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ABSTRACT ARTICLE HISTORY
Previous studies on Poisson regression models with error-in-variables Received 13 July 2024
(EIV) assumed either a univariate EIV structure or multivariate EIV frame- ~ Revised 29 May 2025
work with all explanatory variables subject to error where the explana- Accepted 9 November 2025
tory variable and error vectors are restricted to multivariate normal dis- KEYWORDS

tributions. This study assumes that the explanatory variable and error Poisson regression;
vectors follow general distributions, with measurement error affecting error-in-variables; multiple
only a subset of variables in the multivariate EIV framework. We define covariates; consistent
the partial-error naive estimator, derive its asymptotic bias and mean estimator

squared error, and propose a consistent estimator for the true param-

eter by correcting this bias. We also investigate a simplification of the

new estimator when all components of the explanatory variable and

error vectors are independent. This method is applicable even when the

explanatory variable or error vectors follow a mixed distribution. Simu-

lation studies and real data analysis are presented as illustrative exam-

ples to compare the performance of the partial-error naive estimator

with that of the new estimator.

1. Introduction

Data are frequently affected by measurement errors that stem from the inability to observe
variables in their true form. Such errors can introduce bias into the estimation outcomes.
Error-in-variables (EIV) models account for measurement errors in explanatory variables.
Classical error models (Kukush & Schneeweiss, 2000; Shklyar et al., 2007) and Berkson
error models (Burr, 1988; Huwang & Huang, 2000) are well-known examples of EIV mod-
els. This study focuses primarily on classical error models. Nonlinear models, particularly
generalized linear models, offer greater flexibility than linear models. However, the estima-
tion of generalized linear models from error-affected data is challenging. Various studies
have explored nonlinear EIV models (e.g., Box, 1963; Geary, 1953), including the corrected
score function developed by Nakamura (1990) for estimating generalized linear models using
EIV. We mainly focussed on the Poisson regression model in the context of measurement
errors. Among generalized linear models, the Poisson regression model is representative and
analytically tractable.
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Kukush et al. (2004), Shklyar and Schneeweiss (2005), Jiang and Ma (2022), Guo
and Li (2002) and Wada and Kurosawa (2023) have discussed approaches to Poisson regres-
sion models with classical errors. Kukush et al. (2004) demonstrated the statistical properties
of the naive, corrected score, and structural quasi-score estimators of a Poisson regres-
sion model with a normal explanatory variable and error. Shklyar and Schneeweiss (2005),
assuming a multivariate normal distribution for an explanatory variable and measurement
error, compared the asymptotic covariance matrices of the corrected score, simple struc-
tural estimator, and structural quasi-score estimator of a Poisson regression model. Jiang
and Ma (2022) assumed a high-dimensional explanatory variable with a multivariate nor-
mal error, proposing a new estimator for a Poisson regression model by combining Lasso
regression and the corrected score function. From a Poisson regression model with classical
errors, Guo and Li (2002) proposed an estimator that generalizes the corrected score func-
tion discussed by Nakamura (1990) for generally distributed errors, and derived the proposed
estimator’s asymptotic normality. Wada and Kurosawa (2023) generalized the naive estima-
tor discussed by Kukush et al. (2004), derived the asymptotic bias of the naive estimator, and
proposed a consistent estimator of the unknown parameter using the naive estimator.

Although various studies have been conducted on Poisson regression models with EIV,
they have typically assumed a normal distribution for the explanatory variable. However, the
explanatory variable is not always normally distributed. In addition, previous studies have
assumed either a univariate EIV structure (Kukush et al., 2004; Wada & Kurosawa, 2023)
or a multivariate EIV framework with all explanatory variables subject to error where the
explanatory variable and error vectors are restricted to multivariate normal distributions
(Shklyar & Schneeweiss, 2005). In contrast, this study assumes that the explanatory vari-
able and error vectors follow general distributions, with measurement errors included in a
subset of explanatory variables within the multivariate EIV framework. We propose a con-
sistent estimator for the true parameter, and investigate a simplification of the new estimator
when all components of the explanatory variable and error vectors are independent. This
method is applicable, even when the explanatory variable or error vectors follow a mixed
distribution.

Section 2 presents the Poisson regression model with measurement errors and defines the
partial-error naive (PN) estimator. Section 3 considers the requirements for the existence
of a PN estimator and derives its asymptotic bias and mean squared error (MSE), assuming
that the explanatory variable and measurement error have general distributions. Section 4
proposes the corrected partial-error naive (CPN) estimator as a consistent estimator of the
true parameter by correcting the bias of the PN estimator. It then investigates a simplification
of the CPN estimator when all components of the explanatory variable and error vectors are
independent. Additionally, we provide examples of the application of this CPN estimator to
a number of cases: a multivariate normal explanatory variable with a normal error, Bernoulli
and gamma explanatory variables with a gamma error, and gamma and normal explanatory
variables with gamma and normal errors. Section 5 presents simulation studies that compare
the performance of the PN and CPN estimators. Section 6 applies the PN and CPN estimators
to real data.

2. Preliminary

In this section, we present a Poisson regression model with measurement errors and define
the partial-error naive (PN) estimator.
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2.1. Poisson regression model with errors

We assume a Poisson regression model of the response variable Y and vector of explanatory
variables X = (X, ... ,Xp+q)T.

rixeo (s (47 (1)), 0

where 8 = (bo,. .., ,b’p+q)T. Under ordinary circumstances, X is assumed to be correctly
observed. Here, we assume that the vector of explanatory variables X partially includes the
measurement errors in the multivariate EIV framework. We define subvectors of X as

Xo= X1 Xp) T, Xe= Kpsts o Xpig) |- 2)

While X, represents a vector of explanatory variables that can be observed directly, X, repre-
sents a vector of explanatory variables that cannot be observed directly. The values of X, are
observed with the unexpected measurement errors. Thus, X, (but not X,) has a stochastic
error U with

W=X.+U,

where U is assumed to be independent of (X, Y), and W is observable. As X is also a random
variable, it inherently includes the measurement error. However, we assume the existence
of an exogenous measurement error U that is not due to the distribution of X. For exam-
ple, consider two measurement devices with their own intrinsic measurement errors. One
device observes the value as X,, whereas the other, owing to product degradation or malfunc-
tion, includes an additional error U attached to the true measurement X,. This results in the
observed value W. Here, we assume that X is an RP*9-valued random vector, whereas U and
W are R7-valued random vectors. We also assume that (X; = (XL, X;)T, Y)i=1,...,n)
are independently and identically distributed (i.i.d.) samples from the distribution of (X, Y).
Furthermore, we assume that U; (i = 1,.. ., n) are independent samples from the distribu-
tion of U. Although we can observe Y;,X,;, Wi, X.;+ U; (i=1,...,n), we assume that
X, and W cannot be observed directly. Even when the distributions X and W are known,
estimating model parameters from mismeasured data remains infeasible without additional
information about the measurement error. Parameter estimation in this context requires at
least partial knowledge of U. EIV models rely on realistic assumptions about such error struc-
tures. Typical assumptions include a known mean and variance for U or a known mean for
U along with the known ratio x; = V[X;]/V[W;], where W; is the component of W corre-
sponding to X; (j =p + 1,...,p + q) (Fuller, 1987). Because U represents the measurement
error, its mean is often assumed to be zero. Its variance may be estimated empirically. For
instance, when a measuring device malfunctions during data collection, the data may be
observed both before and after the introduction of errors, allowing the estimation of the
mean and variance of U. Based on this scenario, we assume that both the mean and vari-
ance of U are known. In the following definitions, the functions Mx and Kx represent the
moment- and cumulant generating functions, respectively, for a random vector X. We denote
the subvectorsof Bas B, = (f1,. .. ,ﬁp)T and B, = (Bp+1,- - ,ﬁp+q)T. These are regression
parameters corresponding to the subvectors of explanatory variables X, and X, respectively.
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2.2. Partial-error naive estimator

~ (PN A .
Definition 2.1: We define the PN estimator ,3( - (,B(EPN),..., ﬁlﬁfff]))T for B =

Bos>---» ,Bp+q)T as the solution of the following equation:

~(PN)
$4 (") = Oprar,

where

n
Sn(b) = % 21 {Yi — exp (i?o + i?lTXo,i + EZTWi)} (I,XL, W,-T)T, o
=

b= (b0 Bpeg)

by = (by,..., ZJP)T, b, = (Z’p+1’ ce Bp+q)T are subvectors of b and 0pigr1isa(p+q+1)-
dimensional vector with zeros.

This definition is a natural extension of the naive estimator in Kukush et al. (2004). Following
the argument in Kukush and Shklyar (2002), we obtain the convergence of the PN estimator:

~(PN) as.

B~ —b#B, (4)

where b = (by, b; , b, )" is a solution to the following estimating equation:
Exw |:Ey|(X,W) [{Y — exp(bo + bil—Xo + b;r W)} (I,XI, WT)T:H = 0p+q+1. (5)

3. Properties of the partial-error naive estimator

In this section, we consider the requirements for the existence of a PN estimator and derive
its asymptotic bias and mean square error (MSE), assuming that the explanatory variable and
measurement error each follow a general distribution.

3.1. Existence of the partial-error naive estimator

The PN estimator does not always exist for X and U when they are general random variables.
Therefore, we assume the existence of the following expectation:

Exw [EYKX,W) [{Y — exp(bo + b] X, + b] W)} (LX), WT)T]] .
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This expectation is assumed to be a requirement for the existence of the PN estimator.
Consequently, the following six expectations are met:

E[Y] = Ex [ELY | X]] = Ex [exp(fo + B] X, + B X)| = e/ ix (g;) ,

E[YX,] = Ex [X,ELY | X1] = Ex [Xo exp(fo + B7 X, + 81 X.) |

_ ﬂoi Bi
—° aﬂlMX (ﬂZ) ’
E[YW] = Ex [E[Y | X]E[W | X]]

= Ex | (X, + E[U]) exp(Bo + B] X, + B] X0)]

) By ﬁoi ﬁl)
=e E[U]Mx<ﬂ2)+e 8ﬂ2MX(ﬂz >

E[exp(by + b] X, + b) W)] = e®E[exp(b] X, + b) X, + b U)]
= ebOMX (bl) My (b,),
b,
E[X, exp(bo + b] X, + b] W)] = Ex [EU [Xo exp(bo + by X, + b] X, + b) U)]]

G b
=e —Mx(," ) Mu(b
< b X(bz) u(b2),

E[W exp(bo + b] X, + b W)] = Ex [EU [(xe + U) exp(bo + b Xo + b) Xe + b) U)]]

0 b
et — My (') My
e T X(bz) v(b2)

b 0
+ ePomy (b;) a—szU(bz)-

(6)
We use the conditional independence of Y and W under a given X to calculate these
expectations (see Lemma A.3). These expectations require the existence of the following

condition:
Mx (g;) , Mx (Z;) ,  Muy(by). (7)

This condition is required for the existence of a PN estimator.

3.2. Asymptotic bias of the partial-error naive estimator

The PN estimator satisfies (4) and has an asymptotic bias for the true . Here, we derive the

asymptotic bias under general conditions. Let G (( g; ) , (g; )) be a function by

KB biy 9 B:
ablKX (b2> aﬂlKX (/32)

i b, i _ _ B,
6b2KX (bz) + T Ky(by) — E[U] — 55-Kx ('32)

(8)
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Theorem 3.1: Let Y | X be a Poisson regression in (1) with (2). We assume conditions
(C1)-(C3).

(C1) (7) exists.
(C2) det —95 £ 0 is satisfied where G is given in (8).

(&
0 b2

(C3) Each component ofﬁ(PN) (/§(PN))T

is uniformly integrable.

Then, following conditions (C1)-(C3), the asymptotic bias of the PN estimator B(PN) =

N ~ (PN ~ (PN
(,BéPN), ('Bi ))T, (ﬂg ))T)T is represented as

o (3)
v (s (1)) o (e (32)) )
i e (B )] = (2 0) =< () - ().
where g is a continuously differentiable implicit function, with (g;) —g (ﬁ;) in the neigh-

bourhood of((ﬁi) , (112 )) satisfying G = 0. Furthermore, g,(x) = (gp+1(x), . .. ,gp+q(x))T
is a subvector of g. The asymptotic MSE of the PN estimator is then given by the squared
asymptotic bias.

Jlim. E[A™ — Bol = by — fo = log

Remark 3.1: In Wada and Kurosawa (2023), the asymptotic bias and MSE of the naive esti-
mator were derived under the condition that the limit and expectation were exchangeable
without noting. These results are valid under the condition. Regarding exchangeability, by
referring to the discussion in Kukush and Shklyar (2002), we can replace the convergence
in probability of the naive estimator with almost sure convergence. Then, assuming uniform
integrability additionally, the Vitali convergence theorem (Rosenthal, 2025) can be applied,
which justifies the exchangeability of the limit and expectation.

4. Bias correction

In this section, we propose the corrected partial-error naive (CPN) estimator as a consistent
estimator of the true parameter by correcting the bias of the PN estimator. We investigate
a simplification of the CPN estimator when all components of the explanatory variable and
error vectors are independent. Additionally, we provide examples of the application of the
CPN estimator for a number of cases, including a multivariate normal explanatory variable
with a normal error, Bernoulli and gamma explanatory variables with a gamma error, and
gamma and normal explanatory variables with gamma and normal errors.
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4.1. Corrected partial-error naive estimator
The exact distribution of Y | W is given by

1
friwly | w) = o) supp(fx)fmx()’ | X)fv(w — xe)fx (x) dx

—1 1
~ ) Jsappiro Po (eXP (/3 ! (x)))f u(w — x.)fx (%) dx. )

In general, we cannot calculate a right-hand side integral of (9). Therefore, we cannot use the
maximum likelihood estimator of Y | W. In this study, we construct a consistent estimator of
the true parameter by correcting the bias of the PN estimator. This is proposed as a corrected
partial-error naive (CPN) estimator using the following theorem.

Theorem4.1: LetY | X be a Poisson regression in (1) with (2). We assume (C1) in Theorem 3.1
and Condition (C2).

(C2) det % # 0 is satisfied where G is given in (8).
o P

B>

A(C PN A(C ~(C
Then, the CPN estimator ﬂ( N (ﬁéCPN), (ﬂg PN))T, (ﬁg PN))T)—r of B, which is strongly

consistent, is represented as

~(PN)
~(PN)
MX (é%pN))MU (.32 )
AN _ pN) o0 B,

0 - ~ (CPN) ’
Mx (/8 %CPN))
B,
~ (CPN) ~ (PN)
('B%CPN)) =h (ﬂ%PN))
B> B,

where h is a continuously differentiable implicit function with (g;) =h (Z;) in the neigh-
bourhood of((g;) , (Z; )) satisfying G = 0.

Note that h in Theorem 4.1 is the inverse function of g in Theorem 3.1. Here, we consider
a situation in which the components of random vectors X and U are independent. We obtain
the CPN estimator in Theorem 4.2 where the components of X = (X3, . .. ,Xerq)—r and U =
Us..., Uq)T are independent.

Theorem 4.2: Let Y | X be a Poisson regression in (1) with (2). We assume the following
conditions (D1)-(D3).

(D1) Assume the existence of Mx,;(b;) i=1,...,p+q), MUj(bj) G=1....9.
(D2) K;éj B)) #0(=1,...,p+q) is satisfied.
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(D3) The components of X = (Xj,. .. ,Xp+q)T and U = (Uy,. .., Uq)—r are independent.

~ (CPN A A
Then, the CPN estimator f8 (P _ (ﬁéCPN),. cos /)’IS?;N))T of B, which is strongly consistent,
is represented as

p+a q p+a
5 (CPN (PN z » (PN z » (PN z »(CPN
i=p+1 i=1 i=p+1

P Gy,
ﬂAj(CPN) = b (ﬁj(PN)) Gi=p+1,....p+q),

where hj (j=p+1,...,p+q) is a continuously differentiable implicit function with p; =
hj(bj) in the neighbourhood of (B}, bj) satisfying

Gj(Bj, bj) = KS(}- (b)) + K@_P(bj) — E[Uj—,] - K)/(j(ﬂj) =0.

Remark 4.1: The implicit function h; in Theorem 4.2 is equivalent to the formula for
the corrected naive (CN) estimator proposed in Wada and Kurosawa (2023) for univari-
ate EIV models. Thus, we can use the CN estimator for multivariate EIV models when the
components of X and U are independent.

4.2. Application examples

Example 4.3: We derive the CPN estimator assuming that

Y | X ~ Po (exp (,BT (;())) B = (Bo o )T, X = (X1, X0, X3) T,

Xo=(X,X2)|, Xe=X3 W=X3+U,
X~N3(u,2), U~ N(0,05?),

where u = (,ul,,uz,,u3)T eR3 3T = [aij] e R3*3,0 < 02 < 00. We use the following par-
tition expressions for u and X:

13 X 03
= , Z = ,
= () ==t )
o o o
IL1=(M), le(u 12)’ a3=(13).
)7%) 012 022 023

G((ﬂl) (bl)) _ ( Z1(by — By) + (b3 — B3)o3 )
p3)  \bs (b1 — B1) 03+ b3(033 +0%) — P3033

and G satisfies

where

We obtain

6 (% -3\
det (ﬂl)T = det (_a3T _033) = (-=1)*det(Z) #£ 0.
0
B3
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From G = 03, we obtain the following implicit function:

2
By =b1— 02f3 -1_°
033 — O3 21 03

-1
033+02—03T21 03

B3 = bs.

Ty-—1
033 — O3 21 03

Thus, according to Theorem 4.1, the CPN estimator is represented as follows:
O 4 (B B) s (B~ 1)
_ % ( ( ﬁECPN))T £8PV 4 pem) (20; B 4 o, ﬁA3(CPN)))
() 2B 4 (oA )
+—%02(A§%0)2’

5 (PN
0'2,835 )

_+_

~ (CPN) ~ (PN)
1 =B 1

2 Ty-1

A(CPN) _ 033+ 0° — 03X 03 50pN)

3 - Tv—1 3 .
033 —0'3 21 03

Example 4.4: We derive the CPN estimator assuming that

Y | X ~ Po (exp (BT ()1())) B = (Bo, 1. B3), X =(X1,X2,X3)T,

Xo=X1,X2)', Xe=Xs, W=X3+U,
X; ~Be(p1), Xz~ Be(p2), Xz~T(ki,4), U~T(k21),

where 0 < p; < 1,0 <p < 1,k; > 0,4 > 0,k > 0. We also assume X;,X; and X3 are
mutually independent. We obtain

ki+k Kk kq

A—bs A A—ps

G3(B3,b3) =

From G3 = 0, we obtain the implicit function as
(k1 + ka) Abs
Pr=——"77
klﬂ~ + k2 b3
Thus, according to Theorem 4.2, the CPN estimator is represented as follows:
R X R 7 pePN)
éCPN) _ (gPN) — kylog (1 _ 3(PN)/,1) + ki IOg(iﬂ—ﬁf’(m) ,
—P3

5(CPN) _ 5(PN)
1 =P

>
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5(CPN) _ 5(PN)
2 =P

>

ooy _ (Kt + ko) 2B
’ kil + ke BN

Example 4.5: We derive the CPN estimator assuming that

Y| X~ Po (exp (ﬂT ()1())) , B= (/)’o,ﬁl,ﬁz)T, X= (Xl,Xz)T,

Xe = (XlsXZ)T = X) Wl = Xl + Ul) W2 == X2 + UZ)
Xy ~ Tk, A), Xa~N(u,62), Uy ~T(ka2), Uy~ N(0,02),
X1 LXo, UpLlU,

where k; > 0,4 > 0,k > 0,0 < 02 < 00,0 < g2 < 00. We obtain

ki+ky kK k1

(07 +0)bj — ol j=2.

j=1

From Gj = 0 (j = 1, 2), we obtain the following implicit functions:

(k1 + kz)ﬂbl 0‘3 + 0'3
[ = _ [ = b.
! klll +k2b1 2 O'}? 2

Thus, according to Theorem 4.2, the CPN estimator is represented as follows:

»(CPN
AécpN) _ ﬂAéPN) h log(i —,31( ))
- » (PN
2= B
5 5 A(C
—kalog (1= AV /2) + u (B = V)
1 AN\ 1 5(CPN)) 2
+5@2 ol (BN) = 302 (BTY)
(PN
sceny (ki + k) pY
1 — ~ >
kid + K pEN
A(CPN) _ Tx + 04 20N
(CPN) = Zx T Tu pPN)

2 2
Ox

5. Simulation studies

In this section, we present simulation studies that compare the performance of the PN and
CPN estimators. We denote the sample size as n and the number of simulations as MC. We

N A(C
calculate the estimated bias for ﬂ(PN) and /3( N as follows:
(PN) 1 (PN)
BIAS(B ):mz/s,. — B,

i=
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~ MC :

i=1

(CPN) 1 Me (CPN)
BIAS (ﬂ ) B,

where 8 EPN) and B ECPN) represent the PN and CPN estimators in the ith time simulation,
respectively. Sampling from the joint distribution of (X, Y) involves first sampling X; (i =
1,...,n) from the distribution of X, and then sampling Y; (i = 1, . . ., n) from the conditional
distribution of Y|X;.

5.1. Case1

We assume

Y| X~ Po (exp (BT ()1())), B=Bopupup), X=(X,X0X3)",

Xe = X1,X2,X3)' =X, W=X+U,
X ~ N3(m, Xx), U ~ N3(03, Zyp),
where = (11, pt2, p13) T € R3, % = [oij] € R3*3 Let

0.1

01 1 1 02 —-0.5
B = 0'2 , p=1{12], ZX2x= 0.2 1.1 03 |, Xy=Is,
0'3 0.5 —-0.5 03 1.2

n = 1000, MC = 10,000. As mentioned in Section 2.1, we assume that the true value of X,
is known. We estimate p and X using the method of moments in terms of W:

1L ~ 1< _ _
u=;§ Wi, zx=;§(wf—W)(wf—W)T—zu.
i=1 i=1

In this case, we compare the performance of the PN and CPN estimators to that of corrected
score (CS), simple structural (SS) and quasi-score (QS) estimators. These are consistent esti-
mators for the true parameter discussed in Shklyar and Schneeweiss (2005). Table 1 lists
the estimated and asymptotic biases of the estimators for the true 8. The bias of the PN
estimator is corrected using the CPN estimator. The performance of the CPN estimator is
non-inferior to the CS, SS and QS estimators. The existing methods discussed in Shklyar
and Schneeweiss (2005) are limited to EIV models, in which all explanatory variables are
measured with error, and X and U are restricted to a multivariate normal distribution. The
more general CPN estimator demonstrates a comparable performance even in such a special
case, indicating its effectiveness and broader applicability compared to the CS, SS and QS
estimators.

5.2. Case2

We assume

Y| X ~ Po (exp (pT (;))) B = o i o )Ty X = (X0, X0 Xo) T,
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Table 1. Estimated and asymptotic theoretical bias for a multivariate normal distri-
bution with multivariate normal error.

PN CPN cs SS Qs
Bo BIAS 0.2700 —0.0020 —0.0035 —0.0020 —0.0020
Asy.Bias 0.2701 0 0 0 0
2 BIAS —0.0797 0.0008 0.0014 0.0008 0.0008
Asy.Bias —0.0796 0 0 0 0
) BIAS —0.0670 —0.0003 —0.0001 —0.0003 —0.0003
Asy.Bias —0.0669 0 0 0 0
s BIAS —0.1453 0.0012 0.0021 0.0012 0.0012
Asy.Bias —0.1453 0 0 0 0

Xo=(X,X2)|, Xe=X3 W=X3+U,
X~Ns(u,2), U~ N(0,052),

where = (1, pt2, 113) | € R3, ¥ = [0j] € R**3, 0 < 02 < o0. Let

0.1

o1 1 1 02 —05

B=|oo|- w={12], ==(02 11 03|,
‘ : —05 03 12
0.3 0>

n = 5000, MC = 10,000. We performed the simulation using three different values of o
0.25, 0.5, 1. As in Case 1, we assume that the true value of o2 is known. We estimate g and
Y within the CPN estimator using the method of moments in terms of X, = (X, XZ)T and
W because the value of X3 is not directly observable.

) 1 n A 1 n
my = — Zxo,ia U3 = — Zwi)
n “ n <
i=1 i=1
1
S - T
X =-— Z(xo,i - xo)(xo,i - xo) >
n i=1
1 — 1 —
A - - A -2 2
¢=- D (o — Xo) (Wi — W), 33 = " > wi—w)’ =2,
i=1 i=1

where (x,;, w;) (i = 1, ..., n) are samples of the distributions of (X,, W).

Table 2 lists the estimated and asymptotic biases of the estimators for the true f. Bias
correction of the PN estimator was performed using the CPN estimator. Its bias increases
with increasing o 2. However, the bias of the CPN estimator is small for large o-2.

5.3. Case3

We assume

Y| X~ Po (exp (ﬁT ()1())) , B= (,b’o,,[)’l,,[)’z,ﬁ3)T, X= (X1,X2,X3)T,

X,=X,X2), Xe=X35, W=X3+U,
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Table 2. Estimated and asymptotic theoretical bias for a multivariate normal distri-
bution with a normal error.

0.25 0.5 1 1
o2 PN CPN PN CPN PN CPN
ﬁo BIAS 0.0534 0.0003 0.0856 —0.0003 0.1234 —0.0008
Asy.Bias 0.0531 0 0.0857 0 0.1238 0
ﬁ1 BIAS —0.0410 0.0001 —0.0664 0.0001 —0.0959 0.0004
Asy.Bias ~ —0.0411 0 —0.0664 0 —0.0960 0
ﬁ} BIAS 0.0268 —0.0002 0.0435 —0.0002 0.0629 —0.0004
Asy.Bias 0.0270 0 0.0436 0 0.0629 0
ﬁ3 BIAS —0.0716 —0.0001 —0.1155 0.0002 —0.1666 0.0008
Asy.Bias ~ —0.0715 0 —0.1155 0 —0.1668 0

Table 3. Estimated and asymptotic theoretical bias for Bernoulli and gamma dis-
tributions with a gamma error.

1.125 1.6 2.25
ka PN CPN PN CPN PN CPN
Ao BIAS —0.0878 0.0058 —0.1159 0.0051 —0.1445 0.0063
Asy.Bias —0.0942 0 —0.1215 0 —0.1515 0
2 BIAS —0.0002 —0.0002 0.0002 0.0002 —0.0005 —0.0005
Asy.Bias 0 0 0 0 0 0
h BIAS 0.0000 0.0000 —0.0003 —0.0003 0.0000 0.0000
Asy.Bias 0 0 0 0 0 0
ﬂ} BIAS —0.1298 —0.0027 —0.1684 —0.0025 —0.2125 —0.0029
Asy.Bias —0.1276 0 —0.1665 0 —0.2104 0

X~ Be(pl), X5 ~ Be(pz), X3 ~ F(kl,/l), U~ r(kz,l),

where 0 < p; < 1,0 <py <1,k > 0,4 > 0,k > 0. We also assume X;, X5, and X3 are
mutually independent. Let

B = (0.5,0.1,0.2, 0.6)T ,p1 = 0.4,pr = 0.55,k; = 2.5, = 1.5,

n = 5000, MC = 10,000. We perform the simulation using three different values for k:
1.125, 1.6, 2.25. The true value of k; is assumed to be known. We estimate k; and A in the
formula of the CPN estimator using the method of moments in terms of W (the value of X3
is not directly observable).

A 1 < N N 1221 Wi
k= _Zwi A=k h=1i N2’
nia w 2im (Wi — w)

where w; (i = 1,. .., n) are samples of the distribution of W.
Table 3 lists the estimated and asymptotic biases of the estimators for the true f. Bias
correction of the PN estimator was performed using the CPN estimator.

5.4. Case4

We assume

Y| X~ Po (exp (,BT ()1{))) . B=npLp)", X=X,X)T,
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Table 4. Estimated and asymptotic theoretical bias for gamma and normal distri-
butions with gamma and normal errors.

(0.36,0.25) (0.72,0.5) (1.44,1)
(ka, 03) PN CPN PN CPN PN CPN
ﬁo BIAS 0.0302 0.0003 0.0549 —0.0002 0.0956 0.0008
Asy.Bias 0.0299 0 0.0551 0 0.0949 0
ﬁ1 BIAS 0.07772 —0.0002 0.1298 0.0001 0.1957 —0.0010
Asy.Bias 0.0774 0 0.1297 0 0.1959 0
ﬁ} BIAS —0.0334 —0.0001 —0.0601 0.0000 —0.1002 —0.0001
Asy.Bias —0.0333 0 —0.0600 0 —0.1000 0

Xe=(X1,X))' =X, Wi=X1+U;, Wa=Xo+ U,
X ~T(k1,2), Xa~N(u,62), U ~T(ky2), Uy~ N(0,02),
X1 LXy, U lUs,

2

s < oo. Let

where k; > 0,1 > 0,k > 0,0 < 02 < 00,0 <0

B=(05-04,03)" k =24=12u=10>=2
n = 5000, MC = 10,000. The simulation was performed in three ways.
(kz,52) = (0.36,0.25), (0.72,0.5), (1.44, 1).
However, we assume that the true values of k; and o2 are known. We estimate kj, 4, x, and

af in the CPN estimator using the method of moments in terms of W = (W, W) T (the
values of X; and X, are not directly observable).

A 1 " ~ 2 1 Z?ZI Wi,i
ky = (;Z:Wu)/1 —ky, A= T -

my s> (W — wr)?
n n
.1 a1 2
=2 Wi Ox = (Wi —w2)* — o,
i=1 i=1
where w; = (w1, wz,i)T (i=1,...,n) are samples of the distribution of W.

Table 4 lists the estimated and asymptotic biases of the estimators for the true 8. As before,
the bias of the CPN estimator was smaller than that of the PN estimator in all cases.

6. Real data analysis

In this section, we apply the PN and CPN estimators to real data as discussed in Wada
and Kurosawa (2023). We use financial data collected in the FinAccess survey conducted
in 2019, provided by Kenya National Bureau of Statistics (2019). In this study, we focus on
the values labelled as finhealthscore, Mobile Ownership, Formal Prudential, and Normalized
Household weights. The sample size is N = 8669. Details of the features used in this section,
such as their types and descriptions, are provided in Table 5. We use finhealthscore as an
objective variable Y, Mobile Ownership as an explanatory variable X;, Formal Prudential as
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Table 5. Details of the variables.

Features Type Description

finhealthscore Count Financial health score for
households.

Mobile Ownership Binary Indicator of whether the

respondent household owns
a mobile or not.

Formal Prudential Binary Indicator of whether the
respondent household
spends money prudently or

not.
Normalized Continuous Weighted and normalized
Household households.
Weights
Table 6. Estimates of ¢, Rycr, Mpp, and ECD.
é Rucr Mop ECD
1.1670 0.4829 0.3183 0.2415

an explanatory variable X5, and normalized household weights as explanatory variables X3.
The true model is assumed to be as follows:

Y| X~ Po (exp (pT (}())) B = (Bos oo )T X = (X0, X0 Xa) T,

We further assume that the true parameter f is obtained from the estimates of all N data
points.

As a diagnostic technique, we calculate goodness-of-fit measures to verify that the dataset
follows a Poisson regression model. Table 6 lists the estimates of ¢, Ryicp in McFadden (1974),
myp in Kurosawa et al. (2020) and the ECD in Eshima and Tabata (2010). Overdispersion is
present because the estimate of ¢ is greater than one. In Wada and Kurosawa (2023), for a
univariate case, Ryicp was reported to be 0.4478. By contrast, Rycr in this study is improved
by the Poisson regression model with multivariate explanatory variables, which allows us to
apply a more appropriate Poisson regression model to the dataset. The estimated value of 8
is (0.6308, 0.3356, 0.4520, 0.0897)T and we regard the estimate as the true value.

According to Kenya National Bureau of Statistics (2019), the data from the FinAccess sur-
vey were weighted and adjusted for non-responses to obtain a representative dataset at the
national and county levels. Thus, we may consider a situation in which X3 exhibits stochastic
error U as

X, =(X1,X2)', Xe=Xs, W=X3+U.
We assume a positive error because the distribution of normalized household weights is
positive. Thus, we assume

X1~ Be(p1), Xz~ Be(p2), X3~T(ki,A), U~T(k2).

We also assume X, X», and X3 are mutually independent. This setting is the same as that of
the application in Example 4.4. We obtain the estimates of k; and 1 as k; = 2.0746, 1 =
2.0746 and estimate the true parameter with k, = k; /3, 2k; /3, kj. We take 2000 random sam-
ples from all N samples to obtain the 8 estimates. We repeat the estimations for MC = 10,000
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Table 7. Estimated and asymptotic theoretical bias in financial data.

ki1/3 2kq/3 ki
ky PN CPN PN CPN PN CPN
ﬁo BIAS —0.0082 —0.0073 —0.0131 —0.0117 —0.0172 —0.0154
Asy.Bias —0.0008 0 —0.0013 0 —0.0016 0
/;’1 BIAS 0.0057 0.0057 0.0073 0.0073 0.0099 0.0099
Asy.Bias 0 0 0 0 0 0
B BIAS 0.0119 0.0119 0.0184 0.0184 0.0248 0.0248
Asy.Bias 0 0 0 0 0 0
Bs BIAS —0.2364 0.0066 —0.3755 0.0215 —0.4753 0.0248
Asy.Bias —0.2418 0 —0.389%4 0 —0.4890 0

iterations to obtain the Monte Carlo mean of Bs. The bias is calculated by the difference
between the Monte Carlo mean and the true value. Furthermore, to clarify the magnitude of
the bias, we divide the bias by the absolute value of the true parameter. Table 7 lists the esti-
mated biases calculated from the MC simulations. The estimated biases of the PN and CPN
estimators are equal for f; and f, because X; and X, are observable. The estimated biases
of f1 and p; are close to 0, which is a typical value for their asymptotic biases. In addition,
the estimated biases of the CPN estimator for Sy and f3 are smaller than those of the PN
estimator in all cases.
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Appendices
Appendix 1. Proofs of Theorems
A.1 Proof of Theorem 3.1

Proof: First, we derive an expression for b. From (5), the following equations are obtained.

E[Y] = E[exp(bo + b] X, + b; W)],
E[YX,] = E[X, exp(by + b X, + b, W)], (A1)
E[YW] = E[W exp(by + b] X, + b, W)].

From (6) and these equalities, we have

efoMx (zl) = oMy (%) My (by),

2

So B1 0 E)

e 5}31M (ﬂz) 5b1 —Mx (b My (by),

Lo ﬂ So ﬂ 0 (h)
eME[U]Mx (/32) +e aﬂzM (/32) aszX b, My (by)

b; 0
bopix — My(b
+e (bz) ob; u(by).
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Therefore, we apply a transformation to obtain the following system of equations:

mx (5)

=p+log| ————— |,
MX(FZ>MU(b2)
B\ _ o (b (A2)
5k (B) = o, X (17)
Biy_ 0 . (b 0
[U]+5752KX(I92)_5172K (b2)+ ob, o, (0 (b2)

Thus, b = (b, b] ,b] ) is determined by solving the following system of equations:
7) = (e)
—K —Kx{-—),
T (ﬂz b, "\ b,
ﬂl) 0 (bl) 0
U]+ —Kx —Kx —Ky(b
w01+ 22k (1) = ok () + s Ko
Here, we set
9 xo (O 0 ﬂl)
—K;
((m - oby (bz) o8 (ﬂz
B, —1 0 b 0 0 B,
—K —Ky(b U] - —K
a6, X \b,) T o, u(b2) — E[U] o, X\ g,

From the definition of b, G is always 0 in R2(p+9 Tn addition, G is continuously differentiable, because
we assume the existence of (7). We assume G satisfies

) ae()
WT AL b T X\b
detﬁT _ get | b1 fbl 2 , b, b, 2, 20
by LKX (”1) 0 (”1) + -2 ke
b, ob] ob,  \b2 aszabz b2) b, ob,

Then, according to the Implicit Function Theorem (see for example Rudin, 1976), there exists a unique
C!-class function g(x) = (g1 (%), ..., 8p+q (%)) T that satisfies

() =¢(5)

in the neighbourhood of the zeros of G. Next, we describe the near-certain convergence of the PN
estimator. Based on the strong law of large numbers, we obtain

n
(PN) (PN) APN)T
S, (ﬂ |X) HZ[Yi—exp( N LB X, + B, wi)](lle,wT)

i=1

N A ~ (PN) T ~(PN)T
2 Exw [EYl(X,W) H Y — exp (ﬁépN) + B, + B, )]

x(L,X], WT)]] (A3)
From (A3) and the same argument as in Kukush and Shklyar (2002), we obtain
Y 25y, (A4)

From (A4) and the uniform integrability using the Vitali convergence theorem (Rosenthal, 2025), the
asymptotic bias of the PN estimator is as follows:

Jim B[~ po] = E| im 57 = fo] = b0~
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wix ()

=1 >
" <Mx(g(g;))Mu(gz (ﬁz)))
~ (PN) (PN) -
s3] G2 22
~(3)-(2)
—¢ B B> ’

where g,(x) = (gp+1(%), ..., &p+q (x))T denotes a subvector of g. We also derive the asymptotic MSE

of the PN estimator. The asymptotic MSE of ﬁéPN) is obtained by uniform integrability using the Vitali
convergence theorem as follows:

nli?éoE [(ﬁéPN) - ﬁO)z:I = hm E [( N by + by — /))0)2:|
= (b — fo)* + 26 — o) Jlim E[A"™ = bo

+ hm E|:( 3PN) bo)z]

= (bo — fo)*.

For (B gPN) B ;PN)) , we obtain the following by the same argument.

T
| () ()
e ﬂZ _ﬂZ .32 _ﬁZ
aG=slt=3)
by —B,) \b,— B,
(-GN G- ()
B> B> B> B> '

A.2 Proofof Theorem 4.1

Proof: From (A2), we obtain the following system of equations:

i (1) M)
-6 )
. -
0 by 7 B,
G= o (b2) T (52) _
- 0

Ky (’,j)+ iKU(bz) E[U] —

Bo = by + log

D >
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Following the same argument utilized in the proof of Theorem 3.1, G is always 0 and is continuously
differentiable. We assume the following:

o (ﬂl) o (,81)
oG T
= iy taa| LB (,’32) h (ﬁf) #o
a(ﬂz) aﬂTaﬂz B2) a8, aﬂz B>

Then, according to the Implicit Function Theorem, there exists a unique C!-class function h that

satisfies
B\ _ 4 (0
(5)="()
A (PN)

in the neighbourhood of the zeros of G. By replacing b = (bo, b; , b, )T with the PN estimator N _
(/)’ (PN) (/Q(I)N))T (ﬂgp ))T)T in the solution for 8 = (fo, IT, ﬂZT)T, we obtain the CPN estimator as

(PN)
~(PN)
MX (é(pN))MU(Bz )

2

3 >
)
B>

det

(CPN) y (()PN) +log

~ (CPN) A (PN)
(ﬂ%CPN)) = h(ﬁ%PN))'
B, B,

~ (PN
Here, we have the almost sure convergence of 8 ) in (A4). Therefore, by using the continuous
CPN
mapping theorem (see for example van der Vaart, 2012), we obtain /3( ) 2 8. |

A.3 Proofof Theorem 4.2

Proof: When the components of X = (X, ... ,Xerq)—r and U = (Uy, ..., Uq)—r are independent, we
obtain

By By s s
KX ( ) = lOgMX (*) IOgHij(ﬁj) = ZKXJ(ﬁ]
8 8 pn
The same property holds for Ky. Thus, the derivatives of Kx and Ky are

Ky, (B1)
k. (m) ")
.3 B, Ky ()
K)/(PHCBPH)
—K (ﬂl) : ,
oh AP Ky (Bpig)
; Ky, (bp+1)
EKU(I’Z)— :
Ky, (bp+q)

Therefore, we can write the system of Equations (A5) as follows:

ptq ptq

o =bo+ > Kx,(b)+ ZKU,(bp+,) — > Kx,(B), (A6)

i=1 i=1 i=1
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G1(f1,b1)
Gy (Bpr bp)

G= pPp> Up N
Gpr1 (Bp1, bp+1) (A7)
Gptq(Bptg> bp+q)

Ky, (b1) — Ky, (B1)
! ’ !
| K/)(p (bp) — Ky, (Bp) / —o A8)
pr+1 (bp+1) + Ky, (bp41) — E[U1] — KXp+1 (Bp+1) p+q-
Ks"pw (Bp+q) + Ké]q (bp+q) — E[Uy] — Kg‘pw (Bp+q)

Following the same argument utilized in the proof of Theorem 3.1, Gj (j = 1,...,p + g) is always 0 in
R? and is continuously differentiable. We assume the following:

—K%.(B; , j=1,..., .
6,3] X}(ﬁ])?éo ] p+q

Then, according to the Implicit Function Theorem, there exists a unique C'-class function h; that
satisfies §; = h;(b;) in the neighbourhood of the zeros of G;. Furthermore, we obtain hj(x) = x (j =

1,...,p) because Ky; increases monotonically in the neighbourhood of f;. Thus, the CPN estimator
~(CPN A A
ﬂ( ) _ (ﬁéCPN),. o ﬁIESLI;N))T is represented as
5(CPN) _ A(PN i (PN : 5 (PN i »(CPN
:80 )= ﬁ() ) + Z Kx; (ﬁ, )) + ZKUi (ﬁp+i>> - z K, (ﬁ, )) >
i=p+1 i=1 i=p+1

A(CPN A (PN .
B =B =1,

»(CPN (PN .
B )=h]~(ﬁj( >), i=p+1...p+q.

Appendix 2. Supplementary Lemmas

Proof: The joint distribution of (X, Y, U) is transformed as follows:

Xp+q X1 y Ug u1
Fxyu(xy,u) = / / / / / fxyu(s t,v)dvdtds
—0 —00 J —00 J—00 —00
Xp+q X1 y Ug uy
:/ / / / / Sfrux(t,v | s)dvdtfx(s)ds
—00 —00 J—o0 J—00 —00
X1

Xp+q
:/ / P(Y <3, U < u| X = $)fx(s) ds

—0o0

*p+q *1
= [ [ =9 <50 < whe ds

—o0 —0o0

=PX <x(Y|X) <yU<u =Fyxvyu.
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Proof: As shown, the independence of (X, Y | X) from U or that of (X,Y) from U satisfies X L U.
Thus, from Lemma A.1, we have

Sxyu@y,u) = fxyx v,y u). (A9)
By integrating Equation (A9) with respect to U, we obtain
Soy(®y) = fryix ().
Thus, the following necessary conditions are obtained:
Fxyu@yu) = fxyxu®yu) = fxyx(y)fv) = fxy&y)fv@w).
Similarly, for the sufficient condition, we have

fxyixv@yu) = fxyvyw = fxy® o) = fxrx & y)fvw).

[ |
Lemma A.1: Under the assumptions in Section 2.1, Y and W are independent for a given X.
Proof: The conditional distribution of (Y, W) | X is transformed as follows:
Sfrwx(wx)  frwx,x, (> W, X, Xe)
yw)x(hw | x) = =
Jorwixy e I
 frowx, u(sw X, w — Xe)  frx, X, U()s Xe, Xo, W — X¢)
Jx(x) fx(®)
v x, X U X0, Xe, W — Xe)  frx,u(h X w — Xe)
fx(x) fx(x)
Jrx(sx)fu(w — x.)
== = frix(y | H)fwix. (w | xe).
fx(®) frix( 1 0)fw) e
We use Corollary A.2 in the transformation process. |

Wada and Kurosawa (2023) used Lemma A.3 for the univariate case without supplying detailed proof.
Thus, we provide an explicit proof in this paper.

Appendix 3. Simulation results of small samples

Table A1 shows the estimated biases of the estimators in the case of a multivariate normal distribution
with a normal error for n = 30, 100, 500, 1000. Overall, the bias correction appears to be effective for
small samples. Table A2 lists the estimated biases for Bernoulli and gamma distributions with a gamma
error for small samples. Similarly, the bias of the PN estimator was corrected well by the CPN estimator.

Table A1. Estimated bias for a multivariate normal distribution with a normal error.

30 100 500 1000
n PN CPN PN CPN PN CPN PN CPN

%(ﬁo) 0.0429  —0.0510 0.0724  —0.0152 0.0829  —0.0033 0.0847 —0.0014
IB/IA\S(ﬁA1 ) —0.0668 0.0001  —0.0658 0.0007  —0.0659 0.0006  —0.0662 0.0003
%(ﬁz) 0.0472 0.0033 0.0448 0.0012 0.0434  —0.0003 0.0431  —0.0005
B/IA\S(ﬂA3) —0.1142 0.0020 —0.1154 0.0001  —0.1152 0.0004  —0.1151 0.0006
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Table A2. Estimated bias for Bernoulli and gamma distributions with a gamma error.

30 100 500 1000
n PN CPN PN CPN PN CPN PN CPN

%(ﬁo) —0.0726 0.0601  —0.0764 0.0426  —0.0985 0.0211  —0.1060 0.0138
BIAS (B1) —00043 —0.0043 —0.0006 —0.0006 —0.0002 —0.0002 0.0005 0.0005
BIAS (62) 0.0067 0.0067 —0.0011 —0.0011  —0.0004 —0.0004 0.0003 0.0003
%(ﬁ3) —0.1956 —0.0494 —0.1852 —0.0281 —0.1749 —-0.0115 —0.1722  —0.0077
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