III (BIII) distribution are respectively given by,

F̄(x) = 1 − (1 + x−c)−k, c > 0, k > 0 (1)

and

Q1(u) = (u− 1
k − 1)−

1
c , c > 0, k > 0, (2)

where c and k are the shape parameters.
The survival and quantile functions of Weibull (W) distribution are respectively given by,

Ḡ(x) = e−( x
σ )

λ

, σ > 0, λ > 0 (3)

and

Q2(u) = σ
[− log(1 − u)

] 1
λ , σ , λ > 0. (4)

The new class of distributions called Burr III-Weibull (BIIIW) quantile function is obtained by making use of the
property that the sum of two positive quantile functions is again a quantile function

Q(u) = σ
[− log(1 − u)

] 1
λ +

(
u− 1

k − 1
)− 1

c , 0 < u < 1, c, k, σ , λ > 0. (5)

The quantile density function is obtained as,

q(u) = σ
[− log(1 − u)

] 1
λ
−1

λ(1 − u)
+

(
u− 1

k − 1
)− 1

c −1
u− 1

k−1

ck
. (6)

The distribution function for the class of distributions (5) cannot be expressed in closed form, hence it has to be
numerically evaluated. However we may express (6) using the density function f (x) and distribution function F(x)
as,

f (x) = ckλ(1 − F(x))

ckσ [− log(1 − F(x))]
1
λ
−1 + λ(1 − F(x))((F(x))−( 1k ) − 1)−( 1c +1)(F(x))−( 1k+1)

. (7)

The quantile function (5) describes a family of distributions that have varying shapes depending on the parameter
values. For various parameter values, the shapes of density functions are shown in Figure 1. It can be observed
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Figure 1. Plots of the density function for various parameter values.

that the family comprises decreasing, unimodal, positive and negatively skewed models for appropriate parameter
values.

2. Members of the family

The suggested family of distributions (5) including several well-known distributions for various parameter values
is given below.

Case 1: σ = 0, c > 0, k >0

Q(u) = (u− 1
k − 1)−

1
c ,

is the quantile function of the Burr III distribution.
Case 2: c= 1, σ =0

Q(u) = (u− 1
k − 1)−1,

is the quantile function of the Inverse Lomax distribution.
Case 3: k=1, σ =0

Q(u) = (u−1 − 1)−
1
c ,

is the quantile function of the Log-Logistic distribution with scale parameter α = 1.
Case 4: c → 0

Q(u) = σ
[− log(1 − u)

] 1
λ ,

is the quantile function of Weibull distribution.
Also by making use some transformations mentioned in Gilchrist (2000), we can obtain some other well

distributions from the proposed model.
Case 5- Logarithmic Transformation: Using logarithmic transformation in (5), with σ = 0, k = 1 we have

Q(u) = −s log(u−1 − 1),

where s = 1
c , belongs to Logistic distribution with location parameter μ = 0,

Case 6- Reciprocal Transformation : Using reciprocal transformation Q(u) = 1
Q(1−u) in (5), with σ = 0, c>0

and k>0, the quantile function becomes,

Q(u) = (
(1 − u)−α − 1

)η ,

with α = 1
k and η = 1

c . This is the quantile function of Burr XII distribution.
As we already know, the sum of two quantile functions is again a quantile function. But the random variable

associated with the quantile function of the sum is not clearly established in the literature. The theorem below can
be used to determine the random variable associated with the new model (5).

Theorem 2.1: If X ∼ W(λ,σ ), then the random variable
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Y = X + ([1 − e−(X
σ

)λ]−
1
k − 1)−( 1c )has BIIIW(c, k, σ , λ) distribution.

Proof: Let QS(u) and QV(u) be the appropriate quantile functions for the two random variables S and V with
distribution function FS(x) and FV(x).

Then, we know that sum of two quantile function is again a quantile function. Hence Q∗(u) = QS(u) + QV(u).
The random variable corresponding to the quantile functionQ∗(u) is S + QV(FS(S)) andV + QS(FV(V))(given

in Sankaran et al., 2016).
Consider Z∼BIII(c, k) and X ∼ W(λ, σ) then X + QZ(FX(X)) ∼ BIIIW(c, k, σ , λ) distribution.
Given QZ(u) = (u−( 1k ) − 1)−

1
c and FX(X) = 1 − e−(X

σ
)λ , then X + QZ(FX(X)) = X +

([1 − e−(X
σ

)λ]−
1
k − 1)−( 1c ). �

Theorem 2.2: If Y ∼ BIII(c, k), then the random variable
X = Y + σ [− log(1 − (1 + Y−c)−k)]

1
λ has BIIIW(c, k, σ , λ) distribution.

Proof: The proof works the same way as Theorem 2.1. �

3. Distributional characteristics

The quantile basedmeasures of the distributional characteristics such as location, dispersion, skewness, and kurtosis
havewide applications in statistical analysis. It eliminates the requirement to define a distribution using itsmoments.
These measures are used to estimate model parameters by equating population and sample characteristics. For the
model (5), the basic descriptive measures such as the median (M), interquartile range (IQR), Galton’s coefficient
of skewness (S), and Moor’s coefficient of kurtosis (T ) are given below.

The median is a measure of location given by,

Median = Q
(
1
2

)
= σ

[
log(2)

] 1
λ +

(
(0.5)−

1
k − 1

)− 1
c . (8)

The interquartile range is a measure of dispersion given by,

IQR = Q
(
3
4

)
− Q

(
1
4

)

= σ
([
log(4)

] 1
λ − [− log(0.75)

] 1
λ

)

+
(
(0.75)−

1
k − 1

)− 1
c −

(
(0.25)−

1
k − 1

)− 1
c . (9)

Galton’s coefficient of skewness (S) is used to measure skewness,

S = Q( 34 ) + Q( 14 ) − 2Median
IQR

= σ([log(4)]
1
λ + [− log(0.75)]

1
λ − 2[log(2)]

1
λ ) + A

σ([log(4)]
1
λ − [− log(0.75)]

1
λ ) + ((0.75)−

1
k − 1)−

1
c − ((0.25)−

1
k − 1)−

1
c
, (10)

where A = ((0.75)−
1
k − 1)−

1
c + ((0.25)−

1
k − 1)−

1
c − 2((0.5)−

1
k − 1)−

1
c .

The Moor’s coefficient of kurtosis (T) is used to measure kurtosis,

T = Q(0.875) − Q(0.625) + Q(0.375) − Q(0.125)
IQR

= σ([− log(0.125)]
1
λ − [− log(0.375)]

1
λ + [− log(0.625)]

1
λ − [− log(0.875)]

1
λ ) + B

σ([log(4)]
1
λ − [− log(0.75)]

1
λ ) + ((0.75)−

1
k − 1)−

1
c − ((0.25)−

1
k − 1)−

1
c

, (11)

where B = ((0.875)−
1
k − 1)−

1
c − ((0.625)−

1
k − 1)−

1
c + ((0.375)−

1
k − 1)−

1
c − ((0.125)−

1
k − 1)−

1
c .
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4. L-moments

L-moments are frequently found to be preferable to conventional moments in specifying the characteristics of
distributions. Hosking (1990) developed a coherent theory and a comprehensive investigation on L-moments,
investigating the properties of L-moments, their use in summarizing and identifying probability distributions,
estimation techniques based on L-moments etc. L-moments are the expected value of the linear combinations of
order statistics. L-moments are more stable against outliers and have lower sample variances, it also provide better
asymptotic approximations to sampling distributions.

The rth Lmoment is given by,

Lr =
∫ 1

0

r−1∑
k=0

(−1)r−1−k
(
r − 1
k

)(
r − 1 + k

k

)
ukQ(u) du.

The first L-moment (L1) is the mean of the distribution, given by,

L1 =
∫ 1

0
Q(u) du

= σ�

(
1 + 1

λ

)
+ �

(
1 − 1

c

) [
�

(
k + 1

c
)

�k

]
. (12)

The second L-moment is,

L2 =
∫ 1

0
(2u − 1)Q(u) du

= σ�

(
1 + 1

λ

) [
1 − 2− 1

λ

]
+ �

(
1 − 1

c

) [
�

(
2k + 1

c
)

�(2k)
− �

(
k + 1

c
)

�k

]
. (13)

L3 =
∫ 1

0

(
6u2 − 6u + 1

)
Q(u) du

= σ�

(
1 + 1

λ

) [
1 − 3 × 2− 1

λ + 2 × 3− 1
λ

]

+ �

(
1 − 1

c

) [
�(k + 1

c )

�k
− 3�

(
2k + 1

c
)

�(2k)
+ 2�

(
3k + 1

c
)

�(3k)

]
. (14)

L4 =
∫ 1

0

(
20u3 − 30u2 + 12u − 1

)
Q(u) du

= σ�

(
1 + 1

λ

) [
1 − 3 × 21−

1
λ + 10 × 3− 1

λ − 5 × 4− 1
λ

]

+ �

(
1 − 1

c

)
C, (15)

where,

C =
[
5�

(
4k + 1

c
)

�(4k)
− 10�

(
3k + 1

c
)

�(3k)
+ 6�

(
2k + 1

c
)

�(2k)
− �

(
k + 1

c
)

�(k)

]
. (16)

The L-coefficient of variation (τ2), L-coefficient of skewness (τ3) and L-coefficient of kurtosis (τ4) for the model (5),
are given below.

τ2 = L2
L1

=
σ�

(
1 + 1

λ

) [
1 − 2− 1

λ

]
+ �

(
1 − 1

c
) [

�
(
2k+ 1

c
)

�(2k) − �
(
k+ 1

c
)

�k

]

σ�
(
1 + 1

λ

) + �
(
1 − 1

c
) [

�
(
k+ 1

c
)

�k

] . (17)

τ3 = L3
L2
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=
σ�

(
1 + 1

λ

) [
1 − 3 × 2− 1

λ + 2 × 3− 1
λ

]
+ �

(
1 − 1

c
)
D

σ�
(
1 + 1

λ

) [
1 − 2− 1

λ

]
+ �

(
1 − 1

c
) [

�
(
2k+ 1

c
)

�(2k) − �
(
k+ 1

c
)

�k

] , (18)

where D =
[

�(k+ 1
c )

�k − 3�(2k+ 1
c )

�(2k) + 2�(3k+ 1
c )

�(3k)

]
.

τ4 = L4
L2

=
σ�

(
1 + 1

λ

) [
1 − 3 × 21−

1
λ + 10 × 3− 1

λ − 5 × 4− 1
λ

]
+ �

(
1 − 1

c
)
C

σ�
(
1 + 1

λ

) [
1 − 2− 1

λ

]
+ �

(
1 − 1

c
) [

�
(
2k+ 1

c
)

�(2k) − �
(
k+ 1

c
)

�k

] , (19)

where C is given in (16).

5. Order statistics

Order statistics have a wider application in many areas. One of them is system reliability. Let Xi:n be the ith order
statistic of a random sample of size n. Then the density function of Xi:n is given as follows,

fi(x) = 1
B(i, n − i + 1)

f (x)Fi−1(x)(1 − F(x))n−i,

where B(a, b) is the beta function. Substituting (7), we have,

fi(x) = ckλ(F(x))i−1(1 − F(x))n−i+1

B(i, n − i + 1)
(
ckσ [− log(1 − F(x))]

1
λ
−1 + λ(1 − F(x))((F(x))−( 1k ) − 1)−( 1c +1)(F(x))−( 1k+1)) .

Hence

E(Xi:n) = 1
B(i, n − i + 1)

∫ ∞

0
xfi(x) dx.

In quantile terms, we have

E(Xi:n) = 1
B(i, n − i + 1)

∫ 1

0

Q(u)ui−1(1 − u)n−i

q(u)
du.

The quantile function of first order statistic X1:n for the model (5) is given by,

Q1∗(u) = Q(1 − (1 − u)
1
n )

= σ
[
− log (1 − u)

1
n

] 1
λ +

[
(1 − (1 − u)

1
n )−

1
k − 1

]− 1
c . (20)

And the quantile function of nth order statistic Xn:n is

Qn∗(u) = Q(u
1
n )

= σ
[
− log

(
1 − u

1
n

)] 1
λ +

(
u− 1

kn − 1
)− 1

c . (21)

6. Reliability properties

There are several functions available for modelling and analysis of lifetime data such as the hazard rate function,
the mean residual life function etc. Nair and Sankaran (2009) defined the hazard quantile function in a quantile
structure, which is identical to the hazard rate. Hazard rate can be defined as the conditional probability of a unit
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failing in the next small interval of time given that the unit has survived age x. The hazard quantile function H(u)
is defined as,

H(u) = h(Q(u)) = [
(1 − u)q(u)

]−1 . (22)

Note that H(u) uniquely determines the distribution using the identity

Q(u) =
∫ u

0

dp
(1 − p)H(p)

. (23)

The hazard quantile function of Weibull and Burr III distribution respectively are,

H1(u) = λσ−1 [− log(1 − u)
]1− 1

λ (24)

and H2(u) = ck (1 − u)−1
(
u− 1

k − 1
)1+ 1

c u1+
1
k . (25)

Since the suggested class of distributions is the sum of quantile functions ofWeibull and Burr III quantile functions,
Equations (22) and (23) give,

1
H(u)

= 1
H1(u)

+ 1
H2(u)

.

For the class of distributions (5) the hazard quantile function has the form,

H(u) = ckλ

λ(1 − u)(u− 1
k − 1)−

1
c −1u− 1

k−1 + ckσ
[− log(1 − u)

] 1
λ
−1

, (26)

which allows increasing, decreasing, linear, bathtub and upside-down bathtub shapes for different choices of
parameters. Figure 2 shows plots of the hazard quantile function for various parameter values.

Using the derivative of H(u) we can obtain the shape of the hazard function as,

H′(u) = h′(u)[
λ(1 − u)(u− 1

k − 1)−
1
c −1u− 1

k−1 + ckσ
[− log(1 − u)

] 1
λ
−1

]2 .

Since [λ(1 − u)(u− 1
k − 1)−

1
c −1u− 1

k−1 + ckσ [− log(1 − u)]
1
λ
−1]2 > 0 for all values of the parameters, the sign of

H′(u) depends on h′(u) given by,

h′(u) =
(c + 1)(u − 1)

(
u− 1

k − 1
)− 1

c
λ2

u2
(
u

1
k − 1

)2 +
c(k + 1)(u − 1)

(
u− 1

k − 1
)− 1

c
λ2

u2
(
u

1
k − 1

)

−
ck

(
u− 1

k − 1
)− 1

c
λ2

u
(
u

1
k − 1

) − c2k2
( 1

λ
− 1

)
λσ

[− log(1 − u)
]−2+ 1

λ

1 − u
.

Let u0 be the critical point of H(u) satisfying the non-linear equation h′(u0) = 0. Since u0 has no closed-form, we
need to use anymathematical software for its numerical evaluation. Also, we know that the sign of h′′(u0) represents
the nature of u0: u0 is local minimum if h′′(u0) > 0 and local maximum if h′′(u0) < 0.

In reliability analysis, themean residual function is awell-known statistic that has beenwidely used formodelling
lifetime data. The average remaining life of a system given that the system has lasted upto a specific age is called
the mean residual life. The quantile version of the mean residual function proposed by Nair and Sankaran (2009)
is given by,

M(u) = 1
1 − u

∫ 1

u

(
Q(p) − Q(u)

)
dp.

For the model (5),M(u) has the form,

M(u) = σ�
( 1

λ
+ 1,− log(1 − u)

)
1 − u

− σ
(− log(1 − u)

) 1
λ
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+ k
1 − u

[
B

(
k + 1

c
, 1 − 1

c

)
− B

u
1
k

(
k + 1

c
, 1 − 1

c

)]

−
(
u− 1

k − 1
)− 1

c , Re
(
1
c

)
< 1, (27)

where Bu(a, b) = ∫ u
0 xa−1(1 − x)b−1 dx is the incomplete beta and �(s, t) = ∫ 1

t xs−1e−x dx is the upper incomplete
gamma function.

The hazard quantile function and mean residual quantile function defined in reverse time have the following
expression.

� = (uq(u))−1

= ckλ(1 − u)

u
[
ckσ

(− log(1 − u)
) 1

λ
−1 + λ(1 − u)

(
u− 1

k − 1
)− 1

c −1
u− 1

k−1
] . (28)

R(u) = 1
u

∫ u

0
[Q(u) − Q(p)] dp.

Figure 2. Plots of the hazard quantile function for various parameter values.
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= σ
(− log(1 − u)

) 1
λ − σγ ( 1

λ
+ 1,− log(1 − u))

u

+
(
u− 1

k − 1
)− 1

c − k
u

[
B
u
1
k

(
k + 1

c
, 1 − 1

c

)]
, Re

(
1
c

)
< 1, (29)

where Bu(a, b) = ∫ u
0 xa−1(1 − x)b−1 dx is the incomplete beta and γ (s, t) = ∫ t

0 x
s−1e−x dx is the lower incomplete

gamma function. R(u) represents the time elapsed since the failure of a unit given that its lifetime is at most x.
The total time on the test transform (TTT) is a well-known statistical method with numerous applications in

reliability analysis (Lai & Xie, 2006). The quantile-based TTT proposed by Nair et al. (2008) takes the following
form:

T(u) =
∫ u

0
(1 − p)q(p) dp.

Another relationship between total time on test transform and reversed mean residual quantile function (see Nair
et al., 2008) has the expression,

T(u) = Q(u) − uR(u).

= σ
(− log(1 − u)

) 1
λ [1 − u] + (u− 1

k − 1)−
1
c [1 − u]

+ σγ

(
1
λ

+ 1,− log(1 − u)
)

+ kB
u
1
k

(
k + 1

c
, 1 − 1

c

)
. (30)

The total time in the test statistic is the sum of all observed and incomplete life durations. As the number of units
on test approaches infinity, the limit of this statistic is known as the total time on test transform (TTT).

7. Inference and applications

The most commonly used methods for estimating the parameters of quantile function are method of percentiles,
method of L-moments, method of least squares, method of maximum likelihood etc. Here method of least square
and method of L-moments are employed to estimate the parameters of the model (5).

7.1. Method of least square estimation (LSE)

Let X1,X2, . . . ,Xn be a random sample of size n from a population of lifetime with quadratic hazard quantile
function. Consider X(i) be the ith order statistics of random sample of size n. The random variable X(i) has the
same distribution as the random variable Q(ui, θ̂ ), where u(i) is the order statistics of the sample following uni-
form distribution and θ̂ is the estimate of the model’s parameter vector. The method of least squares, estimates
the unknown parameters (θ1, θ2, . . . , θn) by minimising the sum of squares of theoretical and empirical quantile
differences (Hankin & Lee, 2006). The function for which we compute the minimum then takes the following form,

S(θ1, θ2, . . . , θn) =
n∑

i=1

(
X(i) − Q(u(i), θ)

)2 .

7.2. Method of Lmoments (MLM)

In this method, the sample L-moments are equated to the population L-moments. Let X1,X2, . . . ,Xn be a random
sample of size n from the population having quantile function (5). Then the corresponding sample L-moments are:

l1 = 1
n

n∑
i=1

X(i),

l2 =
(
1
2

) (
n
2

)−1 n∑
i=1

((
i − 1
1

)
−

(
n − i
1

))
X(i),

l3 =
(
1
3

) (
n
3

)−1 n∑
i=1

((
i − 1
2

)
− 2

(
i − 1
1

)(
n − i
1

)
+

(
n − i
2

))
X(i),

l4 =
(
1
4

) (
n
4

)−1 n∑
i=1

((
i − 1
3

)
− 3

(
i − 1
2

)(
n − i
1

)
+ 3

(
i − 1
1

)(
n − i
2

)
−

(
n − i
3

))
X(i),
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Table 1. The sample L-moment values for dataset1
and dataset2.

l1 l2 l3 l4

DataSet-1 4.3253 0.5688 −0.0500 0.0919
DataSet-2 92.0745 51.3599 22.0285 11.062

Table 2. The basic descriptive statistics of the two datasets.

Median IQR Skewness (S) Kurtosis (T)

Dataset-1 4.3566 1.3232 −0.0358 1.246
Dataset-2 55.1305 107.198 0.3477 1.4241

Table 3. Goodness-of-fit statistics corresponding to the two datasets.

DataSet-1 DataSet-2

Parameters χ2(dof) p-value Parameters χ2(dof) p-value

LSE c = 7.084 19.2516(13) 0.115 c = 2.2448 16.6332(16) 0.409
k = 0.5882 k = 16.8983
λ = 6.2665 λ = 0.8285
σ = 3.8404 σ = 82.7944

MLM c = 7.4363 9.3154(13) 0.748 c = 1.9101 11.8295(16) 0.7556
k = 0.4457 k = 16.9201
λ = 5.6163 λ = 0.7971
σ = 3.7564 σ = 78.9684

Table 4. The chi-square with p-values for the
datasets.

Dataset1 Dataset2

Models χ2 p-value χ2 p-value

BIIIW 9.31543 0.7487 11.8295 0.7556
W 12.4163 0.4938 14.4481 0.5653
BIII 18.8007 0.1294 21.5262 0.1591

where X(i) denotes the ith order statistic. We equate the first four sample L moments with the corresponding
population Lmoments for obtaining the estimates of the parameters c, k, λ, σ . Hence, we have

lr = Lr, r = 1, 2, 3, 4.

7.3. Applications

Here we consider two real datasets to compare the proposed estimation techniques and to demonstrate the applica-
bility of the BIIIW quantile function. Chi Square Goodness of fit andQ−Q plot techniques were used to determine
the effectiveness of the proposed model. The Q − Q plot indicates the physical closeness of the model. The first
data taken from Nadarajah and Kotz (2008) represents fracture toughness of Alumina, (Al2O3) (in the units of
MPam

1
2 ) presented in Table A1 (see Appendix). The second data deals with the number of consecutive failures of

jet airplanes air conditioning system, (for details see Huang and Oluyede (2014)) given in Table A2.
For the computation of the MLM method, the sample L-moments are calculated for both of the datasets which

are described in Table 1. The Newton-Raphson technique is used to solve the four nonlinear equations, which
are formed by equating the values of sample L-moments with the corresponding population L-moments given in
(12)–(15). The value of the parameters which are obtained using the LSE technique are used as the initial values
for the Newton Raphson procedure. The descriptive statistics for the datasets are shown in Table 2. The estimated
values, Chi square with degree of freedom (dof) and p-values obtained using the two estimation techniques are
shown in Table 3. The results were obtained using the MATHEMATICA software.

From the Chi square values shown in the Table 3, it is evident that the MLM estimation technique is found to be
the best fit in both cases. The Figures 3 and 4 represent the Q − Q plots of the datasets corresponding to LSE and
MLM techniques. That is, Q−Q plots also guarantees the result obtained using the Chi square values. As a result,
of the two described estimation methods, the MLM is found to be the most suitable estimation method for each of
the datasets.

The proposed model is then compared against the Weibull (W) and BurrIII (BIII) models. MLM technique
is used to find the estimates of comparable models. Figure 7 displays the estimated density and histogram of the
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Figure 3. Q − Q plot corresponing to LSE and MLM estimates for the first dataset.

Figure 4. Q − Q plot corresponing to LSE and MLM estimates for the second dataset.

datasets for the BIIIW,Wand BIIImodels. This demonstrates that in both cases, our proposed distribution provides
a better fit than the other two models. The Chi-square value and p-value obtained for the models BIIIW, W and
BIII are given in Table 4. Based on the Chi-square values also, we can conclude that our model gives a better fit. The

Figure 5. (a) Hazard quantile plot of the first dataset. (b) Hazard quantile plot of the second dataset.

Figure 6. (a) Mean residual plot of the first dataset. (b) Mean residual plot of the second dataset.
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Figure 7. (a) The fitted density of the first dataset. (b) The fitted density of the second dataset.

Figures 5 and 6 describe the flexible nature of the hazard quantile function andmean residual function for different
estimates. It is obvious from the shapes of Ĥ(u), that the newmodel may be applied to examine a variety of lifetime
data.

8. Conclusion

In this paper, we introduced a new quantile function called the BIIIW quantile function, which is the sum of the
quantile functions of Burr III and Weibull distributions. The new model has several sub-models such as Inverse-
Lomax, Logistic, Weibull, Log-Logistic etc. Different reliability properties of the suggested class are discussed. The
new model achieves several interesting behaviours for the hazard quantile function. The estimation of parameters
of the model is conducted using the method of Least square and the method of L-moments. The applications of the
proposed model were studied with the use of two real life datasets. From the two applications, it is clear that the
proposed model provides a better fit than the other competing models. The flexible nature of the hazard quantile
function makes the model effective for fitting many types of lifetime data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

G. S. Deepthy http://orcid.org/0000-0001-6985-5806
Nicy Sebastian http://orcid.org/0000-0001-8223-7834
N. Chandra http://orcid.org/0000-0002-1213-7739

References

Burr, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics, 13(2), 215–232. https://doi.org/10.
1214/aoms/1177731607

Dagum, C. (2008). A new model of personal income distribution: specification and estimation (pp. 3–25). Springer.
https://doi.org/10.1007/978-0-387-72796-7_1

Gilchrist, W. (2000). Statistical modelling with quantile functions. Chapman and Hall/CRC.
Govindarajula, Z. (1977). A class of distributions useful in life testing and reliability. IEEE Transactions on Reliability, 26(1),

67–69. https://doi.org/10.1109/TR.1977.5215079
Hallinan Jr, A. J. (1993). A review of the Weibull distribution. Journal of Quality Technology, 25(2), 85–93. https://doi.org/10.

1080/00224065.1993.11979431
Hankin, R. K., & Lee, A. (2006). A new family of non-negative distributions. Australian & New Zealand Journal of Statistics,

48(1), 67–78. https://doi.org/10.1111/anzs.2006.48.issue-1
Hastings Jr, C., Mosteller, F., Tukey, J. W., &Winsor, C. P. (1947). Lowmoments for small samples: A comparative study of order

statistics. The Annals of Mathematical Statistics, 18(3), 413–426. https://doi.org/10.1214/aoms/1177730388
Hosking, J. R. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal

of the Royal Statistical Society: Series B (Methodological), 52(1), 105–124. http://www.jstor.org/stable/2345653
Huang, S., & B. O. Oluyede (2014). Exponentiated Kumaraswamy-Dagum distribution with applications to income and lifetime

data. Journal of Statistical Distributions and Applications, 1(1), 1–20. https://doi.org/10.1186/2195-5832-1-8
Lai, C. D., & Xie, M. (2006). Stochastic ageing and dependence for reliability. Springer Science & Business Media.
Lai, C. D., Xie, M., & Murthy, D. N. P. (2003). A modified Weibull distribution. IEEE Transactions on Reliability, 52(1), 33–37.

https://doi.org/10.1109/TR.2002.805788

http://orcid.org/0000-0001-6985-5806
http://orcid.org/0000-0001-8223-7834
http://orcid.org/0000-0002-1213-7739
https://doi.org/10.1214/aoms/1177731607
https://doi.org/10.1007/978-0-387-72796-7_1
https://doi.org/10.1109/TR.1977.5215079
https://doi.org/10.1080/00224065.1993.11979431
https://doi.org/10.1111/anzs.2006.48.issue-1
https://doi.org/10.1214/aoms/1177730388
http://www.jstor.org/stable/2345653
https://doi.org/10.1186/2195-5832-1-8
https://doi.org/10.1109/TR.2002.805788


STATISTICAL THEORY AND RELATED FIELDS 13

Mielke, P. W. (1973). Another family of distributions for describing and analyzing precipitation data. Journal of Applied
Meteorology and Climatology, 12(2), 275–280. https://doi.org/10.1175/1520-0450(1973)012< 0275:AFODFD> 2.0.CO;2

Mudholkar, G. S., & Kollia, G. D. (1994). GeneralizedWeibull family: A structural analysis.Communications in Statistics-Theory
and Methods, 23(4), 1149–1171. https://doi.org/10.1080/03610929408831309

Nadarajah, S., & Kotz, S. (2008). Strength modeling using Weibull distributions. Journal of Mechanical Science and Technology,
22(7), 1247–1254. https://doi.org/10.1007/s12206-008-0426-5

Nair, N. U., & Sankaran, P. G. (2009). Quantile-based reliability analysis. Communications in Statistics-Theory and Methods,
38(2), 222–232. https://doi.org/10.1080/03610920802187430

Nair, N. U., Sankaran, P. G., & Balakrishnan, N. (2013). Quantile-based reliability analysis. Springer Science & Business Media.
Nair, N. U., Sankaran, P. G., & Kumar, B. V. (2008). Total time on test transforms of order n and their implications in reliability

analysis. Journal of Applied Probability, 45(4), 1126–1139. https://doi.org/10.1239/jap/1231340238
Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American Statistical Association, 74(365), 105–121.

https://doi.org/10.1080/01621459.1979.10481621
Ramberg, J. S., & Schmeiser, B.W. (1972). An approximatemethod for generating symmetric randomvariables.Communications

of the ACM, 15(11), 987–990. https://doi.org/10.1145/355606.361888
Sankaran, P. G., & Dileep Kumar, M. (2018). A new class of quantile functions useful in reliability analysis. Journal of Statistical

Theory and Practice, 12(3), 615–634. https://doi.org/10.1080/15598608.2018.1448732
Sankaran, P. G., Nair, N. U., & Midhu, N. N. (2016). A new quantile function with applications to reliability analysis.

Communications in Statistics-Simulation and Computation, 45(2), 566–582. https://doi.org/10.1080/03610918.2013.867992
Sankaran, P. G., & Unnikrishnan Nair, N. (2009). Nonparametric estimation of hazard quantile function. Journal of Nonpara-

metric Statistics, 21(6), 757–767. https://doi.org/10.1080/10485250902919046
Sreelakshmi, N., Kattumannil, S. K., & Asha, G. (2018). Quantile based tests for exponentiality against DMRQ and NBUE

alternatives. Journal of the Korean Statistical Society, 47(2), 185–200. https://doi.org/10.1016/j.jkss.2017.12.003

Appendix

Table A1. Fracture toughness data of Alumina (Al2O3).

5.5 5 4.9 6.4 5.1 5.2 5.2 5 4.7 4
4.5 4.2 4.1 4.56 5.01 4.7 3.13 3.12 2.68 2.77
2.7 2.36 4.38 5.73 4.35 6.81 1.91 2.66 2.61 1.68
2.04 2.08 2.13 3.8 3.73 3.71 3.28 3.9 4 3.8
4.1 3.9 4.05 4 3.95 4 4.5 4.5 4.2 4.55
4.65 4.1 4.25 4.3 4.5 4.7 5.15 4.3 4.5 4.9
5 5.35 5.15 5.25 5.8 5.85 5.9 5.75 6.25 6.05
5.9 3.6 4.1 4.5 5.3 4.85 5.3 5.45 5.1 5.3
5.2 5.3 5.25 4.75 4.5 4.2 4 4.15 4.25 4.3
3.75 3.95 3.51 4.13 5.4 5 2.1 4.6 3.2 2.5
4.1 3.5 3.2 3.3 4.6 4.3 4.3 4.5 5.5 4.6
4.9 4.3 3 3.4 3.7 4.4 4.9 4.9 5

Table A2. Number of failures for the air conditioning system of jet
airplanes.

194 413 90 74 55 23 97 50 359 50
130 487 57 102 15 14 10 57 320 261
51 44 9 254 493 33 18 209 41 58
60 48 56 87 11 102 12 5 14 14
29 37 186 29 104 7 4 72 270 283
7 61 100 61 502 220 120 141 22 603
35 98 54 100 11 181 65 49 12 239
14 18 39 3 12 5 32 9 438 43
134 184 20 386 182 71 80 188 230 152
5 36 79 59 33 246 1 79 3 27
201 84 27 156 21 16 88 130 14 118
44 15 42 106 46 230 26 59 153 104
20 206 5 66 34 29 26 35 5 82
31 118 326 12 54 36 34 18 25 120
31 22 18 216 139 67 310 3 46 210
57 76 14 111 97 62 39 30 7 44
11 63 23 22 23 14 18 13 34 16
18 130 90 163 208 1 24 70 16 101
52 208
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