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ABSTRACT
The allocation of resources in a 2k-factorial experiment is crucial when
the experimental resources are limited. In practice, when resources are
limited, it is common for investigators to use all the information at their
disposal to reduce the amount of resources needed for an experiment
without trading the accuracy of the experiment. Supposewehave k+ 1
factors and the investigator knows one of the factors (we call this factor
an extra factor throughout the paper) does not interact with any of the
remaining k factors. Furthermore, the investigator believes among the
remaining k factors, one factor potentially interacts with the rest of the
k−1 factors. In this paper, we show how a D-optimal saturated design
can be constructed for this problemwith theminimumnumber of runs.
In the process, we show the investigator can even forgo the presence of
the extra factor in certain runs without compromising the D-optimality
of the saturated design.
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1. Introduction

In a 2k-factorial experiment, the allocation of resources is crucial when the experimental
resources are limited. When that is the case, it is desirable for the investigator to conduct the
screening experiment with a saturated design (SD). That is a design with theminimumnum-
ber of runs that would ensure the unbiased estimation of the main effects and interactions
of interest given the remaining parameters are negligible. Thus a saturated design is defined
as a square non-singular matrix with entries from {−1, 1} that is used as a design matrix to
obtain the unbiased estimation of the parameters of interest that have been identified by the
investigator. Note that once the SD is chosen the OLS can be used to estimate the parameters
of interest. Concretely, the linear model for an SD is Y = Xβ + ε, where Y is the response
variable and ε is the usual error term. The matrix X is a saturated design matrix for the given
vector parameter of interest β . Using the OLS, the parameter of interest β is estimated as
β̂ = (X�X)−1X�Y = X−1Y . Since X is a square non-singular matrix, β̂ = X−1Y . Note that
when the investigator is choosing a saturated design it is desirable to choose a design that is
optimal. However, a design can be optimal with respect to various criteria. In the 2k-factorial
experiment, the D-optimality criterion is one of the most popular criteria used in practice
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to choose an optimal design. This is because when a design X is D-optimal, the volume of
the confidence ellipsoid of the vector parameter is minimized since the determinant of the
Fisher information X�X is inversely proportional to the volume of the confidence ellipsoid
of the vector parameter β . See Wald (1943) and Kiefer (1959). Thus maximizing the deter-
minant of X�X is equivalent to minimizing the volume of the confidence ellipsoid for β . For
SDs, sinceX is a squarematrix, wemaximize the determinant ofX�X just bymaximizing the
determinant of the absolute value of X. Note that there is a vast literature about the construc-
tion of saturated and D-optimal saturated designs. See Hedayat and Pesotan (1992), Hedayat
and Pesotan (2007), Hedayat and Zhu (2011), and Domagni et al. (2024).

In this paper, we consider a 2k-factorial experiment with k+ 1 factors F1, . . . , Fk, Fe. The
investigator believes that among the k factors, factor F1 is the only one that potentially inter-
acts with the rest of the k−1 factors. Furthermore, the investigator knows the extra factor
Fe doesn’t interact with any of the k factors. The goal of the investigator is to conduct the
experiment with a D-optimal saturated design for the unbiased estimation of the mean, the
main effects, and the interactions in this problem. We solve the problem by coming up with
an algorithm for the construction of D-optimal saturated design matrices for the problem.
In the process, we show the problem is as hard as the Hadamard determinant problem. For
simplicity, we use the following notations and definitions throughout the paper. We let F0
be the factor underlying the mean, F1, . . . , Fk be the factors underlying the main effects of
F1, . . . , Fk, and Fe be the factor underlying the main effect of the extra factor. The second-
order interactions of factor F1 with each of the k−1 factors namely F1F2, F1F2, . . . , F1Fk will
be called F1-second-order interactions and we write them as F12, . . . , F1k. We also define
D(k, 1, e) as the set of all saturated designs that ensure the unbiased estimation of the mean,
kmain effects, the extra main effect Fe, and the F1-second-order interactions for a given k.

2. Construction of D-optimal saturated designs inD(k, 1, e)

2.1. Motivation

The results in Table 1 are the results of a two-level factorial experiment where each factor
has two levels coded as+ and− that correspond to high level and low level, respectively. See
Heyden et al. (1999). This experiment is conducted to understand the assay ridogrel and its
related compound in ridogrel oral film-coated tablet simulation. The percentage recovery of
the main compound is one of the response variables of interest. For scientific reasons, the
experimenters considered only eight factors in assessing the importance of the factors on the
response which is the percentage recovery of the main compound (MC). Note that the eight
factors considered were pH of the buffer (A), columnmanufacturer (B), column temperature
(D), percent of organic solvent in the mobile phase at the start of the gradient (E), percent
of organic solvent in the mobile phase at the end of the gradient (F), the flow of the mobile
phase (H), the detection wavelength (I), and the concentration of the buffer (J). The three
other factors namely factors C, G, and K in Table 1 were omitted from the analysis because
the experimenters knew beforehand that those factors did not affect the response variable
which in this case is the percentage recovery of themain compound (MC). The experimenters
ignored the interactions, fitted a main effects model to the observations and got

ŷ = 101.04 + 0.34A − 0.22B − 0.36D − 0.56E + 0.44F − 0.01H + 0.26I − 0.31J. (1)
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Table 1. Experiment reported in Heyden et al. (1999).

Run A B C D E F G H I J K MC

1 + + + − + + − + − − − 101.6
2 + + − + − − − + + + − 101.7
3 + − + + − + − − − + + 101.6
4 + − − − + + + − + + − 101.9
5 + − + − − − + + + − + 101.8
6 − + + + − + + − + − − 101.1
7 − + − − − + + + − + + 101.1
8 − − − + + + − + + − + 101.6
9 − − + + + − + + − + − 98.4
10 − + + − + − − − + + + 99.7
11 + + − + + − + − − − + 99.7
12 − − − − − − − − − − − 102.3

Note that for this model the experimenter concluded that none of the factors has a signifi-
cant effect on the response variable (MC) because the most significant factors were E and F
with p-values equal to 0.16 and 0.24, respectively. Furthermore, an R2 = 0.78 and σ̂ = 1.045
were reported on 3 degrees of freedom. In Phoa et al. (2009), the experiment in Table 1 was
reanalyzed taking into account interactions, and the following model was found

ŷ = 101.04 − 0.56E + 0.44F − 0.30H + 0.88EF. (2)

This model has an R2 = 0.96 which indicates a good fit. Furthermore, factor H is significant
at the 5% level (p-value = 0.012) and E, F, and EF are significant at the 1% level.

It is important to point out that the design in Table 1 is the Plackett-Burman design where
the column underlying the grand mean has been omitted. Thus the main effects are partially
aliased with second-order interactions. Since some interaction(s) are not negligible, themain
effects estimated in the main effect model in Equation (1) are biased. This is what misled the
experimenters to draw the wrong conclusion that none of the main effects is significant. By
introducing a model that takes into account the interaction Phoa et al. were able to identify
the important effects and interactions that affect the response variable. The takeaway mes-
sage here is that if for one reason or another, the experimenter can identify the potential main
effects and interactions, he may cut down the number of runs needed to conduct the experi-
ment without compromising the identification of the important effects and interactions. That
is the main purpose of the remainder of this paper.

2.2. Preliminaries

As we have seen in the example above, in screening design it is common to encounter situ-
ations in which only one factor interacts with some of the other factors. In the rest of this
paper, we consider a two-level factorial experiment with k+ 1 factors F1, . . . , Fk, and Fe
(extra factor). We investigate the class of saturated design matrices for a vector parameter
β that includes the mean, the k+ 1 main effects, and the second-order interactions of fac-
tor F1 with the factors F2, . . . , Fk. More precisely, for such a problem there are k+ 1 main
effects F1, · · · , Fk and Fe, the mean F0 and k−1 second-order interactions F12, . . . , F1k. The
total number of parameters to estimate is 2k+ 1. A saturated design would therefore require
2k+ 1 runs. The corresponding linear model is on the form

Yi = β0(F0)i + β1(F1)i + · · · + βk(Fk)i + βe(Fe)i + β12(F12)i + · · · + β1k(F1k)i + εi, (3)
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Figure 1. Example of a candidate saturated design inD(k, 1, e).

where i ∈ {1, . . . , 2k + 1}, εi, Yi and (F..)i are respectively the ith error term, the response
variable and the corresponding runs. β = [β0,β1, . . . ,βk,βe,β12, . . . ,β1k]� is the vector
parameter of interest.

To solve the problem of constructing a D-optimal saturated design for the model in
Equation (3), we first assume the extra factor Fe was not present in the model so that we
obtain a new model given by

Yi = β0(F0)i + β1(F1)i + · · · + βk(Fk)i + β12(F12)i + · · · + β1k(F1k)i + εi, (4)

where the vector parameter β = [β0,β1, . . . ,βk,β12, . . . ,β1k]�. The difference between the
model in Equation (3) and that in Equation (4) is the extra factor Fe present in (3) and not
in (4). Throughout the paper, we define D(k, 1, e) as the set of all saturated design matrices
that ensure the unbiased estimation of the vector parameter β for the model in Equation (3).
Furthermore, we define D(k, 1) as the set of all saturated design matrices that ensure the
unbiased estimation of the vector parameter β for the model in Equation (4). In Domagni
et al. (2024), it has been shown how a D-optimal saturated design can be constructed for
the model in Equation (4). We use the D-optimal design for the model in Equation (4) as a
building block to construct a D-optimal saturated design for the model in Equation (3).

To gain more intuition about the problem, we give an example of the particular
case of k = 3 as follows. For k = 3 the number of parameters to estimate is 7, namely,
F0, F1, F2, F3, Fe, F12, F13. It follows that a saturated design would require 7 runs. Suppose
we choose the candidate design with the runs {(+ + ++), (+ − −+), (+ − +−), (− −
++), (− + +−), (− + −+), (+ + −+)}. Then the candidate saturated designmatrixwould
be a square matrix of order 7 that is obtained by converting the runs into the underlying
designmatrix. As illustrated in Figure 1, the first matrix underlies the main effects plus mean
F1, F2, F3, Fe and F0. The second matrix underlies the second order interactions F12 and F13
and is obtained by taking the Schür product of F1 with F2 and F3 respectively. The third
matrix is the actual candidate saturated design matrix obtained by combining the first and
second matrices. Note that this third matrix is the candidate saturated design matrix for the
model in Equation (3). It is worth pointing out that for convenience we set the factors in
the order F1, F2, F3, F0 so that the first and last entries of each run correspond to F1 and F0
respectively.

Suppose the extra factor Fe is omitted from the model in Equation (3). Then the model
obtained after omission is just the model in Equation (4). For k = 3, we can build an exam-
ple of a candidate-saturated design matrix for the model in Equation (4) by deleting the
column underlying the extra factor Fe and the last row of the candidate-saturated design
matrix for the model in Equation (3). In Figure 2, the first matrix underlying F1, F2, F3,
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Figure 2. Example of a candidate saturated design inD(k, 1).

and F0 is the matrix obtained from the first matrix in Figure 1 by deleting the column of
Fe and the last row. The second matrix in Figure 2 is the matrix underlying the interac-
tions F12 and F13. The third matrix in Figure 2 is the actual candidate saturated design
matrix for the model in Equation (4). The corresponding runs for this example would be
{(+ + +), (+ − −), (+ − +), (− − +), (− + +), (− + −)} and the parameters of interest
would be the effects and interactions of F0, F1, F2, F3, F12, and F13.

Note that for each run underlying F1, F2 and F3, one can construct the corresponding
interactions F12 and F13 by taking the Schür product of F1 with F2 and F3 respectively.
Thus, for the run (+ − +) underlying F1, F2, and F3, the interactions are obtained as F12 =
(+) ∗ (−) = − and F13 = (+) ∗ (+) = +. Note that for that particular run, F1 = +, F12 =
F2 = −1, and F13 = F3 = +. Furthermore, since themean F0 is always equal to+we can say
F0 = F1 ∗ F1 = (+) ∗ (+) = +. Thus for the run (+ − +), it is easy to see that the row vector
underlying

[
F1 F2 F3 F12 F13 F0

]
is in the form

[+ − + | + − +] =[
r� r�

]
, where r� = [+ − +]

. On the other hand, if we consider the run (− −
+), then F1 = −, F12 = (−) ∗ (−) = +, F13 = (−) ∗ (+) = −, and F0 = F1 ∗ F1 = F11 =
(−) ∗ (−) = +. The row vector underlying

[
F1 F2 F3 F12 F13 F0

]
is in the form[− − + | + + −] = [−r� r�

]
, where r� = [+ + −]

. Note that the Schür
of F1 with itself yields F11 = F1 ∗ F1 = F0. Since F0 and F11 represent the same vector we
shall use F11 and F0 interchangeably. It shall be understood that the mean vector F0 is also
the interaction of F1 with itself which is F11.

In general, for any row vector of run r = [r1, . . . , rk] underlying the row vector of
factors [F1, . . . , Fk], the corresponding row in the design matrix underlying the factors
[F1, . . . , Fk F11, . . . , F1k] may be in one of two forms depending on whether F1 = r1
is + or −. If F1 = r1 = +, then the row underlying [F1, F2, . . . , Fk F11, F12, . . . , F1k] =
[+, F2, . . . , Fk (+) ∗ F1, (+) ∗ F2, . . . , (+) ∗ Fk] = [+, r2, . . . , rk (+) ∗ r1, (+) ∗ r2, . . . ,
(+) ∗ rk] = [+, r2, . . . , rk +, r2, . . . , rk] = [r�, r�] where r� = [+, r2, . . . , rk].

If on the other hand, F1 = r1 = −, then the row underlying [F1, F2, . . . , Fk F11, F12,
. . . , F1k] = [−, F2, . . . , Fk (−) ∗ F1, (−) ∗ F2, . . . , (−) ∗ Fk] = [−, r2, . . . , rk (−) ∗ r1,
(−) ∗ r2, . . . , (−) ∗ rk] = [−, r2, . . . , rk +,−r2, . . . ,−rk] = [−r�, r�] where r� = [+,
−r2, . . . ,−rk].

Note that the forms of the rows underlying [F1, F2, . . . , Fk F11, F12, . . . , F1k] will play a
key role in the proofs of the theorems coming up. We recapitulate the forms in the remark
below as follows.

Remark 2.1: Suppose r� = [r1, r2, . . . , rk] is a choice of run underlying [F1, F2, . . . , Fk].
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(1) If F1 = r1 = +, then the corresponding row in the design matrix underlying
[F1, F2, . . . , Fk F11, F12, . . . , F1k] is in the form [r�, r�], where r� = [+, r2, . . . , rk].

(2) If F1 = r1 = −, then the corresponding row in the design matrix underlying [F1, F2,
. . . , Fk F11, F12, . . . , F1k] is in the form [−r�, r�], where r� = [+,−r2, . . . ,−rk].

In Figure 2, F1 = r1 = + for the first three runs and F1 = r1 = − for the last three runs
underlying [F1, F2, F3]. Thus, using Remark 2.1, we observe the candidate-saturated design
matrix is in the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 F11 F12 F13
+ + + + + +
+ − − + − −
+ − + + − +

− − + + + −
− + + + − −
− + − + − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

M M
−N N

]
,

where

M =
⎡
⎣+ + +

+ − −
+ − +

⎤
⎦ , and N =

⎡
⎣+ + −

+ − −
+ − +

⎤
⎦ .

In Figure 1, we have an extra factor Fe that does not interact with any other factor. Note that
for the underlying [F1, F2, F3], the factor F1 = + in the first four runs and F1 = − for the last
three runs. Thus, using Remark 2.1, we observe that the candidate-saturated design matrix
is in the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 F3 Fe F0 F12 F13
+ + + + + + +
+ − − + + − −
+ − + − + − +
+ + − + + + −
− − + + + + −
− + + − + − −
− + − + + − +

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

M c M
−N d N

]

where

M =

⎡
⎢⎢⎣

+ + +
+ − −
+ − +
+ + −

⎤
⎥⎥⎦ , N =

⎡
⎣+ + −

+ − −
+ − +

⎤
⎦ , c =

⎡
⎢⎢⎣

+
+
−
+

⎤
⎥⎥⎦ , and d =

⎡
⎣+

−
+

⎤
⎦ .

Remark 2.2: A few remarks can be made as follows.

(1) F0 = F1 ∗ F1 = F11. That is the mean F0 can be written as the Schür product of F1
by itself. This simple fact will be crucial in the theorems we develop in the upcoming
section.
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(2) The choice of candidate saturated design matrix inD(k, 1, e) given in Figure 1 is in the
form

[
M c M

−N d N

]
.

We will show this form is a necessary condition for any element inD(k, 1, e).
(3) The candidate design matrix in Figure 1 is an element of D(k, 1, e) if and only if it is

a non-singular matrix. We will give necessary and sufficient conditions on a candidate
saturated design matrix to be an element ofD(k, 1, e).

2.3. Construction of saturated andD-optimal saturated designmatrices inD(k, 1, e)

In the remainder of this section, we explore the construction of an element D(k, 1, e). We
assume without loss of generality that the vector parameter of interest is of the form β =
[β1, . . . ,βk,βe,β0,β12, . . . ,β1k]� with parameters appearing in that order. For convenience,
we give the following definitions.

Definition 2.1: We give the following definitions.

(1) We define Mk{−1, 1} as the set of non-singular matrices of order k with entries from
{−1, 1} for which the first column is the vector 1k.

(2) We define �k to be the maximal value of the absolute value of the determinant of
matrices inMk{−1, 1}.

Note that for each element in D(k, 1, e), the factor F1 interacts with all the k−1 fac-
tors F2, . . . , Fk except the extra factor Fe. Thus F1 plays a key role in the construction of a
saturated design that is an element in D(k, 1, e). We define the factor F1 as the pivot fac-
tor. Since the entries of F1 take values from {−1, 1} we assume without loss of generality

that F1 is of the form F1 =
[�1�

f+ −�1�
f−

]�
, where f+ and f− are respectively the frequen-

cies of 1 and −1 entries in the vector F1 with f+ + f− = 2k + 1. For convenience we write
F2, . . . , Fk as block vectors F2 = [

m�
2 n�

2
]� , . . . , Fk = [

m�
k n�

k
]�, and the extra factor Fe

as Fe = [
c� d�]�, wherem2, . . . ,mk and c are vectors of length f+ and n2, . . . , nk and d are

vectors of length f− with entries from {−1, 1}. With these observations, let D be an arbitrary
element inD(k, 1, e). Then D can be written as

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1 F2 . . . Fk Fe F11 F12 . . . F1k
+ m11 . . . m1k c11 + m11 . . . m1k
...

...
. . .

...
...

...
...

. . .
...

+ m1f+ . . . mkf+ c1f+ + m1f+ . . . mkf+
− n11 . . . n1k c21 + −n11 . . . −n1k
...

...
. . .

...
...

...
...

. . .
...

− n1f− . . . nkf− c2f− + −n1f− . . . −nkf−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[

M c1 M
−N c2 N

]
,
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where

M =
⎡
⎢⎣

+ m11 . . . m1k
...

...
. . .

...
+ m1f+ . . . mkf+

⎤
⎥⎦

is an f+ × kmatrix,

N =
⎡
⎢⎣

+ −n11 . . . −n1k
...

...
. . .

...
+ −n1f− . . . −nkf−

⎤
⎥⎦

is an f− × kmatrix, c1 = [c11, . . . , c1f+]
� is a vector of length f+, and c2 = [c21, . . . , c2f−]

� is
a vector of length f−.

In the following Lemma 2.1, we give a necessary condition on the frequencies f+ and f−
for a candidate matrix D to be an element ofD(k, 1, e).

Lemma 2.1: Let D be a candidate design matrix in D(k, 1, e). Suppose f+ and f− are respec-
tively the frequencies of + and − entries in the vector underlying factor F1. Then |f+ − f−| =
1.

Proof: We have seen that any element ofD(k, 1, e) is necessarily on the form

D =
[

M c1 M
−N c2 N

]
,

whereM andN are {−1, 1}-matrices of dimensions f+ × k and f− × k respectively. c1 and c2
are vectors of length f+ and f− respectively. Thus thematrix [M c1] has the dimension f+ ×
(k + 1). The matrix D is a square matrix of order 2k+ 1 and f+ + f− = 2k + 1 which is an
odd number. Note that |f+ − f−| = 1 if and only if f+ = k + 1 or f− = k + 1.

To show that |f+ − f−| = 1 is a necessary condition forD to be inD(k, 1, e), we will show
that if f+ > k + 1 or f− > k + 1 then the matrix D is a singular matrix which would mean it
is not inD(k, 1, e).

Assume without loss of generality that f+ > k + 1. Then, since [M c1] is of the
dimension f+ × (k + 1), we have rank([M c1]) is at most k+ 1. Therefore, the rows
of [M c1] that we define as [m�

1 c11]�, . . . , [m�
f+ c1f+]

� are linearly dependent.
We may assume without loss of generality that [m�

1 c11]� is linearly dependent on
[m�

2 c12]�, . . . , [m�
f+ c1f+]

�, so that [m1 c11]� = ∑f+
i=2 ci[mi c1i]� with some ci �= 0,

2 ≤ i ≤ f+. This implies that [m1, c11,m1]� = ∑f+
i=2 ci[mi c1i mi]�. It means that the rows

[m�
1 c11 m�

1 ], . . . , [m
�
f+ c1f+ m�

f+] of D are linearly dependent, which would make D a sin-
gular matrix. Similarly, one can show that if f− > k + 1 then D is a singular matrix. Thus, it
turns out that |f− − f+| = 1 is a necessary condition for D to be non-singular. �

Note that Lemma 2.1 sets some conditions on the frequencies of + and − underlying the
pivot factor F1. In Theorem 2.2 we give the necessary and sufficient conditions on a candidate
designmatrixD to be an element ofD(k, 1, e). Lemma 2.1 is key for the proof of Theorem 2.2.
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Theorem 2.2: A square matrix D of order 2k+ 1 is a design matrix inD(k, 1, e) if and only if
it is in the form

D =
[

M c1 M
−N c2 N

]

and one of the following two conditions is satisfied.

(1) f+ = k + 1,
[
M c1

]
is an element inMk+1{−1, 1}, and N is an element inMk{−1, 1}.

(2) f− = k + 1,
[
N c2

]
is an element inMk+1{−1, 1}, and M is an element inMk{−1, 1}.

Proof: We have seen that any element ofD(k, 1, e) is necessarily in the form

D =
[

M c1 M
−N c2 N

]
.

We have also seen from Lemma 2.1 that it is necessary that f+ = k + 1 or f− = k + 1 for D
to be element ofD(k, 1, e).

(1) Suppose f+ = k + 1. Then the block matrix
[
M c1

]
is a square matrix of order k+ 1. If[

M c1
]
is a singular matrix, then the rows of the block matrix

[
M c1 M

]
would be

linearly dependent by analogy to the argument in the proof of Lemma 2.1. This would
make the candidate matrix D a singular matrix.
Suppose

[
M c1

]
is a non-singular matrix. Then

|det(D)| =
∣∣∣∣det

[
M c1 M

−N c2 N

]∣∣∣∣
=

∣∣∣det [N − [−N c2
] [
M c1

]−1M
]∣∣∣ ∣∣det([M c1

]
)
∣∣ .

Note that
[
M c1

]−1 [
M c1

] = Ik+1. Thus, by deleting the last column of the identity
matrix Ik+1, we obtain the (k + 1) × kmatrix

[
M c1

]−1M.
It is easy to see that [M c1]−1M = [Ik �0 �

], where Ik is the identity matrix of order k
and �0 is the zero vector of length k. This implies that

[−N c2
] [
M c1

]−1M = [−N c2
] ⎡
⎣ Ik

�0�

⎤
⎦ = −NIk + c2�0� = −N.

We deduce that∣∣det(D)
∣∣ = ∣∣det[N − (−N)

]∣∣∣∣det([M c1
]
)
∣∣ = ∣∣det[2N]∣∣∣∣det([M c1

]
)
∣∣

= 2k
∣∣det[N]∣∣∣∣det([M c1

]
)
∣∣.

Note thatD is non-singular only if |det(D)| = 2k|det[N]||det([M c1
]
)| �= 0. This hap-

pens if and only if bothN and
[
M c1

]
are non-singular matrices. That is

[
M c1

]
is an

element inMk+1{−1, 1}, and N is an element inMk{−1, 1}.
(2) Suppose f− = k + 1. Then by analogy of the argument above, we can show thatD is non-

singular if and only if
[
N c2

]
is an element in Mk+1{−1, 1}, and M is an element in

Mk{−1, 1}. �
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Corollary 2.3: A design matrix D∗ is a D-optimal saturated design inD(k, 1, e) if and only if
it can be written as

D∗ =
[

M∗ c∗1 M∗
−N∗ c∗2 N∗

]

and one of the following two conditions is satisfied.

(1) f+ = k + 1,
[
M∗ c∗1

]
is an element inMk+1{−1, 1}with maximal absolute value deter-

minant, and N∗ is an element inMk{−1, 1} with maximal absolute value determinant.
(2) f− = k + 1,

[
N∗ c∗2

]
is an element inMk+1{−1, 1} with maximal absolute value deter-

minant, and M∗ is an element inMk{−1, 1} with maximal absolute value determinant.

Proof: Using Theorem 2.2, there are exactly two ways to obtain a D-optimal design matrix
inD(k, 1, e).

(1) For f+ = k + 1, choose
[
M∗ c∗1

]
from Mk+1{−1, 1} with maximal absolute value

determinant �k+1, and N∗ from Mk{−1, 1} with maximal absolute value determi-
nant �k. In that case |det(D)| = 2k�k�k+1 which is the maximum absolute value of
determinant for an element inD(k, 1, e).

(2) For f− = k + 1, choose
[
C∗ c∗2

]
fromMk+1{−1, 1}withmaximal absolute value deter-

minant �k+1, and M∗ from Mk{−1, 1} with maximal absolute value determinant �k.
In that case |det(D)| = 2k�k�k+1 which is the maximum absolute value of determinant
for an element inD(k, 1, e).

�

2.4. Algorithm for construction D-optimal design inD(k, 1, e)

Corollary 2.3 yields an algorithm for the construction of a D-optimal saturated designmatrix
ofD(k, 1, e).

Step 1: For f+ = k + 1, select twomatrices
[
M c1

]
andN fromMk+1{−1, 1}Mk{−1, 1}

respectively with maximal absolute valued determinant. Set c2 = �0.
Step 2: The design matrix

D =
[

M c1 M
−N c2 M

]

obtained through Step 1 is a D-optimal design matrix inD(k, 1, e).

3. Concluding remarks

In this paper, we developed an algorithm for the construction of aD-optimal saturated design
matrix for k+ 1 main effects, the second-order interactions of one factor with k−1 factors,
and the mean. Note that in the example given in Section 2.1, the experimenter started with
eleven factors A, B, C, D, E, F, G, H, I, J, and K. He then omitted factors C, G, and K since he
had prior information that those factors do not affect the response variable. As explained in
Section 2.1, the main effect model yielded the wrong conclusion about the important effects
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and interactions. By taking into account the interactions, the analysis showed three impor-
tant main effects (E, F, and H) and one important interaction (EF). Here, note that having
prior information about the factors involved in your experiment can be crucial for saving
resources and improving the accuracy of the analysis. Suppose, for instance, that the experi-
menter has the prior information that factor F is the only one that potentially interacts with
all the remaining factors. Then he may conduct the experiment with 16 runs for the esti-
mation of the mean, the main effects A, B, D, E, F, H, I, and J, along with the interactions
FA, FB, FD, FE, FH, FI, and FJ. An algorithm for constructing a D-optimal saturated design
for such a problem is developed in Domagni et al. (2024). In addition, suppose the experi-
menter, for one reason or another, knows beforehand that one of the interactions FA, FB, FD,
FE, FH, FI, and FJ is negligible. Then, if we assume without loss of generality that FJ is the
negligible interaction, we need a design for the estimation of the mean, the main effects A,
B, D, E, F, H, I, and J, along with the interactions FA, FB, FD, FE, FH, and FI. Under these
assumptions, factor J is the only free factor, and the algorithm in Section 2.4 can be used to
construct a D-optimal saturated design for the problem. However, when several factors are
free, it is challenging to construct a D-optimal design for the problem. Concretely, the prob-
lem of constructing a D-optimal design in D(k, 1, e), where e>1, is challenging. Our team
is still investigating this. Finally note that in the proof of Theorem 2.2, we have seen that for
f+ = k + 1 the determinant of the design matrix D does not depend on the vector c2 under-
lying the extra factor Fe. Thus, the experimenter can save resources by discarding the factor
Fe from the runs of the experiment that involve the vector c2 without compromising the D-
optimality of the design matrix. This means even though we are dealing with a two-level
factorial experiment, we can replace each entry of c2 with 0 without losing any information
in terms of D-optimality. This is important, especially if it is expensive in terms of cost or
resources to keep the factor Fe at its high or low levels for each run of the experiment. Note
that if saving the resource underlying the factor Fe is not a goal, the experimenter can keep
factor Fe as balanced as possible in the runs of the experiment involving vector c2. In the
Appendix, we give two examples of D-optimal design matrices in D(15, 1, e). Note that in
those examples c2 = �0 and c1 = �0. This is illustrated in Figures A5 and A6 with the bunch of
zero entries appearing in theD-optimal designmatrices. This indicates that the experimenter
does not necessarily need resources from the extra factor Fe for the runs involving c2.
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Figure A2. Normalized maximal determinant matrix inM15{−1, 1} obtained fromM∗
15.

Figure A3. The opposite matrix ofM∗+
15 .
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Figure A4. Hadamard matrix of order 16.
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Figure A5. D-optimal saturated designmatrix for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, Fe

F0, F1,2, F1,3, F1,4, F1,5, F1,6, F1,7, F1,8, F1,9, F1,10, F1,11, F1,12, F1,13, F1,14, and F1,15 with f+ = 15 + 1.
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Figure A6. D-optimal saturated designmatrix for F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, Fe

F0, F1,2, F1,3, F1,4, F1,5, F1,6, F1,7, F1,8, F1,9, F1,10, F1,11, F1,12, F1,13, F1,14, and F1,15 with f− = 15 + 1.
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