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ABSTRACT
In this manuscript, we consider a risk-preference investor allocating some amount of capital to
the dependent risky asset, where the responding assetwill occur default if the stochastic return is
less than somepredetermined threshold. Then,wepresent sufficient conditions of the increasing
convex order on capital allocationwith dependent risky assetswhen the stochastic return is right
tail weakly stochastic arrangement increasing. Finally, some numerical examples are given as
illustrations.
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1. Introduction

Aggregation of the random variables arises naturally in actuarial science and reliability theory (cf. Rinott
et al., 2012), a lot of work devotes to investigating stochastic properties of the aggregation risks in terms of the
various stochastic orders when the vector of coefficients is characterized by the majorization order. For exam-
ple, Ma (2000) studied the linear aggregation of random variables in the sense of the decreasing convex order
and the Laplace order by the majorization order. Xu and Hu (2012) investigated stochastic comparisons of cap-
ital allocation problems using a general loss function. Zhang and Zhao (2015) provided sufficient conditions
for comparing the aggregate risks arising from two sets of heterogeneous portfolios with claims having gamma
distributions. Zhang and Cheung (2020) presented stochastic properties of the generalized sum of right tail
weakly stochastic arrangement increasing nonnegative random variables accompanied with stochastic arrange-
ment increasing Bernoulli variables. Zhang et al. (2023b) investigated the usual stochastic and hazard rate orders
between the largest claim amounts from two sets of heterogeneous and dependent insurance portfolios. For more
stochastic comparisons and applications of aggregation, one can refer to the works of Barmalzan et al. (2015),
Ariyafar et al. (2020), Zhang (2022), Ding et al. (2021), Yan et al. (2021), Zhang et al. (2022) and references
therein.

Understanding risk-management technology can provide some insights into asset returns (cf. Scholes, 2000). In
the insurance engineering and actuarial sciences, the risk of the initial asset allocation problem can be modeled by
the aggregation of non-negative random variables. It is onemain concern to reasonably allocate the initial wealth to
concerned risk assets to pursuemaximal return in themarket, and the capital allocation has been gaining quite a lot
of attention in the past several decades. Traditionally, such issues are investigated under the framework of expected
utility theory. That is, the investors focus on allocating the initial wealth to the concerned assets to optimize the
expected utility of the aggregate stochastic return. In general, the default risk is the possibility that a borrower
is incapable of paying the interest or the principal repayment obligations on a loan agreement in the future, and
the default risk has a significant impact on the expected total return. The past several years have witnessed fast
development in theoretical properties and applications of the asset allocation problems. There are two directions
of the related discussions.

On the one hand, for the financial portfolio analysis, the default risks are always not taken into consideration.
Suppose that the investor allocates the amount wi of the entire wealth w to the risk asset with non-negative random
potential return Xi, i = 1, 2, . . . , n. If the wealth allocation vector is

w ∈ W =
{
(w1,w2, . . . ,wn) :

n∑
i=1

wi = w, for fixed w > 0 and wi ≥ 0
}
,
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then, for an increasing and concave utility function, the responding aggregate stochastic return of the asset
allocation problem can be expressed as

max
w∈W

E

[
u

( n∑
i=1

wiXi

)]
, where u is increasing and concave.

To the best of our knowledge, for the aggregate stochastic return from mutually independent assets X =
(X1,X2, . . . ,Xn), Hadar and Seo (1988) might be among the first to prove that the risk-averse (i.e., the utility func-
tion u is increasing and concave) investor would like to invest a larger amount in the asset with larger stochastic
return in terms of the first order stochastic dominance. Landsberger and Meilijson (1990) showed that the investor
with increasing utility obtains the optimal asset allocation putting more wealth into the asset allocation with the
larger stochastic return in terms of the likelihood ratio order. Kijima and Ohnishi (1996) established the similar
result for the asset allocation with stochastic returns arrayed in the sense of the reversed hazard rate order. Hen-
nessy and Lapan (2002) found that the risk-averse investor allocates more to the asset with a larger stochastic return
in the sense of the reversed hazard rate order, and for investors with increasing utility (Li & You, 2014) provide
for the optimal shares of assets with their potential returns arrayed in the sense of the likelihood ratio order. Li
and You (2015) showed that the optimal allocation vector should be correspondingly arranged in the ascending
order whenever potential returns of the assets have an arrangement increasing joint density for the investors with
increasing utility. Besides, Cai and Wei (2015) verified that the optimal allocation vector should be arranged in
ascending order whenever the assets have stochastic arrangement increasing potential returns for certain utility
functions.

On the other hand, assets with default risks are a very interesting topic in actuarial science. For some portfolios
of n assets with stochastic returns X, let I = (I1, I2, . . . , In) be the indicator vector of the default risks, that is, for
i = 1, 2, . . . , n,

Ii =
{

1, if the default of the i-th asset does not occur,
0, if the default of the i-th asset occurs,

and we suppose that X and I are independent. Then, under the framework of expected utility theory, an investor
with increasing utility will face the following optimization issue

max
w∈W

E

[
u

( n∑
i=1

wiIiXi

)]
, where u is increasing.

For the stochastic assets allocation with exchangeable stochastic returns, Cheung and Yang (2004) might take the
first to establish that for the investor with increasing utility the optimal allocation assigns more wealth to the asset
with smaller default probability in the context of some specific dependence structure of the indicator vector. Chen
and Hu (2008) studied the ordering of the optimal asset allocation under some specific dependence structure of the
indicator vector and some specific utility functions. Meanwhile, modeling the stochastic returns and the indicator
vector respectively by using the weakly stochastic arrangement increasing and the weakly stochastic arrangement
increasing through left tail probability distributions, Cai andWei (2015) gave the ordering of the optimal allocations
for investors with specific utility functions. Later, for the following asset allocation problem with default risks,

max
w∈W

E

[
u

( n∑
i=1

wiIiXi

)]
,

where u is increasing and concave.

Li and Li (2016) studied how the allocation impacts the expected stochastic return of the portfolio of risk assets with
some new dependence structures characterized through the orthant probability of their stochastic returns. Amini-
Seresht et al. (2019) investigated the asset allocation with dependent stochastic returns under a threshold model
when assets with stochastic returns were left tail weakly stochastic arrangement increasing. They considered some
portfolios consisting of n assets, where the i-th asset will default ifXi is less than some predetermined threshold level
li ≥ 0, for i = 1, 2, . . . , n. Then the stochastic return (per share) for the i-th asset can be denoted as XiI(Xi > li),
for i = 1, 2, . . . , n, where the indicator random variable I(A) associated with event A has value 1 if event A occurs
and has value 0 otherwise.

On the one hand, as discussed by Hagen (1979), Markowitz noted the presence of risk-seeking in preferences
among positive as well as among negative prospects, and he proposed a utility function that has convex and concave
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regions in both the positive and the negative domains. For instance, entrepreneurs are often considered risk lovers
because they are willing to invest money, time, and effort into a new venture in the hope of achieving success and
high returns. They often take on uncertainty and potential risks because they believe that doing so will lead to inno-
vation and business opportunities (cf. Shane & Venkataraman, 2000). High-yield investors: certain investors seek
high-risk and high return investment opportunities, and they may invest in high-risk asset classes (such as stocks,
options, cryptocurrencies, etc.) in the hope of achieving higher profits (cf. Frazzini & Pedersen, 2014). On the other
hand, Boonen et al. (2021) stated that the reinsurer does not know the preferences of the insurer. Hence, in addi-
tion to the risk-averse investors, there are also risk-preference investors, that is, the utility function u is increasing,
and convex (cf. Li & You, 2014) in practice market. Chen (2003) pointed the utility of the risk-preference increases
with the increase of income, but their marginal utility shows an increasing trend, which is an important difference
between risk-preference and risk-averse investors. The risk-preference investors are more willing to accept stochas-
tic returns with risks than determinate returns, and the risk-preference investor always chooses the one with less
certainty rather than greater certaintywhen facedwithmultiple forms of speculationwith the same expected return.

However, the existing studies have studied the optimal asset allocation problem for risk-averse investors. There-
fore,motivated by theworks of Chen (2003), Li and Li (2016) andAmini-Seresht et al. (2019), for the risk-preference
investors, we will study the following asset allocation problem

max
w∈W

E

[
u
( n∑

i=1
wiXiI(Xi > li)

)]
, where u is increasing and convex. (1)

This paper further exploits the optimal asset allocation problems (1) in the context of stochastic returns under
a threshold model. For a risk-preference investor, the optimal and the worst allocation policies are given when
assets with stochastic returns are the right tail weakly stochastic arrangement increasing, respectively. These results
complement the corresponding ones of Cheung and Yang (2004) and Amini-Seresht et al. (2019).

The remainder of this work is organized as follows. Some definitions and terminologies are recalled in Section 2.
Section 3 establishes the optimal and the worst allocation policies when assets with stochastic returns are right tail
weakly stochastic arrangement increasing, respectively. Section 4 provides some numerical examples to verify the
theoretical findings. Section 5 presents the theoretical contributions, the potential managerial implications and the
future interesting topics.

2. Preliminaries

In this section, we recall some pertinent definitions, notations and useful lemmas used in the sequel. Throughout,
the terms ‘increasing’ and ‘decreasing’ are used in a non-strict sense. Let R = (−∞,+∞), R+ = [0,+∞) and
Dn+ = {x : x1 ≥ x2 ≥ · · · ≥ xn}, In+ = {x : x1 ≤ x2 ≤ · · · ≤ xn}.

First, let us recall the definitions of some useful stochastic orders to stochastically compare two random variables.
Let F[F] and G[G] be the distribution[survival] functions of the random variables X and Y, respectively.

Definition 2.1: A random variable X is said to be smaller than Y in the

(i) increasing convex order (denoted by X ≤icx Y) if E[φ(X)] ≤ E[φ(Y)] for any increasing convex function φ :
R → R, or equivalently,

∫∞
t F(u)du ≤ ∫∞

t G(u)du, for t ∈ R;
(ii) increasing concave order (denoted by X ≤icv Y) if E[φ(X)] ≤ E[φ(Y)] for any increasing concave function

φ : R → R, or equivalently,
∫ t
0 F(u)du ≤ ∫ t

0 G(u)du, for t ∈ R.

The increasing convex/concave order is also called the second degree of stochastic dominance. For two non-
negative random variablesX andY, denote F−1 andG−1 the right continuous inverses, respectively. Then,X ≤icx Y
if and only if ∫ 1

α

F−1(t)dt ≤
∫ 1

α

G−1(t)dt, where α ∈ [0, 1],

and according to the view of Giovagnoli and Wynn (2011), X ≤icv Y if and only if∫ β

0
F−1(t)dt ≤

∫ β

0
G−1(t)dt, where β ∈ [0, 1].

Hence, these equivalent definitions are very helpful for numerical studies. For more details on the properties
and applications of these stochastic orders, interested readers may refer to the excellent monographs by Shaked
and Shanthikumar (2007), Li and Li (2013) and Zhang et al. (2023a).
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For any two real-valued vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), let x1:n ≤ x2:n ≤ · · · ≤ xn:n and
y1:n ≤ y2:n ≤ · · · ≤ yn:n be their increasing arrangements, respectively.

Definition 2.2: A vector x ∈ R
n is said to majorize y ∈ R

n, denoted by x
m� y, if

∑j
i=1 xi:n ≤ ∑j

i=1 yi:n, for all
j = 1, 2, . . . , n − 1, and

∑n
i=1 xi:n = ∑n

i=1 yi:n.

Majorization order is a useful tool for establishing various inequalities in applied probability and risk manage-
ment. For more detailed discussions on the theory of majorization and its applications, one may refer to Marshall
et al. (1979), Balakrishnan and Zhao (2013) and Zhang and Zhang (2022, 2023).

For a vector x = (x1, x2, . . . , xn), let x(i,j) be the sub-vector with xi and xj deleted and π = (π1,π2, . . . ,πn)
be any permutation of {1, 2, . . . , n} such that π(x) = (xπ1 , xπ2 , . . . , xπn). In particular, we denote πi,j(x) =
(x1, . . . , xj, . . . , xi, . . . , xn). For any (i, j) with 1 ≤ i < j ≤ n, let�i,jg(x) = g(x)− g(πi,j(x)) and

Gi,j
rwsai(n) = {g(x) : �i,jg(x) is increasing in xj ≥ xi, for any xi},

Gi,j
lwsai(n) = {g(x) : �i,jg(x) is decreasing in xi ≤ xj, for any xj}.

Definition 2.3: A random vector X = (X1,X2, . . . ,Xn) is said to be

(i) right tail weakly stochastic arrangement increasing (RWSAI) if E[g(X)] ≥ E[g(τij(X))], for any g ∈ Gi,j
rwsai(n)

and any pair (i, j) such that 1 ≤ i < j ≤ n;
(ii) left tail weakly stochastic arrangement increasing (LWSAI) if E[g(X)] ≥ E[g(τij(X))], for any g ∈ Gi,j

lwsai(n)
and any pair (i, j) such that 1 ≤ i < j ≤ n.

The notions of RWSAI and LWSAI are introduced by Cai and Wei (2014) and have been applied in actuarial
science and financial engineering to model the dependence among ordered random risks. interested readers may
refer to the outstanding works of Cai andWei (2014, 2015), You and Li (2015), Zhang et al. (2018). Themultivariate
Dirichlet distribution, the multivariate F distribution, and the multivariate Pareto distribution of type I have AI
joint probability densities whenever the corresponding parameters are arrayed in ascending order.

The following lemmas present some interesting properties of RWSAI and LWSAI, which play a part in the proof
of the main results.

Lemma 2.4: If a random vector X is

(i) RWSAI, then ((Xi,Xj)|Xi,j) is RWSAI for any i, j = 1, 2, . . . , n, where ((Xi,Xj)|Xi,j) denotes the conditional
bivariate random vector (Xi,Xj) given the values of Xi,j = (X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xn);

(ii) LWSAI, then ((Xi,Xj)|Xi,j) is LWSAI for any i, j = 1, 2, . . . , n, where ((Xi,Xj)|Xi,j) denotes the conditional
bivariate random vector (Xi,Xj) given the values of Xi,j = (X1, . . . ,Xi−1,Xi+1, . . . ,Xj−1,Xj+1, . . . ,Xn).

Lemma 2.5: A random vector X is RWSAI[LWSAI] if and only if

E[g2(X1,X2)] ≥ E[g1(X1,X2)]

for all g1 and g2 such that

(i) g2(x1, x2)− g1(x1, x2) is increasing [decreasing] in xj ≥ xi[xi ≤ xj], for any xi[xj];
(ii) g2(x1, x2)+ g2(x2, x1) ≥ g1(x1, x2)+ g1(x2, x1), for xj ≥ xi.

3. Main results

We first discuss the orderings among the coordinates of the optimal allocation policy when the stochastic returns
are RWSAI and accompanied with descending threshold values.

Theorem 3.1: Suppose that X is RWSAI and l ∈ Dn+. Then, for any w ∈ Dn+, and any permutation π =
(π1,π2, . . . ,πn) of {1, 2, . . . , n}, we have

n∑
i=1

wiXiI(Xi > li) ≤icx

n∑
i=1

wπiXiI(Xi > li) ≤icx

n∑
i=1

wn−i+1XiI(Xi > li).



STATISTICAL THEORY AND RELATED FIELDS 5

Proof: Note that any permutation π = (π1,π2, . . . ,πn) can be obtained by a series of pairwise interchange of
permutation (1, 2, . . . , n), which is needed to consider the case that only one pairwise interchanges. Without loss
generality, we give the proof of π = (2, 1, 3, . . . , n). Note that

n∑
i=1

wiXiI(Xi > li) = w1X1I(X1 > l1)+ w2X2I(X2 > l2)+
n∑

i=3
wiXiI(Xi > li),

n∑
i=1

wπiXiI(Xi > li) = w2X1I(X1 > l1)+ w1X2I(X2 > l2)+
n∑

i=3
wiXiI(Xi > li).

Let a = ∑n
i=3 wiXiI(Xi > li) for any X(1,2) = x(1,2). Then, for any increasing and convex function φ : R → R, we

define

g2(x1, x2) = φ(w2x1I(x1 > l1)+ w1x2I(x2 > l2)+ a), and

g1(x1, x2) = φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a).

From Lemma 2.5, for any x1 ≤ x2, note that the function

g2(x1, x2)+ g2(x2, x1)

= φ(w2x1I(x1 > l1)+ w1x2I(x2 > l2)+ a)+ φ(w2x2I(x2 > l2)+ w1x1I(x1 > l1)+ a)

≥ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)+ φ(w1x2I(x2 > l2)+ w2x1I(x1 > l1)+ a)

= g1(x1, x2)+ g1(x2, x1),

which is trivial based on the fact that g2(x1, x2) = g1(x2, x1) and g2(x2, x1) = g1(x1, x2). Thus, we next only prove
the function

g2(x1, x2)− g1(x1, x2)

= φ(w2x1I(x1 > l1)+ w1x2I(x2 > l2)+ a)− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)

is increasing in x2 ≥ x1 for any x1. For any fixed x1, define

�1(x2) = (w2 − w1)x1I(x1 > l1)+ (w1 − w2)x2I(x2 > l2). (2)

Notice that

�1(x2) ≥ (w2 − w1)x1I(x1 > l1)+ (w1 − w2)x1I(x1 > l1) = [(w2 − w1)+ (w1 − w2)]x1I(x1 > l1) = 0,

where the inequality follows from the fact that xI(x > l) is an increasing function in x and x2I(x2 > l2) ≥ x1I(x1 >
l1), for any l1 ≥ l2. Therefore, �1(x2) is non-negative and increasing in x2, for w1 ≥ w2 and any x1. For any x1 ≤
y1 ≤ x2, note that the convexity of φ implies

φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+�1(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�1(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (3)

Furthermore, from 0 ≤ �1(y1) ≤ �1(x2) and the increasing property of φ, it follows that

φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�1(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�1(x2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (4)
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According to (3) and (4), we have

φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+�1(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�1(x2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (5)

By the definition of�1(x2) in (2), for any y1 ≤ x2, further, we simplify (5) as

φ(w2x1I(x1 > l1)+ w1y1I(y1 > l1)+�1(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(w2x1I(x1 > l1)+ w1x2I(x2 > l2)+�1(x2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a),

which implies that g2(x1, x2)− g1(x1, x2) is increasing in x2 ≥ x1 for any x1. Therefore, it follows that fromLemma 2

w1X1I(X1 > l1)+ w2X2I(X2 > l2)+ a

≤icx w2X1I(X1 > l1)+ w1X2I(X2 > l2)+ a.

Therefore, we have

E

[
φ

( n∑
i=1

wiXiI (Xi > li)

)]

= E

[
E

[
φ

( n∑
i=1

wiXiI (Xi > li)

) ∣∣∣∣X(1,2)
]]

≤ E

[
E

[
φ

(
w2X1I (X1 > l1)+ w1X2I (X2 > l2)+

n∑
i=3

wiXiI (Xi > li)

) ∣∣∣∣X(1,2)
]]

= E

[
φ

(
w2X1I (X1 > l1)+ w1X2I (X2 > l2)+

n∑
i=3

wiXiI (Xi > li)

)]
.

Repeating the argument, the desired result follows. �

Based onTheorem3.1, we can conclude that theworst allocation w̃ for a risk-preferent investor should be fulfilled
with w̃1 ≥ w̃2 ≥ · · · ≥ w̃n. The next result proves that more diversity among the allocations taken in Dn+ leads to
smaller aggregate stochastic returns in the sense of the increasing convex ordering.

Theorem 3.2: Suppose that X is RWSAI and l ∈ Dn+. Then, for w, v ∈ Dn+,

w
m� v ⇒

n∑
i=1

wiXiI(Xi > li) ≤icx

n∑
i=1

viXiI(Xi > li).

Proof: For any increasing and convex function φ : R → R, we need to show that

E

[
φ

( n∑
i=1

wiXiI (Xi > li)

)]
≤ E

[
φ

( n∑
i=1

wiXiI (Xi > li)

)]
.

By the nature of majorization order, the proof can be completed under the setting of w = (w1,w2,w3, . . . ,wn),
v = (v1, v2,w3, . . . ,wn) and (w1,w2)

m� (v1, v2). Using Lemma 3.A.2.b of Marshall et al. (1979), it is enough to
prove that

E

[
φ

(
w1X1I (X1 > l1)+ w2X2I (X2 > l2)+

n∑
i=3

wiXiI (Xi > li)

)]
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≤ E

[
φ

(
v1X1I (X1 > l1)+ v2X2I (X2 > l2)+

n∑
i=3

wiXiI (Xi > li)

)]
.

Define

g1(x1, x2) = φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a), and

g2(x1, x2) = φ(v1x1I(x1 > l1)+ v2x2I(x2 > l2)+ a).

From Lemma 2, for any x1 ≤ x2 and (w1,w2)
m� (v1, v2), it is enough to show that

(i) the function

g2(x1, x2)− g1(x1, x2)

= φ(v1x1I(x1 > l1)+ v2x2I(x2 > l2)+ a)− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)

is increasing in x2 ≥ x1 for any x1, and
(ii) the function

g2(x1, x2)+ g2(x2, x1)

= φ(v1x1I(x1 > l1)+ v2x2I(x2 > l2)+ a)+ φ(v1x2I(x2 > l1)+ v2x1I(x1 > l2)+ a)

≥ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)+ φ(w1x2I(x2 > l1)+ w2x1I(x1 > l2)+ a)

= g1(x1, x2)+ g1(x2, x1), for any x1 ≤ x2.

Proof of step (i): Without loss of generality, we assume l1 ≥ l2 and x1 ≤ x2 . From the assumption that (w1,w2)
m�

(v1, v2), w1 ≥ w2 and v1 ≥ v2, we have w2 ≤ v2. Now, denote

�2(x2) = (v1 − w1)x1I(x1 > l1)+ (v2 − w2)x2I(x2 > l2). (6)

Observe that

�2(x2) ≥ (v1 − w1)x1I(x1 > l1)+ (v2 − w2)x1I(x1 > l1) = [(v2 + v2)− (w1 + w2)]x1I(x1 > l1) = 0,

where the inequality follows from the fact that xI(x > l) is an increasing function in x and x2I(x2 > l2) ≥ x1I(x1 >
l1) in accordance with l1 ≥ l2. Therefore, �2(x2) is non-negative and increasing in x2, for w1 ≥ w2 and any x1.
Besides, for any x1 ≤ y1 ≤ x2, the convexity of φ implies that

φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+�2(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�2(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (7)

Besides, from the that�2(y1) ≤ �2(x2) and the increasing property of φ, it follows that

φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�2(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x1 > l2)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�2(x2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (8)

Combining (7) with (8), we have

φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+�2(y1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+�2(x2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a). (9)
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By the definition of�2(·), (9) can be rewritten as

φ(v1x1I(x1 > l1)+ v2y1I(y1 > l1)+ a)

− φ(w1x1I(x1 > l1)+ w2y1I(y1 > l1)+ a)

≤ φ(v1x1I(x1 > l1)+ v2x2I(x2 > l2)+ a)

− φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a),

which implies g2(x1, x2)− g1(x1, x2) is increasing in x2 ≥ x1, for any x1.
Proof of step (ii): Based on the assumptions, we have

v1x2I(x2 > l2)+ v2x1I(x1 > l1)− [w2x2I(x2 > l2)+ w1x1I(x1 > l1)]

= (v1 − w2)x2I(x2 > l2)+ (v2 − w1)x1I(x1 > l1)

≥ (v1 − w2)x2I(x1 > l1)+ (v2 − w1)x1I(x1 > l1)

= (v1 + v2 − w1 − w2)x2I(x1 > l1) = 0 (10)

and

v1x2I(x2 > l2)+ v2x1I(x1 > l1)− [w1x2I(x2 > l2)+ w2x1I(x1 > l1)]

−
{
w1x1I(x1 > l1)+ w2x2I(x2 > l2)− [v2x2I(x2 > l2)+ v1x1I(x1 > l1)]

}
= v1[x1I(x1 > l1)+ x2I(x2 > l2)] + v2[x1I(x1 > l1)+ x2I(x2 > l2)]

−
{
w1[x1I(x1 > l1)+ x2I(x2 > l2)] + w2[x1I(x1 > l1)+ x2I(x2 > l2)]

}
= (v1 + v2 − w1 − w2)[x1I(x1 > l1)+ x2I(x2 > l2)] = 0. (11)

According to (10) and (11), we further have

φ(v1x1I(x1 > l1)+ v2x2I(x2 > l2)+ a)+ φ(v1x2I(x2 > l1)+ v2x1I(x1 > l2)+ a)

≥ φ(w1x1I(x1 > l1)+ w2x2I(x2 > l2)+ a)+ φ(w1x2I(x2 > l1)+ w2x1I(x1 > l2)+ a).

Then, it holds that g2(x1, x2)+ g2(x2, x1) ≥ g1(x1, x2)+ g1(x2, x1), for any x1 ≤ x2. In light of Lemma2.5, we obtain

w1X1I(X1 > l1)+ w2X2I(X2 > l2)+ a

≤icx v1X1I(X1 > l1)+ v2X2I(X2 > l2)+ a.

Therefore, by using the double expectation formula, the desired result follows immediately. �

Since (w, 0, . . . , 0)
m� (w1,w2, . . . ,wn) under the space Dn+, the worst allocation policy can be obtained from

Theorem 3.2. This is summarized as the following proposition.

Proposition 3.3: Under the setup of Theorem 3.2, the worst allocation policy for the risk-preferent investor is w̃ =
(w, 0, . . . , 0).

According to Theorem 3.1, the optimal allocation policy belongs to In+. In other words, ifw∗ is the optimal asset
allocation policy then it must hold that w∗

1 ≤ w∗
2 ≤ · · · ≤ w∗

n.
The following theorem characterizes the effect of the dispersiveness among the allocations taken from In+ on the

aggregate stochastic return.

Theorem 3.4: Suppose that X is RWSAI and l ∈ Dn+. Then, for w, v ∈ In+,

w
m� v ⇒

n∑
i=1

wiXiI(Xi > li) ≥icx

n∑
i=1

viXiI(Xi > li).

Proof: Using the same technique as in the proof of Theorem 3.2, the desired result can be proved similarly, which
is thus omitted here for brevity. �
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For a risk-preferent investor with the initial wealth w for n risky assets having RWSAI stochastic returns and
decreasing threshold values, Theorem 3.2 states that more heterogeneity among the allocations in the inadmissi-
ble set Dn+ results in smaller stochastic returns, while Theorem 3.4 suggests that more heterogeneity among the
allocations in the admissible set In+ leads to larger stochastic returns.

The next proposition follows immediately from Theorem 3.4 by using the fact that (0, 0, . . . ,w)
m�

(w1,w2, . . . ,wn).

Proposition 3.5: Under the setup of Theorem 3.4, the optimal asset allocation policy for the risk-preferent investor is
w∗ = (0, 0, . . . ,w).

4. Numerical examples

In this section, we illustrate the main theoretical results developed in the previous section by presenting some
numerical examples.

Example 4.1: Consider the multivariate Clayton copula with the generator ψ(t) = (θ t + 1)−1/θ (which is the log-
convex if θ ≥ 0) and F̄1(x) = exp(−2x), F̄2(x) = exp(−0.1x), θ = 0.8, l = (7, 5). It is easy to examine that (X1,X2)

is RWSAI by Theorem 5.7 of Cai andWei (2014). It can be checked that all conditions of Theorem 3.1 are satisfied.
To illustrate the increasing convex order of Theorem 3.1, let

η(w) =
∫ 1

α

F−1
X,w(x)dx, where α ∈ [0, 1].

Taking w1 = (1, 1), w2 = (1.5, 0.5), w3 = (1.6, 0.4), w4 = (1.9, 0.1), and α = (0, 0.01, 0.02, . . . , 0.99, 1) and w1
m


w2
m
 w3

m
 w4, Figure 1 plots the curves of η(wi), i = 1, 2, 3, 4., fromwhich we can see that Theorem 3.1 is holding.
Therefore, the effectiveness of Theorem 3.1 is confirmed.

It is natural to ask whether the condition l ∈ Dn+ in Theorem 3.2 could be dropped. Unfortunately, the following
example gives a negative answer.

Example 4.2: Consider the multivariate Clayton copula described by the generator ψ(t) = (θ t + 1)−1/θ , which
is log-convex for θ ≥ 0. Set F̄1(x) = exp(−λ1x), F̄2(x) = exp(−λ2x), and λ1 = 0.6, λ2 = 0.5 and θ = 1. Then, we
can check that (X1,X2) is RWSAI by Theorem 5.7 of Cai and Wei (2014). Let l = (8, 6) ∈ D2+ and φ(x) = xβ for
β ≥ 1, which is increasing and convex in x ∈ R+. It can be checked that all conditions of Theorem 3.1 are satisfied.
Note that

g(w) := E[φ(w1I(X1 > l1)+ w2I(X2 > l2))]

= E[(w1I(X1 > l1)+ w2I(X2 > l2))β].

Figure 1. The curves of η(wi), i = 1, 2, 3, 4.
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Figure 2. Curves of g(w1)− g(w2), for β ∈ [1.5, 3], in Example 4.2.

Figure 3. Curves of g(l1)− g(l2), for β ∈ [1.5, 3], in Example 4.3.

By applying Corollary 1.6.12 of Denuit et al. (2006), it can be calculated that

g(w) = w1w2β(β − 1)
∫ ∞

l2

∫ ∞

l1
(eλ1x + eλ2y − 1)−1(w1x + w2y)dxdy.

Setting l = (0.1, 20) /∈ Dn+ and (2.3, 2.7) = w1
m
 w2 = (2.2, 2.8), from Figure 2 we can see that the curve of

g(w1)− g(w2) is crossing at line y = 0, which implies that the desired Theorem 3.2 is not valid. Therefore, the
condition l ∈ Dn+ in Theorem 3.2 cannot be relaxed.

Based on Theorem 3.2, one may ask whether the best asset allocation can be obtained under the majorization
order of threshold l ∈ Dn+. However, the following example provides a negative answer.

Example 4.3: Under the same setup of Example 4.2, take w = (15, 5) ∈ Dn+ and l1 = (0.8, 0.6), l2 = (0.9, 0.5). Let

g(l) = w1w2β(β − 1)
∫ ∞

l2

∫ ∞

l1
(eλ1x + eλ2y − 1)−1(w1x + w2y)dxdy.

Observing that l1
m
 l2, unfortunately, it can be seen from Figure 3 that the plot of g(l1)− g(l2) is crossing at line

y = 0, whichmeans that the best asset allocation can be obtained under themajorization order of threshold l ∈ Dn+.

5. Conclusion

In the last section, we provide for the theoretical contributions, the potential managerial implications and the future
interesting topics of this manuscript.

5.1. Theoretical contributions

Inmost practical scenarios of insurance engineering and actual science, the investors are always assumed to the risk-
averse. However, as discussed in Chen (2003), there are also risk-preference investors in practice market. Therefore,



STATISTICAL THEORY AND RELATED FIELDS 11

this paper further exploits the optimal asset allocation problems (1) in the context of the stochastic returns under a
threshold model. For risk-preference investors, the optimal and the worst allocation policies are given when assets
with stochastic returns are right tail weakly stochastic arrangement increasing, respectively.

5.2. Potential managerial insights

For a risk-preference investor, this manuscript analyzes the effect of the different asset allocation policies on the
aggregate stochastic return when assets with stochastic returns are right tail weakly stochastic arrangement increas-
ing. The established newmethods might provide for very significant managerial implications and decision support
for the asset allocation engineers as follows.

(1) The optimal asset allocation policy is (0, . . . , 0,w) when assets with stochastic returns are left tail weakly
stochastic arrangement increasing for a risk-preference investor, that is, the optimal allocation policy is to
put all the initial wealth on the n-th asset.

(2) The worst asset allocation policy is (w, 0, . . . , 0)when assets with stochastic returns are left tail weakly stochas-
tic arrangement increasing for a risk-preference investor, that is, the optimal allocation policy is to impose all
the capital on the first asset.

5.3. Future topics

A potential primary constraint within the existing findings could be attributed to the absence of an asset allocation
analysis of the aggregate stochastic return in instances, where there exists statistical interdependence betweenX and
I, which presents a more intriguing asset allocation quandary. Nevertheless, due to the intricate nature associated
with formulating models for statistically dependent aggregate stochastic returns, these captivating inquiries persist
as unresolved, warranting an extended discourse.
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