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ABSTRACT
In this paper, we study high-dimensional sparsemultiplicativemodels for positive response data
and propose a variable sorted active set (VSAS) algorithm for finding the L0 regularized least
product relative error (LPRE) estimator. The VSAS algorithm is derived from the local quadratic
approximation based on the Karush-Kuhn-Tucker (KKT) conditions of L0-penalized LPRE objec-
tive function. Under the condition of restricted invertibility, we establish an explicit L∞ upper
bound for the sequence of solutions generated by the VSAS algorithm. We further obtain an
optimal convergence rate for the proposed estimator with high probability in finite iterations.
In addition, our estimator enjoys the oracle property with high probability if the target signal
exceeds the detectable level. Finally, extensive simulations and two real-world applications are
conducted to illustrate the effectiveness of the proposal.
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1. Introduction

The data with positive response variables, such as wages, survival time, duration, stock prices, etc., are often encoun-
tered in many real-world applications. We usually collect such types of data, {(yi,X�

i ), i = 1, 2, . . . , n}, where yi
is a univariate positive response variable, and Xi ∈ R

pn is the column vector of pn predictors for the ith obser-
vation. Here, pn denotes the number of predictors, which is allowed to diverge as the sample size n increases.
DenoteY = (y1, y2, . . . , yn)� ∈ R

n andX = (X1,X2, . . . ,Xn)
� ∈ R

n×pn .We assume that yi, i = 1, . . . , n, are inde-
pendent and generated from a continuous probability distribution. To describe the relationship between the positive
response yi and the predictors Xi, we consider the following multiplicative model:

yi = exp(X�
i β∗)εi, i = 1, 2, . . . , n, (1)

where β∗ = (β∗
1 ,β

∗
2 , . . . ,β

∗
pn)

� ∈ R
pn is the true parameter vector with q(< n) non-zero elements and εi is a posi-

tive randomerror.Without loss of generality, we exclude the intercept inmodel (1), which can be achieved by scaling
both Y and each column of X with a column norm being

√
n. Clearly, applying a logarithmic transformation to

both sides of model (1) results in the following log-linear model:

log(yi) = X�
i β∗ + log(εi), i = 1, 2, . . . , n. (2)

However, if one directly applies the least squares (LS) approach tomodel (2), the resulting estimator of the parameter
vectorβ∗ might not be themost efficient either under E(log(εi)) �= 0 or when log(εi) is far from a sub-Gaussian dis-
tribution. In this paper, we focus on the situation where εi satisfies E(εi) = E(ε−1

i ) (see Section 4 for more detailed
discussion), which implies that the least product relative error (LPRE) approach proposed by K. Chen et al. (2016)
is the most efficient for model (1). The LPRE loss is formulated as

Q(β) = 1
n

n∑
i=1

{∣∣∣∣∣yi − exp(X�
i β)

yi

∣∣∣∣∣ ×
∣∣∣∣∣yi − exp(X�

i β)

exp(X�
i β)

∣∣∣∣∣
}

= 1
n

n∑
i=1

{
y−1
i exp(X�

i β)+ yi exp(−X�
i β)− 2

}

=: L(β)− 2. (3)

It can be seen that the LPRE loss consists of two types of relative errors, |yi exp(−X�
i β)− 1| and |y−1

i exp(X�
i β)−

1|, relative to the regression function and the response value. This loss has three advantages:
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Figure 1. When log(εi) ∼ Uniform(−a, a), the estimates obtained by LS and LPREmethods for solving the log-linearmodel (2) with
100 replications, whereX is from Case (i) of Section 4.3, and n = 200, p = q = 5, ρ = 0.5,β∗ = (1, 2, 3, 4, 5)�.

(i) The LPRE criterion, which minimizes the above LPRE loss, is scale-free since it does not require each indi-
vidual of the response to have a unified measurement unit. This may be crucial in some applications, such as
modelling the stock price data due to non-comparable stock prices among different listed companies.

(ii) The LPRE loss serves as strictly convex and infinitely differentiable. Thus, the optimal solution satisfies the
first-order condition and can be obtained easily through Newton-Raphson iteration.

(iii) The LPRE loss serves as a minimization function for modelling the error distribution that satisfies E(εi) =
E(ε−1

i ), and it can also be used to estimate ordinary linear models by exponentiating the response variable.
Figure 1 shows that the estimates obtained using the LPRE loss are significantly superior to those obtained
using the LS loss under the log-uniform error distribution.

In recent years, the LPRE loss has been extensively investigated in the literature. For example, K. Chen et al. (2016)
proved that under certain conditions, the LPRE estimator, which is the minimizer of the LPRE loss, performs more
efficiently than the least absolute relative error (LARE)-based estimator proposed by K. Chen et al. (2010), the least
squares (LS)-based estimator as well as the least absolute deviation (LAD)-based estimators, both of which apply the
logarithm transform to the response. Z.Wang et al. (2015) developed a nonparametric LPRE approach to detect and
estimate the change point in multiplicative regression models. Hao et al. (2016) investigated the variable selection
problem based on a regularized LPRE loss for multiplicative models in fixed dimension and divergent dimension,
respectively, and designed an alternating direction method of multipliers (ADMM) algorithm for computing the
solution path effectively. Liu and Xia (2018) studied single-index multiplicative models and proposed a local ker-
nel weighted LPRE method. Zhang et al. (2018) and Zhang et al. (2019) considered the estimation and hypothesis
testing in partial linear multiplicative models and single-index multiplicative models, respectively. Hu (2019) stud-
ied the LPRE-based estimation for the varying-coefficient multiplicative regression model with kernel smoothing
techniques. More recently, Zhang et al. (2022) proposed a kernel density-based estimation for multiplicative linear
regression models. Y. Chen et al. (2022) developed a new method to fit single-index varying-coefficient multi-
plicative models on the basis of the LPRE and local kernel smoothing techniques. Ming et al. (2022) studied the
identification and estimation of nonparametric functions in multiplicative additive models through employing the
LPRE and smoothly clipped absolute deviation (SCAD) penalty of Fan and Li (2001).

However, all of the existing literature related to multiplicative models focuses merely on low-dimensional or
moderate-dimensional setting, that is, pn < n. In contrast, it is very likely to encounter the situations where the
dimension pn far outstrips the sample size, i.e. pn 	 n, in many high-dimensional applications, such as modelling
gene expression data. This motivates us to study the high-dimensional sparse multiplicative models. To this end,
one may consider the following regularized LPRE loss

Lλ(β) = 1
n

n∑
i=1

{
y−1
i exp(X�

i β)+ yi exp(−X�
i β)

}
+

pn∑
j=1

pλ(|βj|), (4)

where pλ(·) is a penalty function that relies on the tuning parameter λ. Regarding the penalty function, there are
several popular choices such as the least absolute shrinkage and selection operator (LASSO, Tibshirani (1996)),
the SCAD penalty, and the minimum concave penalty (MCP, Zhang (2010)). For linear models, Fan et al. (2014),
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Shi et al. (2020) and Huang, Jiao, Lu, et al. (2022) proposed some efficient algorithms for solving LASSO, SCAD
and MCP penalized least squares. Furthermore, since the classical Newton-Raphson algorithm cannot be applied
directly to LASSO, SCAD andMCP, Cao et al. (2023) proposed a cubic Hermite interpolation penalty (CHIP). Nev-
ertheless, the LASSOmethod is generally biased. The SCAD,MCPandCHIPmethods enjoy nice properties, but still
require a minimum signal strength to achieve support recovery. Moreover, the parameter estimators correspond-
ing to these penalty functions strictly depend on whether X is normalized. Therefore, the L0 regularization is more
preferable to some researchers. For instance, Huang et al. (2018), Huang, Jiao, Kang, et al. (2021), Zhu et al. (2020),
Do et al. (2020), Zhou et al. (2021), P. Li et al. (2022), Y. Zhang et al. (2023) and Ming and Yang (2024a) examined
the L0-regularized linear model. Wen et al. (2020), Huang, Jiao, Kang, et al. (2022) and Ming and Yang (2024b)
examined the L0-regularized logistic regression model. X. Li et al. (2022) investigated the index tracking problem
using L0 regularization. Zheng et al. (2022) investigated L0 regularized learning for high-dimensional additive haz-
ards regression. Wen, Li, et al. (2023) and Wen, Wang, et al. (2023) investigated the L0-regularized multinomial
logistic regression model and trend filtering model, respectively.

Although (Y. Chen et al., 2024) investigated non-convex penalized ADMM algorithms for high-dimensional
multiplicative models (4) based on local linear approximation, the requirement to compute pn × pn-dimensional
inverse matrices results in a significantly high computational cost. In this paper, we consider the more efficient,
sparser minimization problem of

Lλ(β) = 1
n

n∑
i=1

{
y−1
i exp(X�

i β)+ yi exp(−X�
i β)

}
+ λ‖β‖0. (5)

It is well known that solving (5) is an NP-hard problem (X. Chen et al., 2014; Natarajan, 1995). It is extremely diffi-
cult, even infeasible to find an exact solution to theminimization of (5). Inspired byWen et al. (2020), we propose an
approximate algorithm named the variable sorted active set (VSAS) to minimize (5). If one takes the logarithm on
both sides ofmodel (1), i.e. model (2), the support detection and root finding (SDAR,Huang et al. (2018)) algorithm
is applicable, which can be viewed as a special case of the VSAS algorithm.Note that our VSAS algorithm can also be
applicable to the L0 regularization problem with convex, second-order differentiable loss functions, such as logistic
regression model and Cox’s proportional hazards model considered by Wen et al. (2020). Compared to the gener-
alized SDAR (GSDAR, Huang, Jiao, Kang, et al. (2022)) algorithm that only uses the first derivative of loss function
as the direction of descent, our VSAS uses the first two derivatives of loss function to make the convergence of the
algorithm faster. More specifically, our VSAS algorithm is an iterated variable sorted active set algorithm, which is
rooted in the local quadratic approximation based on the KKT conditions.We call theminimizer, β̂ , of (5) achieved
by the VSAS algorithm the L0-LPRE estimator.

The contribution of this paper is summarized as follows,

(i) We propose an L0-regularized LPRE estimator for high-dimensional multiplicative models. To find the
estimator, we derive a fast VSAS algorithm to handle high-dimensional data with positive response. The
algorithm is rooted from the local quadratic approximation based on the KKT conditions, and it is applicable
to the L0 regularization problem as long as the loss function is convex and twice differentiable.

(ii) We establish an L∞ upper bound for the sequence of solutions generated by VSAS algorithm, and achieve an
optimal convergence rate in finite iterations.

(iii) We propose an adaptive VSAS algorithm to select the optimal tuning parameters and illustrate the superiority
of the L0-LPRE over existing methods by extensive simulations and two real-world applications.

The paper is structured as follows. Section 2 presents the detailedmethodology of the VASA algorithm. Section 3
introduces some regularity conditions and theoretical properties of the L0-LPRE estimator. Sections 4 and 5 present
simulation studies and applications. Finally, Section 6 provides a summary, while the proofs of theoretical results
are included in the Appendix.

2. Methodology

In this section, we will first introduce the procedure of VSAS algorithm (Algorithms 1 and 2) for finding L0
regularized LPRE estimator. For simplicity of notation, we use [a] to denote the set of {1, 2, . . . , a} for any pos-
itive integer a, supp(β) = {j ∈ [pn]|βj �= 0} to denote the support of β , and |A| to denote the size of set A.
Let βA = (βj, j ∈ A) ∈ R

|A| and β|A ∈ R
pn with its jth element being (β|A)j = βjI{j ∈ A}, where I{·} means an

indicator function.
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Let Â = supp(β̂) and Î = Âc. According to Lemma 3.1, we can obtain two sets Â and :

Â =
{
j ∈ [pn]|

√
ĝj|β̂j + d̂j| ≥ √

2λ
}
,

Î =
{
j ∈ [pn]|

√
ĝj|β̂j + d̂j| <

√
2λ

}
,

(6)

where the definitions of ĝj, β̂j, d̂j and λ are given in Lemma 3.1. As a consequence, we have a set of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ Î = 0,
d̂Â = 0,
β̂Â ∈ argmin

βÂ

L(βÂ),

d̂j = −
(
∂2L(β̂−j,βj)

∂2βj
|β̂j

)−1
∂L(β̂−j,βj)

∂βj
|β̂j , j ∈ Î,

ĝj = ∂2L(β̂−j,βj)
∂2βj

|β̂j , j ∈ [pn],

(7)

where β̂−j = β̂[pn]\j and

L(βÂ) = 1
n

n∑
i=1

{
y−1
i exp(X�

iÂ
βÂ)+ yi exp(−X�

iÂ
βÂ)

}
.

More specifically, assume that (β(k), d(k), g(k)) are the outputs in the kth iteration.We can update approximation pair
(β(k+1), d(k+1), g(k+1)) by (7). Following Huang, Jiao, Kang, et al. (2021) andMing and Yang (2024b), we introduce
a step size τ ∈ (0, 1] to balance primal variable and dual variable. This condition is the weakest requirement for the
design matrix and is necessary and sufficient for model identifiability. If our goal is to achieve a T-sparse solution,
we can set √

2λ(k) �
∥∥∥∥
√
g(k) · |β(k) + τd(k)|

∥∥∥∥
(T)

, (8)

where ‖x‖(T) represents the Tth largest elements of x based on absolute value, and a · b denotes the componentwise
product of two vectors a and b. The detailed algorithm is given in Algorithms 1 and 2.

Algorithm 1 Newton iterative algorithm for LPRE estimator
Input: Data (Y,X), an initial estimator β(0), an active set A, tolerance ε, and maximum number of iterations K;
1: for k = 0, 1, . . . ,K do
2: Calculate ∇L(β(k)A ) = 1

n
∑n

i=1 XiA{y−1
i exp(X�

iAβ
(k)
A )− yi exp(−X�

iAβ
(k)
A )} and ∇L2(β(k)A ) = 1

n
∑n

i=1 XiA

X�
iA{y−1

i exp(X�
iAβ

(k)
A )+ yi exp(−X�

iAβ
(k)
A )};

3: Update β
(k+1)
A by β

(k+1)
A = β

(k)
A − (∇2L(β(k)A ))−1∇L(β(k)A );

4: if ‖β(k+1)
A − β

(k)
A ‖2 ≤ ε then

5: Stop and denote the last update by β
(k+1)
A ;

6: end if
7: end for
Output: β̂A = β

(k+1)
A as the estimator of β∗

A.

Remark 2.1: In Algorithms 1 and 2, we set β(0) = 0 and terminate the iteration if the estimation error is less than
a given threshold ε such as ε = 10−4, or if the active set remains unchanged. It can be observed that the output β̂

in Algorithm 2 becomes the oracle estimator when Â = A∗.

Remark 2.2: The algorithms of VSAS, SDAR, GSDAR and ESDAR (i.e. the enhanced support detection and root
finding approach in Huang, Jiao, Kang, et al. (2021)) have some similarities and differences. For instance, SDAR is
a special case of VSAS, which corresponds to the L0 regularized least squares estimator after taking the logarithm
on both sides of model (1). ESDAR is utilized to maintain balance between the primal and dual variables using
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Algorithm 2 Variable sorted active set for L0-LPRE estimator
Input: β(0), d(0), g(0), a step size τ , an integer T, and maximum number of iterations K;
1: for k = 0, 1, . . . ,K do
2: Set A(k) = {j ∈ [pn]|

√
g(k)j |β(k)j + τd(k)j | ≥ ‖√g(k) · (β(k) + τd(k))‖(T)} and I(k) = (A(k))c;

3: β
(k+1)
I(k) = 0;

4: d(k+1)
A(k) = 0;

5: Update β
(k+1)
A(k) by Algorithm 1 with A = A(k);

6: g(k+1)
j = ∂2L(β)

∂2βj
|
β(k+1) , j ∈ [pn];

7: d(k+1)
j = −(g(k+1)

j )−1 ∂L(β)
∂βj

|
β(k+1) , j ∈ I(k);

8: if A(k+1) = A(k) then
9: Stop and denote the last updates by (βÂ,β Î);
10: end if
11: end for
Output: β̂ = (β�

Â
,β�

Î )
� as the estimator of β∗.

a constant step size, while the VSAS algorithm provides the capability of a variable step size for each predictor,

denoted as
√
g(k)j and τ

√
g(k)j . Unlike the GSDAR algorithm which relies solely on the first derivative of loss for

descent direction, our VSAS algorithm is based on a local quadratic approximation and incorporates both the first
and second derivatives of loss to ensure a faster convergence rate.

3. Theoretical properties

In this section, we derive an explicit L∞ upper bound for β̂ − β∗ and demonstrate that β̂ − β∗ can achieve the
optimal convergence rate with high probability in finite iterations. When the target signal exceeds the detectable
threshold, we show that β̂ can serve as the oracle estimator with high probability. The establishment of theoretical
results requires the following conditions.

(C1) There are two constants 0 < L < U < ∞ such that, for all α1 �= α2 with ‖α1 − α2‖0 ≤ 2T,

L ≤ (α1 − α2)
�∇2L(α̃)(α1 − α2)

‖α1 − α2‖1‖α1 − α2‖∞
≤ U,

where α̃ = α1 + v(α2 − α1) for any v ∈ (0, 1).
(C2) Let ε̃i = ε−1

i − εi. Suppose that ε̃i, i = 1, 2, . . . , n are independent and identically distributed with mean zero
and sub-Gaussian tails, and n � log(pn).

(C3) ‖β∗
A∗‖min ≥ 3c1

L

√
log(pn)

n for a positive constant c1.

Remark 3.1: Condition (C1) is an extended constrained strongly convex condition, which is essential for bound-
ing the estimation error in high-dimensional models. Similar conditions are imposed in Huang, Jiao, Kang,
et al. (2021), Huang, Jiao, Kang, et al. (2022) and Ming and Yang (2024b). Condition (C2) is a reasonable assump-
tion regarding the model error, which is used to bound the estimation error with high probability. Condition (C3)
is necessary to ensure that the target signal is sufficiently strong to be detectable.

Lemma 3.1: If β̂ denotes a minimizer of (5), then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ĝj = ∂2L(β̂−j,βj)
∂2βj

|β̂j , j ∈ [pn],

d̂j = −ĝ−1
j
∂L(β̂−j,βj)

∂βj
|β̂j , j ∈ [pn],

β̂j = Hλ
(√

ĝj(β̂j + d̂j)
)
, j ∈ [pn],

(9)
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where Hλ(·) is the hard thresholding operator given by

Hλ
(√

ĝj(β̂j + d̂j)
)

=
⎧⎨
⎩
0,

∣∣∣√ĝj(β̂j + d̂j)
∣∣∣ < √

2λ,

βj,
∣∣∣√ĝj(β̂j + d̂j)

∣∣∣ ≥ √
2λ.

Conversely, if β̂, d̂ and ĝ satisfy (9), we claim that β̂ is a local minimizer of (5).

Remark 3.2: Lemma 3.1 gives the KKT conditions for the L0-LPRE estimator, which are similar to those in Huang
et al. (2018), C. Cheng et al. (2022) and Ming and Yang (2024b). Its proof can be found in the Appendix.

Theorem 3.2: Let q ≤ T and β(0) = 0 in Algorithm 2. If condition (C1) holds with 0 < U < 1
τ
√
T
and τ ∈ (0, 1],

then

‖β(k) − β∗‖∞ ≤
√
(q + T)

(
1 + U

L

)
(
√
ξ)k‖β∗‖∞ + 2

L
‖∇L(β∗)‖∞, (10)

where ξ = 1 − 2τL(1−τ√TU)√
Tκ(1+q)

∈ (0, 1) and 1 ≤ κ < ∞.

Theorem 3.3: Under the conditions of Theorem 3.2 and condition (C2), we have

‖β(k) − β∗‖∞ ≤
√
(q + T)

(
1 + U

L

)
(
√
ξ)k‖β∗‖∞ + 2c1

L

√
log(pn)

n
, (11)

with probability at least 1 − c2 exp(−c3 log(pn)), where (c1, c2, c3) are universal constants. If the condition k ≥
O

(
log 1

ξ

n
log(pn)

)
further holds, then we have, with high probability,

‖β(k) − β∗‖∞ ≤ O

(√
log(pn)

n

)
. (12)

Remark 3.3: Theorems 3.2 and 3.3 provide the L∞ upper bound for β̂ − β∗ and its optimal order, respectively.
Theorem 3.4 below demonstrates that β̂ becomes the oracle estimator with high probability when the target signal
exceeds the detectable threshold. Furthermore, it is important to emphasize that these theoretical results are directly
linked to the solution sequence produced by the VSAS algorithm, but unrelated to the theoretical global solution
of (5).

Theorem 3.4: Suppose that conditions (C1)–(C3) hold with 0 < U < 1
τ
√
T
, τ ∈ (0, 1] and 1 ≤ κ < ∞. If q ≤ T,

n � log(pn) and β(0) = 0 in Algorithm 2, then A∗ ⊆ A(k) with probability at least 1 − c2 exp(−c3 log(pn)), provided
that k > log 1

ξ

(
9(T + q)

(
1 + U

L
)
r2

)
, where r = ‖β∗‖∞

‖β∗
A∗‖min

is the range ratio of β∗
A∗ .

4. Simulation study

In this section, we perform a simulation study to demonstrate the practical effectiveness of our L0-LPRE estimator.
Additionally, we propose an adaptive VSAS (AVSAS) algorithm for solving L0-LPRE estimator. See Algorithm 3 for
details. For themaximum integer L in Algorithm 3, we set L = �n/ log(n)� as done by Fan and Lv (2008) andHuang
et al. (2018). The parameter t in Algorithm 3 represents the increment of the solution path and can take values of 1,
2, or 4. Following L. Wang et al. (2013), we consider the high-dimensional Bayesian information criterion (HBIC)
below to select the optimal tuning parameter T,

HBIC(T̂) = log(L(β̂))+ Cn log(pn)
n

|Â|, (13)

where Cn = 2 log(log(n)) is used throughout. All the experiments are implemented in R software, and the R code
is accessed at https://github.com/hming177/VSAS.git.
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Algorithm 3 Adaptive variable sorted active set for L0-LPRE estimator
Input: Data (Y,X),β(0), d(0), g(0), a step size τ , an integer t, an integer L;
1: for l = 1, 2 . . . , do
2: Run Algorithm 2 with tuning parameter T = tl and initial value (β(l−1), d(l−1), g(l−1)). Denote the output

by β l;
3: if T > L then
4: Break;
5: end if
6: Calculate the HBIC value for β l, denoted by HBIC(Tl);
7: end for
8: Choose the value of T that corresponds to the smallest HBIC as the optimal tuning parameter T̂;
Output: β̂(T̂), the estimator of β∗.

4.1. Methods for comparisons

We have designed six experiment examples (Examples 4.1–4.6) in Section 4.3 to investigate the finite sample
performance of our method, L0-LPRE, with several competitive methods. The details are provided below.

In Example 4.1, we consider a diverging-dimensional multiplicative model to compare our L0-LPRE with the
adaptive LASSO-based LPRE estimator (ALASSO-LPRE, Hao et al. (2016)) for which an ADMM algorithm is used
and the involved tuning parameter λ is selected by the HBIC criterion. Typically, we search the optimal value of λ
over 100 equally spaced grids in [λmin, λmax] in log scale, where λmax = ‖X

� log(Y)/n‖∞ and λmin = 10−3λmax.
In Example 4.2, we consider a high-dimensional multiplicative model to compare our proposed method with

five methods. (i) LASSO-LS is referred to a two-step method for which we apply a logarithmic transformation to
the response in the first step, and a standard LASSO estimator is computed using the glmnet package in the second
stage. (ii) SCAD-LS is a method similar to LASSO-LS except that the SCAD penalty function is used. (iii) MCP-LS
is a method similar to SCAD-LS but uses the MCP penalty function. Note that the SCAD and MCP estimators are
computed using the ncvreg package. (iv) CHIP-LS is a method similar to LASSO-LS but with the CHIP penalty.
(v) L0-LS is a method similar to LASSO-LS except that the L0 regularization is considered in the second step and
solved by the ESDAR algorithm. Furthermore, we set γ = 3 forMCP-LS, γ = 3.7 for SCAD-LS andCHIP-LS in the
simulations and applications. The tuning parameter λ involved in LASSO-LS, SCAD-LS and MCP-LS is selected,
which resembles that in Example 4.1. The parameter T involved in L0-LS is determined in the same way as in
L0-LPRE.

In Examples 4.3–4.5, we follow Huang, Jiao, Kang, et al. (2021) and Huang et al. (2018) to examine the influence
of sample size n, sparsity level q, and dimension pn on the performance of L0-LPRE and L0-LS, respectively.

In Example 4.6, we allow the sparsity level q and dimension pn to vary with n. In this example, we fix T = q
and change the sample size n to examine how the number of iterations in the algorithm affects the performance of
L0-LPRE and L0-LS.

4.2. Evaluation ofmethods

To evaluate the performance of the various methods, we use the following criteria with 100 independent runs:

(i) the average estimation error (AEE), AEE = 1
100

∑ ‖β̂ − β∗‖2,
(ii) the average prediction error (APE), APE = 1

100
∑ ‖Y

−1
te ·Xteβ̂−1‖1

nte ,

(iii) the average positive discovery rate (APDR), APDR = 1
100

∑ |Â∩A∗|
|A∗| ,

(iv) the average true model rate (ATMR), ATMR = 1
100

∑
I{Â = A∗, Î = I∗},

where (Yte,Xte) are test data with size nte = 100. Obviously, it is expected that one particular method performs
good if its AEE and APE are close to zero and its APDR and ATMR are close to one. Moreover, we define the
evaluation criteria for other methods relative to the L0-LPRE method, including the average relative estimation
error (AREE), the average relative prediction error (ARPE), and the average relative running time (ARRT), which
are quantified respectively by

(v) AREE = 1
100

∑{‖β̃ − β∗‖2/‖β̂ − β∗‖2},
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(vi) ARPE = 1
100

∑{‖Y
−1
te · Xteβ̃ − 1‖1/‖Y

−1
te · Xteβ̂ − 1‖1},

(vii) ARRT = 1
100

∑{RTβ̃/RTβ̂},

where β̃ denotes the optimal estimator of the othermethods, and RTβ̃ and RTβ̂ denote the running time for obtain-
ing the optimal estimator of the other methods and using the AVSAS algorithm, respectively. Obviously, when the
values of AREE, ARPE and ARRT are greater than 1, the L0-LPRE method performs better than other methods.
The averaged number of iterations (ANI) is reported in Example 4.6.

4.3. Simulation examples

Following Huang, Jiao, Jin, et al. (2021), we consider two cases to generate the design matrix X as follows:

(i) Xi ∼ N(0,�), and �jk = 0.5|j−k|, j, k ∈ [pn];
(ii) X̃i ∼ N(0, Ipn), i ∈ [n], then consider X1 = X̃1, Xj = X̃j + 0.2(X̃j−1 + X̃j+1), j = 2, . . . , pn − 1, and Xpn =

X̃pn .

For the true parameter vector β∗, we set β∗
j ∼ Uniform(r∗, r∗) for j ∈ A∗ and β∗

I∗ = 0, where A∗ is a subset
randomly chosen from [pn] with |A∗| = q < n. Here, we fix r∗ = √

2 log(pn)/n, r∗ = Rr∗ and τ = 1. For εi with
i ∈ [n], we consider the following four error distributions,

(d1) εi ∼ f1, where f1(x) = c1 exp(−x − 1/x − log x + 2) and c1 is a normalization constant,
(d2) εi ∼ LN(0, 1), the standard log normal distribution,
(d3) log(εi) ∼ Uniform(−2, 2),
(d4) εi ∼ Uniform(0.5, a), where a ≈ 1.608 such that E(εi) = E(ε−1

i ),
(d5) εi ∼ �(2, 1), the gamma distribution with shape parameter 2 and scale parameter 1,

where (d1) and (d2) correspond to the effective distributions for LPRE and LS methods, respectively, and both
(d3) and (d4) satisfy E(εi) = E(ε−1

i ). (d5) does not satisfy E(log(εi)) = 0 and E(εi) = E(ε−1
i ), i.e. the model has

systematic errors.

Example 4.1: Following Hao et al. (2016), we consider a diverging number of predictors with pn = �4n1/4 − 4�,
where X is generated from Case (i). Here, we fix q = 6, R = 10, and let n vary from 100 to 700 with an increment
being 100. To compare the algorithm runtime, we take the same candidate tuning parameters for both L0-LPRE
and ALASSO-LPRE, meaning that λ takes on the value of the pn equally spaced grid in [λmin, λmax], and T varies
from 1 to pn. The Figure 2 presents the simulation results.

Example 4.2: In this example, we consider a high-dimensional multiplicative model with n = 200, q = 10, pn =
2000,R = 5, where X is generated from either Case (i) or Case (ii). The simulation results for LASSO-LS, MCP-LS,
SCAD-LS, CHIP-LS, L0-LS and L0-LPRE are shown in Table 1.

Example 4.3: In this example, our aim is to examine the influence of sample size n on the performance of L0-LS
and L0-LPRE. Here, we generate X according to Case (i), while keeping q fixed at 10, pn at 1000, and R at 5. The
sample size n ranges from 200 to 800, incremented by 100. The simulation results are depicted in Figure 3.

Example 4.4: To examine the impact of the sparsity level q on the performance of L0-LS and L0-LPRE, we generate
X based on Case (ii) and set n = 400, pn = 5000, and R = 3. The sparsity level q is incremented by 8, starting from
4 and reaching up to 52. The simulation results are illustrated in Figure 4.

Example 4.5: In this example, we investigate the impact of the dimension pn on the performance of L0-LS and
L0-LPRE. Likewise, X is generated from Case (ii). We set n = 400, q = 10 and R = 5. The dimension pn ranges
from 2000 to 10000, incremented by 2000. The simulation results are displayed in Figure 5.

Example 4.6: To illustrate the number of iterations in the algorithm, we generate X using Case (ii), and take q =
�n1/2�, pn = �exp(n0.35)�,R = 3. The sample size n varies from 100 to 700 in increments of 100 and T = q. The
simulation results are presented in Figure 6.



STATISTICAL THEORY AND RELATED FIELDS 9

Figure 2. Simulation results for ALASSO-LPRE and L0-LPRE in Example 4.1, where the average relative evaluation criterion in Figures
(a), (b), and (c) is ALASSO-LPRE relative to L0-LPRE.

Table 1. The simulation results for Example 4.2, and the standard deviations are given in parentheses.

Case (i) Case (ii)

Error Method AEE APE APDR ATMR AEE APE APDR ATMR

ε ∼(d1) LASSO-LS 0.791(0.171) 1.223(0.386) 0.978 0.21 0.756(0.165) 1.226(0.369) 0.967 0.27
MCP-LS 0.186(0.056) 0.627(0.073) 0.998 0.97 0.179(0.065) 0.644(0.080) 0.995 0.94
SCAD-LS 0.273(0.085) 0.662(0.082) 0.998 0.89 0.248(0.092) 0.676(0.099) 0.995 0.87
CHIP-LS 0.272(0.093) 0.664(0.088) 0.998 0.84 0.256(0.099) 0.681(0.099) 0.995 0.86
L0-LS 0.148(0.043) 0.616(0.070) 0.998 0.98 0.152(0.060) 0.637(0.075) 0.994 0.92
L0-LPRE 0.145(0.035) 0.616(0.071) 0.999 0.99 0.146(0.053) 0.634(0.076) 0.996 0.96

ε ∼(d2) LASSO-LS 1.575(0.669) 32.133(179.238) 0.604 0.05 1.468(0.619) 17.014(56.553) 0.678 0.07
MCP-LS 0.491(0.238) 1.469(0.892) 0.896 0.41 0.455(0.230) 1.411(0.429) 0.921 0.49
SCAD-LS 0.702(0.343) 1.950(1.627) 0.875 0.26 0.638(0.275) 1.73(0.944) 0.918 0.34
CHIP-LS 0.809(0.479) 3.509(8.057) 0.845 0.19 0.727(0.354) 1.958(1.207) 0.892 0.26
L0-LS 0.391(0.189) 1.291(0.349) 0.894 0.43 0.373(0.176) 1.324(0.333) 0.901 0.38
L0-LPRE 0.354(0.145) 1.233(0.278) 0.934 0.46 0.337(0.146) 1.288(0.316) 0.936 0.49

ε ∼(d3) LASSO-LS 1.870(0.713) 42.424(96.276) 0.484 0.02 1.862(0.713) 27.464(41.424) 0.473 0.07
MCP-LS 0.642(0.305) 2.046(1.185) 0.849 0.29 0.621(0.276) 1.973(0.965) 0.877 0.41
SCAD-LS 0.909(0.426) 3.567(5.76) 0.808 0.15 0.893(0.393) 3.132(3.463) 0.846 0.19
CHIP-LS 1.024(0.504) 6.628(24.101) 0.780 0.11 0.992(0.477) 4.704(9.085) 0.826 0.18
L0-LS 0.541(0.214) 1.767(0.402) 0.835 0.22 0.517(0.243) 1.713(0.454) 0.854 0.29
L0-LPRE 0.384(0.186) 1.574(0.282) 0.906 0.44 0.312(0.144) 1.487(0.24) 0.950 0.63

ε ∼(d4) LASSO-LS 0.390(0.071) 0.458(0.073) 0.999 0.17 0.367(0.061) 0.448(0.062) 1 0.28
MCP-LS 0.073(0.018) 0.302(0.026) 1 1 0.070(0.015) 0.295(0.022) 1 1
SCAD-LS 0.078(0.022) 0.303(0.027) 1 1 0.072(0.016) 0.295(0.022) 1 1
CHIP-LS 0.076(0.021) 0.303(0.026) 1 1 0.071(0.016) 0.295(0.022) 1 1
L0-LS 0.072(0.018) 0.302(0.026) 1 1 0.070(0.015) 0.295(0.022) 1 1
L0-LPRE 0.071(0.018) 0.302(0.026) 1 0.99 0.069(0.015) 0.295(0.022) 1 1

ε ∼(d5) LASSO-LS 1.241(0.424) 4.932(21.309) 0.782 0.06 1.285(0.517) 5.944(13.479) 0.759 0.08
MCP-LS 0.354(0.186) 0.810(0.258) 0.948 0.69 0.318(0.161) 0.825(0.246) 0.961 0.75
SCAD-LS 0.495(0.217) 0.888(0.291) 0.947 0.56 0.434(0.173) 0.882(0.270) 0.964 0.58
CHIP-LS 0.666(0.326) 3.101(20.838) 0.910 0.35 0.592(0.281) 1.484(3.570) 0.927 0.40
L0-LS 0.334(0.173) 0.802(0.250) 0.923 0.54 0.283(0.137) 0.805(0.228) 0.949 0.61
L0-LPRE 0.291(0.155) 0.781(0.241) 0.951 0.69 0.249(0.118) 0.791(0.232) 0.970 0.72
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Figure 3. Simulation results for L0-LS and L0-LPRE in Example 4.3, where the average relative evaluation criterion in Figures (a), (b),
and (c) is L0-LS relative to L0-LPRE.

4.4. Summary of simulation results

From Figures 2–6 and Table 1, the following observations can be made.

• Compared toALASSO-LPRE estimator, we can observe in Figure 2 that L0-LPRE estimator not only significantly
outperforms ALASSO-LPRE in estimation and prediction (except for n = 100 and error distribution (d3)), but
also takes lower computing time. In terms of APDR and ATMR, we can see that L0-LPRE and ALASSO-LPRE
are very comparable even though L0-LPRE performs better under the (d1) and (d4) distributions with sample
size n = 700 and ALASSO-LPRE performs better under the (d3) distribution.

• Our L0-LPRE method clearly outperforms LASSO-LS, MCP-LS, SCAD-LS, CHIP-LS and L0-LS in high-
dimensional settings across five different error distributions and two cases of generating covariates, and is
followed by L0-LS. This is illustrated in Table 1.

• Figures 3–6 show that in terms of AREE, ARPE, APDR and ATMR, L0-LPRE works much better than L0-LS
under all error distributions except (d2). In the setting (d2), when the number of truly active covariates is
unknown, L0-LPRE performs slightly worse than L0-LS in a few cases, which is reasonable since (d2) is the
efficient distribution of the LS-based method. In terms of computing time, the cost of L0-LPRE is six times that
of L0-LS. The discrepancy decreases as the dimension pn increases. Furthermore, we find that the L0-penalized
methods (L0-LPRE and L0-LS) converge within a few steps when the true number of active covariates is known,
and that L0-LPRE converges faster than L0-LS in the setting of (d3).

In summary, the above evidence has demonstrated the effectiveness of our L0-LPRE approach.



STATISTICAL THEORY AND RELATED FIELDS 11

Figure 4. Simulation results for L0-LS and L0-LPRE in Example 4.4, where the average relative evaluation criterion in Figures (a), (b),
and (c) is L0-LS relative to L0-LPRE.

5. Real data applications

In this section, we employ our L0-LPRE to two real-world datasets, in which LASSO-LS,MCP-LS, SCAD-LS, CHIP-
LS and L0-LS methods are also compared.

5.1. Riboflavin data

In this subsection, we apply our method to the Riboflavin data available in the R package hdi. This dataset has
been analysed in Buhlmann et al. (2014) and Zhao et al. (2022), in which a linear model is used to describe the
relationship between the log riboflavin production rate and 4088 log gene expression levels (X). Figure 7 shows that
the log riboflavin production rate does not follow a normal distribution according to the normality test. Thus, we
use a multiplicative model and the LPRE loss to predict the riboflavin production rate (Y) using X. For this data,
the dimension is pn = 4088 and the sample size is n = 71.

Like Zhao et al. (2022), we use the mean squared log prediction residuals (i.e. MSLPR = 1
nte

∑nte
i=1[log(yi)−

log(ŷi)]2) to evaluate the performance of various methods. Here, we randomly draw a subset from the whole data
with a size ntr among {40, 50, 60} as the training set and the remaining nte data points as the test set. We repeat
this procedure 1000 times. The results are shown in Tables 2 and 3. From Table 2, we can observe that L0-LPRE
performs best, followed by L0-LS, regardless of the sample size of training set. The performance of all methods can
get improved as the sample size of training set increases. On the other hand, in terms of MMS, L0-LS and L0-LPRE
behave similarly, while the latter gives a smaller MSLPR. Furthermore, we report the frequencies of the top 6 genes
selected by L0-LS and L0-LPRE in Table 3. Clearly, the first six genes selected by L0-LS and L0-LPRE are almost
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Figure 5. Simulation results for L0-LS and L0-LPRE in Example 4.5, where the average relative evaluation criterion in Figures (a), (b),
and (c) is L0-LS relative to L0-LPRE.

identical for different sample sizes of training set. Meanwhile, L0-LPRE yields a higher discovery rate for the gene
XHLA_at confirmed by Buhlmann et al. (2014). This indicates that XHLA_at could be a potential gene to have an
important effect on the riboflavin production rate.We also find that both the L0-LS and L0-LPREmethods select the
genes XHLA_at, YOAB_at, YXLD_at and YCKE_at when the sample size of training set is 40, 50 and 60. Besides,
L0-LPRE tends to select YXLE_at when the sample size of training set is 50 and 60. In addition, these findings
are consistent with the results of the study (Javanmard & Montanari, 2014), in which the two genes, YXLD_at
and YXLE_at, were identified. To sum up, we can draw the conclusion that the five genes, XHLA_at, YOAB_at,
YXLD_at, YCKE_at and YXLE_at, may be the most relevant ones for the riboflavin production rate. Afterwards,
we further obtain the following multiplicative model

ŷ = exp(−1.5481 + 0.3771 × XHLA_at − 1.0210 × YOAB_at

+ 0.0043 × YXLD_at + 0.2584 × YCKE_at − 0.3725 × YXLE_at),

which indicates that the genes, XHLA_at, YXLD_at and YCKE_at, have a positive effect, while YOAB_at and
YXLE_at have a negative effect on the log response.

5.2. Supermarket data

In this subsection, we use supermarket data to illustrate the effectiveness of our method. The dataset has been
analysed in the study of Wang (2009), Z. Chen et al. (2018) and Liu et al. (2022), which contains a sample of 464
daily records from a supermarket. The response variable we are interested in is the number of customers who visited
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Figure 6. Simulation results for L0-LS and L0-LPRE in Example 4.6, where the average relative evaluation criterion in Figures (a), (b),
and (c) is L0-LS relative to L0-LPRE.

the supermarket that day. The available covariates are the sale volume data of 6398 products. For data privacy
reasons, the response variable and predictors have been standardized to have zero mean and unit variance. In order
to use our model, we perform an exponential operation on the response variable in the following data analysis.
This transformation enables the LPRE loss to be applied. Our objective is to select some important products that
have a substantial impact on the number of customers every day through their sale volumes. Similar to the previous
analysis, we randomly select 200, 300 and 400 data points from the original data as a training set and the remaining
data as a test set. We repeat this procedure 100 times, and report the results in Tables 4–5.

From Table 4, we can see that the proposed L0-LPRE achieves the minimum value of MSLPR when the
sample size of training set is 200, 300 and 400, which indicates that our L0-LPRE method has best perfor-
mance among these methods. Table 5 shows that both L0-LS and L0-LPRE tend to select nearly the same top
12 predictors across different training sample sizes. It is important to note that for each training sample, both
methods select X3, X6,X11,X39,X62,X139 and X2830. In the training sample size of 300 and 400, both L0-LS and
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Figure 7. Density curves and Q-Q plots for log(y) in Riboflavin data.

Table 2. Results of 1000 repetitions of MSLPR andMMS for Riboflavin data when training set size is among {40, 50, 60}.
ntr = 40 ntr = 50 ntr = 60

Method MSLPR MMS MSLPR MMS MSLPR MMS

LASSO-LS 0.8737(0.1896) 0(0) 0.8625(0.2421) 0(0) 0.8418(0.3749) 0(0)
MCP-LS 0.8200(0.2136) 0.513(1.1538) 0.7622(0.2936) 0.896(1.5722) 0.5798(0.4498) 2.385(2.1632)
SCAD-LS 0.8718(0.1918) 0.014(0.2277) 0.8614(0.2420) 0.008(0.1843) 0.8408(0.3756) 0.015(0.2736)
CHIP-LS 0.8728(0.1895) 1.158(0.4186) 0.8618(0.2419) 1.150(0.4021) 0.8414(0.3748) 1.086(0.2944)
L0-LS 0.6967(0.1996) 1.292(0.5959) 0.6472(0.2502) 1.590(0.8177) 0.5575(0.3725) 2.228(1.0813)
L0-LPRE 0.6807(0.206) 1.491(0.7839) 0.6136(0.2399) 1.797(0.9234) 0.5255(0.3322) 2.333(1.0767)

Note: Standard deviations are given in parentheses.

Table 3. Frequency of the first 6 genes selected with 1000 replications for L0-LS and L0-LPRE in Riboflavin data.

ntr = 40 ntr = 50 ntr = 60

L0-LS L0-LPRE L0-LS L0-LPRE L0-LS L0-LPRE

Genes Frequency Genes Frequency Genes Frequency Genes Frequency Genes Frequency Genes Frequency

XHLA_at 266 XHLA_at 279 XHLA_at 416 XHLA_at 474 XHLA_at 612 XHLA_at 718
YOAB_at 151 YOAB_at 134 YXLD_at 209 YOAB_at 170 YXLD_at 343 YOAB_at 287
YXLD_at 126 YCKE_at 133 YOAB_at 188 YCKE_at 139 YOAB_at 305 YXLD_at 203
YDAR_at 103 YDAR_at 90 YCKE_at 113 YXLD_at 132 YXLG_at 104 YXLE_at 160
YCKE_at 93 YXLD_at 77 YDAR_at 72 YXLE_at 74 YCKE_at 102 YCKE_at 110
XTRA_at 44 XKDF_at 49 YXLG_at 43 YDAR_at 57 XHLB_at 80 YXLG_at 102

Table 4. Results of MSLPR and MMS for Supermarket data when training sample size is among 200, 300 and 400.

ntr = 200 ntr = 300 ntr = 400

Method MSLPR MMS MSLPR MMS MSLPR MMS

LASSO-LS 0.758(0.173) 1.70(1.541) 0.630(0.144) 3.42(2.531) 0.448(0.151) 7.90(3.311)
MCP-LS 0.371(0.084) 2.56(2.438) 0.294(0.107) 6.08(4.970) 0.160(0.069) 14.67(5.297)
SCAD-LS 0.754(0.182) 1.79(1.665) 0.620(0.153) 3.66(3.019) 0.411(0.146) 9.20(4.058)
CHIP-LS 1.006(0.051) 1.07(0.256) 1.005(0.087) 1.01(0.100) 1.010(0.161) 1(0)
L0-LS 0.216(0.037) 5.70(1.367) 0.166(0.033) 8.01(1.867) 0.129(0.028) 9.71(1.701)
L0-LPRE 0.206(0.032) 6.22(1.418) 0.160(0.028) 8.39(1.476) 0.124(0.029) 10.39(1.912)

Note: Standard deviations are given in parentheses over 100 repetitions.

L0-LPRE can select X56,X410 and X417. In addition, L0-LPRE selects the covariate X176 more frequently than L0-
LS. This may explain why L0-LPRE outperforms L0-LS. Overall, we have detected 11 products named X3,X6,
X11,X39,X56,X62,X139,X176,X410,X417 and X2830 that could significantly contribute to the number of customers
each day. In order to precisely quantify the relationship between the response and these 11 predictors, we fit the
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Table 5. Frequency of the first 12 genes selected by L0-LS and L0-LPRE with 100 replications for Supermarket data.

ntr = 200 ntr = 300 ntr = 400

L0-LS L0-LPRE L0-LS L0-LPRE L0-LS L0-LPRE

Variable Frequency Variable Frequency Variable Frequency Variable Frequency Variable Frequency Variable Frequency

X11 67 X11 63 X11 99 X11 88 X6 100 X6 100
X139 58 X139 62 X139 87 X139 86 X11 100 X11 100
X3 47 X3 50 X6 82 X6 83 X139 100 X139 99
X5 39 X6 47 X2830 62 X2830 60 X2830 87 X410 82
X6 39 X5 43 X3 46 X3 49 X410 81 X62 70
X21 25 X21 25 X410 37 X62 45 X39 71 X2830 69
X62 24 X62 25 X62 36 X39 42 X62 61 X56 67
X39 17 X1213 22 X417 34 X417 30 X56 60 X39 64
X10 16 X39 16 X39 33 X410 28 X417 54 X176 57
X2830 15 X2830 16 X56 22 X56 24 X3 48 X7 48
X1213 14 X10 14 X107 21 X176 23 X7 31 X3 36
X4981 10 X107 13 X7 15 X5 22 X107 21 X417 33

following multiplicative model

ŷ = exp(0.0985X3 + 0.2153X6 + 0.2400X11 + 0.1182X39

+ 0.1078X56 + 0.1082X62 + 0.1792X139 + 0.1014X176

+ 0.1117X410 + 0.1131X417 + 0.1342X2830).

From the above, we can see that all the coefficients of the 11 variables are positive, indicating that increasing
the sale volume of each of these 11 products causes the number of customers every day to increase. We also
note that no intercept is included in the model due to data standardization. Moreover, to make a deep com-
parison, we compare the method proposed by Z. Chen et al. (2018), which is a two-stage approach applied to
this data. A distance correlation-based screening (DC-SIS) is first employed to reduce the dimension and then
an additive model is fitted on the reduced data with Wald’s χ2 test. Z. Chen et al. (2018) identified the seven
predictors: X3,X6,X11,X39,X42,X62, and X139. In contrast to Z. Chen et al. (2018), Liu et al. (2022) proposed a PC-
Knockoff procedure and selected 12 significant variables: X3,X6,X10,X11,X30,X42, X48,X71,X129, X139,X176 and
X400. Figure 8 displays a Venn diagram to illustrates the overlaps between the 11 variables selected by our method
and the variables by Z. Chen et al. (2018) and Liu et al. (2022), respectively. From this figure, one can see that six
out of the 11 variables we have selected coincide with those identified by Z. Chen et al. (2018), while seven of the
selected variables match those selected by Liu et al. (2022). In addition, it is worth noting that Liu et al. (2022) has
selected X176 as a significant variable, which is also selected by our method. Finally, we examine the more influence
of the 11 variables on the number of customers per day. To this end, we construct a multiplicative model based on
the variables obtained from Z. Chen et al. (2018) and Liu et al. (2022) and then compare them with our L0-LPRE.
Following Liu et al. (2022), the entire dataset is randomly divided into a training set of size 400 and a test set of size
64 over 200 repetitions. The average R2 = 1 − n−1‖ log(Y)− Xβ̂‖22 defined in Wang (2009) for both the training
sample and the test sample is shown in Table 6. Based on the results given in Table 6, we can conclude that the
proposed L0-LPRE method surpasses the two methods, DC-SIS with χ2-test and PC-Knockoff, in terms of R2 for
both the training and test samples. Furthermore, when constructing a multiplicative model using the 11 variables,
we find that the LPRE-related estimators can achieve the highest R2. This suggests that the 11 variables selected
may yield more predictive performance compared to those selected by Z. Chen et al. (2018) and Liu et al. (2022).

6. Conclusion

In this paper, we propose a new algorithm for solving L0-regularized high-dimensional sparsemultiplicativemodels
with LPRE loss, and derive an estimation error bound and an optimal convergence rate by the VSAS algorithm. Fur-
thermore, we demonstrate that the L0-LPRE estimator can reach the oracle estimator with high probability if the
target signal exceeds the detectable level. Extensive numerical results show that the proposed L0-LPRE method
can outperform many existing competitors such as ALASSO-LPRE, LASSO-LS, MCP-LS, SCAD-LS, CHIP-LS
and L0-LS.
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Figure 8. Venn diagram on the variables recruited using three different methods: DC-SIS with χ2-test in Z. Chen et al. (2018), PC-
Knockoff procedure in Liu et al. (2022) and the proposed L0-LPRE.

Table 6. Themean and standard deviation of the R2 for the training and test set
over 200 replications for the supermarket data.

Training R2 Test R2

Method Mean SD Mean SD

DC-SIS with χ2-test 0.8540 0.0037 0.8451 0.0240
PC-Knockoff 0.8686 0.0041 0.8561 0.0275
L0-LPRE 0.9024 0.0153 0.8702 0.0261
LPRE with 11 explored variables 0.9053 0.0027 0.8983 0.0177
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Appendix

A.1 Proof of Lemma 3.1

Proof: As in Huang et al. (2018) and Ming and Yang (2024b), we assume that β̂ is the global minimum of Lλ(β). Then for βj,
we have

Lλ(β̂−j,βj) � L(β̂−j, β̂j)+ ∂L(β̂−j,βj)
∂βj

|β̂j(βj − β̂j)

+ 1
2
ĝj(βj − β̂j)

2 + λ|βj|0

� 1
2
ĝj

(
βj − (β̂j + d̂j)

)2 + λ|βj|0, (A1)

where ĝj = ∂2L(β̂−j ,βj)
∂2βj

|β̂j and d̂j = −ĝ−1
j

∂L(β̂−j ,βj)
∂βj

|β̂j . Hence, we have

Â =
{
j ∈ [pn]|

√
ĝj|β̂j + d̂j| ≥ √

2λ
}
,

Î =
{
j ∈ [pn]|

√
ĝj|β̂j + d̂j| <

√
2λ

}
.

With the hard threshold operator Hλ(·), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̂ Î = 0,
d̂Â = 0,
β̂Â ∈ argmin

βÂ

L(βÂ),

d̂j = −
(
∂2L(β̂−j,βj)

∂2βj
|β̂j

)−1
∂L(β̂−j,βj)

∂βj
|β̂j , j ∈ Î,

ĝj = ∂2L(β̂−j,βj)
∂2βj

|β̂j , j ∈ [pn].

Assume h ∈ R
pn is small enough with max

1≤j≤pn

√
ĝj|hj| <

√
2λ. Then we will show Lλ(β̂ + h) > Lλ(β̂) in two cases, respectively.

Case 1: hÎ �= 0. Since
√
ĝj|β̂j| ≥ √

2λ for j ∈ Â and max
1≤j≤pn

√
ĝj|hj| <

√
2λ, we have

λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖β̂Â + hÂ‖0 + λ‖hÎ‖0 − λ‖β̂Â‖0 = λ‖hÎ‖0 ≥ λ.

Then, we can obtain

Lλ(β̂ + h)− Lλ(β̂) = 1
n

n∑
i=1

{
y−1
i exp(X�

i (β̂ + h))+ yi exp(−X�
i (β̂ + h))

}

− 1
n

n∑
i=1

{
y−1
i exp(X�

i β̂)+ yi exp(−X�
i β̂)

}
+ λ‖hÎ‖0

≥ m(h)+ λ,

where

m(h) = 1
n

n∑
i=1

{
y−1
i (exp(X�

i (β̂ + h))− exp(X�
i β̂))

+yi(exp(−X�
i (β̂ + h))− exp(−X�

i β̂))
}

is a continuous function in h. Thus, we havem(h)+ λ > 0 because h is small enough.
Case 2: hÎ = 0. Similar to Case 1, we have

λ‖β̂ + h‖0 − λ‖β̂‖0 = λ‖β̂Â + hÂ‖0 − λ‖β̂Â‖0 = 0.
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Therefore, we can obtain

Lλ(β̂ + h)− Lλ(β̂) = 1
n

n∑
i=1

{
y−1
i exp(X�

i (β̂ + h))+ yi exp(−X�
i (β̂ + h))

}

− 1
n

n∑
i=1

{
y−1
i exp(X�

i β̂)+ yi exp(−X�
i β̂)

}

= 1
n

n∑
i=1

{
y−1
i exp(X�

iÂ
(β̂Â + hÂ)+ yi exp(−X�

iÂ
(β̂Â + hÂ)

}

− 1
n

n∑
i=1

{
y−1
i exp(X�

iÂ
β̂Â)+ yi exp(−X�

iÂ
β̂Â)

}

= L(β̂Â + hÂ)− L(β̂Â) ≥ 0,

as β̂Â ∈ argmin
βÂ

L(βÂ). Therefore, β̂ is a local minimizer of Lλ(β). �

To obtain Theorems 3.2–3.4, we initially present several lemmas. The proofs for these lemmas can be found in Ming
and Yang (2024b).

Lemma A.1: Assuming condition (C1) holds and ‖β∗‖0 ≤ T. Then we can derive the following:

κ‖∇B(k)L(β
(k))‖1‖∇B(k)L(β

(k))‖∞ ≥ 2Lζ [L(β(k))− L(β∗)],

where B(k) = A(k)\A(k−1), ζ = |B(k)|
|B(k)|+|A∗\A(k−1)| and κ ≥ 1 is a constant.

LemmaA.2: Under the assumption that condition (C1) holds for 0 < U < 1
τ
√
T
and ‖β∗‖0 ≤ T inAlgorithm 2, with 1 ≤ κ < ∞

being a universal constant, it can be concluded that before Algorithm 2 terminates, we have

L(β(k+1))− L(β∗) ≤ ξ [L(β(k))− L(β∗)],

where ξ = 1 − 2τL(1−τ√TU)√
Tκ(1+q)

∈ (0, 1).

Lemma A.3: For all k ≥ 0, if Lemma A.2 holds, then we have

‖β(k) − β∗‖∞ ≤
√
(T + q)

(
1 + U

L

)
(
√
ξ)k‖β(0) − β∗‖∞ + 2

L
‖∇L(β∗)‖∞.

Lemma A.4 (General Hoeffding’s inequality (see Theorem 2.6.3, Vershynin (2018))): If Y1,Y2, . . . ,Yn are independent sub-
Gaussian random variables with mean zero, then for every t ≥ 0, we can conclude

P

(∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− ct2

K2‖a‖22

)
,

where a = (a1, a2, . . . , an)� ∈ R
n and K = maxi ‖Yi‖ψ2 .

A.2 Proof of Theorem 3.2

Proof: By Lemmas A.1–A.3, and β(0) = 0, we have

‖β(k) − β∗‖∞ ≤
√
(T + q)

(
1 + U

L

)
(
√
ξ)k‖β∗‖∞ + 2

L
‖∇L(β∗)‖∞.

�

A.3 Proof of Theorem 3.3

Proof: Let Yj = 1
n

∑n
i=1 Xijε̃i, j ∈ [pn], and then by condition (C2) and Lemma A.4, for t ≥ 0, we have

P
(‖∇L(β∗)‖∞ ≥ t

) ≤
pn∑
j=1

P
(|Yj| ≥ t

)

=
pn∑
j=1

P

(∣∣∣∣∣
n∑

i=1
Xijε̃i

∣∣∣∣∣ ≥ nt

)

≤ 2pn exp
(−cnt2/K2) .
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Hence, by taking t = c1
√
log(pn)/n and c2 = 2, we can obtain

log(pn)− cc21
K2 log(pn) = −c3 log(pn),

where c3 = cc21/K
2 − 1 > 0 for a large c1. It implies that

P

(
‖∇L(β∗)‖∞ ≥ c1

√
log(pn)

n

)
≤ c2 exp(−c3 log(pn)).

Furthermore, from Theorem 3.2, we have

‖β(k) − β∗‖∞ ≤
√
(T + q)

(
1 + U

L

)
(
√
ξ)k‖β∗‖∞ + 2c1

L

√
log(pn)

n
,

with probability at least 1 − c2 exp(−c3 log(pn)). Moreover, if k ≥ O
(
log 1

ξ

n
log(pn)

)
, then we have

‖β(k) − β∗‖∞ ≤ O

(√
log(pn)

n

)
. �

A.4 Proof of Theorem 3.4

Proof: Based on Theorem 3.3 and condition (C3), with some algebraic manipulation, we can demonstrate that if k >
log 1

ξ
(9(T + q)

(
1 + U

L
)
r2),

‖β(k) − β∗‖∞ ≤
√
(T + q)

(
1 + U

L

)
(
√
ξ)k‖β∗‖∞ + 2

3
‖β∗

A∗‖min < ‖β∗
A∗‖min. �
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