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ABSTRACT
Zero-inflated count outcomes are common in many studies, such as counting claim frequency
in the insurance industry in which identifying and understanding excessive zeros are of interest.
Moreover, with the progress of data collecting and storage techniques, the amount of data is too
massive to be stored or processed by a single node or branch. Hence, to develop distributed data
analysis is blossoming. In this paper, several communication-efficient distributed zero-inflated
Poisson regression algorithms are developed to analyse such kind of large-scale zero-inflated
data. Both asymptotic properties of the proposed estimators and algorithmcomplexities arewell
studied and conducted. Various simulation studies demonstrate that our proposedmethod and
algorithmwork well and efficiently. Finally, in the case study, we apply our proposed algorithms
to a car insurance data from Kaggle.
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1. Introduction

For the analysis of count data, many zero-inflated regression models have been developed. These models are
designed to deal with situations where there is an ‘excessive’ number of individuals with a count of 0. For exam-
ple, in a car insurance study where the dependent variable is ‘number in an insurance period a policyholder has
claimed’, the vast majority of policyholders may have a value of 0 (‘zero’ means certain policyholder has no insur-
ance claims). The reason for zero-inflation is twofold. First, a large proportion of insurance policies are subject to
deductible excess, which means only if the loss exceeds some given amount the insurance company will pay the
claims. Second, in the car insurance, there exists ‘no claim discount (NCD)’, that is, if the applicant does not claim
in the current insurance period, he will enjoy a certain discount in the next insurance period, which will make
some policyholders give up the claim in order to enjoy the discount in next period. Based on this situation, it is of
great practical significance to identify and understand those inflated zeros. Commonly used counted distributions
are problematic and require appropriate model assumptions to characterize such zero-inflation structure. Zero-
inflated Poisson (ZIP) distribution is a popular method to deal with such problems. This distribution is a special
case of finite mixture distributions. Specifically, it takes probability p′ at 0 and takes probability 1 − p′ at Poisson
distribution with parameter λ (denoted as Poisson (λ)). When p′ is greater than 0, the data will contain more zeros
than the ordinary Poisson distribution, showing zero-inflation.

ZIP distributionwas first presented byCohen (1963) and Johnson andKotz (1970). Then, a ZIP regressionmodel
was developed by Lambert (1992) to study manufacturing defect problem. EM algorithm was used to estimate the
parameters, avoiding the computational problems caused by simultaneous estimating parameters related to p′ andλ.
In addition, the algorithm and theoretical properties were discussed according to whether p′ and λwere dependent
or not, respectively.Hall (2000) proposedZIP andZero-inflatedBinomial (ZIB) regressionswith randomeffects and
derived corresponding estimation algorithms. In order to deal with the zero-inflated outcomes with more complex
correlations, Lee et al. (2006) presented a multi-level ZIP model and studied the parameter estimating method.
Tang et al. (2014) discussed the application of ZIP regression to risk factor selection in the context of insurance
industries. Adaptive lasso-based EM algorithm was developed to process parameter estimation.

Hall (2000), Lee et al. (2006) and Tang et al. (2014) gave the applications of ZIP regression under different sce-
narios and corresponding algorithms, but above algorithms are based on data stored in a single institution. With
the growth of data volume and emergence of distributed data, it is getting more and more urgent to propose ZIP
regression algorithm based on distributed data, but the relevant research is still deficient.
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With the progress of techniques, distributed structure is common in the storage of data. There are two main
reasons for this structure. First, the amount of data exceeds the storage limit of a single institution, so it has to be
stored distributedly. Second, because the process of data collection is completed by different countries and regions,
the data naturally forms a distributed structure. In the first case, it is difficult to consolidate data from different insti-
tutions. In the second case, sometimes the data of different institutions cannot be directly exchanged or combined
for the purpose of privacy protection, etc. In these cases, distributed algorithms are needed to process the data, so
that the purpose of data analysis can be achieved without merging data. To evaluate a distributed algorithm, com-
munication cost is an important element. Because of this, how to reduce the communication cost of distributed
algorithm is also a hot topic.

In recent years, there have been some studies on communication-efficient distributed algorithms and their theo-
retical properties. Shamir et al. (2014) presented a distributed Newton-type optimizationmethod, which had linear
converging properties when the objective function had a quadratic structure. Mota et al. (2013) presented a dis-
tributed ADMM algorithm for separable optimization in node network structures. The algorithm converged when
the network is bipartite or the loss function is strongly convex. The theoretical properties of these two algorithms
require the strong convexity of the objective function, which is too harsh in some cases. Jordan et al. (2018) pre-
sented a distributed algorithm with efficient communication. The algorithm was used in a wide range of scenarios
and had relativelyweak convergence conditions. In low-dimensionalM-estimation scenarios, the objective function
only needed to be locally convex, which is our motivation of the proposed Algorithm 2. Zhu et al. (2021) presented
a distributed least squares approximation method (DLSA) which could deal with a kind of regression problem.
By approximating the local objective function using a local quadratic form, they were able to obtain a combined
estimator by taking a weighted average of local estimators. The estimator had the same statistical efficiency as the
global estimator. In this paper, this idea is consulted as an extended idea to construct the distributed algorithmwith
high communication efficiency Algorithm 3.

In this paper, in order to reduce the difficulty of calculation in solving the maximized likelihood function, latent
variables are introduced to divide the parameters into two parts. EM algorithm is an effective algorithm to optimize
objective function with latent variables. Dempster et al. (1977) applied EM algorithm to calculateMLEwith incom-
plete data. They gave the general form of E step, M step, the theoretical properties of EM algorithm and scenarios in
which it could be applied.Wu (1983) pointed out the problem in the proof of Dempster et al. (1977) and studied two
more general convergence forms of EM algorithm. In addition to the theoretical properties, there were also plenty
of research on EM algorithm applications. Redner and Walker (1984) investigated the implementation of the EM
algorithm in the context of the problem of parameter estimation in mixture density, and its theoretical properties,
especially when the mixed components come from exponential distribution family. For distributed EM algorithm,
sensing network is often used as the research background, for example, Nowak (2003) and Gu (2008). This kind of
distributed EM algorithm usually has some special properties because of sensing network, such as decentralization
and connectivity of only adjacent nodes, which is not consistent with the research scene in this paper. There are
relatively few researches on EM algorithm applied to traditional distributed scenarios.

According to the derivation results in this paper, E step of EM algorithm can be completed only with the data
of the local institution, so there is no need to propose a distributed algorithm. However, M step of EM algorithm
requires the data of all institutions, so a distributed algorithm needs to be proposed. In view of this, we first present
the distributed EM Algorithm (Algorithm 1) for M step and analyse the communication cost of this algorithm.
Further, motivated by two ideas, the communication cost of Algorithm 1 is decreased, and distributed algorithms
with high communication efficiency are given. Specifically, the improvement of Algorithm 2 is to reduce the com-
munication cost of each internal iteration of M step, and the improvement of Algorithm 3 is to reduce the number
of internal iterations ofM step to one-shot. Besides these, we also present the asymptotic analysis of Algorithm 2. In
general, our contributions are twofold. First, we present three distributed algorithms for ZIP regression. And two of
them are communication efficient. Second, we give the theoretical properties of Algorithm 2 and compare the time
computation complexity and transmission cost of the three algorithms. Third, we fully compare three algorithms
in simulations, and then summarize the applicable scenarios of each algorithm, which is of practical significance.

The rest of the paper is as follows. Section 2 gives the main algorithm of this paper: the EM Algorithm of
ZIP regression, the distributed EM Algorithm (Algorithm 1) and the communication-efficient distributed EM
Algorithm motivated by Jordan et al. (2018) (Algorithm 2). Section 3 mainly introduces the theoretical results
of Algorithm 2. Section 4 presents the second communication-efficient distributed algorithm (Algorithm 3) moti-
vated by Zhu et al. (2021). In Section 5, various simulations are provided to verify the proposedAlgorithms 1–3. The
algorithms are then applied to the car insurance data in Section 6. The article is concluded with a short discussion
in Section 7.
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2. Model andmethod

This section introduces the ZIP regressionmodel, EM algorithm to solve it and distributed version of the algorithm.
Combining with the characteristics of distributed computing, we then propose an improved algorithm for more
efficient communication.

2.1. Model

Assume that independent responses {Yi : i = 1, . . . , n} are from the ZIP distribution as follows:

Yi ∼
{
0, with probability pi,
Poisson (λi) , with probability 1 − pi.

(1)

Simple calculation yields the distribution function of Yi as{
P (Yi = 0) = pi +

(
1 − pi

)
e−λi ,

P (Yi = k) = (1 − pi
)
e−λiλki /k!, k = 1, 2, . . . .

(2)

We see that, P(Yi = 0) > e−λi when pi > 0, which indicates zero-inflation.
Based on some early work (Lambert, 1992), the parameters pi and λi can be modelled by a logistic regression

model and log-linear model as follows:{
logit
(
pi
) = log

{
pi/
(
1 − pi

)} = z�
i γ ,

log (λi) = x�
i β ,

(3)

where {zi}, {xi}, i = 1, . . . , n are two vectors of covariates with respect to observation i, with dimensions p and q,
respectively. These two vectors can either be the same or different. γ = (γ1, . . . , γp)� and β = (β1, . . . ,βq)

� are
corresponding coefficient vectors.

According to the assumptions above, we can give the likelihood function as:

L(γ ,β) = log
{
�n

i=1 P
(
Yi = yi | zi, xi

)}
=
∑
yi=0

log
{
ez

�
i γ + exp

(
−ex

�
i β
)}

+
∑
yi>0

(
yix�

i β − ex
�
i β
)

−
n∑

i=1
log
(
1 + ez

�
i γ
)

−
∑
yi>0

log
(
yi!
)

.=
n∑

i=1
l
(
yi, xi, zi, γ ,β

)
. (4)

Optimizing this function directly will meet great trouble, especially as the first part of the likelihood includes both
γ and β . First, the responses are from a mixture distribution, which includes the parameters pi and λi. Second,
regression models are designed for both parameters. Therefore, the computation is quite challenging. We consider
using EM algorithm to optimize it and the next section will give the specific implementation.

2.2. EM algorithm

The EM algorithm for the ZIP regression model was firstly introduced in early literature by Lambert (1992). The
EM algorithm is based on a latent variable U = I (Y from zero state) , which indicates the response is either from
zero state or Poisson state. The distribution of U is

Ui =
{
1, with probability pi,
0, with probability 1 − pi.

(5)

According to conditional expection,

P
(
Yi = yi,Ui = ui | xi, zi,β , γ

)
= P
(
Yi = yi |Ui = ui, xi, zi,β , γ

)
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× P (Ui = ui | xi, zi,β , γ )

=
(
ez

�
i γ
)ui

1 + ez
�
i γ

⎛⎝eyix
�
i β−eX

�
i

yi!

⎞⎠1−ui

. (6)

The log-likelihood function based on (Y ,U) is:

Lc(γ ,β) = log

[ n∏
i=1

{
P
(
Yi = yi |Ui = ui, xi, zi,β , γ

)× P (Ui = ui | xi, zi,β , γ )
}]

=
n∑
i=1

log
{
P
(
Yi = yi|Ui = ui, xi, zi,β , γ

)}
+

n∑
i=1

log {P (Ui = ui|xi, zi,β , γ )}

=
n∑
i=1

{
uiz�

i γ − log
(
1 + ez

�
i γ
)}

+
n∑

i=1
(1 − ui)

(
yix�

i β − ex
�
i β
)

−
n∑
i=1

(1 − ui) log
(
yi!
)
. (7)

The parts of the above formula concerning the parameters γ and β are defined as

Lc,1 (γ ) =
n∑

i=1

{
uiz�

i γ − log
(
1 + ez

�
i γ
)}

, (8)

Lc,2 (β) =
n∑

i=1
(1 − ui)

(
yix�

i β − ex
�
i β
)
. (9)

Now, we can optimize the above two functions with respect to γ and β , respectively.
Based on the objective function (7), the (k + 1) step of the EM algorithm is as follows
E step: Based on γ (k) and β(k), estimate U(k)

i using its posterior mean.

U(k)
i = E

(
Ui | yi, γ (k),β(k)

)
= P
(
Ui = 1 | yi, γ (k),β(k)

)
= P
(
Yi = yi |Ui = 1

)
P (Ui = 1) × {P (Yi = yi |Ui = 1

)
P (Ui = 1)

+ P
(
Yi = yi |Ui = 0

)
P (Ui = 0)

}−1

=
⎧⎨⎩
[
1 + exp

(
−ex

�
i β(k) − z�

i γ (k)
)]−1

, if yi = 0,

0, if yi = 1, 2, . . . .
(10)

M step: Based on the results of E step, U(k)
i is substituted into Equations (8) and (9) to calculate parameters γ and

β , respectively.

γ (k+1) = argmin
γ

{−Lc,1 (γ )
}
, (11)

β(k+1) = argmin
β

{−Lc,2 (β)
}
. (12)

Newton’s algorithm is used to solve Equations (11) and (12). The algorithm iteration expression is as follows, where
t represents the iteration step in Newton’s algorithm:

γ (k,t+1) = γ (k,t) −

⎡⎢⎣ n∑
i=1

ez
�
i γ (k,t)(

1 + ez
�
i γ (k,t)

)2 · ziz�
i

⎤⎥⎦
−1 [ n∑

i=1

(
ez

�
i γ (k,t)

1 + ez
�
i γ (k,t) − u(k)

i

)
zi

]
, (13)
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β(k,t+1) = β(k,t) −
[ n∑
i=1

(
1 − u(k)

i

)
ex

�
i β(k,t) · xix�

i

]−1 [ n∑
i=1

(
1 − u(k)

i

) (
ex

�
i β(k,t) − yi

)
xi

]
. (14)

After the number of Newton iterations meets the requirements (denoted as T times), the final iteration result is
denoted as the updated parameter, i.e., γ (k,T) := γ (k+1), β(k,T) := β(k+1). Noted that γ (k+1) and β(k+1) are the
approximate optimization result of Equations (11) and (12). Here, for simplicity, without introducing a new nota-
tion, we use the same notations γ (k+1) and β(k+1). And we maximize Equation (7) based on ui = I(yi = 0) to get
the initial values of γ and β for EM algorithm.

2.3. Distributed EM algorithm

The distributed structure of data is introduced first. Responses Y = {y1, . . . , yn}, covariates Z = {z1, . . . , zn}, X =
{x1, . . . , xn} horizontally distributed across J institutions, where institution j’s sample size is nj, nj = O(a), and
a = n/J, i.e., c1 ≤ minjnj/n ≤ maxjnj/n ≤ c2, in which c1, c2 are two positive constants, j = 1, . . . , J,

∑J
j=1 nj = n.

This section introduces a distributed implementation for EM algorithm (Equations (10), (13) and (14)). Note that
for the sake of illustration, zi, xi, ui, yi, i = 1, . . . , n are re-denoted as double subscript zji, xji, uji, yji, j = 1, . . . , J, i =
1, . . . , nj.

The realization of Equation (10) does not need to cross different institutions, meaning that it can be completed
directly in the local institution. However, the realization of Equations (13) and (14) is cross-institution, and a
distributed algorithm needs to be proposed. The specific algorithm is as follows.

Algorithm 1 Distributed EM Algorithm

1: Initialize: Let U(0)
ji = I(yji = 0), and every institution calculates Equations (11) and (12) by its own data. Take

average to get γ (0) and β(0) on central institution and transmit the results to institution j = 1, . . . , J.
2: While ‖γ (k+1) − γ (k)‖2 ≥ δ or ‖β(k+1) − β(k)‖2 ≥ δ, k is the kth EM iteration.
3: E step: For institution j = 1, . . . , J, compute U(k)

ji by (10) , i = 1, . . . , nj.
4: M step: Internal Newton iteration (γ (k,0) = γ (k−1),β(k,0) = β(k−1)):
5: For institution j = 1, . . . , J, t = 1, . . . ,T compute:

6: T(k,t)
1j =∑nj

i=1
e
z�ji γ (k,t)

(1+e
z�ji γ (k,t)

)2
· zjiz�

ji ,

7: T(k,t)
2j =∑nj

i=1(
e
z�ji γ (k,t)

1+e
z�ji γ (k,t) − u(k)

ji )zji,

8: T(k,t)
3j =∑nj

i=1(1 − u(k)
ji )ex

�
ji β

(k,t) · xjix�
ji ,

9: T(k,t)
4j =∑nj

i=1(1 − u(k)
ji )(ex

�
ji β

(k,t) − yji)xji.

10: Transmit T(k,t)
1j , . . . ,T(k,t)

4j to central institution.
11: For central institution, compute:
12: γ (k,t+1) = γ (k,t) − (

∑J
j=1 T

(k,t)
1j )−1(

∑J
j=1 T

(k,t)
2j ) ,

13: β(k,t+1) = β(k,t) − (
∑J

j=1 T
(k,t)
3j )−1(

∑J
j=1 T

(k,t)
4j ).

14: Transmit them to institution j = 1, . . . , J until t = T.
15: Update γ (k+1) = γ (k,T), β(k+1) = β(k,T) and transmit them to institution j = 1, . . . , J.

In the algorithm, δ is the parameter about the stopping criterion of the algorithm, which can be adjusted
according to the accuracy requirement of the result.

To discuss the computation time complexity of the algorithm, we consider each EM algorithm iteration. For a
local institution, thematrixmultiplication operation is themain ingredient. The E step time complexity isO(nj(p +
q)), and the M step time complexity is O(Tnj(p2 + q2)). For the central institution, it mainly completes the matrix
inverse and multiplication operation, and the time complexity is O(T(Jp2 + Jq2 + p3 + q3)).

As for the communication cost of the algorithm, every local institution passing Hessian matrix in each inter-
nal iteration of M step is the main resource. And the communication cost of each EM algorithm iteration is
O(TJ(q2 + p2)). The central institution gives the updated parameters to the local institutions, and the local insti-
tutions pass the calculated statistics based on the updated parameters to the centre instead of the original data
(xji, zji), so the algorithm has the property of privacy protection. However, when the dimension of the covariable
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is high (i.e., p and q are large), the communication cost of Algorithm 1 will also increase sharply. For distributed
algorithms, communication cost is one of the important criteria to measure the algorithm, so the algorithm with
higher communication efficiency is proposed below.

2.4. Communication-efficient distributed EM algorithm

Based on Equations (13) and (14), its equivalent expression can be obtained:

γ (k,t+1) = γ (k,t) −

⎡⎢⎣1n
J∑

j=1

nj∑
i=1

ez
�
ji γ

(k,t)(
1 + ez

�
ji γ

(k,t))2 · zjiz�
ji

⎤⎥⎦
−1

×
⎡⎣1
n

J∑
j=1

nj∑
i=1

(
ez

�
ji γ

(k,t)

1 + ez
�
ji γ

(k,t) − u(k)
ji

)
zji

⎤⎦ , (15)

β(k,t+1) = β(k,t) −
⎡⎣1
n

J∑
j=1

nj∑
i=1

(
1 − u(k)

ji

)
ex

�
ji β

(k,t) · xjix�
ji

⎤⎦−1

×
⎡⎣1
n

J∑
j=1

nj∑
i=1

(
1 − u(k)

ji

) (
ex

�
ji β

(k,t) − yji
)
xji

⎤⎦ , (16)

the inverse term of Hessian matrix for all data in Equations (15) and (16) is replaced by an operation based on the
data of ‘Institution 1’ (just choose one institution), i.e.,

γ̃ (k,t+1) = γ̃ (k,t) −

⎡⎢⎣ 1
n1

n1∑
i=1

ez
�
1i γ̃

(k,t)(
1 + ez

�
1i γ̃

(k,t)
)2 · z1iz�

1i

⎤⎥⎦
−1

×
⎡⎣1
n

J∑
j=1

nj∑
i=1

⎛⎝ ez
�
ji γ̃

(k,t)

1 + ez
�
ji γ̃

(k,t) − u(k)
ji

⎞⎠ zji

⎤⎦ , (17)

β̃
(k,t+1) = β̃

(k,t) −
[
1
n1

n1∑
i=1

(
1 − u(k)

1i

)
ex

�
1iβ̃

(k,t)
· x1ix�

1i

]−1

×
⎡⎣1
n

J∑
j=1

nj∑
i=1

(
1 − u(k)

ji

)(
ex

�
ji β̃

(k,t)

− yji
)
xji

⎤⎦ . (18)

At this point, parameter update only needs one institution to pass its Hessian matrix at most. If the institution that
calculates Hessian matrix can be selected as the central institution, then the whole algorithm does not need to pass
Hessian matrix. After the iteration of Equations (17) and (18) reaches the requirements (for example, the iteration
reaches T times), the final iteration result is recorded as the updated parameter γ̃ (k,T) := γ̃ (k+1), β̃

(k,T)
:= β̃

(k+1)
.

We have Algorithm 2.
For the calculation time complexity of the algorithm, we consider each EM algorithm iteration. For a local insti-

tution, the matrix multiplication operation is mainly completed, and the time complexity of E step is O(nj(p + q)),
and the time complexity of M step is O(T(p2 + q2 + nj(p + q))). For the central institution, it mainly com-
pletes the matrix inverse and multiplication operation, and the time complexity is O(T(p3 + q3 + J(p + q))). The
computational time complexity of a local institution or central institution is lower than Algorithm 1.

As for the communication, in each iteration of the algorithm, the communication cost is at mostO(T(q2 + p2 +
Jq + Jp)). If the institution participating in calculating Hessian matrix can be selected as the central institution,
the communication cost of each iteration is reduced to O(JT(q + p)). It is lower than Algorithm 1. The central
institution passes the updated parameters to the local institutions, and the local institutions transmit the calculated
statistics based on the updated parameters to the central institution instead of the original data (xji, zji). Therefore,
the algorithm has the property of privacy protection.

Motivated by Jordan et al. (2018), we can explain Equations (17) and (18) in terms of likelihood. For convenience,
rewrite Equations (8) and (9) into the following distributed form, and add the factor 1/n (this operation is equivalent
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Algorithm 2 Communication-Efficient Distributed EM Algorithm

1: Initialize: Let U(0)
ji = I(yji = 0), every institution calculates Equations (11) and (12) by its own data. Take

average to get γ̃ (0) and β̃
(0)

on central institution and transmit the results to institution j = 1, . . . , J.
2: While ‖γ̃ (k+1) − γ̃ (k)‖2 ≥ δ or ‖β̃(k+1) − β̃

(k)‖2 ≥ δ, k is the kth iteration.
3: E step: For institution j = 1, . . . , J, compute U(k)

ji by Equation (10), i = 1, . . . , nj.

4: M step: Internal Newton iteration (γ̃ (k,0) = γ̃ (k−1),β̃
(k,0) = β̃

(k−1)
):

5: For institutionj = 1, . . . , J, t = 1, . . . ,T compute:

6: T(k,t)
11 = 1

n1

∑n1
i=1

ez
�
1i γ̃

(k,t)

(1+ez
�
1i γ̃

(k,t)
)2

· z1iz�
1i,

7: T(k,t)
2j =∑nj

i=1(
e
z�ji γ̃ (k,t)

1+e
z�ji γ̃ (k,t) − u(k)

ji )zji,

8: T(k,t)
31 = 1

n1

∑n1
i=1(1 − u(k)

1i )ex
�
1iβ̃

(k,t) · x1ix�
1i,

9: T(k,t)
4j =∑nj

i=1(1 − u(k)
ji )(ex

�
ji β̃

(k,t)

− yji)xji.

10: Transmit T(k,t)
11 , . . . ,T(k,t)

4j to central institution.
11: For central institution, compute:
12: γ̃ (k,t+1) = γ̃ (k,t) − (T(k,t)

11 )−1( 1n
∑J

j=1 T
(k,t)
2j ),

13: β̃
(k,t+1) = β̃

(k,t) − (T(k,t)
31 )−1( 1n

∑J
j=1 T

(k,t)
4j ).

14: Transmit them to institution j = 1, . . . , J until t = T.
15: Update γ̃ (k+1) = γ̃ (k,T), β̃

(k+1) = β̃
(k,T)

and transmit them to institution j = 1, . . . , J.

from the perspective of optimal solution, and the reason for adding this item will be explained later):

1
n
Lc,1 (γ ) = 1

n

J∑
j=1

nj∑
i=1

{
ujiz�

ji γ − log
(
1 + ez

�
ji γ
)}

:= 1
n

J∑
j=1

nj∑
i=1

Lc,1,ji(γ ) := 1
n

J∑
j=1

Lc,1,j(γ ), (19)

1
n
Lc,2 (β) = 1

n

J∑
j=1

nj∑
i=1

(
1 − uji

) (
yjix�

ji β − ex
�
ji β
)

:= 1
n

J∑
j=1

nj∑
i=1

Lc,2,ji(β) := 1
n

J∑
j=1

Lc,2,j(β). (20)

Based on E step, take Taylor’s expansion in Equations (19) and (20) at γ̃ (k) or β̃
(k)
. The following discussion is for

Lc,1(γ ) as an example, and Lc,2(β) is similar.

1
n
Lc,1(γ ) = 1

n
Lc,1(γ̃ (k)) + 1

n
〈∇Lc,1(γ̃ (k)), γ − γ̃ (k)〉

+ 1
n

∞∑
m=2

1
m!

∇mLc,1(γ̃ (k))(γ − γ̃ (k))⊗m. (21)

Replace the high-order derivative part (second order and above) of all the data with the data from a local insti-
tution (if the factor 1/n is not added in Equations (19) and (20), the approximate substitution here will become
unreasonable).

1
n
Lc,1(γ ) ≈ 1

n
Lc,1(γ̃ (k)) + 1

n
〈∇Lc,1(γ̃ (k)), γ − γ̃ (k)〉

+ 1
n1

∞∑
m=2

1
m!

∇mLc,1,1(γ̃ (k))(γ − γ̃ (k))⊗m. (22)
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Take Taylor’s expansion in 1
n1 Lc,1,1(γ ) at γ̃ (k):

1
n1

Lc,1,1(γ ) = 1
n1

Lc,1,1(γ̃ (k)) + 1
n1

〈∇Lc,1,1(γ̃ (k)), γ − γ̃ (k)〉

+ 1
n1

∞∑
m=2

1
m!

∇mLc,1,1(γ̃ (k))(γ − γ̃ (k))⊗m. (23)

Substitute Equation (23) into Equation (22) and then ignore the constant term to get

1
n

˜Lc,1(γ ) := 1
n1

Lc,1,1(γ ) −
〈
γ ,

1
n1

∇Lc,1,1(γ̃ (k)) − 1
n
∇Lc,1(γ̃ (k))

〉
. (24)

Equation (24) is solved by Newton algorithm, and t is the index of Newton iteration. The iteration expression is

γ̃ (k,t+1) = γ̃ (k,t) − n1
n

∇2Lc,1,1(γ̃ (k,t))−1∇Lc,1(γ̃ (k,t)). (25)

When substituted into the specific expression, this expression is the same as Equations (17) and (18).

3. Main theoretic results

This section introduces the theoretical results of Algorithm 2. We focus on low-dimensional situation. In order to
fully reduce the communication cost, T = 1 is taken. This part of the theory is obtained under this situation. The
conclusions include the asymptotic normality of parameter estimator obtained by Algorithm 2 and the consistent
estimator of asymptotic variance.

Assumptions:

(1) Parameter space �: let θ = [γ �,β�]�, p + q = r, θ ∈ �, and � is a compact and convex subset of R
r.

(2) �
θ̃

(0) := {θ ∈ � : L(θ) ≥ L(θ̃
(0)

)} is compact for any θ satisfying L(θ̃
(0)

)> − ∞ and �
θ̃

(0) is in the interior of

�, where θ̃
(0) ∈ � is the initial value of Algorithm 2.

(3) Fn = 1
n
∑J

j=1
∑nj

i=1 F(θ ;wji), where

F(θ ;wji) = uI{yji=0}z�
ji γ − log(1 + ez

�
ji γ ) + (yjix�

ji β − ex
�
ji β)I{yji>0}

− (1 − u)ex
�
ji βI{yji=0} − log(yji!)I{yji>0} − (1 − u)I{yji=0},wji = xji, zji, yji,

and θ∗′
:= argmaxθ∈� Ey[F(θ ;w)], ∀u ∈ [0, 1], they satisfy the following conditions.

(a) I(θ∗′
) := −∇2E[F(θ∗′

,w)], and μ−Ir � I(θ∗′
) � μ+Ir.

(b) ∀δ > 0, ∃ε > 0, lim infn→∞ P{inf‖θ−θ∗′ ‖2≥δ
(F(θ∗′

) − F(θ)) ≥ ε} = 1.

(c) Let U(ρ) = {θ ∈ R
r| ‖ θ − θ∗′ ‖2≤ ρ} ⊂ �, there exist constants (G, L) and function N(w) such

that:E[‖∇F(θ ;W)‖162 ] ≤ G16,E[‖∇2F(θ ;W) − I(θ)‖162 ] ≤ L16,∀θ ∈ U(ρ);‖∇2F(θ ;w) − ∇2F(θ ′;w)‖2 ≤
N(w) × ‖θ − θ ′‖2,∀θ , θ ′ ∈ U(ρ).Moreover, N(w) satisfies E[N16(W)] ≤ N16 for some constant N>0.

(4) θ̃
(0) = [γ̃ (0)� , β̃

(0)�
]� satisfies ‖ θ̃

(0) − θ∗(1) ‖2≤ min{ρ, (1−ρ)μ−
16N }, and θ∗(1) is θ∗′

when u = u(0)
ji .

The above assumptions are related to the Jordan approximation of the M step of the EM algorithm and the
convergence of the EM algorithm. Specifically, Assumption (1) is the condition of the parameter space. Assumption
2 is related to the boundedness of the EM sequences. Assumption 3 is about the objective function of M step.
(3)(a)–(3)(c) are used in the proof of Proposition A.5, A.6 in the appendix. Specifically, (3)(a) is related to the local
convexity, which is used to deduce the upper bound error of M step objective function after the approximation.
(3)(b) is global identifiability condition, which is a basic condition to ensure the consistency of estimators. (3)(c) is
related to the smoothness of the objective function of M step, and is used to deduce the error reduction order of the
estimator after one iteration of M step. Assumption (4) is a requirement for initial values of the algorithm. Then,
we have the following two theorems.
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Theorem 3.1: Denote the final result of Algorithm 2 as β̃ , γ̃ , and the result of Equation (4) maximization is marked
as β̂ , γ̂ , which is the MLE of the original problem. Under the above conditions, if n → ∞, we have:

β̃
d−→ β̂ , γ̃

d−→ γ̂ ,

and
√
n
(
γ̃ − γ ∗) d−→ N(0,
11),

√
n
(
β̃ − β∗

)
d−→ N(0,
22),

where 
11,
22 are the upper left p × p matrix and lower right q × q matrix of 
, respectively. 
 := I(θ∗)−1 =
E(∇2l(θ∗, y, z, x))−1, with θ∗ = [β∗�, γ ∗�]� is the true parameter, which is the maximizer of the expection of
Equation (4).

Theorem 3.2: 
̂ := (− 1
n1

∑n1
i=1 ∇2l1)−1( 1

n1

∑n1
i=1 ∇l1∇l�1 )(− 1

n1

∑n1
i=1 ∇2l1)−1, where l1 := l(θ̂ ; y1i, z1i, x1i), n1 =

O(a). We have:


̂
p−→ 
, when a → ∞.

4. One shot communication-efficient distributed EM algorithm

In order to reduce the communication cost of distributed algorithm, in addition to reducing the communication
cost of each transmission (Algorithm 2), the same purpose can be achieved by reducing the transmission times in
M step. In order to make a full comparison with Algorithm 2, this section proposes another algorithm, in which
only one transmission is carried out between different institutions. The main idea is motivated by Zhu et al. (2021).

The distributed data structure is consistentwith that described in Section 2.3, and the differencewith the previous
algorithm is mainly in the M step of the EM algorithm. Specifically, the illustration starts with the M step on γ .
According to the result of Equations (19) and (20), there is−Lc,1(γ ) = −∑J

j=1 Lc,1,j(γ ) = −∑J
j=1
∑nj

i=1 Lc,1,ji(γ ).
Take Taylor’s expansion in

∑nj
i=1 Lc,1,ji(γ ) at γ̂ j, where γ̂ j = argmin

γ
(−Lc,1,j(γ )) is the optimization result for one

local institution. Ignore the higher order term of Taylor expansion (so this algorithm requires a sufficient sample
size of every local institution) and the constant term independent of γ , we can get (with ∇∑nj

i=1 Lc,1,ji(γ̂ j) = 0)

−Lc,1 (γ ) ≈ −
J∑

j=1

nj∑
i=1

(γ − γ̂ j)
�∇2Lc,1,ji(γ̂ j)(γ − γ̂ j)

=
J∑

j=1
(γ − γ̂ j)

�

⎡⎢⎣ nj∑
i=1

ez
�
ji γ̂ j(

1 + ez
�
ji γ̂ j
)2 · zjiz�

ji

⎤⎥⎦ (γ − γ̂ j)

:= −Lc,1(γ ). (26)

The above equation is regarded as the optimization objective, and according to theweighted least squares algorithm,
it can be obtained

γ̂ os = argmin
γ

(−Lc,1(γ )) =
⎡⎣ J∑

j=1

nj∑
i=1

∇2(−Lc,1,ji(γ̂ j))

⎤⎦−1

×
⎡⎣ J∑

j=1

nj∑
i=1

∇2(−Lc,1,ji(γ̂ j))γ̂ j

⎤⎦ . (27)

Similar to the derivation of γ , the M step for β is similar, resulting in

−Lc,2(β) :=
J∑

j=1
(β − β̂ j)

�
[ nj∑
i=1

(
1 − Uji

)
ex

�
ji β̂ j · xjix�

ji

]
(β − β̂ j)

= −
J∑

j=1

nj∑
i=1

(β − β̂ j)
�∇2Lc,2,ji(γ̂ j)(β − β̂ j), (28)
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β̂os = argmin
β

(−Lc,2(β)) =
⎡⎣ J∑

j=1

nj∑
i=1

∇2(−Lc,2,ji(β̂ j))

⎤⎦−1

×
⎡⎣ J∑

j=1

nj∑
i=1

∇2(−Lc,2,ji(β̂ j))β̂ j

⎤⎦ , (29)

where β̂ j = argmin
β

(−Lc,2,j(β))is the optimization results of one local institution. We have Algorithm 3:

Algorithm 3 One Shot Communication-Efficient Distributed EM Algorithm

1: Initialize: Let U(0)
ji = I(yji = 0), and every institution calculate Equations (11) and (12) by its own data. Take

average to get γ̂ (0)
os , β̂

(0)
os on central institution and transmit the results to institution j = 1, . . . , J.

2: While ‖γ̂ (k+1)
os − γ̂

(k)
os ‖2 ≥ δ or ‖β̂(k+1)

os − β̂
(k)
os ‖2 ≥ δ, k is the kth iteration.

3: E step: For institution j = 1, . . . , J, compute U(k)
ji by Equation (10), i = 1, . . . , nj

4: M step:
5: For institution j = 1, . . . , J, compute
6: γ̂

(k)
j = argmin

γ
(−Lc,1,j(γ ;U

(k)
ji )),

7: β̂
(k)
j = argmin

β

(−Lc,2,j(β ;U
(k)
ji )) , i = 1, . . . , nj

8: T(k)
1j =∑nj

i=1
e
z�ji γ̂

(k)
j

(1+e
z�ji γ̂

(k)
j )2

· zjiz�
ji , T(k)

2j =∑nj
i=1

e
z�ji γ̂

(k)
j

(1+e
z�ji γ̂

(k)
j )2

· zjiz�
ji γ̂

(k)
j ,

9: T(k)
3j =∑nj

i=1
e
z�ji β̂

(k)
j

(1+e
z�ji β̂

(k)
j )2

· zjiz�
ji , T(k)

4j =∑nj
i=1

e
z�ji β̂

(k)
j

(1+e
z�ji β̂

(k)
j )2

· zjiz�
ji β̂

(k)
j .

10: Transmit T(k)
1j , . . . ,T

(k)
4j to central institution.

11: Central institution update γ and β by Equations (26) and (27):
12: γ̂

(k+1)
os = [

∑J
j=1 T

(k)
1j ]

−1[
∑J

j=1 T
(k)
2j ]

13: β̂
(k+1)
os = [

∑J
j=1 T

(k)
3j ]

−1[
∑J

j=1 T
(k)
4j ],

14: and then transmit them to institution j = 1, . . . , J.

If we solve the γ̂
(k)
j , β̂

(k)
j in Newton’s method, C is the number of the iterations. For the time complexity of

the algorithm, we consider each EM algorithm iteration. For a local institution, matrix multiplication and inverse
operation are mainly completed. The E step time complexity is O(Nj(p + q)), and the M step time complexity
is O(C(Nj(p2 + q2) + p3 + q3)). The central institution mainly completes matrix inversion operation, and the
computation time complexity is O(Jp2 + Jq2 + q3 + q3).

In order to reduce the computing cost of a single local institution, the optimization problemof γ̂ (k)
j , β̂

(k)
j obtained

in Algorithm 3 can be replaced by a one-step approximation:

γ̂
(k)
j = γ̂

(k)
OS −

⎡⎢⎢⎢⎣
nj∑
i=1

ez
�
ji γ̂

(k)
OS(

1 + ez
�
ji γ̂

(k)
OS

)2 · zjiz�
ji

⎤⎥⎥⎥⎦
−1

⎡⎣ nj∑
i=1

⎛⎝ ez
�
ji γ̂

(k)
OS

1 + ez
�
ji γ̂

(k)
OS

− u(k)
ji

⎞⎠ zji

⎤⎦ , (30)

β̂
(k)
j = β̂

(k)
OS −

[ nj∑
i=1

(
1 − u(k)

ji

)
ex

�
ji β̂

(k)
OS · xjix�

ji

]−1
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Table 1. Computing complexity and communication cost of each EM iteration for Algorithms 1–3.

Algorithm 1 Algorithm 2 Algorithm 3

Single O(Tnj(p2 + q2)) O(T[p2 + q2 + nj(p + q)]) O(C(nj(p2 + q2) + p3 + q3))
Central O(T[J(p2 + q2) + q3 + p3]) O(T[J(p + q) + p3 + q3]) O(J(p2 + q2) + p3 + q3)
Communication O(TJ(q2 + p2)) O(T(q2 + p2 + J(q + p))) O(J(p2 + q2))

Note: ‘Single’ stands for computing complexity of a single local institution; ‘central’ stands for the calculation time complexity
of central institution; ‘communication’ stands for communication cost.

Table 2. Computing complexity and communication cost of each EM iteration for Algorithms 1–3
with T = Cï£¡ï£¡= 1.

Algorithm 1 Algorithm 2 Algorithm 3

Single O(nj(p2 + q2)) O(p2 + q2 + nj(p + q)) O(nj(p2 + q2) + p3 + q3)
Central O(J(p2 + q2) + q3 + p3) O(J(p + q) + p3 + q3) O(J(p2 + q2) + p3 + q3)
Communication O(J(q2 + p2)) O(q2 + p2 + J(q + p)) O(J(p2 + q2))

Note: ‘Single’ stands for computing complexity of a single local institution; ‘central’ stands for the calculation time
complexity of central institution; ‘communication’ stands for communication cost.

×
[ nj∑
i=1

(
1 − u(k)

ji

)(
ex

�
ji β̂

(k)
OS − yji

)
xji

]
. (31)

After the above approximation, the effect on the computational time complexity is reflected in theM step of a single
local institution, which is now O(nj(p2 + q2) + p3 + q3)).

The communication cost of the EM algorithm for one iteration is O(J(p2 + q2)). The central institution passes
the updated parameters to the single machine, and the local institution transmits calculated statistics based on
updated parameters to the centre instead of the original data (xji, zji). Therefore, this algorithm has the property
of privacy protection. Compared with the previous two algorithms, the iteration of the optimization algorithm
within the M step (that is, solving γ̂

(k), β̂
(k)

) is completed within one local institution, and no cross-institution
communication occurs. The EM algorithm only carries out one transmission at one iteration. It is not related to the
number of iterations of internal optimization of M step. The iteration of M step of Algorithms 1 and 2 introduced
above to solve the optimization problem is completed across different institutions and requires cross-institution
communication, so the communication cost increases with times of iterations of M step. Therefore, the number of
communication times in each iteration of the EM algorithm is related to the number of internal iterations ofM step.

Table 1 compares the computing complexity and communication cost of each EM iteration for Algorithms 1–3.
Compared with Algorithm 1, the computing complexity and communication cost of Algorithm 2 are reduced. For
Algorithm 3, the computing complexity of single local institution is related to C, and the complexity and commu-
nication cost of central institution decrease. The computing complexity and communication cost of Algorithms 2
and 3 are related to T and C.

To fully reduce communication or computing costs, set T = C = 1, as shown in Table 2. The computing com-
plexity of Algorithm 2 is lower than that of Algorithm 1. For Algorithm 3, the time complexity of single local
institution is higher than that of Algorithm 1 because a single local institution has to deal with the optimization
problem, and their computing complexities of central institution are the same. In terms of communication cost,
the communication cost of Algorithm 2 is the lowest. Since C is only related to the computing cost of a single local
institution, the communication cost of Algorithm 3 is not improved.

5. Simulation study

Wepresent the performance of the proposed algorithms, under a variety of settings and for varying sample sizes. All
simulation results are calculated based on 500 replications. Section 5.1 studies the performances under the setting
of homogeneous data which means that all the observations of different institutions are from the same distribution.
Section 5.2 studies the heterogeneous data, which means different institutions have different data distributions.

5.1. Homogeneous data

In this section, data {xji, zji} of different institutions come from the same distribution.
Case 1: Fix the observation number of single institution as nj = 100.
We set p = q =3and let true parameters contain the intercept. Then, γ ∗ = [−1, 0.5, 0.7]�,β∗ = [0, 0.5,−1]�

and xji ∼ Nq(0q, Iq), zji ∼ Np(0.5 × 1p, Ip). Finally, all yji, pji,λji are generated by Equations (1) and (3).
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Table 3. Empirical performances of proposed Algorithms under different J with fixed total sample size.

J (Number of institutions)

50 100 500 1000 5000

Algorithm 1 T = 1 β bias 1.578 0.498 0.343 0.354 0.210
β var 1.188 0.590 0.124 0.063 0.012
β mse 1.190 0.590 0.124 0.064 0.012
γ bias 6.652 2.144 0.408 1.068 0.731
γ var 13.258 6.638 1.306 0.622 0.141
γ mse 13.302 6.642 1.306 0.663 0.141

Times of no convergence 0 0 0 0 0

T = 3 β bias 1.578 0.498 0.344 0.354 0.210
β var 1.188 0.590 0.124 0.063 0.012
β mse 1.190 0.590 0.124 0.064 0.012
γ bias 6.651 2.143 0.408 1.070 0.730
γ var 13.258 6.637 1.306 0.622 0.141
γ mse 13.302 6.642 1.306 0.633 0.141

Times of no convergence 0 0 0 0 0

Algorithm 2 T = 1 β bias 1.924 1.591 0.351 0.109 0.031
β var 1.184 0.570 0.118 0.058 0.013
β mse 1.187 0.573 0.118 0.058 0.013
γ bias 7.337 1.723 1.288 1.497 0.345
γ var 13.091 6.705 1.306 0.649 0.138
γ mse 13.145 6.708 1.308 0.652 0.138

Times of no convergence 195 197 188 188 196

T = 3 β bias 1.565 1.577 0.427 0.108 0.041
β var 1.187 0.579 0.119 0.058 0.013
β mse 1.189 0.581 0.119 0.58 0.013
γ bias 8.368 2.291 1.456 1.549 0.472
γ var 13.135 6.687 1.319 0.651 0.138
γ mse 13.205 6.692 1.320 0.653 0.139

Times of no convergence 200 204 197 195 207

Algorithm 3 C = 1 β bias 51.459 51.043 51.112 51.328 51.173
β var 1.091 0.555 0.120 0.060 0.011
β mse 3.739 3.160 2.732 2.695 2.630
γ bias 162.060 167.204 169.052 170.462 170.172
γ var 9.826 4.813 0.980 0.492 0.106
γ mse 36.090 32.770 29.559 29.549 29.065

Times of no convergence 0 0 0 0 0

C = 3 β bias 28.039 27.439 27.412 27.563 27.430
β var 1.114 0.559 0.120 0.060 0.012
β mse 1.900 1.312 0.871 0.820 0.764
γ bias 87.265 92.627 93.822 95.150 94.858
γ var 11.150 5.519 1.109 0.557 0.120
γ mse 18.765 14.031 9.912 9.612 9.117

Times of no convergence 0 0 0 0 0

Sub β bias 24.305 24.305 24.305 24.305 24.305
β var 97.445 97.445 97.445 97.445 97.445
β mse 98.036 98.036 98.036 98.036 98.036
γ bias 535.914 535.914 535.914 535.914 535.914
γ var 8989.774 8989.774 8989.774 8989.774 8989.774
γ mse 9277.007 9277.007 9277.007 9277.007 9277.007

Times of no convergence 4 4 4 4 4

Global β mse 1.578 0.498 0.343 0.354 0.210
β bias 1.188 0.590 0.124 0.063 0.012
β var 1.190 0.590 0.124 0.063 0.012
γ bias 6.652 2.143 0.408 1.678 0.730
γ var 13.258 6.637 1.306 0.662 0.014
γ mse 13.302 6.642 1.306 0.663 0.014

Times of no convergence 0 0 0 0 0

To measure the estimation efficiency, we calculate the empirical mean square error (mse) as
∑500

s=1 ‖x∗ −
x̂s‖2/500, the empirical bias (bias) as ‖∑500

s=1 x̂s/500 − x∗‖ and the empirical variance (var) as
∑500

s=1 ‖x̂s −∑500
s=1 x̂s/500‖2/500, where x∗ stands for γ ∗ or β∗ and x̂s stands for estimtors of γ or β in the sth replicate. T/C

stands for number of internal iterations of M step. ‘Sub’ stands for applying EM algorithm on one institution’s data.
‘Global’ stands for applying EM algorithm on the whole data.

In Table 3, the performances of our proposed Algorithms 1–3 are all better than that of Sub, and getting better
with the increase of the number of institutions (i.e., the total sample size). Algorithms 1–2’s results are close to
that of Global, and the little difference between T = 1 and 3 means that we can get similar estimators under lower
communication cost (T = 1) by these two algorithms. Algorithm 1 is equivalent to the Global method based on
Newton optimization except for the selection of initial value and the number of internal iterations of M step, so
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Figure 1. CPs for 95% confidence interval coverage probability for γ1 in the setting of Case 1.

the results of Algorithm 1 are similar to that of the Global method. The stability of Algorithm 2 is relatively poor.
There are some nonconvergence times in repeated experiments, which is related to the sample size used to calculate
Hessian matrix in M step, so this phenomenon does not improve with the increase of the number of institutions.
There is a gap between the results of Algorithm 3 and the Global one. Increasing the number of institutions does not
improve the results of Algorithm 3. However, when C increases, the results of Algorithm 3 improve significantly.
The reason is that the M step results of Algorithm 3 are the weighted average of the results of local institutions.
When C and the sample size of a single institution are fixed, increasing the number of institutions can reduce the
variance of the results, but it does not reduce the bias. When other conditions are equal but C becomes larger, the
final result will be improved because of the improvement of the results from each local institution of M step.

In summary, under the scenario of distributed data with small local sample size, Algorithm 1 is recommended if
sufficient communication resources are equipped. Algorithm 2 with T = 1 is recommended for high restriction on
communication and calculation. Algorithm 3 with large C is suggested to be selected if each institution has strong
computing power and relatively low limitations on the communication cost.

Figure 1 shows the empirical coverage probabilities (CPs) of 95% confidence interval for the first parameter of γ ,

i.e., γ1. The way to construct the confidence interval is [γ̂ 1 − 1.96 ×
√


̂11/
√
n, γ̂ 1 + 1.96 ×

√

̂11/

√
n].γ̂ 1 comes

from different algorithms. 
̂11 comes from Theorem 3.2. The empirical CPs for other parameters are similar and
the details are omitted here.

The CPs of Algorithms 1 and 2 and the Global one approach 0.95 (the nominal level) as the total sample size
increases. Since the sample size of the single institution does not change, the results of Sub method present a hor-
izontal line. Based on the calculation principle of Algorithm 3, the increase of the number of institutions does not
improve the bias but reduces the variance, and so makes the CPs worse.

Case 2: Fix the total sample size n = 100, 000.
Data generation is the same as Case 1. We fix the total sample size n but change the number of institutions.
In Case 2, we only change the number of institutions, i.e., the degree of data aggregation. All empirical mse,

bias and variance are listed in Table 4. The results of Algorithms 1–2 change little, because the total sample size
n does not change. However, the results of Algorithm 3 are improved when the sample size of a single institution
increases. Algorithms 1–2’s performance is still similar to the Global one, and there is little difference between
T = 1 and T = 3. With the increase of the sample size of a single institution, the number of nonconvergence of
Algorithm 2 decreases significantly, which is consistent with the analysis inCase 1. Due to the increasing of the data
volume of a single institution, the results of each institution used in Algorithm 3 have been improved, which makes
the corresponding weighted average result improve. Besides, the addition of C can also improve Algorithm 3’s
performance.

In particular, the simulation results show that the performances of these three algorithms are similar when the
sample size of single institution is large enough. Therefore, for a distributed data structure, when the sample size of
a single institution is large, Algorithm 3 with T = 1 is more recommended to save calculation and communication
costs. Otherwise, recommendations from Case 1 are useful.
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Table 4. Empirical performances of proposed Algorithms under different awith fixed total sample size.

a (Sample size per institution)

100 500 1000 5000 10,000

Algorithm 1 T = 1 β bias 0.354 0.354 0.314 0.354 0.354
β var 0.063 0.063 0.064 0.063 0.063
β mse 0.064 0.063 0.064 0.064 0.064
γ bias 1.068 1.068 0.902 1.068 1.068
γ var 0.662 0.662 0.667 0.662 0.662
γ mse 0.663 0.663 0.668 0.663 0.663

Times of no convergence 0 0 12 0 0

T = 3 β bias 0.354 0.354 0.313 0.354 0.354
β var 0.063 0.063 0.064 0.063 0.063
β mse 0.064 0.064 0.064 0.064 0.064
γ bias 1.070 1.069 0.902 1.068 1.068
γ var 0.662 0.662 0.667 0.662 0.662
γ mse 0.663 0.663 0.668 0.663 0.663

Times of no convergence 0 0 12 0 0

Algorithm 2 T = 1 β bias 0.109 0.317 0.299 0.355 0.354
β var 0.058 0.063 0.064 0.063 0.063
β mse 0.058 0.063 0.064 0.064 0.064
γ bias 1.497 1.002 0.884 1.072 1.070
γ var 0.649 0.671 0.666 0.662 0.662
γ mse 0.652 0.672 0.667 0.663 0.663

Times of no convergence 188 17 13 0 0

T = 3 β bias 0.108 0.310 0.298 0.354 0.354
β var 0.058 0.063 0.064 0.063 0.063
β mse 0.058 0.063 0.064 0.064 0.064
γ bias 1.549 0.954 0.883 1.068 1.068
γ var 0.651 0.670 0.666 0.662 0.662
γ mse 0.653 0.671 0.667 0.663 0.663

Times of no convergence 195 18 13 0 0

Algorithm 3 C = 1 β bias 51.328 9.474 4.686 1.121 0.522
β var 0.060 0.063 0.063 0.063 0.063
β mse 2.695 0.152 0.085 0.065 0.064
γ bias 170.462 37.374 19.021 4.460 1.846
γ var 0.492 0.624 0.650 0.660 0.615
γ mse 29.549 2.020 1.012 0.680 0.649

Times of no convergence 0 0 12 0 0

C = 3 β bias 27.563 4.960 2.497 0.726 0.702
β var 0.60 0.063 0.063 0.063 0.063
β mse 0.820 0.087 0.070 0.064 0.064
γ bias 95.150 19.603 10.049 2.745 2.650
γ var 0.557 0.641 0.658 0.661 0.661
γ mse 9.611 1.025 0.759 0.668 0.668

Times of no convergence 0 0 12 0 0

Sub β bias 24.305 5.808 2.135 1.578 0.498
β var 97.445 13.253 6.296 1.188 0.590
β mse 98.036 13.287 6.300 1.190 0.590
γ bias 535.941 56.343 29.383 6.652 2.143
γ var 8989.774 142.272 66.520 13.258 6.638
γ mse 9277.007 145.446 67.383 13.302 6.642

Times of no convergence 4 0 0 0 0

Global β bias 0.354 0.354 0.354 0.354 0.354
β var 0.063 0.063 0.063 0.063 0.063
β mse 0.064 0.064 0.064 0.064 0.064
γ bias 1.068 1.068 1.068 1.068 1.068
γ var 0.662 0.662 0.662 0.662 0.662
γ mse 0.663 0.663 0.663 0.663 0.663

Times of no convergence 0 0 0 0 0

Similar to Case 1, Figure 2 shows the empirical coverage probabilities (CPs) of 95% confidence interval for γ1.
In a summary, CPs of all different algorithms approach 0.95 with the increasing of sample size of a single institu-
tion. For Algorithm 3, with the decrease of the number of institutions, the bias of parameter estimation decreases
significantly, and the variance slightly increases. At the same time, the sample size used to calculate the variance
increases, making the CPs improved.

5.2. Heterogeneous data

In order to fully compare the algorithms in different scenarios, we set up simulation scenarios that are inconsistent
with the theoretical conditions. This section shows the performance of the proposed algorithms when the data’s
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Figure 2. CPs for 95% confidence interval coverage probability for γ1 in the setting of Case 2.

distribution in each institution is slightly different. Specifically, {xji, zji} of different institution (i.e., j = 1, . . . , J)
comes from different distributions: xij ∼ Nq(10−3 × j, Iq + diag(10−3 × j)), zij ∼ Np(10−3 × j, Ip + diag(10−3 ×
j)), where diag(A) demotes as a square matrix with A as diagonal element and 0 for the rest.

Case 3: Fix the total sample size n = 100, 000 with heterogeneous data.
Except the generation of {xji, zji}, all other settings are the same as in Case 2. All empirical mse, bias and variance

are listed in Table 5. We find that Algorithms 1 – 2 can also achieve similar results to the Global one when the data
in different institutions comes from different distributions. UnlikeCase 2, Algorithm 2 is less stable.When a = 100,
most of the 500 repetitions do not converge. The reason is that when the sample size of a single institution is small
and the data in each institution is distributed differently, the approximation of Hessian matrix adopted byM step of
Algorithm 2 will become very poor. However, with the increasing of sample size in single institution, the stability of
Algorithm 2 is acceptable, indicating that it will performwell if a is large enough, even if its theoretical assumptions
are not satisfied.

When a = 5000, nonconvergence times for Algorithms 1–2 are the same, while Algorithm 3 has zero noncon-
vergence times. It shows that Algorithm 3 is more stable under the same condition in the case of heterogeneous
data. Therefore, if the sample size of a single institution is small, it is suggested to choose Algorithm 1. Under the
condition of limited communication and computing costs, if the sample size of a single institution is not too small,
Algorithm 3 with large C will be a better choice. If the local sample size is large enough, Algorithm 2 can be an
alternative.

Figure 3 shows the 95% confidence interval coverage probability for the first parameter in γ , i.e., γ1. The trend
of different algorithms in this graph is similar to that in Figure 2.

6. Real case study

In this section, we apply proposed algorithms to car insurance data. The data is collected from Kaggle1 with total
sample size n = 10, 300 , and the data were randomly divided into K groups, K = 20, 10, 5. The conclusion is
similar, only the results of K = 10 are presented here, and other results are presented in the appendix. CLM_FREQ
is the response variable we are interested in, representing the number of past policy claims from the insured person,
which is zero-inflated with 61% claims being zero. All possible covariates are shown in Table 6.

We set X = Z, and Tables 7–8 show the parameters and standard deviation estimates of the different algorithms
with T/C = 3, 1,K = 10.

Based on our model, the parameter γ is related to pi. Our estimation results for γ indicate that, if a policyholder
has a small number of children at home, is married, has never had their driver’s license revoked, has few motor
vehicle record points, lives in a rural area, and uses their vehicle for personal purposes, they are more likely to have
a large pi. A larger pi means that the policyholder is more likely to come from the 0 state, meaning they have a lower
probability of making a claim. This result is reasonable. If the policyholder fits the above description, they are likely

1 https://www.kaggle.com/kerneler/starter-car-insurance-claim-data-62f4f91c-d.

https://www.kaggle.com/kerneler/starter-car-insurance-claim-data-62f4f91c-d
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Table 5. Empirical performances of proposed Algorithms for heterogeneous data with fixed total sample size.

a (Sample size per institution)

100 500 5000 10,000

Algorithm 1 T = 1 β bias 0.849 0.374 0.212 0.406
β var 0.061 0.049 0.054 0.051
β mse 0.062 0.049 0.054 0.051
γ bias 3.71 0.764 0.596 1.903
γ var 0.728 0.789 0.804 0.708
γ mse 0.742 0.789 0.804 0.712

Times of no convergence 0 0 8 0

T = 3 β bias 0.849 0.374 0.212 0.406
β var 0.061 0.049 0.054 0.051
β mse 0.062 0.049 0.054 0.051
γ bias 3.715 0.762 0.595 0.190
γ var 0.728 0.789 0.804 0.708
γ mse 0.742 0.789 0.804 0.712

Times of no convergence 0 0 8 0

Algorithm 2 T = 1 β bias 0.744 0.408 0.212 0.406
β var 0.065 0.055 0.049 0.051
β mse 0.065 0.055 0.049 0.051
γ bias 2.817 1.975 0.684 1.901
γ var 0.758 0.759 0.795 0.708
γ mse 0.766 0.763 0.796 0.711

Times of no convergence 329 8 8 0

T = 3 β bias 0.977 0.416 0.212 0.406
β var 0.067 0.049 0.054 0.051
β mse 0.068 0.049 0.054 0.051
γ bias 3.642 0.703 0.595 1.903
γ var 0.832 0.795 0.804 0.708
γ mse 0.848 0.795 0.804 0.712

Times of no convergence 382 8 8 0

Algorithm 3 C = 1 β bias 56.673 11.113 1.007 0.845
β var 0.346 0.052 0.054 0.051
β mse 3.558 0.176 0.055 0.051
γ bias 188.624 44.185 4.905 3.851
γ var 1.568 0.737 0.796 0.704
γ mse 37.147 2.689 0.820 0.719

Times of no convergence 0 0 0 0

C = 3 β bias 30.534 5.837 0.528 0.622
β var 0.155 0.050 0.054 0.051
β mse 1.087 0.084 0.054 0.051
γ bias 106.560 23.072 2.750 2.868
γ var 0.960 0.755 0.800 0.706
γ mse 12.315 1.287 0.807 0.714

Times of no convergence 0 0 0 0

Sub β bias 14.790 4.604 0.668 0.574
β var 63.133 11.882 1.033 0.517
β mse 63.351 11.903 1.033 0.517
γ bias 651.831 53.909 6.186 2.537
γ var 11589.205 188.760 16.519 7.800
γ mse 12014.147 191.666 16.558 7.807

Times of no convergence 16 0 0 0

Global β bias 0.128 0.372 0.212 0.406
β var 0.058 0.049 0.054 0.051
β mse 0.058 0.049 0.054 0.051
γ bias 2.565 0.750 0.606 1.903
γ var 0.069 0.789 0.804 0.708
γ mse 0.070 0.789 0.805 0.712

Times of no convergence 3 0 0 0

Table 6. Covariates details in real case study.

Covariates name Covariates details

HOMEKIDS Number of children at home.
MSTATUS Marital status, 1=married, 0= unmarried.
REVOKED License revoked, 1= yes, 0= no
MVR_PTS Motor vehicle record points.
URBANICITY Urban vs. rural home/work area, 1= Rural, 0= Urban.
CAR_USE Vehicle use, 1= Commercial, 0= Private.
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Figure 3. Case 3 95% confidence interval coverage probability for γ1 .

Table 7. Estimationg results with T/C = 3, K = 10 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.519 0.023 0.881 0.062
Global 0.516 0.024 0.885 0.062
Sub 0.526 0.076 1.202 0.208

HOMEKIDS Algorithm 1 −0.020 0.010 −0.175 0.032
Algorithm 2 −0.020 0.010 −0.175 0.032
Algorithm 3 −0.019 0.010 −0.173 0.032
Global −0.020 0.009 −0.175 0.030
Sub -0.071 0.035 −0.195 0.103

MSTATUS Algorithm 1 −0.026 0.020 0.347 0.063
Algorithm 2 −0.026 0.020 0.347 0.063
Algorithm 3 −0.028 0.020 0.343 0.062
Global −0.026 0.021 0.347 0.063
Sub −0.068 0.065 0.059 0.202

REVOKED Algorithm 1 −0.063 0.027 −0.411 0.090
Algorithm 2 −0.063 0.027 −0.411 0.090
Algorithm 3 −0.059 0.027 −0.404 0.089
Global −0.063 0.030 −0.411 0.098
Sub 0.109 0.082 −0.530 0.302

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.017
Algorithm 2 0.019 0.004 −0.631 0.017
Algorithm 3 0.019 0.004 −0.625 0.017
Global 0.019 0.004 −0.631 0.017
Sub 0.008 0.012 −0.699 0.060

URBANICITY Algorithm 1 −0.044 0.039 2.008 0.102
Algorithm 2 −0.044 0.039 2.008 0.102
Algorithm 3 −0.046 0.040 1.984 0.101
Global −0.044 0.044 2.008 0.092
Sub −0.041 0.152 1.651 0.290

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.065
Algorithm 2 0.032 0.020 −0.382 0.065
Algorithm 3 0.033 0.020 −0.378 0.064
Global 0.032 0.021 −0.382 0.064
Sub 0.046 0.066 −0.566 0.214

to be a young person living in a rural area, owning a private car, and with good driving habits. There are fewer
vehicles in rural areas, and policyholders are more likely to have good driving habits, which would result in a lower
likelihood of major accidents. Furthermore, insurance companies often offer attractive NCD policy for private cars,
which would also result in a larger pi for this type of policyholder.

The mean of the Poisson distribution, λi, which represents the average number of claims for a policyholder, is
determined by the parameter β . According to the estimating results, various factors, such as having a small number
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Table 8. Estimationg results with T/C = 1, K = 10 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.521 0.024 0.877 0.061
Global 0.516 0.024 0.885 0.062
Sub 0.526 0.076 1.202 0.208

HOMEKIDS Algorithm 1 −0.020 0.010 −0.175 0.032
Algorithm 2 −0.020 0.010 −0.175 0.032
Algorithm 3 −0.018 0.010 −0.171 0.032
Global −0.020 0.009 −0.175 0.030
Sub −0.071 0.035 −0.195 0.103

MSTATUS Algorithm 1 −0.026 0.020 0.347 0.063
Algorithm 2 −0.026 0.020 0.347 0.063
Algorithm 3 −0.030 0.020 0.338 0.062
Global −0.026 0.021 0.347 0.063
Sub −0.068 0.065 0.059 0.202

REVOKED Algorithm 1 −0.063 0.027 −0.411 0.090
Algorithm 2 −0.063 0.027 −0.411 0.090
Algorithm 3 −0.055 0.027 −0.396 0.089
Global −0.063 0.030 −0.411 0.098
Sub 0.109 0.082 −0.530 0.302

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.017
Algorithm 2 0.019 0.004 −0.631 0.017
Algorithm 3 0.019 0.004 −0.619 0.017
Global 0.019 0.004 −0.631 0.017
Sub 0.008 0.012 −0.699 0.060

URBANICITY Algorithm 1 −0.044 0.039 2.008 0.102
Algorithm 2 −0.044 0.039 2.008 0.102
Algorithm 3 −0.049 0.040 1.962 0.099
Global −0.044 0.044 2.008 0.092
Sub −0.041 0.152 1.651 0.290

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.065
Algorithm 2 0.032 0.020 −0.382 0.065
Algorithm 3 0.033 0.020 −0.373 0.064
Global 0.032 0.021 −0.382 0.064
Sub 0.046 0.066 −0.566 0.214

of children at home, being unmarried, having a clean driving record, having a high number of motor vehicle record
points, residing in a city, and using the vehicle for commercial purposes, can result in a higher λi, indicating a
greater average number of claims. Living in an urban area, using the vehicle for commercial purposes, and not
having a private car can all increase the likelihood of being involved in road accidents. Additionally, commercial
policyholdersmay not be attracted to the insurance company’sNCDpolicy, further contributing to a higher number
of claims.

As can be seen from Tables 7–8, the results of Sub differ furthest from Global, and the results of Algorithms 1–3
are relatively close to Global, where results in Algorithms 1 and 2 are closer than Algorithm 3. When T or C is 1
or 3, the estimation results of Algorithms 1 and 2 are basically the same, and the results of Algorithm 3 are slightly
changed. These results are in good agreement with the theoretical and simulation results.

7. Conclusion and discussion

The study of data structures with zero-inflation is crucial in practical applications. In particular, when the data has
a distributed structure, it becomes imperative to develop efficient algorithms with effective communication. This
paper presents three distributed algorithms, with two of thembeing improved to enhance communication efficiency
through various techniques. Subsequently, several simulation scenarios were established to compare the algorithms
and identify their respective strengths and limitations. The performance of the algorithms in real-life cases is also
reported.

The results of the study indicate that while Algorithm 2 has the lowest communication cost, it is less stable
when the sample size of a single institution is small, especially for heterogeneous data. Algorithms 1 and 3 are
comparatively stable but consumemore resources. The development of amore robust algorithm remains a challenge
to be addressed. Additionally, this paper only focuses on the ZIP model applied to zero-inflation data and does not
cover ZIB model or models with random effect terms. These limitations provide opportunities for further research
and improvement.
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Appendices

Appendix 1. Proof the consistency and asymptotic normality of proposed estimators

This section deduces the theoretical results in Section 3. Firstly, we introduce some notations.
Let θ = [γ �,β�]�, and then Equation (4) can be denoted as L(θ). Equation (7) can be denoted as Lc(θ). The dimension of

θ is r = p+ q. Denote the complete data {x, y, z, u} as dc, and the density function as f (dc | θ), θ ∈ �. Denote the uncomplete
data {x, y, z} as dp, and the corresponding density function as g(dp | θ).

More importantly, we denote the conditional density of dc | dp as b(dc | dp, θ) = f (dc | θ)/g(dp | θ). Then, we have L(θ) =
log g(dp | θ) = log f (dc | θ) − log b(dc | dp, θ) = Lc(θ) − log b(dc | dp, θ).

We define Q(θ ′ | θ) = E(log f (dc | θ ′) | dp, θ) = E(Lc(θ ′) | dp, θ) and H(θ ′ | θ) = E(log b(dc | dp, θ ′) | dp, θ). Then, we have
Q(θ ′ | θ) = L(θ ′) + H(θ ′ | θ).

Finally, denote the iteration sequence obtained by EM algorithm in the process of solving θ as {θ (k)}. According to
the above notations, the E step of the kth-step of EM algorithm is calculated Q(θ | θ (k)), and M step is calculateθ (k+1) =
argmaxθ Q(θ | θ (k)).

A.1 Convergence of EM algorithm

Assumptions:

(1) � ⊂ R
r : � is a subset in the r-dimensional Euclidean space.
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(2) �θ (0) := {θ ∈ � : L(θ) ≥ L(θ (0))} is compact ∀L(θ (0))> − ∞ and �θ (0) is in the interior of � for θ (0) ∈ � is the initial
value of EM algorithm.

(3) L is continuous in � and differentiable in the interior of �.

We can finishing proving the convergence of EM Algorithm by the following two proofs:

(1) L(θ (k)) is monotonic.

Proof: Firstly, prove ∀(θ (k+1), θ (k)) ∈ � × �. We have H(θ (k+1) | θ (k)) ≤ H(θ (k) | θ (k)). And the equal sign can be obtained if
and only if b(dc | dp, θ (k+1)) = b(dc | dp, θ (k)). Substitute relevant expressions as follows:

E
[
log b(dc | dp, θ (k+1)) | dp, θ (k)

]
− E
[
log b(dc | dp, θ (k)) | dp, θ (k)

]
= E

[
log

b(dc | dp, θ (k+1))

b(dc | dp, θ (k))

∣∣∣∣∣ dp, θ (k)

]

=
∫

log
b(dc | dp, θ (k+1))

b(dc | dp, θ (k))
b(dc | dp, θ (k))d(dc)

≤ log
∫ b(dc | dp, θ (k+1))

b(dc | dp, θ (k))
b(dc | dp, θ (k))d(dc)

= 0.

Since that log is a concave function, the inequality sign above can be obtained by applying Jensen’s inequality. When
b(dc | dp, θ (k+1))/b(dc | dp, θ (k)) is a constant, we have ‘= ’. Because of the property of the distribution density function, we
have b(dc | dp, θ (k+1)) = b(dc | dp, θ (k)).

Next, we prove that the GEM algorithm (defined by Dempster et al. (1977)) satisfies L(M(θ)) ≥ L(θ),∀θ ∈ �. Equal sign is
established when Q(M(θ) | θ) = Q(θ | θ) and b(x | y,M(θ)) = b(x | y, θ) are true almost everywhere.M represents an iterative
algorithm, i.e., θ (k) → θ (k+1) defined by θ (k+1) ∈ M(θ (k)). �

Definition A.1: If an iterative algorithm defined byM satisfies

Q(M(θ) | θ ′) ≥ Q(θ | θ ′), ∀ θ ∈ �,

it is called the GEM algorithm (generalized EM algorithm, Dempster et al. (1977)).

Based on this definition, the proof is as follows:

L(M(θ)) − L(θ) = Q(M(θ) | θ ′) − Q(θ | θ ′) + H(θ | θ ′) − H(M(θ) | θ ′).

In the above equation, Q(M(θ) | θ ′) − Q(θ | θ ′) ≥ 0 is guaranteed by the GEM algorithm definition. H(θ | θ ′) − H(M(θ) | θ ′)
≥ 0 is guaranteed by the previous proof. ‘= ’ is true only if Q(M(θ) | θ ′) = Q(θ | θ ′) and H(θ | θ ′) = H(M(θ) | θ ′). Based on
the proof before, this condition is b(dc | dp, θ (k+1)) = b(dc | dp, θ (k)). According to the definition of EM algorithm, it belongs to
GEM algorithm. Therefore the monotony of L(θ (k)) is proved.

(2) L(θ (k)) is bounded.

Proof: From�θ (0) ⊂ �, we have�θ (0) ⊂ R
r .�θ (0) is a compact set, and then�θ (0) is a bounded closed set. Since L is continuous

in �, and then L is upper bounded in �θ (0) . Since {θ (k)} ⊂ �θ (0) , and then L is upper bounded in {θ (k)}, ∀θ (0). �

Based on above Proofs 1–2, the convergence of the algorithm can be proved. Now we need to prove that the convergence
point is the maximum point of L(θ). Since L(θ) is unimodal on � and has a unique maximum value, it is only necessary to
prove that the convergence point is the stagnation point of L(θ).

A.2 The convergence point of {θ(k)} is the stagnation point of L(θ)

Let’s start with the Global Convergence Theorem (GCT), and the details of the proof refers to page 91 of Zangwill (1969).

Proposition A.1 (Global Convergence Theorem): Let the sequence {xk}∞k=0 be generated by xk+1 ∈ M(xk), where M is a point-
to-set map on X. Let a solution set � ⊂ X be given, and suppose that:

(i) all points xk are contained in a compact set S ⊂ X;
(ii) M is closed over the complement of �;
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(iii) there is a continuous function α on X such that(a) if x /∈ �,α(y)>α(x) for all y ∈ M(x), and (b) if x ∈ �,α(y) ≥ α(x) for
all y ∈ M(x).

Then all the limit points of xk are in the solution set � and α(xk) converges monotonically to α(x) for some x ∈ �.

Based onGCT,we takeM as themapping in the EM iterative algorithm, and denoteα(x) as log-likelihood L, and correspond-
ing solution set as�. Defining point setM = {local maxima in the interior of �} andT = {stationary points in the interior of
�}, following conclusions can be obtained:

Proposition A.2: {θ (k)} is the GEM sequence, and the generation mode is θ (k+1) ∈ M(θ (k)). If

(i) M is a point-to-set map on the complement of T (orM);
(ii) L(θ (k+1))>L(θ (k))∀θ (k) /∈ T (or M). Then all limit points of θ (k) are stationary points (or maximum points) of L, and

L(θ (k)) monotonically converges to L∗ = L(θ∗), where θ∗ ∈ T (orM).

Proposition A.3: If Q(θ | θ ′) is continuous at θ , θ ′, all the limit points of EM algorithm sequence {θ (k)} are stationary points of L,
and L(θ (k)) converges to L∗ = L(θ∗), where θ∗ is a stationary point of L.

To finish proving that the convergence point of {θ (k)} is the stagnation point of L(θ), we only need to prove Q(θ | θ ′) is
continuous at θ , θ ′.

E(ui | yi) = P(ui = 1 | yi) = P(ui = 1, yi)
yi

= P(yi | ui = 1)P(ui = 1)
P(yi, ui = 1) + P(yi, ui = 0)

= P(yi | ui = 1)P(ui = 1)
P(yi | ui = 1)P(ui = 1) + P(yi | ui = 0)P(ui = 0)

=
⎧⎨⎩0, yi > 0,

pi
pi + (1 − pi)e−λi

, yi = 0.

Substitute the result in Q(θ | θ ′) = E[Lc(θ | y, u) | y, θ ′]:

Q(θ | θ ′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
i=1

− log(1 + ez
�
i γ ) + yix�

i β − ex
�
i β − log(yi)!, yi > 0,

n∑
i=1

[
z�i γ + ex

�
i β
] exp(z�i γ ′ + ex

�
i β ′

)

1 + exp(z�i γ ′ + ex
�
i β ′

)
− log(1 + ez

�
i γ ) − ex

�
i β , yi = 0.

The expression right here gives us Q(θ |θ ′) is continuous at θ , θ ′.

A.3 Asymptotic equivalence of EM Jordan approximation

In this section, we illustrate that the M step of EM iteration of Algorithm 2 is equivalent to the result before using Jordan
approximation.

For theM step of the k-th EM iteration, we make the following notations.

• F is a second-order differentiable loss function defined on a sampleW, and θ is parameter. F∗(k) = E[F(θ ;W, θ (k−1))].
• True parameter of M step θ∗(k) := argmaxθ∈� E[F(θ ;W, θ̃

(k−1)
)].

• Local loss function F(k)
j = 1

nj

∑nj
i=1 F(θ ;wji, θ̃

(k−1)
).

• Global loss function F(k)
n = 1

n
∑J

j=1
∑nj

i=1 F(θ ;wji, θ̃
(k−1)

), and Fn is the objective function of M step.

Based on Algorithm 2, F(k)
n = E[Lc(θ)|z, x, y, θ̃ (k−1)

]/n, F(θ ;wji, θ̃
(k−1)

) = E[ujiz�
ji γ − log(1 + ez

�
ji γ ) + (1 − uji)(yjix�

ji β −
ex

�
ji β) − (1 − uji) log(yji!) | xji, zji, yji, θ̃ (k−1)

]. Since that nj has the same order with a, then we can suppose nj = a, j = 1, . . . , J,

and θ̂
(k)

is M step result before approximating. The following proof is for the result of each EM iteration. For convenience,
superscript has been omitted. Under our proposed conditions 1–4, the following properties are satisfied.

• (Local convexity) The Hessian matrix I(θ) = −∇2F∗(θ) is invertible at θ∗: there exist two positive constants (μ−,μ+), such
that μ−Ir � I(θ∗) � μ+Ir .

• (Identifiability) For any δ > 0, there exist ε > 0, such that lim infn→∞ P{inf‖θ∗−θ‖2≥δ(F(θ∗) − F(θ)) ≥ ε} = 1.
• (Smoothness) Let U(ρ) = {θ ∈ R

r| ‖ θ − θ∗ ‖2≤ ρ} ⊂ �, and there exist constants (G, L) and a function N(w) such that
E[‖∇F(θ ;W)‖162 ] ≤ G16, E[‖∇2F(θ ;W) − I(θ)‖162 ] ≤ L16, ∀θ ∈ U(ρ); ‖∇2F(θ ;w) − ∇2F(θ ′;w)‖2 ≤ N(w) × ‖θ − θ ′‖2,
∀θ , θ ′ ∈ U(ρ). Moreover, N(w) satisfies E[N16(W)] ≤ N16 for some constant N > 0.
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Then, we have the following two results.

Proposition A.4: Suppose that the initial estimator θ̄ satisfies ‖ θ̄ − θ∗ ‖2≤ min{ρ, (16N)−1(1 − ρ)μ−}. Then M step result θ̃

satisfies ∥∥∥θ̃ − θ̂

∥∥∥
2

≤ C2

(
‖θ̄ − θ̂‖2 +

∥∥∥θ̂ − θ∗
∥∥∥
2

+ ∥∥∇2F1
(
θ∗)− ∇2Fn

(
θ∗)∥∥

2
) ‖θ̄ − θ̂‖2,

with probability at least 1 − C1a−8, where C1,C2 are independent of (J, n, a).

Based on the results of the above proposition and ‖̂θ − θ∗‖2 = Op(1/
√
n), if ‖θ̄ − θ∗‖2 = Op(1/

√
a), we have ‖θ̃ − θ̂‖2 ≤

C3/
√
a‖θ̄ − θ̂‖2, where ‖∇2F1(θ∗) − ∇2Fn(θ∗)‖2 = Op(1/

√
a) can be derived based on Lemma 7 in Zhang et al. (2013). This

conclusionmeans that after one iteration inM step, that is, T = 1, the error of the estimator with respect to θ̂ will drop to 1/
√
a

times.

Proposition A.5: Suppose that the M step initial estimator θ̄ satisfies ‖ θ̄ − θ∗ ‖2≤ min{ρ, (16N)−1(1 − ρ)μ−}, ‖ θ̄ − θ∗ ‖2=
Op(

1√
a ). Then M step result θ̃ satisfies

θ̃ − θ∗ = −I′(θ∗)−1∇Fn(θ∗) + Op(n−1 + a−1/2 ‖ θ̄ − θ∗ ‖2);

moreover, if ‖ θ̄ − θ∗ ‖2= op(
√

a
n ), then

√
n(θ̃ − θ∗) d−→ N(0,
′), n → ∞,

where 
′ := I′(θ∗)−1E[∇F(θ∗;w)∇F(θ∗;w)�]I′(θ∗)−1 and I′(θ∗) := ∇2F∗(θ∗).

For completeness of the elaboration and to avoid ambiguity, the proof of Propositions A.5–6 is omitted, the details of which
can be derived based on Lemmas 6–8 in Zhang et al. (2013).

A.4 Consistency and asymptotic normality of the estimator fromAlgorithm 2

The proof in A.3 ensures that the Jordan approximation of the M step of each EM iteration converges to the result before
approximation. According to the results from A.1 and A.2, the Jordan approximation of the EM Algorithm converges to the
MLE of the original objective function, that is, the result of Algorithm 2 converges to theMLE of the original objective function.
Hence, the asymptotic properties of the proposed estimation are obtained.

For now, the proofs of Theorems 3.1–3.2 are finished.

Appendix 2. Results of real case study with K = 20, 5

This section shows the result of Real Case Study with K = 20, 5, and the conclusion is similar to that of K = 10.
According to the results of K = 20, 10, 5, under the same T/C, the results of Algorithm 1 are slightly different due to the

change of initial value. Algorithms 2 and 3 are improved by increasing the sample size of a single institution due to the improve-
ment of the Hessian matrix approximation and the optimization results of a single institution, respectively. Global method
remains unchanged because it uses the same data. Sub is also improving due to the increase in the amount of data used.
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Table A1. Estimationg results with T/C = 3, K = 20 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.520 0.024 0.876 0.061
Global 0.516 0.024 0.885 0.062
Sub 0.477 0.103 1.288 0.292

HOMEKIDS Algorithm 1 −0.020 0.011 −0.175 0.034
Algorithm 2 −0.020 0.011 −0.175 0.034
Algorithm 3 −0.018 0.009 −0.175 0.030
Global −0.020 0.009 −0.175 0.030
Sub −0.072 0.050 −0.110 0.143

MSTATUS Algorithm 1 −0.026 0.021 0.347 0.067
Algorithm 2 −0.026 0.021 0.347 0.067
Algorithm 3 −0.030 0.021 0.338 0.066
Global −0.026 0.021 0.347 0.063
Sub −0.029 0.096 −0.183 0.295

REVOKED Algorithm 1 −0.063 0.028 −0.411 0.082
Algorithm 2 −0.063 0.028 −0.411 0.082
Algorithm 3 −0.053 0.027 −0.392 0.081
Global −0.063 0.030 −0.411 0.098
Sub 0.247 0.105 −0.533 0.379

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.018
Algorithm 2 0.019 0.004 −0.631 0.018
Algorithm 3 0.020 0.004 −0.619 0.018
Global 0.019 0.004 −0.631 0.017
Sub 0.009 0.017 −0.718 0.089

URBANICITY Algorithm 1 −0.044 0.040 2.008 0.104
Algorithm 2 −0.044 0.040 2.008 0.104
Algorithm 3 −0.044 0.040 1.955 0.101
Global −0.044 0.044 2.008 0.092
Sub −0.151 0.217 1.527 0.383

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.066
Algorithm 2 0.032 0.020 −0.382 0.066
Algorithm 3 0.033 0.020 −0.374 0.065
Global 0.032 0.021 −0.382 0.064
Sub 0.040 0.093 -0.350 0.305
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Table A2. Estimationg results with T/C = 1, K = 20 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.524 0.023 0.869 0.061
Global 0.516 0.024 0.885 0.062
Sub 0.477 0.103 1.288 0.292

HOMEKIDS Algorithm 1 −0.020 0.011 −0.175 0.034
Algorithm 2 −0.020 0.011 −0.175 0.034
Algorithm 3 −0.017 0.010 −0.166 0.033
Global −0.020 0.009 −0.175 0.030
Sub −0.072 0.050 −0.110 0.143

MSTATUS Algorithm 1 −0.026 0.021 0.347 0.067
Algorithm 2 −0.026 0.021 0.347 0.067
Algorithm 3 −0.033 0.021 0.329 0.065
Global −0.026 0.021 0.347 0.063
Sub −0.029 0.096 −0.183 0.295

REVOKED Algorithm 1 −0.063 0.028 −0.411 0.082
Algorithm 2 −0.063 0.028 −0.411 0.082
Algorithm 3 −0.045 0.027 −0.377 0.081
Global −0.063 0.030 −0.411 0.098
Sub 0.247 0.105 −0.534 0.379

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.018
Algorithm 2 0.019 0.004 −0.631 0.018
Algorithm 3 0.020 0.004 −0.607 0.017
Global 0.019 0.004 −0.631 0.017
Sub 0.009 0.017 −0.718 0.089

URBANICITY Algorithm 1 −0.044 0.040 2.008 0.104
Algorithm 2 −0.044 0.040 2.008 0.104
Algorithm 3 −0.044 0.040 1.908 0.098
Global −0.044 0.044 2.008 0.092
Sub −0.151 0.217 1.527 0.382

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.066
Algorithm 2 0.032 0.020 −0.382 0.066
Algorithm 3 0.034 0.020 −0.367 0.065
Global 0.032 0.021 −0.382 0.064
Sub 0.040 0.093 −0.350 0.305
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Table A3. Estimationg results with T/C = 3, K = 5 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.517 0.024 0.882 0.062
Global 0.516 0.024 0.885 0.062
Sub 0.520 0.053 1.032 0.139

HOMEKIDS Algorithm 1 −0.020 0.010 −0.175 0.031
Algorithm 2 −0.020 0.010 −0.175 0.031
Algorithm 3 −0.020 0.010 −0.174 0.031
Global −0.020 0.009 −0.175 0.030
Sub −0.035 0.023 −0.209 0.070

MSTATUS Algorithm 1 −0.026 0.021 0.347 0.064
Algorithm 2 −0.026 0.021 0.347 0.064
Algorithm 3 −0.027 0.021 0.344 0.063
Global −0.026 0.021 0.347 0.063
Sub −0.068 0.046 0.117 0.138

REVOKED Algorithm 1 −0.063 0.028 −0.411 0.094
Algorithm 2 −0.063 0.028 −0.411 0.094
Algorithm 3 −0.060 0.028 −0.405 0.094
Global −0.063 0.030 −0.411 0.098
Sub 0.084 0.058 −0.427 0.211

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.017
Algorithm 2 0.019 0.004 −0.631 0.017
Algorithm 3 0.019 0.004 −0.628 0.017
Global 0.019 0.004 −0.631 0.017
Sub 0.018 0.008 −0.633 0.039

URBANICITY Algorithm 1 −0.044 0.041 2.008 0.104
Algorithm 2 −0.044 0.041 2.008 0.104
Algorithm 3 −0.046 0.041 1.992 0.103
Global −0.044 0.044 2.008 0.092
Sub −0.111 0.106 1.650 0.202

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.066
Algorithm 2 0.032 0.020 −0.382 0.066
Algorithm 3 0.033 0.020 −0.379 0.066
Global 0.032 0.021 −0.382 0.064
Sub 0.051 0.046 −0.363 0.144
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Table A4. Estimationg results with T/C = 1, K = 5 for the car insurance data.

β β sd. γ γ sd.

INTERCEPT Algorithm 1 0.516 0.024 0.885 0.062
Algorithm 2 0.516 0.024 0.885 0.062
Algorithm 3 0.518 0.024 0.880 0.061
Global 0.516 0.024 0.885 0.062
Sub 0.520 0.053 1.032 0.139

HOMEKIDS Algorithm 1 −0.020 0.010 −0.175 0.031
Algorithm 2 −0.020 0.010 −0.175 0.031
Algorithm 3 −0.019 0.010 −0.172 0.031
Global −0.020 0.009 −0.175 0.030
Sub −0.035 0.023 −0.209 0.070

MSTATUS Algorithm 1 −0.026 0.021 0.347 0.064
Algorithm 2 −0.026 0.021 0.347 0.064
Algorithm 3 −0.028 0.021 0.340 0.063
Global −0.026 0.021 0.347 0.063
Sub −0.068 0.046 0.117 0.138

REVOKED Algorithm 1 −0.063 0.028 −0.411 0.094
Algorithm 2 −0.063 0.028 −0.411 0.094
Algorithm 3 −0.056 0.028 −0.400 0.094
Global −0.063 0.030 −0.411 0.098
Sub 0.084 0.058 −0.427 0.211

MVR_PTS Algorithm 1 0.019 0.004 −0.631 0.017
Algorithm 2 0.019 0.004 −0.631 0.017
Algorithm 3 0.019 0.004 −0.624 0.017
Global 0.019 0.004 −0.631 0.017
Sub 0.018 0.008 −0.633 0.039

URBANICITY Algorithm 1 −0.044 0.041 2.008 0.104
Algorithm 2 −0.044 0.041 2.008 0.104
Algorithm 3 −0.048 0.041 1.975 0.102
Global −0.044 0.044 2.008 0.092
Sub −0.111 0.106 1.650 0.202

CAR_USE Algorithm 1 0.032 0.020 −0.382 0.066
Algorithm 2 0.032 0.020 −0.382 0.066
Algorithm 3 0.034 0.020 −0.376 0.065
Global 0.032 0.021 −0.382 0.064
Sub 0.051 0.046 −0.363 0.144
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