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ABSTRACT
In this paper, we consider the estimators of distribution function and hazard rate for cen-
sored survival time. First, some properties and inequalities are established for linearly extended
negative quadrant-dependent sequence as auxiliary results. Then by applying the proper-
ties and inequalities, we investigate the strong consistency and strong representation for the
Kaplan–Meier estimator and hazard rate estimator with censored linearly extended negative
quadrant-dependentdata. Under somemild conditions,wederive that the rates of strong consis-
tency are near O(n−1/2 log1/2 n) and also obtain the strong representations with the remainder
of orderO(n−1/2 log1/2 n). The results established here extend andgeneralize the corresponding
ones in recent literature.
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1. Introduction

The definitions of negatively quadrant dependence (NQD), negative dependence (ND), negative association (NA),
linearly negative quadrant dependence (LNQD) and extended negative dependence (END) were given by Block
et al. (1982), Joag-Dev and Proschan (1983), Lehmann (1966), Liu (2009) and Newman (1984), respectively. Their
specific definitions are as follows.

Definition 1.1 (see Lehmann, 1966): The pair of random variables (X,Y) is said to be NQD, if for all real numbers
x and y,

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y).

Definition 1.2 (see Block et al., 1982): A finite family of random variables {X1, . . . ,Xn} is said to be ND, if for all
real numbers x1, . . . , xn such that both inequalities

P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) ≤ M
n∏
i=1

P(Xi ≤ xi)

and

P(X1>x1,X2>x2, . . . ,Xn>xn) ≤ M
n∏

i=1
P(Xi>xi)

hold. An infinite sequence {Xn, n ≥ 1} is said to be ND if every finite subsequence is ND.

Definition 1.3 (see Joag-Dev & Proschan, 1983): A finite family of random variables {X1, . . . ,Xn} is said to be
NA, if for every pair of disjoint subsets A and B of {1, 2, . . . , n},

Cov(f1(Xi, i ∈ A), f2(Xj, j ∈ B)) ≤ 0,

whenever f1(·) and f2(·) are coordinatewise increasing (or decreasing) and the covariance exists. An infinite
sequence {Xn, n ≥ 1} is said to be NA if every finite subsequence is NA.
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Definition 1.4 (see Newman, 1984): A sequence of random variables {Xn, n ≥ 1} is said to be LNQD, if, for any
disjoint subsets A,B ⊂ {1, 2, . . . } and positive real numbers {r1, r2, . . . } or negative real numbers {r1, r2, . . . }, the
pair ⎛⎝∑

i∈A
riXi,

∑
j∈B

rjXj

⎞⎠ is NQD.

Definition 1.5 (see Liu, 2009): A finite family of random variables {X1, . . . ,Xn} is said to be END, if there exists a
constantM ≥ 1 such that both inequalities

P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) ≤ M
n∏
i=1

P(Xi ≤ xi)

and

P(X1>x1,X2>x2, . . . ,Xn>xn) ≤ M
n∏

i=1
P(Xi>xi)

hold for all real numbers x1, . . . , xn. An infinite sequence {Xn, n ≥ 1} is said to be END if every finite subsequence
is END.

From the above-mentioned literatures and definitions, we know that NQD, ND, NA, LNQD and END sequences
arewidely used inmultivariate statistical analysis and reliability theory and survival analysis, and have been received
more and more attention recently. For example, Wang and Zhang (2006) provided a Berry–Esseen theorem for
LNQD sequence; Ko et al. (2007) discussed the strong convergence and central limit theorem for weighted sums of
LNQD sequence;Wang et al. (2010) established some exponential inequalities and bywhich obtained complete con-
vergence based on LNQD sequence; Li et al. (2012) provided some inequalities for LNQD sequence and by which
investigated the asymptotic normality of weighted function estimator for regression function; Shen and Zhu (2015)
studied the complete convergence for weighted sums of LNQD sequence and presented some complete convergence
for arrays of rowwise LNQD sequence; Hu and Jiang (2018) discussed the uniformly asymptotic normality of sam-
ple quantile estimator for LNQE sequence; Hu and Wang (2020) investigated the Berry–Esseen bound of wavelet
estimator for nonparametric regression model based on LNQD sequence.

Furthermore, we note that END sequence is more general than ND sequence in that it can reflect not only a
negative dependence structure but also a positive one to some extent. Motivated by END and LNQD sequences, Li
et al. (2023) put forth the definition of linearly extended negative quadrant dependence (LENQD) as follows.

Definition 1.6 (see Li et al., 2023): The pair (X,Y) is said to ENQD, if there exists a dominating constantM ≥ 1,
such that both inequalities

P(X ≤ x,Y ≤ y) ≤ M P(X ≤ x)P(Y ≤ y)

and

P(X>x,Y>y) ≤ M P(X>x)P(Y>y)

hold for every real x, y. A sequence of random variables {Xn, n ≥ 1} is said to be EPNQD, if for all i, j ≥ 1, i �= j, the
pair (Xi,Xj) is ENQD. A sequence of random variables {Xn, n ≥ 1} is said to be LENQD with dominating constant
M ≥ 1, if for any disjoint subsets A,B ⊂ {1, 2, . . . } and positive real numbers {l1, l2, . . . } or negative real numbers
{l1, l2, . . . }, the pair ⎛⎝∑

i∈A
liXi,

∑
j∈B

ljXj

⎞⎠ is ENQD with the same dominating constantM.

FromExamples 1.1 and 1.2 and Remark 1.1 in Li et al. (2023), it is easily seen that independent random variables,
NA, END and LNQD random variables are LENQD random variables. Therefore, LENQD sequence has also wide
applications in multivariate statistical analysis and reliability theory and survival analysis.

We know that Kaplan–Meier estimate is one of the commonly used methods in survival analysis and has
received considerable attention in the literature. For example, Liebscher (2002) derived the rates of uniform strong
convergence for kernel density estimators and hazard rate estimators for right censoring based on a station-
ary strong-mixing sequence; Liang and Una-Alvarez (2009) studied the convergence of Kaplan–Meier estimator
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based on the stationary strong-mixing data; Wu and Chen (2013) established the strong representation results of
Kaplan–Meier estimator for censored NA data. More recently, Shen and Wang (2016) investigated the strong con-
vergence properties for Kaplan–Meier estimator and hazard estimator based on censoredNSD data; Anevski (2017)
derived the limit distribution results of Kaplan–Meier estimator for distribution function based on right censored
observations with a stationary time series; Li and Zhou (2019) and Li and Zhou (2020) respectively investigated the
Kaplan–Meier estimator and hazard estimator for censored WOD and END data; Ahmed and Flandre (2020) pro-
posed a weighted Kaplan–Meier estimators to estimate the HIV-1 RNA reduction; Nematolahi et al. (2020) derived
the asymptotic distribution of Kaplan–Meier estimator under PROS sampling design; Wu et al. (2022) investigated
the rates of strong consistency and the strong representations for the Kaplan–Meier estimator and hazard estimator
with censored WOD data.

However, the work mentioned above focuses basically on strong mixing dependent data, NA, NSD, END and
WOD data. Noting that NA, END and LNQD imply LENQD, and we naturally ask whether those results can still
hold for more comprehensive LENQD data in theory. From this, it is of interest to discuss the Kaplan–Meier esti-
mator and hazard rate estimator of survival time based on censored LENQD data. Therefore, in this paper, we
will investigate the strong consistency and the strong representation for Kaplan–Meier estimator and hazard rate
estimator with censored LENQD data.

The remaining parts of this paper are structured as follows. Section 2 briefly provides some notations, properties
and inequalities, while Section 3 is devoted to setting up some auxiliary results. Finally, we discuss and derive the
strong consistency and strong representation for Kaplan–Meier estimator and hazard estimator based on censored
LENQD data in Section 4.

2. Some notations, properties and inequalities

To facilitate the notation reference below, we begin with a brief review of Kaplan–Meier estimator and hazard rate
estimator as follows.

Let {X1, . . . ,Xn} be survival times with an unknown continuous distribution function F(x) = P(Xi ≤ x) satisfy-
ing F(0) = 0, and {Y1, . . . ,Yn} be random censoring times with an unknown distribution function G(y) = P(Yi ≤
y) satisfyingG(0) = 0. Suppose that {X1, . . . ,Xn} and {Y1, . . . ,Yn} are mutually independent. Let survival times Xi
be censored on the right by the censoring times Yi, so that one can only observe (Ti, δi), where

Ti = Xi ∧ Yi and δi = I(Xi ≤ Yi).

Here and thereafter, a ∧ bmeans the minimum of a and b, and I(A) means the indicator function of an event A.
Denote the number of uncensored observations less than or equal to t by

Nn(t) =
n∑
i=1

I(Ti ≤ t, δi = 1) =
n∑
i=1

I(Xi ≤ t ∧ Yi),

and the number of censored or uncensored observations greater than or equal to t by

Mn(t) =
n∑

i=1
I(Ti ≥ t).

The Kaplan–Meier estimator of F(x) was proposed by Kaplan and Meier (1958) as follows:

F̂n(x) = 1 −
∏
s≤x

[
1 − dNn(s)

Mn(s)

]
, where dNn(s) = Nn(s) − Nn(s−).

It is further assumed that F(x) has a density f (x), and then the hazard rate λ(x) can be written as

λ(x) = d
dx

(− log F(x)) = f (x)
F(x)

, where F(x)<1 and F(x) = 1 − F(x).

The distribution function and empirical distribution function of {Tn, n ≥ 1} are defined as

L(t) = 1 − F(t)G(t) = 1 − [1 − F(t)][1 − G(t)], L(t) = 1 − L(t)

and

Ln(t) = 1
n

n∑
i=1

I(Ti<t) = 1 − Mn(t)
n

, Ln(t) = 1 − Ln(t).
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And the cumulative and empirical cumulative hazard rate functions are defined by

�(x) = − log F(x) =
∫ x

0

dF(t)
F(t)

=
∫ x

0

dF∗(t)
L(t)

and

�̂n(x) =
∫ x

0

dNn(t)
Mn(t)

=
∫ x

0

dF∗n(t)
Ln(t)

,

where F∗(t) and its empirical distribution function F∗n(t) are defined as

F∗(t) = P(T1 ≤ t, δ1 = 1) =
∫ ∞

0
F(t ∧ y) dG(y) =

∫ t

0
G(y) dF(y)

and

F∗n(t) = 1
n

n∑
i=1

I(Ti ≤ t, δi = 1) = Nn(t)
n

.

Noting thatN(t) is a step function, and dN(T(k)) = δ(k), k = 1, 2, . . . , n, we can easily rewrite the above estimators
of �̂n(x) and F̂n(x) as follows:

�̂n(x) =
n∑

k=1

I(T(k) ≤ x, δ(k) = 1)
n − k + 1

(1)

and

F̂n(x) = 1 −
n∏

i=1

(
1 − δ(k)

n − k + 1

)I(T(k)≤x, δ(k)=1)
, (2)

where T(1) ≤ T(2) ≤ · · · ≤ T(n) denotes the order statistics of T1,T2, . . . ,Tn, and δ(i) is the concomitant of T(i).
Next, we give a basic property and an inequality of LENQD sequence, which are helpful in proving the theorems

in Sections 3 and 4.

Lemma 2.1 (see Li et al., 2023): (i) Let (X,Y) be ENQD random variables with dominating coefficient M ≥ 1. If
f and g are nondecreasing (or nonincreasing) functions, then (f (X), g(Y)) is ENQD random variables, and its
dominating constant M remains unchanged.

(ii) Let {Xn, n ≥ 1} be LENQD sequence with dominating coefficient M ≥ 1, and fn be nondecreasing (or non-
increasing) functions. Then {fn(Xn), n ≥ 1} is LENQD sequence, and the dominating constant M remains
unchanged.

Lemma 2.2 ((see Li et al., 2023) Bernstein-type inequality): Let {Xn, n ≥ 1} be a sequence of LENQD random
variables with a dominating coefficient M ≥ 1, and EXn = 0, |Xn| ≤ dn a.s. for each n ≥ 1, where {dn, n ≥ 1} is a
sequence of positive constants. Assume that t>0 such that t · max1≤i≤n di ≤ 1. Then for any ε>0,

P

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣>ε

)
≤ 2M exp

{
−tε + t2

n∑
i=1

EX2
i

}
.

3. Some auxiliary results

We will establish two auxiliary results, which play an important role in the proof of the main results in Section 4.

Theorem 3.1: The union of independent sets of ENQD random variables is also ENQD.

Proof: Let X = {X1,X2} and Y = {Y1,Y2} be two independent random vectors, the pairs (X1,X2) and (Y1,Y2) be
ENQD. We shall show that the pair of random vector (X,Y) = {(X1,Y1), (X2,Y2)} is ENQD.
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Noting that (X1,X2) is ENQD, and (Y1,Y2) is also ENQD, then by the independence of X and Y, we know there
exist constantsM1 ≥ 1 andM2 ≥ 1, andM = M1M2, such that

P(X1>x1,Y1>y1;X2>x2,Y2>y2)

= P(X1>x1,X2>x2) P(Y1>y1,Y2>y2)

≤ M1

2∏
i=1

P(Xi>xi) · M2

2∏
i=1

P(Yi>yi)

= MP(X1>x1,Y1>y1) P(X2>x2,Y2>y2). (3)

Similarly, we can obtain that

P(X1 ≤ x1,Y1 ≤ y1;X2 ≤ x2,Y2 ≤ y2)

= P(X1 ≤ x1,X2 ≤ x2) P(Y1 ≤ y1,Y2 ≤ y2)

≤ M1

2∏
i=1

P(Xi ≤ xi) · M2

2∏
i=1

P(Yi ≤ yi)

= MP(X1 ≤ x1,Y1 ≤ y1) P(X2 ≤ x2,Y2 ≤ y2). (4)

By relations of (3) and (4), and Definition 1.6, we know that (X1,Y1) and (X2,Y2) are ENQD random variables.
This completes the proof. �

Theorem 3.2: Let {Xn, n ≥ 1} be a sequence of LENQD random variables with a dominating coefficient M ≥ 1,
and having unknown distribution function F(x) with bounded probability density function f (x). Setting Fn(x) =
n−1 ∑n

i=1 I(Xi ≤ x) as the empirical distribution function, and taking τn = n−1/2 log1/2 n, then

sup
x

|Fn(x) − F(x)| = O(τn), a.s.

Proof: By Lemma 2 of Yang (2003), let {xn,k} satisfy F(xn,k) = k/n for n ≥ 3 and k = 1, . . . , n−1, and then we
obtain that

sup
−∞<x<+∞

|Fn(x) − F(x)| ≤ max
1≤k≤n−1

|Fn(xn,k) − F(xn,k)| + 2
n
.

It is easy to see that nτn → ∞. Therefore, for all n large enough and ε ≥ 4
√
3, we have 2/n<ετn/2. Hence, we can

get that

P
(
sup
x

|Fn(x) − F(x)|>ετn

)
≤ P

(
max

1≤k≤n−1
|Fn(xn,k) − F(xn,k)|>ετn/2

)

≤
n−1∑
k=1

P
(|Fn(xn,k) − F(xn,k)|>ετn/2

)
. (5)

Set ξj,k = I(Xj<xn,k) − EI(Xj<xn,k), j = 1, . . . , n. Then it follows fromLemma2.1 that {ξj,k} is still LENQDrandom
variables with ξj,k = 0, |ξj,k| ≤ 2. Taking t = ετn/4, and applying Lemma 2.2, we can obtain that

P
(|Fn(xn,k) − F(xn,k)|>ετn/2

) = P

⎛⎝∣∣∣∣∣∣
n∑
j=1

ξj,k

∣∣∣∣∣∣>ετn/2

⎞⎠
≤ 2M exp

⎧⎨⎩−tεnτn/2 + t2
n∑
j=1

Eξ 2j,k

⎫⎬⎭
≤ 2M exp

{−tεnτn/2 + nt2
}

≤ 2M exp
{
−ε2nτ 2n

16

}
≤ 2Mn−3. (6)
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Thus, with relations (5) and (6), we obtain

P
(
sup
x

|Fn(x) − F(x)|>ετn

)
≤ 2Mn−2.

Therefore, Theorem 3.2 holds. �

4. Main results

We can obtain the strong consistency and strong representation for Kaplan–Meier estimator and hazard estimator
based on censored LENQD data as follows.

Theorem 4.1: Let {Xn, n ≥ 1} and {Yn, n ≥ 1} be two LENQD sequences with a dominating coefficient M ≥ 1.
Suppose {Xn, n ≥ 1} and {Yn, n ≥ 1} are independent. Then, for any 0<τ<τL,

sup
0≤x≤τ

|�̂n(x) − �(x)| = O(τn), a.s. (7)

and

sup
0≤x≤τ

|̂Fn(x) − F(x)| = O(τn), a.s. (8)

Theorem 4.2: Under the assumptions of Theorem 4.1, we have

�̂n(x) − �(x) = −1
n

n∑
i=1

η(Ti, δi, x) + R1n(x) (9)

and

F̂n(x) − F(x) = F(x)
n

n∑
i=1

η(Ti, δi, x) + R2n(x), (10)

where, for j = 1, 2,

sup
0≤x≤τ

|Rjn(x)| = O(τn), a.s., η(t, δ, x) = g(t ∧ x) − I(t ≤ x, δ = 1)
L(t)

, g(x) =
∫ x

0

dF∗(t)

L2(t)
.

Remark 4.1: By the auxiliary results in the previous section, we can prove Theorems 4.1 and 4.2 which are the
extensions of those results in Wu and Chen (2013) from NA to LENQD, Li and Zhou (2020) from END to
LENQD, Wu et al. (2022) fromWOD to LENQD, and so on.

Now to prove Theorems 4.1 and 4.2 as follows.

Proof of Theorem 4.1: By Lemma 2.1 and Theorem 3.1, {Tn, n ≥ 1} and {(Tn, δn), n ≥ 1} are also two LENQD
sequences. Then, by Theorem 3.2 we obtain

sup
t≥0

|Ln(t) − L(t)| = O(τn), a.s. (11)

and

sup
t≥0

|F∗n(t) − F∗(t)| = O(τn), a.s.. (12)

Following the same lines of the proof of Equations (3.1) and (3.2) in Li and Zhou (2020), by straightforward
calculations, we have

�̂n(x) − �(x)

=
∫ x

0

L(t) − Ln(t)
Ln(t)L(t)

dF∗(t) + F∗n(t) − F∗(t)
Ln(t)

−
∫ x

0
(F∗n(t) − F∗(t)) d

(
1

Ln(t)

)
,
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and then, by the equations of (11) and (12), for 0<τ<τL, we have that

sup
0≤x<τ

|�̂n(x) − �(x)|

≤ supx≥0 |Ln(x) − L(x)|
Ln(τ )L(τ )

+ 2 supx≥0 |F∗n(x) − F∗(x)|
Ln(τ )

= O (τn) .

Thus Equation (7) follows immediately.
We continue with the proof of Equation (8). By ex = 1 + x + o(x), we can get

F̂n(x) − F(x)

= e−�(x) [�̂n(x) − �(x) + o(�̂n(x) − �(x))
] + [

1 − F̂n(x)
] {−�̂n(x)

− log[1 − F̂n(x)] + o
(−�̂n(x) − log[1 − F̂n(x)]

)}
. (13)

By the notations of �̂n(x) and F̂n(x) in (1) and (2), for 0<τ<τL, 0 ≤ x ≤ τ , we can compute that

0 ≤ −�̂n(x) − log
[
1 − F̂n(x)

]
= −

n∑
i=1

I(δ(i) = 1, T(i) ≤ x)
n − i + 1

−
n∑
i=1

I(δ(i) = 1, T(i) ≤ x) log
n − i

n − i + 1

≤
n∑

i=1
I(δ(i) = 1, T(i) ≤ x)

1
(n − i)(n − i + 1)

=
n−Mn(x)∑

i=1

(
1

n − i
− 1

n − i + 1

)
= 1

Mn(x)
− 1

n

≤ 1
n

1
Ln(x)

= O
(
1
n

)
. (14)

Hence, from (13) and (14), we conclude that

F̂n(x) − F(x) = F(x)
[
�̂n(x) − �(x) + o(�̂n(x) − �(x))

] + O
(
1
n

)
. (15)

Therefore, from (15), and by (7) again, (8) holds. The proof is completed. �

Proof of Theorem 4.2: It is easily seen that

�̂n(x) − �(x)

=
(∫ x

0

dF∗n(t)
L(t)

−
∫ x

0

Ln(t)

L2(t)
dF∗(t)

)

+
∫ x

0

(
1

Ln(t)
− 1

L(t)

)
d(F∗n(t) − F∗(t)) +

∫ x

0

(Ln(t) − L(t))2

L2(t)Ln(t))
dF∗(t)

=: J1(x) + J2(x) + J3(x). (16)

Firstly, for J1(x), noting that F∗n(t) = Nn(t)/n and Nn(t) is a step function, we derive that

J1(x) = 1
n

n∑
i=1

I(Ti ≤ x, δi = 1)
L(Ti)

− 1
n

n∑
i=1

g(x ∧ Ti) = −1
n

n∑
i=1

η(Ti, δi, x). (17)

Secondly, we analyse J2(x). By dividing the interval [0, τ ] into [x1, x2], . . . , [xi, xi+1], . . . , [xkn , xkn+1], such that
�(xi+1) − �(xi) = O(τn), where kn = O(τ−1

n ), 0 = x1<x2< . . .<xkn+1 = τ , and τ<τ�, we have the following
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decomposition:

J2(x) =
∫ x

0

(
1

Ln(t)
− 1

L(t)

)
d(F∗n(t) − F∗(t))

≤ c max
1≤i≤kn

sup
y∈[xi,xi+1]

∣∣Ln(y) − Ln(xi) − L(y) + L(xi)
∣∣

+ c max
1≤i≤kn

|F∗n(xi+1) − F∗n(xi) − F∗(xi+1) + F∗(xi)| + O(τ 2n )

=: J21 + J22 + O(τ 2n ). (18)

We first evaluate J21 in (18). Let us divide each [xi, xi+1] into subintervals [xij, xi(j+1)], j = 1, . . . , bn, such that
|Ln(xi(j+1)) − L(xij)| = O(τ

3/2
n ) uniformly in i, j, where bn = O(k1/2n ) = O(τ

−1/2
n ). By Theorem 4.1 and |Ln(y) −

Ln(x(ij)| ≤ 1
n ≤ O(τ

3/2
n ) for y ∈ [xij, xi(j+1)], we conclude that

J21 ≤ max
1≤i≤kn

max
1≤j≤bn

∣∣Ln(xij) − Ln(xi) − L(xij) + L(xi)
∣∣ + O(τ

3/2
n )

= max
1≤i≤kn

max
1≤j≤bn

∣∣∣∣∣1n
n∑

k=1

(ηik + ζijk)

∣∣∣∣∣ + O(τ
3/2
n ), (19)

where

ηik = I(Tk ≥ xi) − EI(Tk ≥ xi), ζijk = I(Tk ≥ xij) − EI(Tk ≥ xij), k = 1, . . . , n,

and

Ln(xij) − Ln(xi) − L(xij) + L(xi) = 1
n

n∑
k=1

(ηik + ζijk).

According to Lemma 2.1, we know that {ηik} and {ζijk} are both LENQD with the same dominating constant M,
and

|ηik| ≤ 1, |ζijk| ≤ 1, Eηik = Eζijk = 0, Eη2ik ≤ 1, Eζ 2
ijk ≤ 1.

Then, applying Lemma 2.2, and taking t = τn, we derive that

P

(
max
1≤i≤kn

max
1≤j≤bn

∣∣∣∣∣1n
n∑

k=1

(ηik + ζijk)

∣∣∣∣∣ ≥ 8τn

)

≤
kn∑
i=1

bn∑
j=1

P

(∣∣∣∣∣
n∑

k=1

(ηik + ζijk)

∣∣∣∣∣ ≥ 8nτn

)

≤
kn∑
i=1

bn∑
j=1

P

(∣∣∣∣∣
n∑

k=1

ηik

∣∣∣∣∣ ≥ 4nτn

)
+

kn∑
i=1

bn∑
j=1

P

(∣∣∣∣∣
n∑

k=1

ζijk

∣∣∣∣∣ ≥ 4nτn

)

≤
kn∑
i=1

bn∑
j=1

4M exp(−4nτ 2n + nτ 2n )

= 4Mknbn exp(−3 log n) ≤ CMn−2. (20)

By the Borel–Cantelli lemma, from (19) and (20), we obtain that

J21 = O(τn), a.s. (21)

Next, we will deal with J22 in (18). Since |F∗(x) − F∗(y)| ≤ |L(x) − L(y)| for all x and y, similarly to the conclusion
of J21, we obtain that

J22 = O(τn). (22)

Therefore, from (18), (21) and (22), it follows that

J2(x) = O(τn). (23)
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Finally, for J3(x), by applying Theorem 2.2, we derive that

J3(x) =
∫ x

0

[Ln(t) − L(t)]2

L2(t)Ln(t))
dF∗(t) = O(τ 2n ). (24)

Therefore, combining with (16)–(18) and (23)–(24), we immediately obtain (9). And from (13) and (9), we
obtain (10). This completes the proof of the theorem. �
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