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ABSTRACT
This article presents an in-depth exploration of classical and Bayesian
inference methods to estimate the traffic intensity parameter, provid-
ing a comprehensive comparison of these two statistical paradigms
in a novel multiserver Markovian queueing model (M/M/s) incorporat-
ing the phenomenon of reverse balking. The classical inference relies
on maximum likelihood (ML) estimation, while the Bayesian approach
leverages prior distributions and posterior analysis to enhance esti-
mates. The results indicate that Bayesian methods offer better flexibil-
ity and precision compared to traditional ML estimates. Additionally,
the predictive probabilities for the number of customers in the sys-
tem are calculated for different hyper-parameter values of the prior
through extensive simulation techniques. The results provide valuable
insights for optimizing queuemanagement and improving service effi-
ciency in systems where reverse balking occurs. Moreover, a real-life
example is presented to demonstrate the practical implementation of
the proposed methodology. This work not only advances the theo-
retical understanding of queueing dynamics, but also offers practical
implications for industries relying on efficient service mechanisms.
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1. Introduction

Queueing systems have been a significant area of study in operations research for decades
due to their extensive applications in telecommunications, manufacturing, transportation,
and the service industries. Multi-server Markovian queueing systems, in particular, have
received considerable amounts of attention for their ability to model and analyze systems
in which several servers manage incoming units with stochastic service times. The tradi-
tional framework of these systems has been extensively explored, providing vital insights
into performance measures such as traffic intensity, expected system size, and queue lengths.
However, real-world problems often involve various customer behaviours that classical
models cannot fully capture. One such behaviour is reverse balking, in which customers
are more likely to join a system as it increases, in contrast to the traditional balking
phenomenon in which longer queues discourage new arrivals. The concept of reverse
balking was pioneered by Jain et al. (2014). Reverse balking is common in investment
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firms such as stock markets, crowdfunding platforms, and renowned financial advisors,
where high participation attracts more customers. Although the concept of reverse balk-
ing has received less attention, it is observed in various real-world scenarios where con-
gestion attracts more users. Some of the works considering the concept of reverse balk-
ing can be found in Jyothsna et al. (2022); Kumar and Som (2020); Saikia and Choud-
hury (2021); Som and Kumar (2018); Tamuli et al. (2024, 2025), and others cited therein.
Som and Kumar (2018) studied a finite capacity Markovian queueing system with two
heterogeneous servers, reverse balking, and reneging, obtained stationary system size prob-
abilities using an iterative method and conducted a sensitivity analysis. Jyothsna et al. (2022)
analyzed a steady-state finite buffer M/M/1 feedback queue with reverse balking, reverse
reneging, andmultiple working vacations, calculated steady-state system length distributions
and optimized costs usingACO. Tamuli et al. (2025) investigated anM/M/2/K heterogeneous
queueing systemwith reverse balking and reneging till the end of service and derived steady-
state probabilities. They also performed the sensitivity analysis and cost optimization of the
queueing model.

The effective management of a queueing system necessitates the control of various per-
formance measures to design an efficient and reliable system. Among these measures, traffic
intensity, denoted as ρ, stands out as the most crucial performance measure. Traffic intensity
is defined as the ratio of the arrival rate of customers to the service rate of the system. This
measure encapsulates the overall load on the queueing system and significantly influences
other performance measures. The statistical inference of traffic intensity serves as a corner-
stone for assessing system stability and making informed decisions for the efficient manage-
ment of queueing systems. The estimation of traffic intensity in a multi-server Markovian
queueing system considering reverse balking presents novel challenges and opportunities.
The primary objective is to develop a robust framework for classical andBayesian inference of
the proposed queueing system. Clarke (1957) made a pioneering contribution in the domain
of statistical inference of the queueing parameters by estimating the queueing parameters
λ, μ, and ρ using the classical approach. Since then a surge of interest has been witnessed
in the statistical inference of queueing parameters and performance measures which can
be found in the works of Acharya and Singh (2019); Basawa and Prabhu (1981); Bingham
andPitts (1999); Clarke (1957); Cruz et al. (2018); Goyal andHarris (1972); Singh et al. (2024)
and others cited therein. However, Bayesian inference provides a powerful approach incor-
porating prior knowledge and for dealing with uncertainty. Muddapur (1972) pioneered the
Bayesian approach to inference in queueing systems by extending Clarke’s methodology
to get Bayesian estimates of λ, μ, and ρ. Singh et al. (2021) investigated statistical meth-
ods to estimate the traffic intensity viz., maximum likelihood and Bayesian estimators, by
observing the number of customers present in the system at successive departure epochs,
and provided computational results fromMonte Carlo simulations to establish the efficiency
and effectiveness of the proposed approaches. The Bayesian approach to inference in queue-
ing systems has gained significant attention in recent times. Basak and Choudhury (2021)
derived Bayesian estimators for traffic intensity in a single-server queuing model with expo-
nentially distributed inter-arrival and service times, comparing their performance with
classical maximum likelihood estimators and selecting priors based on a model comparison
criterion using Bayes factor. Singh et al. (2023) obtained Bayes estimators for traffic inten-
sity ρ under the squared error loss function in an M/D/1 queueing system, assuming three
forms of prior information (incomplete gamma, left-truncated beta, and improper Jeffreys
priors), proposed the Bayes factor as a model comparison criterion, and conducted Monte
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Carlo simulations to validate the proposed algorithms, with a real case study illustrating
method applicability. Numerous other studies on Bayesian inference of queueing systems can
be found in works by Bura and Sharma (2023); Deepthi and Jose (2020); Singh et al. (2024),
and among others.

This article developed a multi-server Markovian queueing model considering reverse
balking. To date, no research endeavours have estimated performance measures for queue-
ing systems incorporating reverse balking. In the case of reverse balking, the probability of
joining the system (bm) is an increasing function of the system size (m) which makes the
computational analysis more complex. In this study, we propose the probability of joining
the system as bm = m+1

m+2 to effectively capture the essence of reverse balking. This formula-
tion ensures that when the system is idle (m = 0), the probability of joining the system is
unbiased, reflecting a natural scenario where customers have an equal chance of either enter-
ing or balking. This choice is crucial as it maintains a realistic and mathematically tractable
framework for analyzing reverse balking, which has not been extensively studied in classi-
cal and Bayesian estimation contexts. The motivation behind this study lies in addressing
the complexities introduced by state-dependent joining probabilities in queueing systems,
which significantly impact performance evaluation and decision-making. By incorporating
both classical and Bayesian estimation techniques, we provide a comprehensive statistical
framework for estimating key parameters, enhancing model applicability in real-world sce-
narios such as customer flowmanagement in service industries. Given the critical importance
of traffic intensity as a performance measure, the study focuses on estimating traffic inten-
sity using both classical and Bayesian approaches. Specifically, the Bayesian estimation is
performed using the Markov Chain Monte Carlo (MCMC) method implemented in R soft-
ware. By precisely estimating traffic intensity, businesses can make informed decisions about
system capacity, and process improvements, ensuring that they can meet customer demand
without overburdening their resources. This leads to more efficient operations, cost savings,
and improved customer experiences, particularly in environments with fluctuating demand
and complex customer behaviours such as reverse balking.

2. Mathematical modelling

This article proposed a novelM/M/s queueingmodel considering reverse balking. Customers
arrive at the queueing system following a Poisson process with arrival rate λ and an arriv-
ing customer joins the system with probability bm = m+1

m+2 such that bm is a monotonically
increasing function of the number of customers (denoted as m) in the system. When the
system is void, the probability of an arriving customer joining the system is assumed to
be unbiased, i.e. 1

2 . It suggests that in the absence of prior system congestion information,
an arriving customer is equally likely to join or not join the system. Customers are served
according to the first-come, first-serve basis (FCFS) principle by s homogeneous servers,
each having exponential service times. If there are r (1 ≤ r ≤ s) customers in the system,
then only r servers are busy, and the interval between two consecutive service completions
is exponentially distributed with a mean 1

rμ . If there are r (r ≥ s) customers in the system,
then all s servers are busy, and the interval between two consecutive service completions is
exponentially distributed with a mean 1

sμ . Therefore, the service rate is{
rμ, 1 ≤ r < s,
sμ, r ≥ s.
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The traffic intensity ρ is the average proportion of time where each server is busy. Queueing
theory often operates under the assumption of equilibrium. When ρ<1, then the system is
in equilibrium and has a stationary distribution. The following are the differential difference
equations of the proposed queueing system obtained using the Birth and Death equations:

d
dt
P0(t) = μP1(t) − λ

2
P0(t); (1)

d
dt
Pm(t) = m

m + 1
λPm−1(t) + (m + 1)μPm+1(t) − m + 1

m + 2
λPm(t) − mμPm(t), (2)

0 < m < s;

d
dt
Pm(t) = m

m + 1
λPm−1(t) + sμPm+1(t) − m + 1

m + 2
λPm(t) − sμPm(t), m ≥ s. (3)

Assuming that steady-state exists, then limm→∞ Pm(t) = Pm, and limm→∞ P′
m(t) = 0.

Therefore, the steady-state equations of the queueing model under investigation are

0 = μP1 − λ

2
P0; (4)

0 = m
m + 1

λPm−1 + (m + 1)μPm+1 − m + 1
m + 2

λPm − mμPm, 0 < m < s; (5)

0 = m
m + 1

λPm−1 + sμPm+1 − m + 1
m + 2

λPm − sμPm, m ≥ s. (6)

Solving Equations (4)–(6), the stationary distribution of the number of customers (M) in the
system at departure epochs is given by

Pm =

⎧⎪⎪⎨
⎪⎪⎩

(sρ)m

(m + 1)!
P0, 0 ≤ m < s,

ssρm

s!(m + 1)
P0, s ≤ m,

(7)

where ρ = λ
sμ (Shortle et al., 2018).

Using the normality condition, P0 = P(M = 0) can be obtained as

P0 =
( s−1∑
m=0

(sρ)m

(m + 1)!
+

∞∑
m=s

ssρm

s!(m + 1)

)−1

= eρs�(s + 1, sρ) − s�(s)
ρs2�(s)

+ ssρs

s!
�HL(ρ, 1, s + 1), (8)

where �HL(·) is a Hurwitz-LerchPhi function (McPhedran et al., 2007).

3. Performancemeasures and sensitivity analysis

In this section, we present the key performance measures of the system, including expected
system size and average reverse balking, which help evaluate the efficiency of the queueing
model. Performance measures are crucial for understanding system behaviour, optimizing
resource allocation, and improving service quality. Additionally, sensitivity analysis is con-
ducted to examine how variations in system parameters, such as arrival and service rates,
affect these measures, providing insights into system performance.
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Figure 1. Impact of system parameter’s on performance measures. (a) Variations in Expected system size
w.r.t. λ (where s = 4 andμ = 6). (b) Variations in Expected system size w.r.t.μ (where s = 4 and λ = 2).

3.1. Performancemeasures

Expected System Size Ls is

Ls =
∞∑

m=1
mPm =

s−1∑
m=1

(
m

(sp)m

(m + 1)!

)
+

∞∑
m=s

(
m

ssρm

s!(m + 1)

)
. (9)

Expected Reverse Balking Rate Rr.balk is

Rr.balk =
∞∑

m=0

(
1 − m + 1

m + 2

)
λPm

=
s−1∑
m=0

(
1 − m + 1

m + 2

)
λ

(sp)m

(m + 1)!
+

∞∑
m=s

(
1 − m + 1

m + 2

)
λ

ssρm

s!(m + 1)
. (10)

3.2. Sensitivity analysis

The variations in performance measures for different values of arrival rate λ are illustrated
in Figure 1(a). As the arrival rate λ increases, the expected system size also increases, indi-
cating a higher number of customers in the system. Conversely, the expected reverse balking
decreases, as customers are less likely to hesitate balk when the system is more occupied.
This outcome aligns with the model’s expectation, where a larger system size encourages
customers to join rather than balk.

Further, the variations in the performance measures for various values of service rate μ

are shown in Figure 1(b). As service rate μ increases, the expected system size decreases due
to faster service completion. Consequently, the expected reverse balking increases, as a larger
system size fosters trust, making customers less likely to balk. These findings are consistent
with the model’s expectation.

4. Classical estimation

In this section, the maximum likelihood estimator of traffic intensity ρ for the proposed
model is obtained. In formulating the likelihood function, this article considers an ensemble
of n independent and identically distributed instances of the proposed queueing model. To
generate the data, it is necessary to observe the system at departure epochs. It is assumed
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that each departing customer leaves behind a certain number of customers, denoted as xi
at ith observation. Therefore, x = (x1, x2, . . . , xn) constitutes our sample of size n and each
xi (i = 1, 2, . . .) follows the derived distribution (7). Then the corresponding likelihood
function is obtained as

L(x|ρ) =
n∏

i=1

[
(sρ)xi

(xi + 1)!
P0I{0≤xi<s} + ssρxi

s!(xi + 1)
P0I{xi≥s}

]

= (sρ)
∑n

i=1 xi∏n
i=1(xi + 1)!

P0I{0≤xi<s} + ssρ
∑n

i=1 xi

s!
(∑n

i=1 xi + n
)P0I{xi≥s}, (11)

where P0 = eρs�(s+1,sρ)−s�(s)
ρs2�(s) + ssρs

s! �HL(ρ, 1, s + 1) and I(·) is the indicator function.
The data-generating process described above ensures the independence of sample obser-

vations, provided they are sufficiently spaced. This is due to the ergodic property of the
Markov chain. Succinctly, if Xm denotes the number of customers in the system at the
departure epoch of the mth customer, and Pkij = P(Xm+k = j |Xm = j), then the ergodicity
property asserts that the limiting probabilities vj = limk→∞Pkij, for j = 1, 2, . . . , exist and are
independent of the initial state i, provided the system is in a stationary state (Choudhury
& Borthakur, 2008).

Then taking logarithm of Equation (11), the log-likelihood function for ρ is obtained as

log L(x | ρ) =
[ n∑
i=1

xi log s +
n∑
i=1

xi log ρ − log

{ n∏
i=1

(xi + 1)

}
+ log P0

]
I{0≤xi}

+
[
s log s +

n∑
i=1

xi log ρ − log(s!) − log

( n∑
i=1

xi + log n

)
+ logP0

]
I{xi≥s}.

(12)

By differentiating Equation (12)with respect toρ and equating it to zero, (i.e., ∂
∂ρ log L(x | ρ =

0)), and then solving it, the maximum likelihood estimator of ρ can be obtained. However, a
direct solution of the aforementioned equation is not mathematically sound. Therefore, this
article employed a numerical approximation using GenSA package in R software (version
4.3.3). The algorithm for generating samples using MH sampler is as follows.

5. Bayesian estimation

In this section, the Bayesian estimator of ρ for the proposed queueing model is presented.
Here, ρ is assumed to be a random variable, and its randomness is quantified through a prior
distribution, denoted as π(ρ). This prior information is updated in light of the observed data
and is represented by the posterior distribution, which is given by

�(ρ | x) = L(x | ρ)π(ρ)∫ 1
0 L(x | ρ)π(ρ) dρ

∝ L(x | ρ)π(ρ),

and any inference about the traffic intensityρ can be drawnbased on its posterior distribution
derived from the observed data.
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Algorithm 1: Algorithm to generate sample observations from Pm
Step 1: Set an initial state x0 at t = 0.
Step 2: Consider the proposal distribution as geometric distribution, G(p), 0 ≤ p ≤ 1.
Step 3: Generate a candidate point y from a proposal distribution G(·) which depends on
the current state xt .
Step 4: Compute the acceptance probability α(xt , y):

α(xt , y) =
(
1,


(y)G(xt | y)

(xt)G(y | xt)

)
.

Here, 
(·) is the target distribution denoted as Pmin Equation (7).
Step 5: Generate a uniform random number U ∼ Uniform(0, 1).
Step 6: If u ≤ α(xt , y), acceptthe candidate and set xt+1 = y; otherwise, reject
thecandidate and set xt+1 = xt .
Step 7: Increment t by 1. Repeat Steps 2to 4. Obtain the sample distributed as 
(·).

Since 0 < ρ < 1, a natural prior for ρ is

π(ρ) = 1
β(a, b)

ρa−1(1 − ρ)b−1, a, b > 0. (13)

The beta distribution is chosen due to its flexibility, which enables it to accommodate a wide
range of distributional shapes and functions as a natural distribution for Equation (7). The
determination of parameters a and b for the prior distribution can be approached indirectly.
This can be achieved through various techniques such as utilizing percentiles (e.g. 5%, 50%,
and 95%) or by considering the average and standard deviation of the prior distribution of
traffic intensity (ρ) (Cruz et al., 2017). To account for different prior beliefs regarding the
traffic intensity ρ, various Beta prior distributions are considered. Beta(1, 1) was utilized as
non-informative prior to indicate an absence of prior information about the traffic intensity
(ρ). Subsequently, Beta(5, 5) was adopted to represent a prior belief that ρ is likely concen-
trated around 0.5. Additionally, scenarios where prior beliefs leaned towards either ρ > 0.5
or ρ < 0.5 were considered, employing Beta distributions Beta(5, 2) and Beta(2, 5) respec-
tively. If the prior belief suggests that the traffic intensity ρ is more likely to be greater than
0.5, then the Beta distribution Beta(5, 2) is a suitable choice. In the case of Beta(5, 2), the dis-
tribution is skewed towards the right. This means that the probability mass is concentrated
towards higher values of ρ, making it more probable that ρ > 0.5.

Figure 2 visually presents the shapes of the Beta distributions utilized in this study, offer-
ing insight into their respective probability density functions. This graphical representation
helps in understanding how the choice of prior distributions influences the Bayesian estima-
tion process. This article systematically examines various combinations of sample sizes (n),
and traffic intensities (ρ), considering beta prior distribution for different hyper-parameter
values to comprehensively evaluate the performance of the Bayesian approach in modelling
customers at departure epochs.
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Figure 2. Different Beta prior distributions under consideration.

The posterior distribution of ρ given the data corresponding to the prior distribution in
Equation (13) is given by

�(ρ | x)

∝ 1
β(a, b)

ρa−1(1 − ρ)b−1

[
(sρ)

∑n
i=1 xi∏n

i=1(xi + 1)!
P0I{0≤xi<s} + ssρ

∑n
i=1 xi

s!(
∑n

i=1 xi + n)
P0I{xi≥s}

]

∝ s
∑n

i=1 xi

β(a, b)
∏n

i=1(xi + 1)!
ρ

∑n
i=1 xi+a−1(1 − ρ)b−1P0I{0≤xi<s}

+ ss

β(a, b)s!(
∑n

i=1 xi + n)
ρ

∑n
i=1 xi+a−1(1 − ρ)b−1P0I{xi≥s}. (14)

Since it is difficult to obtain the posterior distribution of �(ρ|data) given in Equation (14),
this article employed theMonte CarloMarkovChain (MCMC)method. TheMCMCmethod
offers a solution for problems where direct computation of the Bayesian estimate is not fea-
sible. The implementation of MCMC method was carried out in R software. The algorithm
for Bayesian estimation is as follows.

5.1. Predictive distribution

After observing x, one can compute the stationary predictive distribution of the number of
customers (M) in the system at the departure epochs, Ppredm,i = P(M = m | x). For obtaining
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Algorithm 2: Algorithm to generate sample observations from �(ρ|x)
Step 1: Set ρ0 at t = 0.
Step 2: Generate a random sample of nobservations from the pmf inEquation (7).
Step 3: Consider the posterior distributionas the target distribution given
inEquation (14).
Step 4: Consider the proposal distributionas beta distribution given
inEquation (13),B(a, b), a, b > 0.
Step 5: Generate a candidate point y from aproposal distribution B(·) which depends on
the currentstate ρt .
Step 6: Compute the acceptance probability α(ρt , y):

α(ρt , y) =
(
1,

�(y)B(ρt | y)
�(ρt)B(y | ρt)

)
.

Here, �(·) is the posterior distribution given inEquation (14), which isconsidered as
target distribution.
Step 7: Generate a uniform random number U ∼ Uniform(0, 1).
Step 8: If u ≤ α(ρt , y),accept the candidate and set ρt+1 = y; otherwise,reject the
candidate and set ρt+1 = ρt .
Step 9: Increment t by 1. Repeat Steps 2to 4. Obtain the sample distributed as �(·).
Note: The above steps are repeated for k = 10000 iterations to obtain a Markov chain
whose stationarydistribution approximates the posterior�(ρ | x).

Ppredm,i , the initial step involves computing Ppredm,i , i = 1, 2, . . . , k and is defined as

Ppredm,i =

⎧⎪⎪⎨
⎪⎪⎩

(sρ∗
i )

m

(m + 1)!
P0, 0 ≤ m < s,

ss(ρ∗
i )

m

s!(m + 1)
P0, s ≤ m,

(15)

where P0,i is given by

P0,i =
( s−1∑
m=0

(sρ∗
i )

m

(m + 1)!
+

∞∑
m=s

ss(ρ∗
i )

m

s!(m + 1)

)−1

, i = 1, 2, . . . , k. (16)

The predictive probability is approximated by the average,

Ppredm ∼= 1
k

k∑
i=1

Ppredm,i . (17)

6. Computational results

To evaluate the methodology discussed in the preceding sections, we computed the ML and
Bayes estimates of ρ using samples derived from the described procedure for sample sizes,
n = 25, 50, 100, 200. Under the Bayesian approach, the estimates were derived under differ-
ent hyperparameter settings (a, b) of the prior distribution. Table 1 summarizes the results,
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Table 1. ML and Bayes estimates of traffic intensity ρ.

ML estimates Bayes estimates
(a, b)

ρ
n Estimate RMSE Estimate RMSE

(1, 1)
0.20 25 0.197442 0.063655 0.219623 0.055428

50 0.196347 0.044164 0.214076 0.039204
100 0.198326 0.032473 0.212445 0.028222
200 0.199105 0.023173 0.208881 0.021107

(2, 5)
0.31 25 0.295701 0.073999 0.305889 0.022492

50 0.296986 0.050853 0.305260 0.016158
100 0.296219 0.035400 0.304720 0.011466
200 0.296473 0.025237 0.305152 0.007919

(5, 5)
0.59 25 0.571122 0.110916 0.584596 0.013246

50 0.580815 0.081607 0.584914 0.009896
100 0.585455 0.061028 0.585688 0.007188
200 0.296473 0.025237 0.585673 0.004833

(5, 2)
0.91 25 0.942583 0.138363 0.899796 0.011003

50 0.942025 0.088487 0.901801 0.007763
100 0.921724 0.041340 0.906526 0.005732
200 0.918899 0.012700 0.906866 0.003946

including the ML and Bayesian estimates of ρ along with their corresponding Root Mean
Squared Errors (RMSE). The replication process has been carried out 1000 times across four
distinct sample sizes.

Table 1 demonstrates that as the sample size increases, the RMSEs of both the Maxi-
mum Likelihood (ML) and Bayes estimates decrease. Consequently, the estimates gradually
converge toward the true parameter values as the sample size increases. This convergence
aligns with theoretical expectations, indicating the asymptotic consistency of the ML and
Bayes estimates for larger sample sizes. It is observed that the computation time is higher
for the Bayesian estimation approach compared to the maximum likelihood (ML) estima-
tion method for all the parameter values. However, it is clearly evident from Figure 3 that the
Bayes estimates consistently exhibit superior performance with lower RMSEs compared to
the ML estimates.

Using Equation (17), the posterior predictive probabilities of the number of customers at
the departure epoch are computed with a simulated sample of size 100. Table 2 presented
the posterior predictive probabilities for customer counts ranging from 0 to 5. Furthermore,
Figure 4 illustrates a plot of these probabilities for 0 to 10 customers, providing a visual repre-
sentation of the predictive distribution. It is clearly evident fromTable 2 and Figure 4 that the
predictive probability of the system being idle decreases as the number of servers increases
from s = 4 to s = 7.

7. Special case

The methodology outlined herein caters to an M/M/s queueing system with reverse balking
wheremultiple servers exist.While such amodel finds broad applicability in various practical
settings, it’s imperative to consider the special case. Therefore, following are the special cases
of the proposed queueing system.

Case I: Single Server (s = 1)
When there is only one server, transform the system into an M/M/1 queueing system

with reverse balking. For this scenario, the probability of the number of customers (M) in
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Figure 3. RMSE versus n.

the system at the departure epoch is given by

Pm =
⎧⎨
⎩

ρm

m + 1
P0, m = 0, 1, 2, . . . ,

0, Otherwise,
(18)

where P0 is obtained from utilizing the normality condition and is given by

P0 = P{M = 0} =
⎛
⎝1 +

∞∑
j=1

ρj

j + 1

⎞
⎠

−1

. (19)

Assume that each departing customer leaves behind a certain number of customers, denoted
as xi. Taking a random sample of size n, x = {x1, x2, . . . , xn}, then the resulting likelihood
function is given by

L(x | ρ) =
n∏

i=1

{
(xi + 1)−1 ρxiP0

}
. (20)

Case II: Finite Capacity System (K)
In scenarios where physical space or other constraints limit the system’s total capacity to

K customers (including those in service and waiting), the queueing model is characterized
as an M/M/s/K system. In this setting, if an arriving customer encounters the system at full
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Figure 4. Posterior predictive probabilities for different values of a and b.

capacity, they are not allowed to enter and considered lost. This model is essential for analyz-
ing systemswith finite capacity, where the potential for customer loss due to space limitations
must be accounted for. Therefore, the probability of the number of customers (M) present in
the system at the departure epoch is given by

Pm =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(sρ)m

(m + 1)!
P0, 0 ≤ m < s,

ssρm

s!(m + 1)
P0, s ≤ m ≤ K,

0, otherwise.

(21)

Then, using the normality condition P0 is obtained as

P0 =
( s−1∑
m=0

(sρ)m

(m + 1)!
+

K∑
m=s

ssρm

s!(m + 1)

)−1

. (22)

Similarly, assume that each departing customer leaves behind a certain number of customers,
denoted as xi. Taking a random sample of size n, x = {x1, x2, . . . , xn}, then the likelihood
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Table 2. Posterior predictive distribution of number of customers
(M).

(a, b) Customers (M) s = 4 s = 7

(1, 1) 0 0.639657 0.442256
1 0.267224 0.322335
2 0.074424 0.156621
3 0.015546 0.057076
4 0.002598 0.016640
5 0.000452 0.004043

(2, 5) 0 0.521165 0.200101
1 0.309023 0.266024
2 0.122156 0.235778
3 0.036216 0.156728
4 0.008590 0.083345
5 0.002122 0.036934

(5, 5) 0 0.242520 0.050031
1 0.284075 0.112169
2 0.221834 0.167654
3 0.129922 0.187940
4 0.060873 0.168544
5 0.029710 0.125958

(5, 2) 0 0.068969 0.006733
1 0.125091 0.021773
2 0.151254 0.046935
3 0.137167 0.075882
4 0.099514 0.098147
5 0.075205 0.105786

function is given by

L(x | ρ) = (sρ)
∑n

i=1 xi∏n
i=1(xi + 1)!

P0 · I{0≤xi<s} + ssρ
∑n

i=1 xi

s!
(∑n

i=1 xi + n
)P0 · I{s≤xi≤K}, (23)

where I(·) is the indicator function.
Thus, the methodology elucidated in this article provided for an M/M/s queueing system

with reverse balking can be extended for this special cases. Notably, the algorithms presented
in this article would require necessary modifications to accommodate the consideration of
one server into the model.

8. Real-life application

To demonstrate the methodology discussed in this article, we applied it to a real-life sce-
nario in the Radiology department of a nursing home located in Dibrugarh, Assam, India.
In this case study, we focus on the arrival of patients for ultrasound in the Radiology depart-
ment, where patients are served according to first come first serve basis. The ultrasound
unit is equipped with four separate cabins with four different ultrasound technologists, (i.e.
s = 4). The phenomenon of reverse balking is inherent in such systems, as patients are more
likely to visit nursing homes where a larger number of patients are already present, under
the assumption that the diagnostic services provided are of high quality and that the attend-
ing physicians are experienced and trustworthy. This behaviour stems from the perception
that a busy department reflects reliable care and accurate diagnostics. Estimating the traffic
intensity (ρ) allows the nursing home management to assess system load, ensures effective
utilization of ultrasound rooms, and reduces patient waiting time, thereby supporting better
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Figure 5. Histogram of the collected dataset.

scheduling, resource allocation, and service delivery. Therefore, the primary objective is to
estimate the traffic intensity (ρ).

The ultrasound unit operates from Monday to Saturday, between 7:00AM and 6:00 PM.
We collected data on the number of patients present in the system at various time points
during the operational hours, resulting in a total of 133 observations. The collected data are
provided as follows and also presented visually in Figure 5.

Dataset:[6, 2, 0, 1, 1, 4, 1, 3, 4, 1, 3, 3, 6, 0, 2, 2, 0,
1, 0, 3, 0, 0, 1, 3, 1, 1, 4, 0, 0, 1, 0, 0, 2, 0, 2, 3, 0,
0, 0, 2, 3, 1, 1, 3, 2, 0, 0, 2, 2, 1, 1, 1, 1, 5, 1, 0, 1,
2, 0, 1, 0, 1, 2, 1, 2, 5, 1, 2, 3, 2, 1, 2, 2, 1, 1, 1, 2,
0, 1, 0, 1, 1, 1, 1, 0, 0, 3, 0, 8, 0, 1, 3, 0, 3, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 0, 1, 0, 3, 1, 2,
1, 0, 2, 2, 1, 1, 3, 0, 0, 0, 1, 0, 4, 2, 0, 0]

To highlight the advantages of our proposed queueing model, we compared it with the
classical M/M/s queueing model. The MLE and χ2 goodness-of-fit test results are depicted
in Table 3. It is observed that the proposed queueing model with reverse balking provides a
better fit to the data, as it exhibits lower AIC and BIC values compared to the classical M/M/s
model. Therefore, the findings suggested that the proposed queueing model more accurately
represents the real-life scenario compared to the classical model. Since the nursing home
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Table 3. Result of goodness-of-fit test.

Proposed Queueing Model M/M/s Queueing Model

MLE 0.496963 0.333718
χ2 statistic 4.285300 9.946100
p-value 0.746400 0.191600
AIC 415.984900 419.602700
BIC 418.875300 422.493100

administration lacks prior knowledge about traffic intensity, a non-informative Beta prior
B(1, 1) is chosen. Based on the observed data, the Bayesian estimate of traffic intensity is
found to be 0.5006332.

9. Conclusion

This article develops and analyzes a multi-server Markovian queueing model considering
reverse balking. Additionally, the classical and Bayesian estimation of traffic intensity ρ is
presented through a comprehensive simulation-based approach. The findings emphasize the
significance of reverse balking in the design andmanagement of queueing systems by estimat-
ing the parameter of the queueing system, particularly when customer behaviour contrasts
with traditional balking patterns. Using the Markov chain Monte Carlo (MCMC) method,
bothmaximum likelihood (ML) and Bayesian estimates are derived. The study reveals that as
sample size increases, both classical and Bayesian estimates converge to the true value. More-
over, Bayesian estimation outperforms classical methods in terms of RMSE. Additionally,
predictive probabilities are obtained enhancing the understanding of the system’s dynamics.
The results show that the posterior predictive probability of the system being idle decreases
as the number of servers increases. A real-life application of the proposedmodel is presented
to demonstrate the application of the methodology discussed in this study.

Future research could extend this work by considering a heterogeneous multi-server
Markovian queueing model, incorporating various customer behaviours, such as reneging,
feedback mechanisms, retrials, and other realistic dynamics.

Acknowledgments

The authors would like to thank the anonymous reviewers for his/her detailed, careful, and exhaustive
comments. These have led to a very substantial improvement in the paper. Furthermore, the first author
expresses gratitude to the Department of Science and Technology (DST), Government of India, for
supporting the research through an INSPIRE fellowship.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data and code availability statement

The data used to support the findings of this study and the accompanying R codes will be
made available from the corresponding author upon request.



16 A. TAMULI AND D. DAS

ORCID

Asmita Tamuli https://orcid.org/0009-0006-4215-8633
Dhruba Das http://orcid.org/0000-0001-8546-0193

References

Acharya, S. K., & Singh, S. K. (2019). Asymptotic properties of maximum likelihood estimators from
single server queues: A martingale approach. Communications in Statistics–Theory and Methods,
48(14), 3549–3557. https://doi.org/10.1080/03610926.2018.1477958

Basak, A., & Choudhury, A. (2021). Bayesian inference and prediction in single serverM/M/1 queuing
model based on queue length. Communications in Statistics–Simulation and Computation, 50(6),
1576–1588. https://doi.org/10.1080/03610918.2019.1586924

Basawa, I., & Prabhu, N. (1981). Estimation in single server queues.Naval Research Logistics Quarterly,
28(3), 475–487. https://doi.org/10.1002/nav.v28:3

Bingham, N. H., & Pitts, S. M. (1999). Non-parametric estimation for theM/G/∞ queue.Annals of the
Institute of Statistical Mathematics, 51(1), 71–97. https://doi.org/10.1023/A:1003831118254

Bura, G. S., & Sharma, H. (2023). Maximum likelihood and Bayesian estimation on M/M/1 queue-
ing model with balking. Communications in Statistics–Theory and Methods, 53(14), 5117–5145.
https://doi.org/10.1080/03610926.2023.2208695

Choudhury, A., & Borthakur, A. C. (2008). Bayesian inference and prediction in the single server
Markovian queue.Metrika, 67(3), 371–383. https://doi.org/10.1007/s00184-007-0138-3

Clarke, A. B. (1957). Maximum likelihood estimates in a simple queue. The Annals of Mathematical
Statistics, 28(4), 1036–1040. https://doi.org/10.1214/aoms/1177706808

Cruz, F. R., Almeida, M. A., D’Angelo, M. F., & van Woensel, T. (2018). Traffic intensity estima-
tion in finite Markovian queueing systems. Mathematical Problems in Engineering, 2018(2), 1–15.
https://doi.org/10.1155/2018/3018758

Cruz, F. R., Quinino, R. D. C., &Ho, L. L. (2017). Bayesian estimation of traffic intensity based on queue
length in a multi-server M/M/s queue. Communications in Statistics–Simulation and Computation,
46(9), 7319–7331. https://doi.org/10.1080/03610918.2016.1236953

Deepthi, V., & Jose, J. K. (2020). Bayesian estimation of M/Ek/1 queueing model using
bivariate prior. American Journal of Mathematical and Management Sciences, 40(1), 88–105.
https://doi.org/10.1080/01966324.2020.1835589

Goyal, T. L., & Harris, C. M. (1972). Maximum-likelihood estimates for queues with state-dependent
service. Sankhya: The Indian Journal of Statistics, Series A, 34(1), 65–80.

Jain, N., Kumar, R., & Som, B. K. (2014). AnM/M/1/N queuing systemwith reverse balking.American
Journal of Operational Research, 4(2), 17–20.

Jyothsna, K., Laxmi, P. V., & Kumar, P. V. (2022). Optimization of a feedback working vacation queue
with reverse balking and reverse reneging. Reliability: Theory & Applications, 17(1), 154–163.

Kumar, R., & Som, B. K. (2020). A multi-server queue with reverse balking and impatient customers.
Pakistan Journal of Statistics, 36(2), 91–101.

McPhedran, R. C., Botten, L. C., Nicorovici, N. A. P., & John Zucker, I. (2007). Symmetrization of the
Hurwitz zeta function and Dirichlet L functions. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 463(2077), 281–301. https://doi.org/10.1098/rspa.2006.1762

Muddapur, M. (1972). Bayesian estimates of parameters in some queueing models. Annals of the
Institute of Statistical Mathematics, 24(1), 327–331. https://doi.org/10.1007/BF02479762

Saikia, G., & Choudhury, A. (2021). A single server Markovian queuing system with limited
buffer and reverse balking. Independent Journal of Management & Production, 12(7), 1774–1784.
https://doi.org/10.14807/ijmp.v12i7.1471

Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory.
(Vol. 399). John Wiley & Sons.

Singh, S. K., Acharya, S. K., Cruz, F. R., & Quinino, R. C. (2021). Estimation of traffic intensity from
queue length data in a deterministic single server queueing system. Journal of Computational and
Applied Mathematics, 398,113693. https://doi.org/10.1016/j.cam.2021.113693

https://orcid.org/0009-0006-4215-8633
http://orcid.org/0000-0001-8546-0193
https://doi.org/10.1080/03610926.2018.1477958
https://doi.org/10.1080/03610918.2019.1586924
https://doi.org/10.1002/nav.v28:3
https://doi.org/10.1023/A:1003831118254
https://doi.org/10.1080/03610926.2023.2208695
https://doi.org/10.1007/s00184-007-0138-3
https://doi.org/10.1214/aoms/1177706808
https://doi.org/10.1155/2018/3018758
https://doi.org/10.1080/03610918.2016.1236953
https://doi.org/10.1080/01966324.2020.1835589
https://doi.org/10.1098/rspa.2006.1762
https://doi.org/10.1007/BF02479762
https://doi.org/10.14807/ijmp.v12i7.1471
https://doi.org/10.1016/j.cam.2021.113693


STATISTICAL THEORY AND RELATED FIELDS 17

Singh, S. K., Acharya, S. K., Cruz, F. R., & Quinino, R. C. (2023). Bayesian inference and prediction in
an M/D/1 queueing system. Communications in Statistics–Theory and Methods, 52(24), 8844–8864.
https://doi.org/10.1080/03610926.2022.2076120

Singh, S. K., Cruz, F. R., Gomes, E. S., & Banik, A. D. (2024). Classical and Bayesian estima-
tions of performance measures in a single server Markovian queueing system based on arrivals
during service times. Communications in Statistics–Theory and Methods, 53(10), 3517–3546.
https://doi.org/10.1080/03610926.2022.2155789

Som, B. K., & Kumar, R. (2018). A heterogeneous queuing system with reverse balking and reneging.
Journal of Industrial and Production Engineering, 35(1), 1–5. https://doi.org/10.1080/21681015.2017.
1297739

Tamuli, A., Das, D., & Choudhury, A. (2024). Optimizing the performance of multiserver het-
erogeneous queueing systems with dynamic customer behaviour. Sankhya B, 86(2), 366–414.
https://doi.org/10.1007/s13571-024-00340-0

Tamuli, A., Das, D., Choudhury, A., & Kushvaha, B. (2025). Optimal service design for hetero-
geneous queueing system with reverse balking and reneging. Operational Research, 25(2), 1–29.
https://doi.org/10.1007/s12351-025-00911-7

https://doi.org/10.1080/03610926.2022.2076120
https://doi.org/10.1080/03610926.2022.2155789
https://doi.org/10.1080/21681015.2017.1297739
https://doi.org/10.1007/s13571-024-00340-0
https://doi.org/10.1007/s12351-025-00911-7

	1. Introduction
	2. Mathematical modelling
	3. Performance measures and sensitivity analysis
	3.1. Performance measures
	3.2. Sensitivity analysis

	4. Classical estimation
	5. Bayesian estimation
	5.1. Predictive distribution

	6. Computational results
	7. Special case
	8. Real-life application
	9. Conclusion
	Acknowledgments
	Disclosure statement
	ORCID
	Data and code availability statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


