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ABSTRACT
Previous studies on Poisson regression models with error-in-variables
(EIV) assumedeither a univariate EIV structure ormultivariate EIV frame-
work with all explanatory variables subject to error where the explana-
tory variable and error vectors are restricted tomultivariate normal dis-
tributions. This study assumes that the explanatory variable and error
vectors follow general distributions, with measurement error affecting
only a subset of variables in the multivariate EIV framework. We define
the partial-error naive estimator, derive its asymptotic bias and mean
squared error, and propose a consistent estimator for the true param-
eter by correcting this bias. We also investigate a simplification of the
new estimator when all components of the explanatory variable and
error vectors are independent. Thismethod is applicable evenwhen the
explanatory variable or error vectors follow amixed distribution. Simu-
lation studies and real data analysis are presented as illustrative exam-
ples to compare the performance of the partial-error naive estimator
with that of the new estimator.
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1. Introduction

Data are frequently affected by measurement errors that stem from the inability to observe
variables in their true form. Such errors can introduce bias into the estimation outcomes.
Error-in-variables (EIV) models account for measurement errors in explanatory variables.
Classical error models (Kukush & Schneeweiss, 2000; Shklyar et al., 2007) and Berkson
error models (Burr, 1988; Huwang & Huang, 2000) are well-known examples of EIV mod-
els. This study focuses primarily on classical error models. Nonlinear models, particularly
generalized linear models, offer greater flexibility than linear models. However, the estima-
tion of generalized linear models from error-affected data is challenging. Various studies
have explored nonlinear EIV models (e.g., Box, 1963; Geary, 1953), including the corrected
score function developed byNakamura (1990) for estimating generalized linearmodels using
EIV. We mainly focussed on the Poisson regression model in the context of measurement
errors. Among generalized linear models, the Poisson regressionmodel is representative and
analytically tractable.
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Kukush et al. (2004), Shklyar and Schneeweiss (2005), Jiang and Ma (2022), Guo
and Li (2002) and Wada and Kurosawa (2023) have discussed approaches to Poisson regres-
sionmodels with classical errors. Kukush et al. (2004) demonstrated the statistical properties
of the naive, corrected score, and structural quasi-score estimators of a Poisson regres-
sion model with a normal explanatory variable and error. Shklyar and Schneeweiss (2005),
assuming a multivariate normal distribution for an explanatory variable and measurement
error, compared the asymptotic covariance matrices of the corrected score, simple struc-
tural estimator, and structural quasi-score estimator of a Poisson regression model. Jiang
and Ma (2022) assumed a high-dimensional explanatory variable with a multivariate nor-
mal error, proposing a new estimator for a Poisson regression model by combining Lasso
regression and the corrected score function. From a Poisson regression model with classical
errors, Guo and Li (2002) proposed an estimator that generalizes the corrected score func-
tion discussed byNakamura (1990) for generally distributed errors, and derived the proposed
estimator’s asymptotic normality. Wada and Kurosawa (2023) generalized the naive estima-
tor discussed by Kukush et al. (2004), derived the asymptotic bias of the naive estimator, and
proposed a consistent estimator of the unknown parameter using the naive estimator.

Although various studies have been conducted on Poisson regression models with EIV,
they have typically assumed a normal distribution for the explanatory variable. However, the
explanatory variable is not always normally distributed. In addition, previous studies have
assumed either a univariate EIV structure (Kukush et al., 2004; Wada & Kurosawa, 2023)
or a multivariate EIV framework with all explanatory variables subject to error where the
explanatory variable and error vectors are restricted to multivariate normal distributions
(Shklyar & Schneeweiss, 2005). In contrast, this study assumes that the explanatory vari-
able and error vectors follow general distributions, with measurement errors included in a
subset of explanatory variables within the multivariate EIV framework. We propose a con-
sistent estimator for the true parameter, and investigate a simplification of the new estimator
when all components of the explanatory variable and error vectors are independent. This
method is applicable, even when the explanatory variable or error vectors follow a mixed
distribution.

Section 2 presents the Poisson regression model with measurement errors and defines the
partial-error naive (PN) estimator. Section 3 considers the requirements for the existence
of a PN estimator and derives its asymptotic bias and mean squared error (MSE), assuming
that the explanatory variable and measurement error have general distributions. Section 4
proposes the corrected partial-error naive (CPN) estimator as a consistent estimator of the
true parameter by correcting the bias of the PN estimator. It then investigates a simplification
of the CPN estimator when all components of the explanatory variable and error vectors are
independent. Additionally, we provide examples of the application of this CPN estimator to
a number of cases: a multivariate normal explanatory variable with a normal error, Bernoulli
and gamma explanatory variables with a gamma error, and gamma and normal explanatory
variables with gamma and normal errors. Section 5 presents simulation studies that compare
the performance of the PN andCPN estimators. Section 6 applies the PN andCPN estimators
to real data.

2. Preliminary

In this section, we present a Poisson regression model with measurement errors and define
the partial-error naive (PN) estimator.
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2.1. Poisson regressionmodel with errors

We assume a Poisson regression model of the response variable Y and vector of explanatory
variables X = (X1, . . . ,Xp+q)

�.

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, (1)

where β = (β0, . . . ,βp+q)
�. Under ordinary circumstances, X is assumed to be correctly

observed. Here, we assume that the vector of explanatory variables X partially includes the
measurement errors in the multivariate EIV framework. We define subvectors of X as

Xo = (X1, . . . ,Xp)
�, Xe = (Xp+1, . . . ,Xp+q)

�. (2)

WhileXo represents a vector of explanatory variables that can be observed directly,Xe repre-
sents a vector of explanatory variables that cannot be observed directly. The values of Xe are
observed with the unexpected measurement errors. Thus, Xe (but not Xo) has a stochastic
error U with

W = Xe + U ,

whereU is assumed to be independent of (X,Y), andW is observable. As X is also a random
variable, it inherently includes the measurement error. However, we assume the existence
of an exogenous measurement error U that is not due to the distribution of X. For exam-
ple, consider two measurement devices with their own intrinsic measurement errors. One
device observes the value asXo, whereas the other, owing to product degradation ormalfunc-
tion, includes an additional errorU attached to the true measurement Xe. This results in the
observed valueW. Here, we assume that X is anRp+q-valued random vector, whereasU and
W are Rq-valued random vectors. We also assume that (Xi = (X�

o,i,X
�
e,i)

�,Yi) (i = 1, . . . , n)
are independently and identically distributed (i.i.d.) samples from the distribution of (X,Y).
Furthermore, we assume that Ui (i = 1, . . . , n) are independent samples from the distribu-
tion of U . Although we can observe Yi,Xo,i,Wi,Xe,i + U i (i = 1, . . . , n), we assume that
Xe and W cannot be observed directly. Even when the distributions X and W are known,
estimating model parameters from mismeasured data remains infeasible without additional
information about the measurement error. Parameter estimation in this context requires at
least partial knowledge ofU . EIVmodels rely on realistic assumptions about such error struc-
tures. Typical assumptions include a known mean and variance for U or a known mean for
U along with the known ratio κj = V[Xj]/V[Wj], where Wj is the component of W corre-
sponding to Xj (j = p + 1, . . . , p + q) (Fuller, 1987). BecauseU represents the measurement
error, its mean is often assumed to be zero. Its variance may be estimated empirically. For
instance, when a measuring device malfunctions during data collection, the data may be
observed both before and after the introduction of errors, allowing the estimation of the
mean and variance of U . Based on this scenario, we assume that both the mean and vari-
ance of U are known. In the following definitions, the functions MX and KX represent the
moment- and cumulant generating functions, respectively, for a random vectorX.We denote
the subvectors ofβ asβ1 = (β1, . . . ,βp)

� andβ2 = (βp+1, . . . ,βp+q)
�. These are regression

parameters corresponding to the subvectors of explanatory variables Xo and Xe, respectively.
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2.2. Partial-error naive estimator

Definition 2.1: We define the PN estimator β̂
(PN) = (β̂

(PN)
0 , . . . , β̂(PN)

p+q )� for β =
(β0, . . . ,βp+q)

� as the solution of the following equation:

Sn
(
β̂

(PN)
)

= 0p+q+1,

where

Sn(b̃) = 1
n

n∑
i=1

{
Yi − exp

(
b̃0 + b̃

�
1 Xo,i + b̃

�
2 W i

)}
(1,X�

o,i,W
�
i )�,

b̃ =
(
b̃0, . . . , b̃p+q

)�
,

(3)

b̃1 = (b̃1, . . . , b̃p)�, b̃2 = (b̃p+1, . . . , b̃p+q)
� are subvectors of b̃ and 0p+q+1 is a (p + q + 1)-

dimensional vector with zeros.

This definition is a natural extension of the naive estimator in Kukush et al. (2004). Following
the argument in Kukush and Shklyar (2002), we obtain the convergence of the PN estimator:

β̂
(PN) a.s.−→ b �= β , (4)

where b = (b0, b�
1 , b

�
2 )� is a solution to the following estimating equation:

EX,W
[
EY|(X,W)

[{
Y − exp(b0 + b�

1 Xo + b�
2 W)

}
(1,X�

o ,W
�)�

]]
= 0p+q+1. (5)

3. Properties of the partial-error naive estimator

In this section, we consider the requirements for the existence of a PN estimator and derive
its asymptotic bias andmean square error (MSE), assuming that the explanatory variable and
measurement error each follow a general distribution.

3.1. Existence of the partial-error naive estimator

The PN estimator does not always exist forX andU when they are general random variables.
Therefore, we assume the existence of the following expectation:

EX,W
[
EY|(X,W)

[{
Y − exp(b0 + b�

1 Xo + b�
2 W)

}
(1,X�

o ,W
�)�

]]
.
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This expectation is assumed to be a requirement for the existence of the PN estimator.
Consequently, the following six expectations are met:

E[Y] = EX [E[Y | X]] = EX
[
exp(β0 + β�

1 Xo + β�
2 Xe)

]
= eβ0MX

(
β1
β2

)
,

E[YXo] = EX [XoE[Y | X]] = EX
[
Xo exp(β0 + β�

1 Xo + β�
2 Xe)

]
= eβ0

∂

∂β1
MX

(
β1
β2

)
,

E[YW] = EX [E[Y | X]E[W | X]]
= EX

[
(Xe + E[U]) exp(β0 + β�

1 Xo + β�
2 Xe)

]
= eβ0E[U]MX

(
β1
β2

)
+ eβ0

∂

∂β2
MX

(
β1
β2

)
,

E[exp(b0 + b�
1 Xo + b�

2 W)] = eb0E[exp(b�
1 Xo + b�

2 Xe + b�
2 U)]

= eb0MX

(
b1
b2

)
MU(b2),

E[Xo exp(b0 + b�
1 Xo + b�

2 W)] = EX
[
EU

[
Xo exp(b0 + b�

1 Xo + b�
2 Xe + b�

2 U)
]]

= eb0
∂

∂b1
MX

(
b1
b2

)
MU(b2),

E[W exp(b0 + b�
1 Xo + b�

2 W)] = EX
[
EU

[
(Xe + U) exp(b0 + b�

1 Xo + b�
2 Xe + b�

2 U)
]]

= eb0
∂

∂b2
MX

(
b1
b2

)
MU(b2)

+ eb0MX

(
b1
b2

)
∂

∂b2
MU(b2).

(6)
We use the conditional independence of Y and W under a given X to calculate these
expectations (see Lemma A.3). These expectations require the existence of the following
condition:

MX

(
β1
β2

)
, MX

(
b1
b2

)
, MU(b2). (7)

This condition is required for the existence of a PN estimator.

3.2. Asymptotic bias of the partial-error naive estimator

The PN estimator satisfies (4) and has an asymptotic bias for the true β . Here, we derive the
asymptotic bias under general conditions. Let G

((
β1
β2

)
,
(
b1
b2

))
be a function by⎛⎜⎜⎝

∂

∂b1
KX

(
b1
b2

)
− ∂

∂β1
KX

(
β1
β2

)
∂

∂b2
KX

(
b1
b2

)
+ ∂

∂b2
KU(b2) − E[U] − ∂

∂β2
KX

(
β1
β2

)
⎞⎟⎟⎠ . (8)
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Theorem 3.1: Let Y | X be a Poisson regression in (1) with (2). We assume conditions
(C1)–(C3).

(C1) (7) exists.
(C2) det ∂G

∂

(
b1
b2

)� �= 0 is satisfied where G is given in (8).

(C3) Each component of β̂
(PN)

(β̂
(PN)

)� is uniformly integrable.

Then, following conditions (C1)–(C3), the asymptotic bias of the PN estimator β̂
(PN) =

(β̂
(PN)
0 , (β̂

(PN)

1 )�, (β̂(PN)

2 )�)� is represented as

lim
n→∞E[β̂(PN)

0 − β0] = b0 − β0 = log

⎛⎜⎜⎝ MX

(
β1
β2

)
MX

(
g
(

β1
β2

))
MU

(
g2

(
β1
β2

))
⎞⎟⎟⎠ ,

lim
n→∞E

[(
β̂

(PN)

1 − β1

β̂
(PN)

2 − β2

)]
=
(
b1 − β1
b2 − β2

)
= g

(
β1
β2

)
−
(

β1
β2

)
,

where g is a continuously differentiable implicit function, with
(
b1
b2

)
= g

(
β1
β2

)
in the neigh-

bourhood of
((

β1
β2

)
,
(
b1
b2

))
satisfyingG = 0. Furthermore, g2(x) = (gp+1(x), . . . , gp+q(x))�

is a subvector of g. The asymptotic MSE of the PN estimator is then given by the squared
asymptotic bias.

Remark 3.1: In Wada and Kurosawa (2023), the asymptotic bias and MSE of the naive esti-
mator were derived under the condition that the limit and expectation were exchangeable
without noting. These results are valid under the condition. Regarding exchangeability, by
referring to the discussion in Kukush and Shklyar (2002), we can replace the convergence
in probability of the naive estimator with almost sure convergence. Then, assuming uniform
integrability additionally, the Vitali convergence theorem (Rosenthal, 2025) can be applied,
which justifies the exchangeability of the limit and expectation.

4. Bias correction

In this section, we propose the corrected partial-error naive (CPN) estimator as a consistent
estimator of the true parameter by correcting the bias of the PN estimator. We investigate
a simplification of the CPN estimator when all components of the explanatory variable and
error vectors are independent. Additionally, we provide examples of the application of the
CPN estimator for a number of cases, including a multivariate normal explanatory variable
with a normal error, Bernoulli and gamma explanatory variables with a gamma error, and
gamma and normal explanatory variables with gamma and normal errors.
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4.1. Corrected partial-error naive estimator

The exact distribution of Y | W is given by

fY|W(y | w) = 1
fW(w)

∫
supp(fX)

fY|X(y | x)fU(w − xe)fX(x) dx

= 1
fW(w)

∫
supp(fX)

Po
(
exp

(
β�

(
1
x

)))
fU(w − xe)fX(x) dx. (9)

In general, we cannot calculate a right-hand side integral of (9). Therefore, we cannot use the
maximum likelihood estimator ofY | W. In this study, we construct a consistent estimator of
the true parameter by correcting the bias of the PN estimator. This is proposed as a corrected
partial-error naive (CPN) estimator using the following theorem.

Theorem4.1: Let Y | X be a Poisson regression in (1)with (2).We assume (C1) in Theorem 3.1
and Condition (C’2).

(C’2) det ∂G

∂

(
β1
β2

)� �= 0 is satisfied where G is given in (8).

Then, the CPN estimator β̂
(CPN) = (β̂

(CPN)
0 , (β̂

(CPN)

1 )�, (β̂(CPN)

2 )�)� of β, which is strongly
consistent, is represented as

β̂
(CPN)
0 = β̂

(PN)
0 + log

⎛⎜⎜⎜⎜⎜⎝
MX

(
β̂

(PN)

1

β̂
(PN)

2

)
MU

(
β̂

(PN)

2

)
MX

(
β̂

(CPN)

1

β̂
(CPN)

2

)
⎞⎟⎟⎟⎟⎟⎠ ,

(
β̂

(CPN)

1

β̂
(CPN)

2

)
= h

(
β̂

(PN)

1

β̂
(PN)

2

)
,

where h is a continuously differentiable implicit function with
(

β1
β2

)
= h

(
b1
b2

)
in the neigh-

bourhood of
((

β1
β2

)
,
(
b1
b2

))
satisfying G = 0.

Note that h in Theorem 4.1 is the inverse function of g in Theorem 3.1. Here, we consider
a situation in which the components of random vectors X andU are independent. We obtain
the CPN estimator in Theorem 4.2 where the components of X = (X1, . . . ,Xp+q)

� andU =
(U1, . . . ,Uq)

� are independent.

Theorem 4.2: Let Y | X be a Poisson regression in (1) with (2). We assume the following
conditions (D1)–(D3).

(D1) Assume the existence of MXi(bi) (i = 1, . . . , p + q), MUj(bj) (j = 1, . . . , q).
(D2) K ′′

Xj
(βj) �= 0 (j = 1, . . . , p + q) is satisfied.
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(D3) The components of X = (X1, . . . ,Xp+q)
� and U = (U1, . . . ,Uq)

� are independent.

Then, the CPN estimator β̂
(CPN) = (β̂

(CPN)
0 , . . . , β̂(CPN)

p+q )� of β, which is strongly consistent,
is represented as

β̂
(CPN)
0 = β̂

(PN)
0 +

p+q∑
i=p+1

KXi

(
β̂

(PN)
i

)
+

q∑
i=1

KUi

(
β̂

(PN)
p+i

)
−

p+q∑
i=p+1

KXi

(
β̂

(CPN)
i

)
,

β̂
(CPN)
j = β̂

(PN)
j (j = 1, . . . , p),

β̂
(CPN)
j = hj

(
β̂

(PN)
j

)
(j = p + 1, . . . , p + q),

where hj (j = p + 1, . . . , p + q) is a continuously differentiable implicit function with βj =
hj(bj) in the neighbourhood of (βj, bj) satisfying

Gj(βj, bj) = K ′
Xj(bj) + K ′

Uj−p(bj) − E[Uj−p] − K ′
Xj(βj) = 0.

Remark 4.1: The implicit function hj in Theorem 4.2 is equivalent to the formula for
the corrected naive (CN) estimator proposed in Wada and Kurosawa (2023) for univari-
ate EIV models. Thus, we can use the CN estimator for multivariate EIV models when the
components of X and U are independent.

4.2. Application examples

Example 4.3: We derive the CPN estimator assuming that

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�,

Xo = (X1,X2)
�, Xe = X3, W = X3 + U,

X ∼ N3(μ,�), U ∼ N(0, σ 2),

where μ = (μ1,μ2,μ3)
� ∈ R3,� = [σij] ∈ R3×3, 0 < σ 2 < ∞. We use the following par-

tition expressions for μ and �:

μ =
(

μ1
μ3

)
, � =

(
�1 σ 3
σ�
3 σ33

)
,

where

μ1 =
(

μ1
μ2

)
, �1 =

(
σ11 σ12
σ12 σ22

)
, σ 3 =

(
σ13
σ23

)
.

We obtain

G
((

β1
β3

)
,
(
b1
b3

))
=
(

�1(b1 − β1) + (b3 − β3)σ 3
(b1 − β1)

′σ 3 + b3(σ33 + σ 2) − β3σ33

)
and G satisfies

det
∂G

∂

(
β1
β3

)� = det
(−�1 −σ 3

−σ�
3 −σ33

)
= (−1)3 det(�) �= 0.
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From G = 03, we obtain the following implicit function:

β1 = b1 − σ 2
2 b3

σ33 − σ�
3 �−1

1 σ 3
,

β3 = σ33 + σ 2 − σ�
3 �−1

1 σ 3

σ33 − σ�
3 �−1

1 σ 3
b3.

Thus, according to Theorem 4.1, the CPN estimator is represented as follows:

β̂
(CPN)
0 = β̂

(PN)
0 +

(
β̂

(PN)

1 − β̂
(CPN)

1

)�
μ1 +

(
β̂

(PN)
3 − β̂

(CPN)
3

)
μ3

− 1
2

((
β̂

(CPN)

1

)�
�1β̂

(CPN)

1 + β̂
(CPN)
3

(
2σ�

3 β̂
(CPN)

1 + σ33β̂
(CPN)
3

))
+ 1

2

((
β̂

(PN)

1

)�
�1β̂

(PN)

1 + β̂
(PN)
3

(
2σ�

3 β̂
(PN)

1 + σ33β̂
(PN)
3

))
+ 1

2
σ 2

(
β̂

(PN)
3

)2
,

β̂
(CPN)

1 = β̂
(PN)

1 − σ 2β̂
(PN)
3

σ33 − σ3��−1
1 σ 3

�−1
1 σ 3,

β̂
(CPN)
3 = σ33 + σ 2 − σ�

3 �−1
1 σ 3

σ33 − σ�
3 �−1

1 σ 3
β̂

(PN)
3 .

Example 4.4: We derive the CPN estimator assuming that

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�,

Xo = (X1,X2)
�, Xe = X3, W = X3 + U,

X1 ∼ Be(p1), X2 ∼ Be(p2), X3 ∼ �(k1, λ), U ∼ �(k2, λ),

where 0 < p1 < 1, 0 < p2 < 1, k1 > 0, λ > 0, k2 > 0. We also assume X1,X2 and X3 are
mutually independent. We obtain

G3(β3, b3) = k1 + k2
λ − b3

− k2
λ

− k1
λ − β3

.

From G3 = 0, we obtain the implicit function as

β3 = (k1 + k2)λb3
k1λ + k2b3

.

Thus, according to Theorem 4.2, the CPN estimator is represented as follows:

β̂
(CPN)
0 = β̂

(PN)
0 − k2 log

(
1 − β̂

(PN)
3 /λ

)
+ k1 log

(
λ − β̂

(CPN)
3

λ − β̂
(PN)
3

)
,

β̂
(CPN)
1 = β̂

(PN)
1 ,



10 K. WADA AND T. KUROSAWA

β̂
(CPN)
2 = β̂

(PN)
2 ,

β̂
(CPN)
3 = (k1 + k2)λβ̂

(PN)
3

k1λ + k2β̂
(PN)
3

.

Example 4.5: We derive the CPN estimator assuming that

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2)

�, X = (X1,X2)
�,

Xe = (X1,X2)
� = X, W1 = X1 + U1, W2 = X2 + U2,

X1 ∼ �(k1, λ), X2 ∼ N(μ, σ 2
x ), U1 ∼ �(k2, λ), U2 ∼ N(0, σ 2

u ),

X1 ⊥ X2, U1 ⊥ U2,

where k1 > 0, λ > 0, k2 > 0, 0 < σ 2
x < ∞, 0 < σ 2

u < ∞. We obtain

Gj(βj, bj) =
⎧⎨⎩
k1 + k2
λ − bj

− k2
λ

− k1
λ − βj

, j = 1,

(σ 2
x + σ 2

u )bj − σ 2
x βj, j = 2.

From Gj = 0 (j = 1, 2), we obtain the following implicit functions:

β1 = (k1 + k2)λb1
k1λ + k2b1

, β2 = σ 2
x + σ 2

u
σ 2
x

b2.

Thus, according to Theorem 4.2, the CPN estimator is represented as follows:

β̂
(CPN)
0 = β̂

(PN)
0 + k1 log

(
λ − β̂

(CPN)
1

λ − β̂
(PN)
1

)

− k2 log
(
1 − β̂

(PN)
1 /λ

)
+ μ

(
β̂

(PN)
2 − β̂

(CPN)
2

)
+ 1

2
(σ 2

x + σ 2
u )
(
β̂

(PN)
2

)2 − 1
2
σ 2
x

(
β̂

(CPN)
2

)2
,

β̂
(CPN)
1 = (k1 + k2)λβ̂

(PN)
1

k1λ + k2β̂
(PN)
1

,

β̂
(CPN)
2 = σ 2

x + σ 2
u

σ 2
x

β̂
(PN)
2 .

5. Simulation studies

In this section, we present simulation studies that compare the performance of the PN and
CPN estimators. We denote the sample size as n and the number of simulations as MC. We
calculate the estimated bias for β̂

(PN)
and β̂

(CPN)
as follows:

B̂IAS
(
β̂

(PN)
)

= 1
MC

MC∑
i=1

β̂
(PN)

i − β ,
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B̂IAS
(
β̂

(CPN)
)

= 1
MC

MC∑
i=1

β̂
(CPN)

i − β ,

where β̂
(PN)

i and β̂
(CPN)

i represent the PN and CPN estimators in the ith time simulation,
respectively. Sampling from the joint distribution of (X,Y) involves first sampling Xi (i =
1, . . . , n) from the distribution ofX, and then samplingYi (i = 1, . . . , n) from the conditional
distribution of Y|Xi.

5.1. Case 1

We assume

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�,

Xe = (X1,X2,X3)
� = X, W = X + U ,

X ∼ N3(μ,�X), U ∼ N3(03,�U),

where μ = (μ1,μ2,μ3)
� ∈ R3,� = [σij] ∈ R3×3. Let

β =

⎛⎜⎜⎝
0.1
0.1
0.2
0.3

⎞⎟⎟⎠ , μ =
⎛⎝ 1
1.2
0.5

⎞⎠ , �X =
⎛⎝ 1 0.2 −0.5

0.2 1.1 0.3
−0.5 0.3 1.2

⎞⎠ , �U = I3,

n = 1000,MC = 10,000. As mentioned in Section 2.1, we assume that the true value of �u
is known. We estimate μ and �x using the method of moments in terms ofW:

μ̂ = 1
n

n∑
i=1

W i, �̂X = 1
n

n∑
i=1

(W i − W)(W i − W)� − �U .

In this case, we compare the performance of the PN and CPN estimators to that of corrected
score (CS), simple structural (SS) and quasi-score (QS) estimators. These are consistent esti-
mators for the true parameter discussed in Shklyar and Schneeweiss (2005). Table 1 lists
the estimated and asymptotic biases of the estimators for the true β . The bias of the PN
estimator is corrected using the CPN estimator. The performance of the CPN estimator is
non-inferior to the CS, SS and QS estimators. The existing methods discussed in Shklyar
and Schneeweiss (2005) are limited to EIV models, in which all explanatory variables are
measured with error, and X and U are restricted to a multivariate normal distribution. The
more general CPN estimator demonstrates a comparable performance even in such a special
case, indicating its effectiveness and broader applicability compared to the CS, SS and QS
estimators.

5.2. Case 2

We assume

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�,
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Table 1. Estimated and asymptotic theoretical bias for amultivariate normal distri-
bution with multivariate normal error.

PN CPN CS SS QS

β̂0 B̂IAS 0.2700 −0.0020 −0.0035 −0.0020 −0.0020
Asy.Bias 0.2701 0 0 0 0

β̂1 B̂IAS −0.0797 0.0008 0.0014 0.0008 0.0008
Asy.Bias −0.0796 0 0 0 0

β̂2 B̂IAS −0.0670 −0.0003 −0.0001 −0.0003 −0.0003
Asy.Bias −0.0669 0 0 0 0

β̂3 B̂IAS −0.1453 0.0012 0.0021 0.0012 0.0012
Asy.Bias −0.1453 0 0 0 0

Xo = (X1,X2)
�, Xe = X3, W = X3 + U,

X ∼ N3(μ,�), U ∼ N(0, σ 2),

where μ = (μ1,μ2,μ3)
� ∈ R3, � = [σij] ∈ R3×3, 0 < σ 2 < ∞. Let

β =

⎛⎜⎜⎝
0.1
0.1
0.2
0.3

⎞⎟⎟⎠ , μ =
⎛⎝ 1
1.2
0.5

⎞⎠ , � =
⎛⎝ 1 0.2 −0.5

0.2 1.1 0.3
−0.5 0.3 1.2

⎞⎠ ,

n = 5000,MC = 10,000. We performed the simulation using three different values of σ 2:
0.25, 0.5, 1. As in Case 1, we assume that the true value of σ 2 is known. We estimate μ and
� within the CPN estimator using the method of moments in terms of Xo = (X1,X2)

� and
W because the value of X3 is not directly observable.

μ̂1 = 1
n

n∑
i=1

xo,i, μ̂3 = 1
n

n∑
i=1

wi,

�̂1 = 1
n

n∑
i=1

(xo,i − x̄o)(xo,i − x̄o)�,

σ̂ = 1
n

n∑
i=1

(xo,i − x̄o)(wi − w̄), σ̂33 = 1
n

n∑
i=1

(wi − w̄)2 − σ 2,

where (xo,i,wi) (i = 1, . . . , n) are samples of the distributions of (Xo,W).
Table 2 lists the estimated and asymptotic biases of the estimators for the true β . Bias

correction of the PN estimator was performed using the CPN estimator. Its bias increases
with increasing σ 2. However, the bias of the CPN estimator is small for large σ 2.

5.3. Case 3

We assume

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�,

Xo = (X1,X2)
�, Xe = X3, W = X3 + U,
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Table 2. Estimated and asymptotic theoretical bias for amultivariate normal distri-
bution with a normal error.

0.25 0.5 1 1

σ 2 PN CPN PN CPN PN CPN

β̂0 B̂IAS 0.0534 0.0003 0.0856 −0.0003 0.1234 −0.0008
Asy.Bias 0.0531 0 0.0857 0 0.1238 0

β̂1 B̂IAS −0.0410 0.0001 −0.0664 0.0001 −0.0959 0.0004
Asy.Bias −0.0411 0 −0.0664 0 −0.0960 0

β̂2 B̂IAS 0.0268 −0.0002 0.0435 −0.0002 0.0629 −0.0004
Asy.Bias 0.0270 0 0.0436 0 0.0629 0

β̂3 B̂IAS −0.0716 −0.0001 −0.1155 0.0002 −0.1666 0.0008
Asy.Bias −0.0715 0 −0.1155 0 −0.1668 0

Table 3. Estimated and asymptotic theoretical bias for Bernoulli and gamma dis-
tributions with a gamma error.

1.125 1.6 2.25

k2 PN CPN PN CPN PN CPN

β̂0 B̂IAS −0.0878 0.0058 −0.1159 0.0051 −0.1445 0.0063
Asy.Bias −0.0942 0 −0.1215 0 −0.1515 0

β̂1 B̂IAS −0.0002 −0.0002 0.0002 0.0002 −0.0005 −0.0005
Asy.Bias 0 0 0 0 0 0

β̂2 B̂IAS 0.0000 0.0000 −0.0003 −0.0003 0.0000 0.0000
Asy.Bias 0 0 0 0 0 0

β̂3 B̂IAS −0.1298 −0.0027 −0.1684 −0.0025 −0.2125 −0.0029
Asy.Bias −0.1276 0 −0.1665 0 −0.2104 0

X1 ∼ Be(p1), X2 ∼ Be(p2), X3 ∼ �(k1, λ), U ∼ �(k2, λ),

where 0 < p1 < 1, 0 < p2 < 1, k1 > 0, λ > 0, k2 > 0. We also assume X1,X2, and X3 are
mutually independent. Let

β = (
0.5, 0.1, 0.2, 0.6

)� , p1 = 0.4, p2 = 0.55, k1 = 2.5, λ = 1.5,

n = 5000,MC = 10,000. We perform the simulation using three different values for k2:
1.125, 1.6, 2.25. The true value of k2 is assumed to be known. We estimate k1 and λ in the
formula of the CPN estimator using the method of moments in terms ofW (the value of X3
is not directly observable).

k̂1 =
(
1
n

n∑
i=1

wi

)
λ̂ − k2, λ̂ =

1
n
∑n

i=1 wi
1
n
∑n

i=1(wi − w̄)2
,

where wi (i = 1, . . . , n) are samples of the distribution ofW.
Table 3 lists the estimated and asymptotic biases of the estimators for the true β . Bias

correction of the PN estimator was performed using the CPN estimator.

5.4. Case 4

We assume

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2)

�, X = (X1,X2)
�,
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Table 4. Estimated and asymptotic theoretical bias for gamma and normal distri-
butions with gamma and normal errors.

(0.36,0.25) (0.72,0.5) (1.44,1)

(k2, σ 2
u ) PN CPN PN CPN PN CPN

β̂0 BIAS 0.0302 0.0003 0.0549 −0.0002 0.0956 0.0008
Asy.Bias 0.0299 0 0.0551 0 0.0949 0

β̂1 BIAS 0.07772 −0.0002 0.1298 0.0001 0.1957 −0.0010
Asy.Bias 0.0774 0 0.1297 0 0.1959 0

β̂2 BIAS −0.0334 −0.0001 −0.0601 0.0000 −0.1002 −0.0001
Asy.Bias −0.0333 0 −0.0600 0 −0.1000 0

Xe = (X1,X2)
� = X, W1 = X1 + U1, W2 = X2 + U2,

X1 ∼ �(k1, λ), X2 ∼ N(μ, σ 2
x ), U1 ∼ �(k2, λ), U2 ∼ N(0, σ 2

u ),

X1 ⊥ X2, U1 ⊥ U2,

where k1 > 0, λ > 0, k2 > 0, 0 < σ 2
x < ∞, 0 < σ 2

u < ∞. Let

β = (
0.5,−0.4, 0.3

)� , k1 = 2, λ = 1.2,μ = 1, σ 2
x = 2,

n = 5000,MC = 10,000. The simulation was performed in three ways.

(k2, σ 2
u ) = (0.36, 0.25), (0.72, 0.5), (1.44, 1).

However, we assume that the true values of k2 and σ 2
u are known. We estimate k1, λ,μ, and

σ 2
x in the CPN estimator using the method of moments in terms of W = (W1,W2)

� (the
values of X1 and X2 are not directly observable).

k̂1 =
(
1
n

n∑
i=1

w1,i

)
λ̂ − k2, λ̂ =

1
n
∑n

i=1 w1,i
1
n
∑n

i=1(w1,i − w̄1)2
,

μ̂ = 1
n

n∑
i=1

w2,i, σ̂ 2
x = 1

n

n∑
i=1

(w2,i − w̄2)
2 − σ 2

u ,

where wi = (w1,i,w2,i)
� (i = 1, . . . , n) are samples of the distribution ofW.

Table 4 lists the estimated and asymptotic biases of the estimators for the true β . As before,
the bias of the CPN estimator was smaller than that of the PN estimator in all cases.

6. Real data analysis

In this section, we apply the PN and CPN estimators to real data as discussed in Wada
and Kurosawa (2023). We use financial data collected in the FinAccess survey conducted
in 2019, provided by Kenya National Bureau of Statistics (2019). In this study, we focus on
the values labelled as finhealthscore, Mobile Ownership, Formal Prudential, and Normalized
Household weights. The sample size isN = 8669. Details of the features used in this section,
such as their types and descriptions, are provided in Table 5. We use finhealthscore as an
objective variable Y, Mobile Ownership as an explanatory variable X1, Formal Prudential as
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Table 5. Details of the variables.

Features Type Description

finhealthscore Count Financial health score for
households.

Mobile Ownership Binary Indicator of whether the
respondent household owns
a mobile or not.

Formal Prudential Binary Indicator of whether the
respondent household
spends money prudently or
not.

Normalized
Household
Weights

Continuous Weighted and normalized
households.

Table 6. Estimates of φ, RMcF ,mpp, and ECD.

φ̂ R̂McF m̂pp ÊCD

1.1670 0.4829 0.3183 0.2415

an explanatory variable X2, and normalized household weights as explanatory variables X3.
The true model is assumed to be as follows:

Y | X ∼ Po
(
exp

(
β�

(
1
X

)))
, β = (β0,β1,β2,β3)

�, X = (X1,X2,X3)
�.

We further assume that the true parameter β is obtained from the estimates of all N data
points.

As a diagnostic technique, we calculate goodness-of-fit measures to verify that the dataset
follows a Poisson regressionmodel. Table 6 lists the estimates ofφ,RMcF inMcFadden (1974),
mpp in Kurosawa et al. (2020) and the ECD in Eshima and Tabata (2010). Overdispersion is
present because the estimate of φ is greater than one. In Wada and Kurosawa (2023), for a
univariate case, RMcF was reported to be 0.4478. By contrast, RMcF in this study is improved
by the Poisson regression model with multivariate explanatory variables, which allows us to
apply a more appropriate Poisson regression model to the dataset. The estimated value of β
is (0.6308, 0.3356, 0.4520, 0.0897)� and we regard the estimate as the true value.

According to Kenya National Bureau of Statistics (2019), the data from the FinAccess sur-
vey were weighted and adjusted for non-responses to obtain a representative dataset at the
national and county levels. Thus, we may consider a situation in which X3 exhibits stochastic
error U as

Xo = (X1,X2)
�, Xe = X3, W = X3 + U.

We assume a positive error because the distribution of normalized household weights is
positive. Thus, we assume

X1 ∼ Be(p1), X2 ∼ Be(p2), X3 ∼ �(k1, λ), U ∼ �(k2, λ).

We also assume X1,X2, and X3 are mutually independent. This setting is the same as that of
the application in Example 4.4. We obtain the estimates of k1 and λ as k1 = 2.0746, λ =
2.0746 and estimate the true parameterwith k2 = k1/3, 2k1/3, k1.We take 2000 random sam-
ples from allN samples to obtain theβ estimates.We repeat the estimations forMC = 10,000
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Table 7. Estimated and asymptotic theoretical bias in financial data.

k1/3 2k1/3 k1

k2 PN CPN PN CPN PN CPN

β̂0 B̂IAS −0.0082 −0.0073 −0.0131 −0.0117 −0.0172 −0.0154
Asy.Bias −0.0008 0 −0.0013 0 −0.0016 0

β̂1 B̂IAS 0.0057 0.0057 0.0073 0.0073 0.0099 0.0099
Asy.Bias 0 0 0 0 0 0

β̂2 B̂IAS 0.0119 0.0119 0.0184 0.0184 0.0248 0.0248
Asy.Bias 0 0 0 0 0 0

β̂3 B̂IAS −0.2364 0.0066 −0.3755 0.0215 −0.4753 0.0248
Asy.Bias −0.2418 0 −0.3894 0 −0.4890 0

iterations to obtain the Monte Carlo mean of βs. The bias is calculated by the difference
between the Monte Carlo mean and the true value. Furthermore, to clarify the magnitude of
the bias, we divide the bias by the absolute value of the true parameter. Table 7 lists the esti-
mated biases calculated from the MC simulations. The estimated biases of the PN and CPN
estimators are equal for β1 and β2 because X1 and X2 are observable. The estimated biases
of β1 and β2 are close to 0, which is a typical value for their asymptotic biases. In addition,
the estimated biases of the CPN estimator for β0 and β3 are smaller than those of the PN
estimator in all cases.
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Appendices

Appendix 1. Proofs of Theorems

A.1 Proof of Theorem 3.1

Proof: First, we derive an expression for b. From (5), the following equations are obtained.

E[Y] = E[exp(b0 + b�
1 Xo + b�

2 W)],

E[YXo] = E[Xo exp(b0 + b�
1 Xo + b�

2 W)],

E[YW] = E[W exp(b0 + b�
1 Xo + b�

2 W)].

(A1)

From (6) and these equalities, we have

eβ0MX

(
β1
β2

)
= eb0MX

(
b1
b2

)
MU(b2),

eβ0
∂

∂β1
MX

(
β1
β2

)
= eb0

∂

∂b1
MX

(
b1
b2

)
MU(b2),

eβ0E[U]MX

(
β1
β2

)
+ eβ0

∂

∂β2
MX

(
β1
β2

)
= eb0

∂

∂b2
MX

(
b1
b2

)
MU(b2)

+ eb0MX

(
b1
b2

)
∂

∂b2
MU(b2).

https://doi.org/10.1007/BF02777577
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https://doi.org/10.3390/jrfm16030186
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Therefore, we apply a transformation to obtain the following system of equations:

b0 = β0 + log

⎛⎝ MX

(
β1
β2

)
MX

(
b1
b2

)
MU(b2)

⎞⎠ ,

∂

∂β1
KX

(
β1
β2

)
= ∂

∂b1
KX

(
b1
b2

)
,

E[U] + ∂

∂β2
KX

(
β1
β2

)
= ∂

∂b2
KX

(
b1
b2

)
+ ∂

∂b2
KU (b2).

(A2)

Thus, b = (b0, b�
1 , b

�
2 )� is determined by solving the following system of equations:

∂

∂β1
KX

(
β1
β2

)
= ∂

∂b1
KX

(
b1
b2

)
,

E[U] + ∂

∂β2
KX

(
β1
β2

)
= ∂

∂b2
KX

(
b1
b2

)
+ ∂

∂b2
KU (b2).

Here, we set

G
((

β1
β2

)
,
(
b1
b2

))
:=

⎛⎜⎜⎝
∂

∂b1
KX

(
b1
b2

)
− ∂

∂β1
KX

(
β1
β2

)
∂

∂b2
KX

(
b1
b2

)
+ ∂

∂b2
KU(b2) − E[U] − ∂

∂β2
KX

(
β1
β2

)
⎞⎟⎟⎠ .

From the definition of b,G is always 0 inR2(p+q). In addition,G is continuously differentiable, because
we assume the existence of (7). We assume G satisfies

det
∂G

∂

(
b1
b2

)� = det

⎛⎜⎜⎝
∂2

∂b�
1 ∂b1

KX

(
b1
b2

)
∂2

∂b�
2 ∂b1

KX

(
b1
b2

)
∂2

∂b�
1 ∂b2

KX

(
b1
b2

)
∂2

∂b�
2 ∂b2

KX

(
b1
b2

)
+ ∂2

∂b�
2 ∂b2

KU(b2)

⎞⎟⎟⎠ �= 0.

Then, according to the Implicit Function Theorem (see for example Rudin, 1976), there exists a unique
C1-class function g(x) = (g1(x), . . . , gp+q(x))� that satisfies(

b1
b2

)
= g

(
β1
β2

)
in the neighbourhood of the zeros of G. Next, we describe the near-certain convergence of the PN
estimator. Based on the strong law of large numbers, we obtain

Sn
(
β̂

(PN) | X
)

= 1
n

n∑
i=1

{
Yi − exp

(
β̂

(PN)
0 + β̂

(PN)�
1 Xo,i + β̂

(PN)�
2 W i

)}
(1,X�

o,i,W
�
i )�,

a.s.−→ EX,W
[
EY|(X,W)

[{
Y − exp

(
β̂

(PN)
0 + β̂

(PN)�
1 Xo + β̂

(PN)�
2 W

)}
×(1,X�

o ,W
�)
]]

. (A3)

From (A3) and the same argument as in Kukush and Shklyar (2002), we obtain

β̂
(PN) a.s.−→ b. (A4)

From (A4) and the uniform integrability using the Vitali convergence theorem (Rosenthal, 2025), the
asymptotic bias of the PN estimator is as follows:

lim
n→∞E

[
β̂

(PN)
0 − β0

]
= E

[
lim
n→∞ β̂

(PN)
0 − β0

]
= b0 − β0
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= log

⎛⎝ MX

(
β1
β2

)
MX

(
g
(

β1
β2

))
MU

(
g2

(
β1
β2

))
⎞⎠ ,

lim
n→∞E

[(
β̂

(PN)

1 − β1

β̂
(PN)

2 − β2

)]
= E

[
lim
n→∞

(
β̂

(PN)

1 − β1

β̂
(PN)

2 − β2

)]
=
(
b1 − β1
b2 − β2

)

= g
(

β1
β2

)
−
(

β1
β2

)
,

where g2(x) = (gp+1(x), . . . , gp+q(x))� denotes a subvector of g. We also derive the asymptotic MSE
of the PN estimator. The asymptotic MSE of β̂(PN)

0 is obtained by uniform integrability using the Vitali
convergence theorem as follows:

lim
n→∞E

[(
β̂

(PN)
0 − β0

)2] = lim
n→∞E

[(
β̂

(PN)
0 − b0 + b0 − β0

)2]
= (b0 − β0)

2 + 2(b0 − β0) lim
n→∞E

[
β̂

(PN)
0 − b0

]
+ lim

n→∞E
[(

β̂
(PN)
0 − b0

)2]
= (b0 − β0)

2.

For (β̂
(PN)

1 , β̂
(PN)

2 )�, we obtain the following by the same argument.

lim
n→∞E

⎡⎣(β̂
(PN)

1 − β1

β̂
(PN)

2 − β2

)(
β̂

(PN)

1 − β1

β̂
(PN)

2 − β2

)�⎤⎦
=
(
b1 − β1
b2 − β2

)(
b1 − β1
b2 − β2

)�

=
(
g
(

β1
β2

)
−
(

β1
β2

))(
g
(

β1
β2

)
−
(

β1
β2

))�
.

�

A.2 Proof of Theorem 4.1

Proof: From (A2), we obtain the following system of equations:

β0 = b0 + log

⎛⎜⎜⎝MX

(
b1
b2

)
MU(b2)

MX

(
β1
β2

)
⎞⎟⎟⎠ ,

G =

⎛⎜⎜⎝
∂

∂b1
KX

(
b1
b2

)
− ∂

∂β1
KX

(
β1
β2

)
∂

∂b2
KX

(
b1
b2

)
+ ∂

∂b2
KU (b2) − E[U] − ∂

∂β2
KX

(
β1
β2

)
⎞⎟⎟⎠ = 0p+q.

(A5)
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Following the same argument utilized in the proof of Theorem 3.1, G is always 0 and is continuously
differentiable. We assume the following:

det
∂G

∂

(
β1
β2

)� = (−1)p+q det

⎛⎜⎜⎝
∂2

∂β�
1 ∂β1

KX

(
β1
β2

)
∂2

∂β�
2 ∂β1

KX

(
β1
β2

)
∂2

∂β�
1 ∂β2

KX

(
β1
β2

)
∂2

∂β�
2 ∂β2

KX

(
β1
β2

)
⎞⎟⎟⎠ �= 0.

Then, according to the Implicit Function Theorem, there exists a unique C1-class function h that
satisfies (

β1
β2

)
= h

(
b1
b2

)
in the neighbourhood of the zeros ofG. By replacing b = (b0, b�

1 , b
�
2 )� with the PN estimator β̂

(PN) =
(β̂

(PN)
0 , (β̂

(PN)

1 )�, (β̂(PN)

2 )�)� in the solution for β = (β0,β�
1 ,β

�
2 )�, we obtain the CPN estimator as

β̂
(CPN)
0 = β̂

(PN)
0 + log

⎛⎜⎜⎝MX

(
β̂

(PN)
1

β̂
(PN)
2

)
MU(β̂

(PN)

2 )

MX

(
β̂

(CPN)
1

β̂
(CPN)
2

)
⎞⎟⎟⎠ ,

(
β̂

(CPN)

1

β̂
(CPN)

2

)
= h

(
β̂

(PN)

1

β̂
(PN)

2

)
.

Here, we have the almost sure convergence of β̂
(PN)

in (A4). Therefore, by using the continuous
mapping theorem (see for example van der Vaart, 2012), we obtain β̂

(CPN) a.s.−→ β . �

A.3 Proof of Theorem 4.2

Proof: When the components of X = (X1, . . . ,Xp+q)
� and U = (U1, . . . ,Uq)

� are independent, we
obtain

KX

(
β1
β2

)
= logMX

(
β1
β2

)
= log

p+q∏
j=1

MXj(βj) =
p+q∑
j=1

KXj(βj).

The same property holds for KU . Thus, the derivatives of KX and KU are

∂

∂β1
KX

(
β1
β2

)
=
⎛⎜⎝K ′

X1
(β1)
...

K′
Xp

(βp)

⎞⎟⎠ ,

∂

∂β2
KX

(
β1
β2

)
=

⎛⎜⎜⎝
K ′
Xp+1

(βp+1)

...
K′
Xp+q

(βp+q)

⎞⎟⎟⎠ ,

∂

∂b2
KU(b2) =

⎛⎜⎝K ′
U1

(bp+1)
...

K ′
Uq

(bp+q)

⎞⎟⎠ .

Therefore, we can write the system of Equations (A5) as follows:

β0 = b0 +
p+q∑
i=1

KXi(bi) +
q∑

i=1
KUi(bp+i) −

p+q∑
i=1

KXi(βi), (A6)



STATISTICAL THEORY AND RELATED FIELDS 21

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

G1(β1, b1)
...

Gp(βp, bp)
Gp+1(βp+1, bp+1)

...
Gp+q(βp+q, bp+q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A7)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

K ′
X1

(b1) − K ′
X1

(β1)
...

K′
Xp

(bp) − K ′
Xp

(βp)

K ′
Xp+1

(bp+1) + K′
U1

(bp+1) − E[U1] − K ′
Xp+1

(βp+1)

...
K ′
Xp+q

(bp+q) + K ′
Uq

(bp+q) − E[Uq] − K ′
Xp+q

(βp+q)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0p+q. (A8)

Following the same argument utilized in the proof of Theorem 3.1, Gj (j = 1, . . . , p + q) is always 0 in
R2 and is continuously differentiable. We assume the following:

∂Gj(βj, bj)
∂βj

= −K′′
Xj(βj) �= 0, j = 1, . . . , p + q.

Then, according to the Implicit Function Theorem, there exists a unique C1-class function hj that
satisfies βj = hj(bj) in the neighbourhood of the zeros of Gj. Furthermore, we obtain hj(x) = x (j =
1, . . . , p) because KXj increases monotonically in the neighbourhood of βj. Thus, the CPN estimator

β̂
(CPN) = (β̂

(CPN)
0 , . . . , β̂(CPN)

p+q )� is represented as

β̂
(CPN)
0 = β̂

(PN)
0 +

p+q∑
i=p+1

KXi

(
β̂

(PN)
i

)
+

q∑
i=1

KUi

(
β̂

(PN)
p+i

)
−

p+q∑
i=p+1

KXi

(
β̂

(CPN)
i

)
,

β̂
(CPN)
j = β̂

(PN)
j , j = 1, . . . , p,

β̂
(CPN)
j = hj

(
β̂

(PN)
j

)
, j = p + 1, . . . , p + q.

�

Appendix 2. Supplementary Lemmas

Proof: The joint distribution of (X,Y ,U) is transformed as follows:

FX,Y ,U (x, y, u) =
∫ xp+q

−∞
· · ·

∫ x1

−∞

∫ y

−∞

∫ uq

−∞
· · ·

∫ u1

−∞
fX,Y ,U(s, t, v) dvdtds

=
∫ xp+q

−∞
· · ·

∫ x1

−∞

∫ y

−∞

∫ uq

−∞
· · ·

∫ u1

−∞
fY ,U|X(t, v | s) dv dt fX(s) ds

=
∫ xp+q

−∞
· · ·

∫ x1

−∞
P(Y ≤ y,U ≤ u | X = s)fX(s) ds

=
∫ xp+q

−∞
· · ·

∫ x1

−∞
P(Y | (X = s) ≤ y,U ≤ u)fX(s) ds

= P(X ≤ x, (Y | X) ≤ y,U ≤ u) = FX,Y|X,U(x, y, u).

�
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Proof: As shown, the independence of (X,Y | X) from U or that of (X,Y) from U satisfies X ⊥ U .
Thus, from Lemma A.1, we have

fX,Y ,U(x, y, u) = fX,Y|X,U (x, y, u). (A9)

By integrating Equation (A9) with respect to U , we obtain

fX,Y(x, y) = fX,Y|X(x, y).

Thus, the following necessary conditions are obtained:

fX,Y ,U(x, y, u) = fX,Y|X,U(x, y, u) = fX,Y|X(x, y)fU(u) = fX,Y(x, y)fU(u).

Similarly, for the sufficient condition, we have

fX,Y|X,U(x, y, u) = fX,Y ,U(x, y, u) = fX,Y(x, y)fU(u) = fX,Y|X(x, y)fU(u).

�

Lemma A.1: Under the assumptions in Section 2.1, Y andW are independent for a given X.

Proof: The conditional distribution of (Y ,W) | X is transformed as follows:

f(Y ,W)|X(y,w | x) = fY ,W,X(y,w, x)
fX(x)

= fY ,W,Xo ,Xe(y,w, xo, xe)
fX(x)

= fY ,W,Xo ,U(y,w, xo,w − xe)
fX(x)

= fY ,Xo ,Xe ,U(y, xe, xo,w − xe)
fX(x)

= fY ,Xo ,Xe ,U(y, xo, xe,w − xe)
fX(x)

= fY ,X,U(y, x,w − xe)
fX(x)

= fY ,X(y, x)fU(w − xe)
fX(x)

= fY|X(y | x)fW|Xe(w | xe).

We use Corollary A.2 in the transformation process. �

Wada and Kurosawa (2023) used Lemma A.3 for the univariate case without supplying detailed proof.
Thus, we provide an explicit proof in this paper.

Appendix 3. Simulation results of small samples

Table A1 shows the estimated biases of the estimators in the case of a multivariate normal distribution
with a normal error for n = 30, 100, 500, 1000. Overall, the bias correction appears to be effective for
small samples. Table A2 lists the estimated biases for Bernoulli and gamma distributions with a gamma
error for small samples. Similarly, the bias of the PN estimator was correctedwell by the CPN estimator.

Table A1. Estimated bias for a multivariate normal distribution with a normal error.

30 100 500 1000

n PN CPN PN CPN PN CPN PN CPN

B̂IAS(β̂0) 0.0429 −0.0510 0.0724 −0.0152 0.0829 −0.0033 0.0847 −0.0014
B̂IAS(β̂1) −0.0668 0.0001 −0.0658 0.0007 −0.0659 0.0006 −0.0662 0.0003
B̂IAS(β̂2) 0.0472 0.0033 0.0448 0.0012 0.0434 −0.0003 0.0431 −0.0005
B̂IAS(β̂3) −0.1142 0.0020 −0.1154 0.0001 −0.1152 0.0004 −0.1151 0.0006
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Table A2. Estimated bias for Bernoulli and gamma distributions with a gamma error.

30 100 500 1000

n PN CPN PN CPN PN CPN PN CPN

B̂IAS(β̂0) −0.0726 0.0601 −0.0764 0.0426 −0.0985 0.0211 −0.1060 0.0138
B̂IAS(β̂1) −0.0043 −0.0043 −0.0006 −0.0006 −0.0002 −0.0002 0.0005 0.0005
B̂IAS(β̂2) 0.0067 0.0067 −0.0011 −0.0011 −0.0004 −0.0004 0.0003 0.0003
B̂IAS(β̂3) −0.1956 −0.0494 −0.1852 −0.0281 −0.1749 −0.0115 −0.1722 −0.0077
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