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ABSTRACT ARTICLE HISTORY

The integrated nested Laplace approximation (INLA) algorithm pro- Received 15 August 2025
vides a computationally efficient approach for approximate Bayesian Accepted 9 November 2025
inference, overcoming the limitations of traditional Markov chain

- . . KEYWORDS
Monte Ce_lrlo (MCMCQ) mgthod;. This paper reviews INLA algorithm Approximate Bayesian
and provides a systematic review of six key books that explore the inference: INLA:
theoretical foundations, practical implementations, and diverse appli- computational efficiency;
cations of INLA. These six books cover spatial and spatio-temporal spatial; spatio-temporal

modelling, general Bayesian inference, SPDE-based spatial analysis,
geospatial health data, regression modelling, and dynamic time series.
In addition, these books highlight the versatility of INLA method in
handling complex models while maintaining high computational effi-
ciency. This paper begins with an introduction to the INLA method and
algorithm, followed by a systematic review of six key publicationsin the
field.

1. Introduction of INLA method

Bayesian inference, widely employed in statistical modelling and machine learning, combines
prior distributions with likelihood functions via Bayes’ theorem to derive posterior distri-
butions for model fitting and prediction. In Bayesian inference, priors can take two forms:
(1) subjective priors informed by historical data or domain expertize, or (2) objective pri-
ors constructed using formal rules such as Laplace’s flat prior, Jeffreys prior, or reference
priors. Bayesian inference is not only applicable to simple models with explicit common
posterior distributions, but also to complex models with many parameters in the model or
latent structure. Such complex models are usually difficult to explicitly represent the poste-
rior distribution as they often involve complex high-dimensional integral calculations, for
which the traditional numerical integration approximation and Monte Carlo integration are
obviously unable to cope with the ‘curse of dimensionality’ problem. The amount of com-
putation involved in the posterior inference increases exponentially with the increase of
dimensionality of the parameters.

With the introduction and subsequent popularization of the Markov chain Monte Carlo
(MCMC) algorithm in the 1980s, the challenge of solving complex integrals in Bayesian
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inference was effectively addressed by iteratively generating samples from the posterior dis-
tribution via a Markov chain. In parallel, to substantially reduce programming complexity,
see influential early references, such as Hastings (1970), Geman and Geman (1984), Gelfand
and Smith (1990) and Robert et al. (2004). Various Bayesian inference software tools based on
probabilistic programming paradigms such as WinBUGS, OpenBUGS, JAGS, NIMBLE, and
Stan, along with corresponding R packages, such as R2ZWinBUGS, R20penBUGS, rjags,
R2jags, runjags, nimble, and rstan, as well as Python libraries like PyMC3, have
been progressively developed and released. These tools have contributed to the emergence
of a series of intelligent Bayesian inference engines primarily based on the BUGS language.
These softwares and packages are now widely applied to analyze complex models with mas-
sive data size arising from diverse domains including sociology, ecology, environmental
science, econometrics, finance and economics, biomedicine, epidemiology, and insurance.
This widespread application, in turn, brings challenges in computation and creates new
opportunities for further optimization and long-term advancement of MCMC algorithms.
Consequently there has been a surge in accelerating and parallel MCMC algorithms in the
last three decades; see a thorough review by Robert et al. (2018). However, these more efficient
algorithms introduce tuning parameters which are usually not adaptive.

The MCMC algorithm is essentially an iterative algorithm of rejection-acceptance sam-
pling, and the key is to indirectly extract Markov chains from the posterior distribution.
Under certain regular conditions, it can be guaranteed that the iterative values from the
Markov chain when reaching the stationary state can be used as a posterior sample for Monte
Carlo integrals. This process is the origin of the acronym MCMC. Theoretically, given a
sufficient number of iterations, the iterative values provided by the MCMC algorithm will
eventually converge to our pre-specified target distribution, i.e., the posterior distribution.
Bayesian inference based on MCMC algorithms, such as the typical Metropolis-Hastings
algorithm and Gibbs sampling, can theoretically be regarded as an accurate posterior infer-
ence method. However, high precision usually suffers from long-run iterations to achieve
stationarity, especially for those complex models with highly correlated high-dimensional
parameters. In particular, the sampling efficiency of the MCMC algorithm depends on some
of the following skills involved in the actual use.

(1) Selection of the Markov transition kernels: Poor transition kernels will cause the speed of
the convergence to become very slow. The posterior samples may be strongly correlated,
or the percentage of acceptance is very low.

(2) Convergence diagnosis: This usually requires human intervention, either through a con-
vergence diagnostic diagram of multiple strands (e.g., sample trace plots, ergodic mean
plots, autocorrelation plots), or by examining diagnostic indicators such as Markov chain
errors and the Brooks-Gelman-Rubin (BGR) diagnostic statistic, commonly referred to
as the potential scale reduction factor (PSRF).

(3) Selection of valid samples: In order to ensure the accuracy of the inference, the con-
vergent Markov model still needs to discard a part of the initial iterative values (called
burn-in) and select a part of the iterative values (called thinning) at the final posterior
sample, which will directly affect the accuracy of posterior inference.

Therefore, theoretically perfect MCMC algorithms still face the ‘curse of dimensionality’
problem in practical use, which manifests as a scalability issue in computation and, to a large
extent, hinders the implementation of Bayesian inference for complex models.
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In the past twenty years, approximate Bayesian inference has emerged quietly, at nearly
the same time as accelerating MCMC. Approximate Bayesian computation (ABC), varia-
tional Bayes (VB) and INLA are the three types of computation methods rooted in Bayesian
statistics. ABC methods date back to the 1980s (Rubin, 1984). As it bypasses the eval-
uation of the likelihood function, it rapidly gained popularity over the last twenty years
and in particular for the analysis of complex problems arising in biological sciences. See
Sunnéker et al. (2013) for a detailed introduction about ABC. VB, an optimization-based
technique for approximate Bayesian inference (Attias, 1999), makes use of the mean field
approximation, making a factorized approximation to the true posterior. VB is computa-
tionally efficient and can be applied to a large class of probabilistic models in Bayesian
statistics and machine learning (Peterson, 1987; Winn & Bishop, 2005). INLA is a compu-
tationally efficient method for approximate Bayesian inference in latent Gaussian models,
using nested Laplace approximations to estimate posterior marginal distributions without
relying on Markov chain Monte Carlo (MCMC) simulations. It is particularly well-suited
for large-scale spatial, temporal, and spatio-temporal models. See Rue et al. (2017) and
Van Niekerk et al. (2023) for the development and diverse applications of INLA from
two review papers in two periods (before and after 2016) in history since the advent
of INLA.

2. INLA algorithm

This paper serves as reviews of six books on INLA. Thus we simply describe the approxi-
mate Bayesian method first. Proposed by Rue et al. (2009), INLA aims to provide a fast and
accurate approximate Bayesian computational method. A latent Gaussian model (LGM) is
essentially a hierarchical Bayesian model that consists of a likelihood function with linear
predictors, a latent Gaussian random field (LGRF), and a prior distribution for a vector of
hyperparameters, which can be expressed mathematically as follows:

y1x01~ HP()’:’ | 7i(x),01),

%10, ~N(0,Q7 (8,)). 1)

0 = (01,02) ~ 7 (),

where the linear predictor #; is composed of the latent variable vectors x and other covariates,
0 is the vector of hyperparameters in the LGM, 7 (@) is the prior distribution of #, and Q(6-)
is the precision matrix. The likelihood function p(-|-, -) in the model has no restrictions, and
the linear predictor #; can include linear fixed effects and linear or nonlinear random effects,
which can also smooth effects, spatial effects, or temporal effects. It can be seen that LGM
can include many complex models, such as well-known generalized linear models (GLM),
generalized additive models (GAM), time series models, spatial models and measurement
error models.

LGREF is also known as Gaussian Markov Random Field (GMRF) (Rue & Held, 2005), and
its latent effect x satisfies Markov property and normality, where Markov property guarantees
the following: (1) the conditional independence between the latent variables, i.e., x; L xj|x—j;
(2) for i # j, xi L xj|x—; if and only if Q;;(#2) = 0, i.e., the precision matrix is sparse. In
this way, although x is usually high-dimensional, the sparsity of the precision matrix and



4 P. WANG ET AL.

the low-dimensional characteristics of the hyperparameter vector # ensure that the param-
eters to be estimated in this model can be greatly reduced, which is the key to the rapid
implementation of Bayesian calculations by the INLA method.

Based on the above theory, Rue et al. (2009) developed the INLA algorithm to calcu-
late the posterior distribution of the hyperparameter vector 6, 7 (8|y), and the marginal
posterior distribution of the latent effect x;. Here the ‘Laplace approximation’ is applied
to the conditional posterior distribution of x, and the ‘nested’ is applied to the numerical
integral approximation. In order to facilitate the popularization and use of the algorithm,
Rue et al. (2009) developed the R package INLA, also called R-INLA based on the
C library of the same name, GMRE which has been quite stable and widely used for
more than ten years. In addition, in order to implement Bayesian analysis of spatial
data on geographic regions, Lindgren et al. (2011) pointed out that Gaussian continuous
space processes with Matérn covariance structure can be used as a solution to stochastic
partial differential equation (SPDE) for LGRF on approximate continuous space. More-
over, they developed an algorithm for this LGRF based on the finite element method
and created the R package inlabru, which extends the R-INLA package and also
enables geographic mapping. Finally, through these two packages, it becomes feasible to
implement spatio-temporal statistical modelling that integrates both temporal and spatial
processes.

3. Review of six books

Over the past decade, the INLA algorithm and the R-INLA software package have gained
widespread adoption, as evidenced by their extensive presentation in numerous research
papers, case studies, and inclusion in high-quality, peer-reviewed publications. In the past
two years, we have systematically studied the core chapters of the INLA-related literature
through seminar-style sessions, reproduced a substantial number of illustrative examples,
and thereby empirically validated the accuracy and computational efficiency of the INLA
algorithm, as well as the user-friendliness of the R~INLA package. Our study focussed on
the following six key publications:

(1) Blangiardo, M., and Cameletti, M. (2015). Spatial and Spatio-temporal Bayesian Models
with R-INLA. John Wiley & Sons.

(2) Gomez-Rubio, V. (2020). Bayesian Inference with INLA. Chapman & Hall/CRC.

(3) Krainski, E., Gomez-Rubio, V. Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D.,
Lindgren, F, and Rue, H. (2018). Advanced Spatial Modelling with Stochastic Partial
Differential Equations Using R and INLA. Chapman & Hall/CRC.

(4) Moraga, P. (2019). Geospatial Health Data: Modelling and Visualization with R-INLA and
Shiny. Chapman & Hall/CRC.

(5) Wang X, Yue, Y. R., and Faraway, J. J. (2018). Bayesian Regression Modelling with INLA.
Chapman & Hall/CRC.

(6) Ravishanker, N., Raman, B., and Soyer, R. (2022). Dynamic Time Series Models using
R-INLA: An Applied Perspective. Chapman & Hall/CRC.

We now provide an overview of the key characteristics and contributions of each publication
individually.
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3.1. Spatial and spatio-temporal Bayesian models with R-INLA

MARTA BLANGIARDO ® MICHELA CAMELETTI

Spatial and

- v
Qs (057 \’tc

- ErARRY=AS

/ YER -%.ﬁt#
{2007 |
3 /

4

This book, written by Marta Blangiardo and Michela Cameletti (2015), provides a compre-
hensive introduction to Bayesian thinking and theoretical aspects of the Bayesian approach.
It focuses on the spatial and spatio-temporal models used within the Bayesian framework,
and a series of practical examples that enable readers to connect statistical theory with real
data problems.

The book is suitable for beginners interested in spatial and spatio-temporal data analy-
sis, but with only elementary knowledge in statistics, lacking skills in R programming and
just starting to learn Bayesian modelling. The first four chapters introduce the fourteen
datasets used in the book, R basics, Bayesian methods and Bayesian computing, followed
in the next chapters by detailed introduction on Bayesian modelling of linear regression,
nonlinear regression, generalized linear models and hierarchical models, which are funda-
mental for Bayesian modelling of spatial and spatio-temporal model in the last three chapters.
Besides, binomial and Poisson zero-inflated models and an advanced bivariate model are also
introduced for special features in the real data sets. With focus on the spatial and spatio-
temporal Bayesin models with R—-INLA, the wealth of examples are analyzed step-by-step
accompanied by detailed R scripts and explanation from the output of the codes.
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3.2. Bayesian inference with INLA

BAYESIAN INFERENCE
" WITHINIA

VIRGILIO GOMEZ-RUBIO

. @CRC Press
Taphor & Francs Cop
A CHAPMAN & MALL 300K

The statisticians will gain a comprehensive understanding of Bayesian inference and
its applications in R-INLA through this book by Professor Virgilio Gomez-Rubio (2020),
who received the SEIO-FBBVA Awards 2022 in data science and big data because of this
widely adopted reference book in the field of Bayesian inference. The primary objective
of this book is to introduce the INLA method and the associated R—~INLA package. The
book systematically achieves its dual purpose: introducing the INLA methodology and
demonstrating its implementation in R. The online version of this book is available at
https://becarioprecario.bitbucket.io/inla-gitbook, and the R package brinla is available at
https://github.com/julianfaraway/brinla.

The book begins with a concise introduction to Bayesian inference, providing context for
the INLA approach. Following this, it offers an exhaustive explanation of the INLA method,
accompanied by two illustrative examples demonstrating the use of the INLA package within
the R statistical environment. Subsequent chapters develop various widely used models,
including mixed-effects model, multilevel model, spatial model, temporal model, smooth-
ing techniques, survival model and others. Additionally, the book covers the specification of
prior distributions in INLA, advanced features, the implementation of new latent models,
handling missing values and imputation, as well as mixture models.


https://becarioprecario.bitbucket.io/inla-gitbook/
https://github.com/julianfaraway/brinla
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3.3. Advanced spatial modelling with stochastic partial differential equations using
RandINLA

ADVANCED
SPATIAL MODELING
WITH STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS
USING RAND INLA

DANIEL SIMPSON
FINN LINDGREN
HAVARD RUE

Written by Elias Krainski, Virgilio Gémez-Rubio, Haakon Bakka, Amanda Lenzi, Daniela
Castro-Camilo, Daniel Simpson, Finn Lindgren, and Hévard Rue (2018), this book intro-
duces the fundamental theory and application of spatial modelling with SPDEs using
R—INLA. It demonstrates how to fit models containing at least one effect specified with
SPDEs using the R package INLA for statistical computing. This method describes an
approximation to continuous spatial models with the Matérn covariance that is based on
the solution to an SPDE. An SPDE-based model is used to define random effects over con-
tinuous domains in one or two dimensions. This book focuses on SPDE models with INLA
without covering the basics of Bayesian inference or spatial analysis.

One of the standout features of the book is its application of the SPDE methods. It intro-
duces key concepts like Gaussian random fields, the SPDE approach, and mesh construction
before diving into practical examples, including non-Gaussian data, point pattern analy-
sis, and space-time modelling. The inclusion of diverse case studies such as precipitation
modelling in Parana and noise data analysis in Albacete demonstrates the versatility of SPDE-
INLA methods. Additionally, the book provides online resources, including R code and
datasets, ensuring reproducibility at https://becarioprecario.bitbucket.io/spde-gitbook.


https://becarioprecario.bitbucket.io/spde-gitbook/
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3.4. Geospatial health data: modelling and visualization with R-INLA and shiny

Chapman & Hall/CRC Biostatistics Series

Geospatial Health Data

Modeling and Visualization
with R-INLA and Shiny

Paula Moraga

Taylor & feancis Group
A CHAPMAN & HALL BOOK

This book, written by Paula Moraga (2019), provides an exceptional guide to analyzing
and visualizing geospatial health data using advanced Bayesian methods in R. It is primar-
ily aimed at epidemiologists, biostatisticians, public health specialists, and professionals of
government agencies working with georeferenced health data. Readers will gain hands-on
experience using INLA to quantify disease risk, identify patterns, and communicate find-
ings effectively. The inclusion of Shiny applications and interactive dashboards ensures
that users can transform complex analyses into accessible visual tools for policymakers and
stakeholders.

This book presents concrete implementations of Bayesian spatial and spatio-temporal
models using R—INLA. It shows how to develop Bayesian hierarchical models and apply
computational approaches such as INLA and SPDE to analyze data collected in areas and
at particular locations by disease registries, national and regional institutes of statistics, and
other organizations. These approaches allow one to quantify the disease burden, understand
geographic and temporal patterns, identify risk factors, and measure social inequality. It
includes the spatial modelling of areal lip cancer in Scotland, spatio-temporal modelling
of areal lung cancer in Ohio, spatial modelling of geostatistical malaria in the Gambia,
spatio-temporal modelling of geostatistical air pollution in Spain as examples. Notably,
this book provides comprehensive coverage of specialized tools including rmarkdown,
flexdashboard, Shiny,and SpatialEpiApp for advanced modelling and geospatial
visualization of health data. The online version of the book based on R package bookdown
is available at https://www.paulamoraga.com/book-geospatial/index.html.


https://www.paulamoraga.com/book-geospatial/index.html
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3.5. Bayesian regression modelling with INLA

Chapman & Hall/CRC Computer Science & Data Analysis Series

BAYESIAN REGRESSION
MODELING WITH INLA

XIAOFENG WANG
YU RYAN YUE
JULIAN J. FARAWAY

CRC Press
Taylor & Francis Group.

A CHAPMAN & HALL BOOK

This book was written by Xiaofeng Wang, Yu Ryan Yue and Julian J. Faraway (2018)
and offers a groundbreaking approach to Bayesian modelling through INLA, present-
ing a faster and more accessible alternative to traditional MCMC methods. The authors
expertly bridge theory and practice, making advanced Bayesian techniques feasible for real-
world applications. The R scripts for all the examples in each chapter are available on
http://julianfaraway.github.io/brinla/. For the sake of usage, the author developed a separate
R package brinla which contains data and functions to support the book.

The book begins with a clear introduction to Bayesian inference and the computational
advantages of INLA, followed by detailed coverage of its implementation in R. What sets
this book apart is its comprehensive treatment of modern regression models from linear
and generalized linear models to mixed-effects, spatio-temporal, and survival analysis frame-
works all demonstrated through INLA efficient approximations. This book is invaluable for
statisticians and data scientists seeking to leverage Bayesian methods without computational
bottlenecks, making it a must-have for applied researchers and graduate students alike.


http://julianfaraway.github.io/brinla/
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3.6. Dynamic time series models using R-INLA: an applied perspective

DYNAMICTIME SERIES
MODELS USING R-INLA

An Applied Perspective

Nalini Ravishanker

Refik Soyer

@ CRC Press

This book was written by Nalini Ravishanker, Balaji Raman and Refik Soyer (2022)
and is a comprehensive and practical guide for applied statisticians and data scien-
tists working with time series data. It introduces the INLA method as a fast and effi-
cient alternative to traditional Bayesian inference techniques like MCMC. Readers will
gain a deep understanding of how to implement dynamic Bayesian models using the
R-INLA package, with a focus on real-world applications. The authors provide clear
explanations, step-by-step instructions, and numerous examples, making complex con-
cepts accessible. The online version of this book is available at https://ramanbala.github.io/
dynamic-time-series-models-R-INLA, and the R codes and data sets are available at
https://github.com/ramanbala/dynamic-time-series-models-R-INLA.

This book is particularly valuable for those seeking to analyze time series data with speed
and accuracy, offering practical insights into model selection, forecasting, and hyperparame-
ter estimation. A key strength of the book lies in its systematic treatment of various time series
models, including univariate, time series regression models, hierarchical dynamic models
for panel time series, models for non-Gaussian continuous response, categorical time series,
count time series, stochastic volatility, multivariate Gaussian dynamic model and hierarchi-
cal multivariate time series. Examples include Musa software engineering example, monthly
average cost of nightly hotel stay, ridesourcing in NYC, volatility index time series, weekly
shopping trips for multiple households, daily bike rentals in Washington D.C, IBM stock
returns, and monthly TNC usage in NYC taxi zones. With its blend of theory and hands-on R
codes, this book serves as both a learning resource and a reference for practitioners leveraging
R—INLA for time series analysis.


https://ramanbala.github.io/dynamic-time-series-models-R-INLA/
https://github.com/ramanbala/dynamic-time-series-models-R-INLA
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4. Conclusion

The aforementioned six books offer a comprehensive and detailed exposition of the INLA
algorithm, encompassing its theoretical foundations, practical applications, and correspond-
ing code implementations with high efficient R package R—INLA. Furthermore, each book
is distinguished by its focus on specific data types and analytical contexts. The material in
these six books would require careful reading to understand the analytical details and how
these methods can be applied to research.

Though the INLA approach and package can help us perform fast and accurate approxi-
mate Bayesian inference for a wide range of large models, its application is restricted to LGMs
and its computational efficiency can decrease with a high number of hyperparameters. How-
ever, these limitations are offset by its profound utility. For the wide array of models within
its scope, INLA remains an exceptionally efficient and robust alternative to simulation-based
methods, greatly expanding access to sophisticated Bayesian analysis. Recently, there remain
four notable extensions of INLA that draw our attention with corresponding new R packages
which can be combined with the standard INLA package to address some of these limitations
and further enhance its capabilities.

(1) inlabru:Bachletal. (2019) extended the GAM-like model class to more general non-
linear predictor expressions, and implemented a log Gaussian Cox process likelihood
for modelling univariate and spatial point processes based on ecological survey data.

(2) INLAT: Abdul-Fattah et al. (2023) developed an approximated Bayesian approach
for spatial models with non-sparse precision or covariance matrices. It scales better
compared to the standard INLA, and computational power by multiprocessors in shared
and distributed memory architectures.

(3) rSPDE (with INLA): Bolin et al. (2024) provided a computationally efficient Bayesian
approach to approximate the fractional power in modelling large spatial datasets with
SPDE approach. r SPDE is an R package developed by David Bolin, used for computing
rational approximations of fractional SPDEs, which will result in a numerically stable
GMREF approximation combined with the INLA method for fast Bayesian inference.

(4) INLAjoint: Alvares et al. (2024) presented how various Bayesian survival models
can be fitted using the INLA package in a clear, legible, and comprehensible manner
using the INLA and INLAjoint R packages, including accelerated failure time, pro-
portional hazards, mixture cure, competing risks, multi-state, frailty, and joint models
of longitudinal and survival data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Wang’s research was partially supported by the National Natural Science Foundation of China [grant
number 12001266] and the Humanities and Social Science Projects of Ministry of Education of China
[grant number 19YJCZH166]. Tang’s research was partially supported by the National Natural Science
Foundation of China [grant numbers 12271168 and 12531013].

ORCID
Yincai Tang © http://orcid.org/0000-0001-6756-6461


http://orcid.org/0000-0001-6756-6461

12 (&) P.WANGETAL.

References

Abdul-Fattah, E., Van Niekerk, ., & Rue, H. (2023). INLA": Approximate Bayesian inference for non-
sparse models using HPC. Preprint. p. 2311.08050.

Alvares, D., Van Niekerk, J., Krainski, E. T., Rue, H., & Rustand, D. (2024). Bayesian survival analysis
with INLA. Statistics in Medicine, 43(20), 3975-4010. https://doi.org/10.1002/sim.v43.20

Attias, H. (1999). A variational Bayesian framework for graphical models. In Proceedings of the 13th
International Conference on Neural Information Processing Systems, NIPS’99, Cambridge, MA, USA
(pp- 209-215). MIT Press.

Bachl, E E,, Lindgren, E, Borchers, D. L., & Illian, J. B. (2019). inlabru: An R package for Bayesian
spatial modelling from ecological survey data. Methods in Ecology and Evolution, 10(6), 760-766.
https://doi.org/10.1111/mee3.2019.10.issue-6

Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatio-Temporal Bayesian Models with R-INLA.
John Wiley & Sons.

Bolin, D., Simas, A. B., & Xiong, Z. (2024). Covariance-based rational approximations of fractional
SPDEs for computationally efficient Bayesian inference. Journal of Computational and Graphical
Statistics, 33(1), 64-74. https://doi.org/10.1080/10618600.2023.2231051

Gelfand, A. E., & Smith, A. E (1990). Sampling-based approaches to calculating marginal densities.
Journal of the American Statistical Association, 85(410), 398-409. https://doi.org/10.1080/01621459.
1990.10476213

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6), 721-741.
https://doi.org/10.1109/TPAMI.1984.4767596

Gomez-Rubio, V. (2020). Bayesian Inference with INLA. Chapman & Hall/CRC.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1), 97-109. https://doi.org/10.1093/biomet/57.1.97

Krainski, E., Gomez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F, &
Rue, H. (2018). Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and
INLA. Chapman & Hall/CRC.

Lindgren, F, Rue, H., & Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian
Markov random fields: The stochastic partial differential equation approach. Journal of the Royal
Statistical Society, 73(4), 423-498. https://doi.org/10.1111/j.1467-9868.2011.00777 x

Moraga, P. (2019). Geospatial Health Data: Modeling and Vsualization with R-INLA and Shiny.
Chapman & Hall/CRC.

Peterson, C. (1987). A mean field theory learning algorithm for neural network. Complex Systems, 1,
995-1019.

Ravishanker, N., Raman, B., & Soyer, R. (2022). Dynamic Time Series Models Using R-INLA: An Applied
Perspective. Chapman & Hall/CRC.

Robert, C. P, Casella, G., & Casella, G. (2004). Monte Carlo Statistical Methods. 2nd ed. Springer.

Robert, C. P, Elvira, V., Tawn, N., & Wu, C. (2018). Accelerating MCMC algorithms. Wiley Interdisci-
plinary Reviews: Computational Statistics, 10(5), e1435. https://doi.org/10.1002/wics.2018.10.issue-5

Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statisti-
cian. The Annals of Statistics, 12(4), 1151-1172. https://doi.org/10.1214/a0s/1176346785

Rue, H., & Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman &
Hall/CRC.

Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B:
Statistical Methodology, 71(2), 319-392. https://doi.org/10.1111/j.1467-9868.2008.00700.x

Rue, H., Riebler, A., Serbye, S. H,, Illian, J. B., Simpson, D. P.,, & Lindgren, F. K. (2017). Bayesian
computing with INLA: A review. Annual Review of Statistics and Its Application, 4(1), 395-421.
https://doi.org/10.1146/statistics.2017.4.issue-1

Sunndker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approxi-
mate Bayesian computation. PLOS Computational Biology, 9(1), €1002803. https://doi.org/10.1371/
journal.pcbi.1002803


https://doi.org/10.1002/sim.v43.20
https://doi.org/10.1111/mee3.2019.10.issue-6
https://doi.org/10.1080/10618600.2023.2231051
https://doi.org/10.1080/01621459.1990.10476213
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1111/j.1467-9868.2011.00777.x
https://doi.org/10.1002/wics.2018.10.issue-5
https://doi.org/10.1214/aos/1176346785
https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.1146/statistics.2017.4.issue-1
https://doi.org/10.1371/journal.pcbi.1002803

STATISTICAL THEORY AND RELATED FIELDS 13

Van Niekerk, J., Krainski, E., Rustand, D., & Rue, H. (2023). A new avenue for Bayesian inference with
INLA. Computational Statistics & Data Analysis, 181,107692. https://doi.org/10.1016/j.csda.2023.
107692

Wang, X., Yue, Y. R., & Faraway, J. J. (2018). Bayesian Regression Modeling with INLA. Chapman &
Hall/CRC.

Winn, J., & Bishop, C. M. (2005). Variational message passing. Journal of Machine Learning Research,
6(23), 661-694.


https://doi.org/10.1016/j.csda.2023.107692

	1. Introduction of INLA method
	2. INLA algorithm
	3. Review of six books
	3.1. Spatial and spatio-temporal Bayesian models with R-INLA
	3.2. Bayesian inference with INLA
	3.3. Advanced spatial modelling with stochastic partial differential equations using R and INLA
	3.4. Geospatial health data: modelling and visualization with R-INLA and shiny
	3.5. Bayesian regression modelling with INLA
	3.6. Dynamic time series models using R-INLA: an applied perspective

	4. Conclusion
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


