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ABSTRACT
This article introduces a three-parameter Lehman-type t distribution
having 2 degrees of freedom, that is capable of fitting positive and
negative skeweddata sets. It is shown that the density and hazard func-
tions of the proposed distribution are uni-model. Ordinary moments,
entropymeasure, ordering, identifiability and order statistics are inves-
tigated. Since the quantile function is explicitly defined, quantile-based
statistics are also discussed for the proposed distribution. These prop-
erties includemeasures of skewness and kurtosis, L-moments, quantile
density and hazard functions, mean residual life function and Parzen’s
score function. Mechanisms of maximum likelihood, bias correction
andmatching of percentiles are employed for estimating the unknown
parameters of the distribution. Simulation experiments are conducted
to compare the performance of these three estimationmethods. A real-
life data set consisting of strength of glass fibres is fitted to show the
adequacy of the proposed distribution over some extensions of the
normal and t distributions. Parametric regression model is developed
along with its parameter estimation using the maximum likelihood
approach. Simulation study for the regression model is also presented
that endorsed the asymptotic properties of the estimators.
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1. Introduction

Student’s t distribution is a well-known sampling distribution and being widely used to
answer various inferential problems. It was pioneered by William Sealy Gosset under the
pseudonym ‘Student’ in Student (1908a, 1908b). Student t-distribution is the only distribu-
tion among the classical distributions that resembles the Normal distribution in shapes and
properties.

Heavy-tailed skewed distributions are of more interest as compared to the symmetric dis-
tributions in practice. Interest of researchers has shifted to the skewed distributions with
higher degree of kurtosis that are widely applicable in various applied disciplines. There-
fore, various skewed families of the normal and t distributions have been derived in past by
many researchers. de Souza and Tsallis (1997) optimized the generalized entropywith certain
constraints yielding student’s t distribution and r distribution.
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Papastathopoulos and Tawn (2013) gave an extension of student’s t distribution with neg-
ative degrees of freedom and presented its applications for pharmaceutical data. Massing
and Ramos (2021) introduced an implementation of mixture of student’s t distributions with
3 degrees of freedom on daily and hourly log returns data. Fergusson and Platen (2006)
identified that the log-return distribution of a world stock index denominated in different
currencies can be characterized by the generalized hyperbolic version of the t distribution
with 4 degrees of freedom. Rosco et al. (2011) used sinh–arcsinh transformation to gener-
ate skew t distribution. Likelihood inferences are applied for the distribution to analyse the
heavy-tailed data of the strength of the fibre glasses. Aas and Haff (2006) introduced gen-
eralized hyperbolic skew t distribution with property that one tail has polynomial and the
other has exponential behaviour and they explored the applicability of the distribution in
modelling financial data. Several skewed families have also been obtained for the normal
distribution. See Ma and Genton (2004).

Undoubtedly, the t distribution has phenomenal practical utility. But it has some limita-
tions to use in practice due to its intractable distribution function that leads to the implicit
forms of some of its properties. Therefore, many authors have considered t distribution with
2 degrees of freedom (for short t2) that could show some nice properties in closed formwhich
attracted various applications. It was first reported by Hill (1970) in which author provided
a mathematical basis which can be used to handle detailed property of processing systems.
Jones (2002) referred this distribution as student’s simplest distribution and he explored its
various properties and advantages.

Simple characterization of t2 distribution is discussed by Nevzorov et al. (2003). Regres-
sional properties of order statistics are obtained for the t2 distribution in Nevzorov (2005).
Akhundov et al. (2004) introduced families of distributions which are characterized by
the regressional properties of order statistics using the t2 distribution. Yanev and Ahsanul-
lah (2012) extended the characterization results to the t distributionwithmore than 2 degrees
of freedom. Bai et al. (2014) performed inverse Laplace transformation to obtain an accurate
t2 distribution. For fitting the heavy tailed data, Azzalini (1985) introduced skewed t2 dis-
tribution. Distributional properties and inferences of skewed t distribution are explained by
Ahsanullah and Nevzorov (2017). Akhundov and Nevzorov (2012) characterized student’s
t3 distribution using the t2 distribution, and simple regressional properties of order statistics
are derived.

The cumulative density function (cdf) of the t2 distribution is given by

F(t) = 1
2

⎧⎪⎨
⎪⎩1 + t√(

2 + t2
)
⎫⎪⎬
⎪⎭ , t ∈ R. (1)

The quantile function (qf) of t2 distributed random variable (rv) is given by

Q(u) = 2u − 1√
2u (1 − u)

, u ∈ (0, 1). (2)

It is beyond doubt that introducing the shape parameter to a base-line distribution pro-
vides a better fitting of the real data problems. One way is to define the distribution as
αth power of the baseline distribution, i.e., FX(x) = (FY(x))α ,α > 0, where Y is the base-
line rv and the parameter α controls the skewness and flatness. These types of distributions
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Figure 1. The Lt2D pdf and hrf plots for different combinations of α and θ whenμ = 0.

are known as exponentiated distributions. It was first used by Mudholkar and Srivas-
tava (1993) to propose extended Weibull distribution for fitting bathtub-shaped failure
rate data sets. Since then, many authors have contributed towards this field. See Gupta
et al. (1998) and Gupta and Kundu (2001). Key idea of such distributions is drawn from
Lehmann (1953) in which author suggested to use the distributions of the following forms,
FX(x) = (FY(x))α and FX(x) = (1 − FY(x))α , which are known as Lehmann types I and II,
respectively. Sharma et al. (2022) introduced two-parameter exponentiated Teissier distribu-
tion using the Lehmann type-I transformation for fitting increasing, decreasing and bathtub
hazard functions. The detailed review of the exponentiated distributions can be found in
Nadarajah (2006), Nassar and Eissa (2003) and Ristić and Balakrishnan (2012).

From the references cited above, we could observe the following advantages of the
Lehman-type distributions. (a) It produces non-monotone (bathtub or upside-down bath-
tub) hazard rate distribution while the baseline distribution is having monotone hazard rate
function. See Sharma et al. (2022). (b) It produces the skewed family of distributions while
the baseline distribution is symmetric. See FreemanModarres (2006). (c) It produces heavy-
tailed distributions with varying thickness of tails. See Figure 1 and the references cited
above.

Motivated from the above discussion, we, in this article, aim to introduce a new skewed
family of t2 distributions using the Lehman-type I transformation. The proposed distribution
would be capable of fitting positive and negative skewed data and upside-down bathtub-
shaped hazard rate function (hrf). Besides the useful shapes of the density and hrf, the
proposed distribution would have tractable distributional properties such as closed-form
expression of hrf and survival function, well-defined mean, median and mode, closed-form
qf, etc. Since the qf is mathematically convenient, quantile-based characteristics such as
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L-moments, measure of skewness and kurtosis, ordering, quantile density, hrf, and mean
residual life function are explicitly defined.

Advantages mentioned above motivate authors to introduce the Lehman-type t2 distribu-
tion (Lt2D) in statistics literature as a pertinent choice for fitting skewed data over the other
skewed families of the normal and t distributions (see Section 9 on real data modelling).
The regression model with non-normal response variable is referred to as the paramet-
ric regression models that are extensively used in survival data analysis. See Kalbfleisch
and Prentice (2002). The Lt2D may be an impressive model for modelling regression prob-
lems. Linear regression model with the assumption that the response variable follows the
Lt2D is studied along with maximum likelihood estimation and simulations.

Rest of the paper is structured as follows. In Section 2, we present the genesis of the Lt2D
and discuss the shapes of the density and hrf. In Section 3, the qf and its related measures
are derived. This section also includes the study of the Parzen’s score function to investigate
quantile hrf and stochastic orderings. Expressions of the ordinary moments and quantiles
based L-moments are given in Section 4. In Section 5, order statistics and an entropy mea-
sure are explored. Estimation and identifiability of the Lt2D are given in Section 6. The Lt2D
regression model and its parameter estimation are discussed in Section 7. Section 8 consists
of the simulation results. The fitting of the strength data is given in Section 9. The last section
concludes the entire paper.

2. Lehmann-type t2 distribution and its shapes

In this section, we consider two-parameter t2 distribution to introduce its general family of
skewed distributions using the Lehmann-type I method as discussed in the earlier section.
We also investigate the shapes of the density and hrf. The two-parameter t2 distribution is
defined by the cdf,

F(x, θ ,μ) = 1
2

⎧⎪⎨
⎪⎩1 + w√(

2 + w2
)
⎫⎪⎬
⎪⎭ , w = x − μ

θ
, x ∈ R, θ > 0, μ ∈ R. (3)

If X is an rv that follows t2 distribution with cdf given by Equation (3), then the rv Y with cdf
FY(y) = [FX(y)]α ,α > 0 is said to follow the Lt2D. The cdf of the Lt2D is given by

F(y,α,μ, θ) = 1
2α

⎧⎪⎨
⎪⎩1 + z√(

2 + z2
)
⎫⎪⎬
⎪⎭

α

, z = y − μ

θ
, (y,μ) ∈ R, (α, θ) > 0. (4)

We denote the cdf in (4) by Lt2D(α,μ, θ). Differentiating the cdf given by (4) with respect to
(w.r.t.) y, we obtain probability density function (pdf) as given by

f (y,α,μ, θ) = α

θ2α−1
(
2 + z2

)3/2
⎧⎪⎨
⎪⎩1 + z√(

2 + z2
)
⎫⎪⎬
⎪⎭

α−1

,

z = y − μ

θ
, (y,μ) ∈ R, (α, θ) > 0. (5)
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The hrf of the Lt2D is given by

h(y,α, θ ,μ) = α

2α−1θ
(
2 + z2

)3/2
⎧⎪⎨
⎪⎩1 + z√(

2 + z2
)
⎫⎪⎬
⎪⎭

α−1

×
⎛
⎜⎝1 − 1

2α

⎧⎪⎨
⎪⎩1 + z√(

2 + z2
)
⎫⎪⎬
⎪⎭

α⎞⎟⎠
−1

. (6)

Figure 1 shows the various shapes of the pdf and hrf for various parameter values. It is clear
from the graph that the skewness and flatness of the Lt2Dmainly depend on the shape param-
eter α and the scale parameter θ . The pdf given in (5) is unimodal with varying degrees of
positive and negative skewness and flatness. Figure 1 also reveals that the hrf is upside-down
bathtub (uni-modal) shaped for all choices of the parameters. Though the hrf is not analyti-
cally tractable, one may use an alternative approach investigated by Glaser (1980) to explore
the shapes of the hrf using the quantity η(y) = − f ′(y)

f (y) . We can note here that η(y) and h(y)
share the same shapes as stated by Glaser (1980).

Proposition 2.1: The hrf of the Lt2D(α, 0, 1) is an upside down bathtub shaped for all the
values of the shape parameter α.

Proof: For the given pdf (5) of the Lt2D(α, 0, 1), we have

η(y;α) = − f ′(y;α)

f (y;α)
= (α + 2)y − (α − 1)

√
y2 + 2

y2 + 2

with limy→−∞ η(y;α) = limy→−∞
(
2α+1
y

)
= 0 and limy→+∞ η(y;α) = limy→+∞

(
3
y

)
=

0. Now, we need to show that there exists a point y0 such that η(y) achieves its maximum at
y0 with η′(y0) = 0. We obtain the derivative as follows:

η′(y;α) = (α − 1)y3 − (α + 2)y2 + 2
√
y2 + 2(α + 2)

√
y2 + 2 + 2(α − 1)y(

y2 + 2
)5/2

= s(y;α)(
y2 + 2

)5/2 .
To obtain the critical points, we need to find the roots of the equation,

s(y;α) = y6(c − 1) + y4(4c + 2) + y2(4c + 4) − 8 = 0, (7)

where c = (α−1)2
(2+α)2

. After some algebraic manipulations, we get the roots of the equation in (7)

which are−
√

c+√
c(c+8)+2
1−c ,

√
c+√

c(c+8)+2
1−c ,−

√
−c+√

c(c+8)−2
c−1 ,

√
−c+√

c(c+8)−2
c−1 , i

√
2 and i

√
2.
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We note here that
√
c(c + 8) > 2 + c and 1−c>0 and the root that is feasible is

y0 =
√
c + √

c(c + 8) + 2
1 − c

=
[

α2 + 2α + 3 + (α − 1)
√
3α2 + 10α + 11

2α + 1

] α
2

.

Since η′(y) > 0 in (0, y0), η′(y) < 0 in (y0,∞) and η′(y0) = 0, we can conclude that the
Glaser’s quantity is upside-down bathtub shaped. Using the Glaser’s lemma, we can state
that the hrf is also upside-down bathtub shaped for all values α > 0. �

Proposition 2.2: Let Y be the Lt2D distributed rv with pdf given by (5). The mode of the
distribution is given by

Ymode = μ +
√
6
√

(α − 1)2(2α + 1)θ2

6α + 3
.

Proof: Proof is straightforward and can be achieved using the derivative test for the log-pdf,

log(f (y)) = log(α) − log(θ) − (α − 1) log(2) − 3
2
log(2 + z2)

+ (α − 1) log
(
1 + z√

2 + z2

)
,

where z = (y − μ)/θ . For α = 1, Ymode = μ, which is the mode of the t2 distribution. �

3. Quantile function and relatedmeasures

In this section, we derive qf of the Lt2D and associated measures such as median, inter quar-
tile range, coefficients of skewness and kurtosis, quantile density, quantile hazard and mean
residual life function. Since the qf is available in closed from, the above properties can be
explicitly defined. The qf is not only helping us to describe the distribution but also provides
a basis to the robust estimation. The qf is defined by the following proposition.

Proposition 3.1: The quantile of the Lt2D with cdf (4) is given by

Q(u) = μ +
θ
(
2u

1
α − 1

)
√
2u

1
α

(
1 − u

1
α

) , u ∈ (0, 1), α > 0, θ > 0, μ ∈ R. (8)

Proof: The quantile function is defined by Q(u) = min{y; F(y) ≥ u}, 0 < u < 1 and can be
obtained by solving the probability integral transformation,

FY(Q(u)) = u, u ∈ (0, 1). (9)

Substituting the cdf given in (4) in (9), we have(
Q(u)−μ

θ

)2
2 +

(
Q(u)−μ

θ

)2 = (2u
1
α − 1)2,

which in turn implies the result as stated in Proposition 3.1. �
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Figure 2. Plots of the coefficients of skewness, kurtosis and median of the Lt2D with varying shape
parameter α withμ = 0 and θ = 1.

The support of the distribution given in (5) is (Q(0),Q(1)) = (−∞,∞). Using the
quantiles, the median (M) and inter-quantile range (IQR) are respectively given by

M = Q
(
1
2

)
= 2− α+2

2α
(
21/α − 2

)
θ√

4−1/α
(
21/α − 1

) + μ,

IQR = Q
(
3
4

)
− Q

(
1
4

)
= θ√

2

⎛
⎜⎜⎝ 2

α−2
α 31/α − 1√( 9

16
)1/α (( 4

3
)1/α − 1

) − 2
α−2
α − 1√

2−4/α
(
41/α − 1

)
⎞
⎟⎟⎠ .

The coefficients of skewness (known as Galton’s coefficient, denoted by S) and kurtosis
(known as Moor’s coefficient, denoted by T) are given by

S = Q0.25 + Q0.75 − 2Q0.5

Q0.75 − Q0.25
,

T = Q0.875 − Q0.625 + Q0.375 − Q0.125

Q0.75 − Q0.25
− 1.23.

In Figure 2, we sketch the curves of S, T and M for increasing sequence of the shape param-
eter α while μ = 0 and θ = 1 are kept as fixed. From this figure, we can see that the Lt2D
has symmetric (S = 0), left skewed (S < 0), right skewed (S > 0) and leptokurtic (T > 0)
shapes of density function. We can state here that the Lt2D accommodates skewed shapes
with higher degree of the peakedness.

We now define two another important functions associated with the qf that are quantile
density function (qdf) and mean residual quantile function (mrqf). The qdf is given by

q(u) = θu
1
α −1

2
√
2α

(−u1/α
(
u1/α − 1

))3/2 , u ∈ (0, 1), α > 0, θ > 0, μ ∈ R. (10)

Proposition 3.2: The qdf given in (10) is
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(1) increasing in u if u > u0(α),∀ α > 0;
(2) decreasing in u if u < u0(α),∀ α > 0,

where u0(α) =
(
2α+1
4α+2

)1/α
.

Proof: The derivative of qdf given in (10) w.r.t. u is

q′(u) = θz(α, u)
g(α, u)

, (11)

where

z(α, u) = (−2α + 2(α + 2)u1/α − 1
)
,

g(α, θ , u) = 4
√
2α2u2

(
u1/α − 1

)2 √−u1/α
(
u1/α − 1

)
.

Since g(α, u) > 0 ∀ α > 0, u ∈ (0, 1), q′(u) = 0, then−2α + 2(α + 2)u1/α = 1. That results

in the critical point u0(α) =
(
2α+1
4α+2

)1/α
. As z(α, 0) = −(2α + 1) < 0, z(α, u0(α)) = 0 and

z(α, 1) = 3 ∀ α > 0, q′(u) > 0 for u ∈ (u0(α), 1) and q′(u) < 0 for u ∈ (0, u0(α)) with

q′(u0(α)) = 0. Therefore, the qdf in (10) is increasing (decreasing) in u if u > (<)
(
2α+1
4α+2

)1/α
respectively. Hence, Proposition 3.2 is proved. �

The qdf may be used for deriving the pdf using the relation, f (Q(u)) = q(u)−1. We also
get the pdf plot, as given in Figure 1, by plotting the curve between Q(u) and q(u)−1. Since
this gives the similar shapes as those of Figure 1, we removed it.

The mrqf,M(u), defined as the mean remaining life of individual beyond 100(1 − u)% of
the distribution, is given by

M(u) = 1√
2(4α2 − 1)(1 − u)

⎛
⎜⎝4

√
πθ�

(
α + 3

2
)

�(α − 1)
− 4αθ(α − 1)

√
u1/α+2

(
1 − u1/α

)

×2 F1
(
1,α + 1;α + 3

2
; u1/α

)

+θ(2α + 1)(2α + 2u1/α(−2α + (α − 1)u + 1) + u − 1)√
u1/α

(
1 − u1/α

)
⎞
⎟⎠ ,

where 2F1(a, b; c; z) = ∑∞
k=0

1
k!

(a)k(b)k
(c)kzk

is a hypergeometric function.

3.1. Parzen’s score function and stochastic orderings

The hazard quantile function (hqf) is given by

H(u) = 1
(1 − u)q(u)

=
2
√
2αu

(
u1/α − 1

)√−u1/α
(
u1/α − 1

)
θ(u − 1)

.
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Analytical proof of its shapes is not possible at this time. Parzen (1979) has introduced a
score function that may be used to identify the shape of the hqf and to establish stochastic
orderings. The score function is equivalent toGlaser’s lemma given inGlaser (1980). Parzen’s
score function for the Lt2D is given by

J(u) = q′(u)
q2(u)

=
√
2u1/α

(
1 − u1/α

) (
2u1/α(2 + α) − 2α − 1

)
θ

. (12)

Nair et al. (2012) gave the relationship between the hqf and score function as (1 − u)H′(u) =
H(u) − J(u) that can be used to define the shape of the hqf. Using this relation, we can state
that if H(u) is increasing (decreasing) as H(u) ≥ (≤)J(u) for all u ∈ (0, 1) and the change
points of non-monotonic H(u) are zeroes of the equation H(u) − J(u) = 0.

Proposition 3.3: The Parzen’s score function J(u) given by (12) is upside-down bathtub
shaped.

Proof: Note that limu→0 J(u) = limu→1 J(u) = 0. We need to prove that there exists a
maxima of J(u) for u ∈ (0, 1). We use maxima–minima principle and obtain

J′(u) = u
1
α −1 (−2α + 2(5α + 7)u1/α − 8(α + 2)u2/α − 1

)
√
2αθ

√
−u1/α

(
u1/α − 1

) . (13)

Equating (13) to 0, we have

−2α + 2(5α + 7)u1/α − 8(α + 2)u2/α − 1 = 0, (14)

as u
1
α −1

√
2αθ

√
−u1/α(u1/α−1)

> 0. Roots of Equation (14) are

u1 =
(

−√
3
√
3α2 + 10α + 11 + 5α + 7

8(α + 2)

)α

,

u2 =
(√

3
√
3α2 + 10α + 11 + 5α + 7

8(α + 2)

)α

.

For α > 0, root u2 is feasible and that is the point at which the Parzen’s score function has
its maxima. Therefore we can state that the Parzen’s score function has upside-down bathtub
shapes. �

According to Theorem 2.1 given inNair et al. (2012), there exists at most one root ofH′(u)
in the closed interval of the points 0, u2 and 1.

Another important application of the score function is to compare quantile distributions
in terms of their stochastic order. Let X and Y be two non-negative rvs and JY(u) ≥ JX(u).
Then X is said to be scholastically greater than Y, i.e., Y ≤st X. The stochastic orders may be
defined using some other statistical functions such as quantile, total time on test (TTT) and
mrqf. Their implications can be stated as Y ≤J X =⇒ Y ≤disp X =⇒ Y ≤TTT X =⇒
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MY(u) ≤ MX(u). In classical way, stochastic orders are defined using the cdf, likelihood
function, hrf and mean residual life function (mrlf) and their implications are as follows:

Y ≤likelihood X =⇒ Y ≤hrf

Y
⇓≤cdfX

X =⇒ Y ≤mrlf X.

Proposition 3.4: Let X and Y be two independent random variables following the Lt2D(α1)

and Lt2D(α2), respectively. If α1 > α2, then (Y ≤likelihood X), (Y ≤mrlf X), (Y ≤hrf X) and
(Y ≤cdf X) for all x.

Proof: For given μ = 0 and θ = 1, the likelihood ratio for the rvs X and Y is given by

fX(x,α1)

fY(x,α2)
= 2α2−α1

α1

α2

(
1 + x√

x2 + 2

)α1−α2

.

Taking logarithmic of likelihood ratio and differentiating it w.r.t. x, we get

d
dx

log
(
fX(x,α1)

fY(x,α2)

)
= (α1 − α2)

(√
x2 + 2 − x

)
x2 + 2

.

As d
dx log

(
fX(x,α1)
fY (x,α2)

)
> 0 for α1 > α2, the likelihood ratio is an increasing function of sample

point x. Hence, X ≥likelihood Y . That implies (Y ≤mrlf X), (Y ≤hrf X) and (Y ≤cdf X). �

4. Moments and L-Moments

In this section, we derive the expressions of the ordinary moments obtained as the expecta-
tion of the rth (r = 1, 2, 3, . . .) power of the rv and L-moments as the expectation of linear
combination of the order statistics. The moments are employed to explore the character-
istics of the distribution that mainly includes mean, variance, skewness and kurtosis. The
L-moments are defined using the qf as given by

Lr =
r−1∑
q=0

(−1)r−1−q
(
r − 1
q

)(
r − 1 + q

q

)∫ 1

0
uqQ(u) du.

The main advantages of L-moments over the conventional moments are that they are
robust to sampling variability and outliers, and gave more precise inference results. For
more theory on the L-moments, we suggest readers to follow Hosking (1990) and Marshall
and Olkin (2007).

Proposition 4.1: Suppose Y is the Lt2D rv that is governed by the quantile function given in
(8). Then the rth L-moment of Y is given by

Lr =
r−1∑
k=0

(−1)r−1−k
(
r − 1
k

)(
r − 1 + k

k

)

×
⎛
⎜⎝ μ

k + 1
+

√
π
2 αθ(α(k + 1) − 1)�

(
α(k + 1) − 1

2
)

�(α(k + 1) + 1)

⎞
⎟⎠ (15)

where α > 1
2 .
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Proof: Proof is straightforward and removed. �

Corresponding to r = 1, 2, 3, 4, we obtain first four L-moments as given by

L1 =
√

π
2 θ�

(
α − 1

2
)

�(α − 1)
+ μ,

L2 =
√

π

2
θ

(
�

(
2α − 1

2
)

�(2α − 1)
− �

(
α − 1

2
)

�(α − 1)

)
,

L3 =
√

π

2
θ

(
�

(
α − 1

2
)

�(α − 1)
+ 6α(1 − 2α)�

(
2α − 1

2
)

�(2α + 1)
+ 2�

(
3α − 1

2
)

�(3α − 1)

)
,

L4 =
√

π

2
θ

(
−2�

(
α + 1

2
)

�(α)
+ α�

(
α − 1

2
)

�(α)
+ 6�

(
2α − 1

2
)

�(2α − 1)

+20α(4α − 1)�
(
4α − 1

2
)

�(4α + 1)
− 10�

(
3α − 1

2
)

�(3α − 1)

)
.

The mean of the Lt2D is L1 and L-coefficient of variation, L − Var(Y), is

L − Var(Y) = � (α − 1) � (2α − 1/2) − � (α − 1/2) � (2α − 1)

� (α − 1) − μ
θ

√
2
π
� (α − 1)

.

We can also obtain the L-coefficient of skewness (τ3) and L-coefficient of kurtosis (τ4),
respectively, defined by

L − Skew(Y) = L3

L2
and L − Kurt(Y) = L4

L2
.

Proposition 4.2: Suppose Y is the Lt2D distributed rv that is governed by the pdf given in (5).
The rth ordinary moment of Y is given by

E
[
Yr] =

n∑
r=0

(
n
r

)
2
1
2 (−2α+r+1)αμn−rθ r

×

⎛
⎜⎜⎜⎜⎝
2α�

(
1 − r

2
)
2F1

(−r,−α;− r
2 − α + 1; 12

)
�

( r
2 + α

)
�(α + 1)

−
π2− r

2 �(r + 1) 2F1
( r
2 ,α − r

2 ;
r
2 + α + 1; 12

)
(
csc

(
πα + πr

2
) + (−1)r csc

( 1
2π(r − 2α)

))
�

( r
2 − α + 1

)
�

( r
2 + α + 1

)
⎞
⎟⎟⎟⎟⎠ , (16)

where

r ∈
{
(2α, 2), if α ∈ (0, 1),
(2, 2α), if α ∈ (1,∞).
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Proof: Proof is straightforward and removed. �

The mean of the Lt2D is given by

E[Y] = μ +
√

π
2 θ�

(
α − 1

2
)

�(α − 1)
, α > 1,

which is the same as the first L-moment.

5. Order statistics and entropymeasure

Let Y(1),Y(2), . . . ,Y(n) be the ordered sample of size n from the Lt2D. In this section, we
derive the distribution of the rth order statistic Y(r), 0 ≤ r ≤ n with its expectation.

Proposition 5.1: Let Y be the Lt2D distributed rv with pdf given in (5). The pdf of the rth order
statistic Y(r) is

fY(r) (y) = n!
(j − 1)!(n − j)!

α

2α−1
(
2 + z2

)3/2

×

⎧⎪⎨
⎪⎩1 + z√(

2 + z2
)
⎫⎪⎬
⎪⎭

α−1 ⎡⎢⎣1
2

⎛
⎜⎝1 + z√(

2 + z2
)
⎞
⎟⎠

⎤
⎥⎦

α(j−1)

×
⎡
⎢⎣1 − 1

2α

⎛
⎜⎝1 + z√(

2 + z2
)
⎞
⎟⎠

α⎤⎥⎦
n−j

, z = y − μ

θ
∈ R, α > 0, θ > 0, (17)

and its expectation is

E[Y(r)] =
n−j∑
t=0

√
πα(−1)n−j2α+α(−j)+α(j(−t)+j+nt)− 1

2 (α(j(−t) + j + nt) − 1)

× �
(
(−tj + j + nt)α − 1

2
)

�((−tj + j + nt)α + 1)
, α(j(−t) + j + nt) >

1
2
. (18)

Proof: Proof is straightforward and removed. �

The means of the minimum and maximum order statistics are given by

E
[
Y(1)

] =
n−1∑
t=0

√
πα(−1)n−12αt(n−1)− 1

2 (α(n(t − 1) + 1) − 1)
�((t(n − 1) + 1)α + 1)

× �

(
(−t + 1 + nt)α − 1

2

)

E
[
Y(n)

] =
√

πα2α− 1
2 (αn − 1)�

(
nα − 1

2
)

�(nα + 1)
,

respectively.
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Entropy measure is useful in collecting information about the uncertainty of the random
experiments. We derive a measure of randomness called Renyi entropy (Rényi, 1961) that
generalizes the Shannon entropy. The Renyi entropy for the distribution of the rv Y with pdf
f (y) is given by

RIγ = 1
1 − γ

log
[∫ ∞

−∞
f γ

(
y
)
dy

]
,

where γ > 0 and γ �= 1. The Renyi entropy reduces to the Shannon entropy as γ approaches
to 0.

Proposition 5.2: Let Y be the Lt2D distributed rv with pdf given in (5). The Renyi entropy is
given by

RIγ = 2 log
(
2αγ − 13γ

2
− 1

2

)
+ log

(
�

(
5
2

− 3γ
2

))
+ log (�(2αγ − 5γ − 2))

− log
(

�

(
2αγ − 13γ

2
+ 1

2

))
− log (1 − γ ) ,

(γ ) <
5
3

∧ ((5 − 2α)γ ) < −2 ∧ γ �= 1,

where Γ (n) = ∫ ∞
0 e−yyn−1 dy denotes the gamma function.

Proof: Proof is straightforward and removed. �

6. Identifiability and estimation

This section provides insight on how to perform the estimation of Lt2D parameters using the
complete sample of observations. We discuss two different methods of estimation based on
the maximum likelihoods and matching the theoretical and empirical percentiles. Both the
methods are well known in estimation theory and can be effectively used for practical prob-
lems. We also suggest to compute bias-corrected maximum likelihood estimates (BMLEs).
Identifiability issue is also discussed that may ensure the uniqueness of the estimates.

6.1. Identifiability

Identifiability is a required condition for a model so that the precise inferences can be made.
A distribution is said to be identifiable in parameters if the two members of family are equal,
i.e., f1(x;	1) = f2(x;	2), then 	1 = 	2 for all x. Theorem 1 of Basu and Ghosh (1980) for
the identifiable distribution states that ‘the density ratio of f1(x;	1)

f2(x;	2)
of two distinct members

of the family defined on real line either converges to 0 or diverges to ∞’, as x → −∞. For
the Lt2D family, we have

lim
x→−∞

f1(x;α1)

f2(x;α2)
=

⎧⎪⎨
⎪⎩
0, if α1 > α2,
∞, if α1 < α2,
1, if α1 = α2.

According to Theorem 1 of Basu and Ghosh (1980), the Lt2D is identifiable in shape
parameter, α.
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6.2. Whenµ is known

We investigate the estimation of the parameters α and θ when μ = 0 is given. Suppose y =
(y1, y2, . . . , yn) is a random sample of size n from the Lt2D defined by the cdf (4). Assuming
that the random observations are independently distributed, the log-likelihood function is
obtained as


(α, θ | y) = n ln(α) − n ln(θ) − n(α − 1) ln(2)

− 3
2

n∑
i=1

ln
(
2 +

(yi
θ

)2) + (α − 1)
n∑

i=1
ln

⎛
⎜⎝1 + yi

θ

√
2 + ( yi

θ

)2
⎞
⎟⎠ . (19)

The log-likelihood equations corresponding to (19) are given by

n
α

− n ln(2) +
n∑

i=1
ln δ(yi) = 0, (20)

− n
θ

− 3
2

n∑
i=1

φ′
θ (yi)

φ(yi)
+ (α − 1)

n∑
i=1

δ′
θ (yi)
δ(yi)

= 0, (21)

whereφ(yi) =
(
2 +

(
yi
θ

)2)
,φ′

θ (yi) = −2 y2i
θ3
, δ(yi) =

(
1 + yi

θ

√
2+

(
yi
θ

)2

)
and δ′

θ (yi) = −
(
yi
θ

)
{

1
θ
√

φ(yi)
+ φ′

θ (yi)
2φ(yi)3/2

}
.

The maximum likelihood estimates (MLEs) of the parameters α and θ , respectively,
denoted by α̂m and θ̂m, can be obtained by solving Equations (20) and (21). Once θ̂m is
obtained, α̂m can be uniquely determined using Equation (20) as given by

α̂m(θ) = n

(
n ln(2) −

n∑
i=1

ln δ̂(yi)

)−1

, (22)

where

δ̂(yi) = δ(yi) =
⎛
⎝1 + yi

θ̂

(
2 +

(
yi
θ̂

)2
)−1/2

⎞
⎠ .

However, θ̂m can be determined as the solution of Equation (21) for given α̂m(θ) shown in
Equation (22). Since the closed-form expression of θ̂m is not possible, an iterative method
is used for numerical computation of the estimate. To estimate θ̂m, we have to solve the
following non-linear equation:

φ(θ) = −n
θ

+ 3
2

n∑
i=1

2y2i
θ3

(
2 + ( yi

θ

)2) + (α̂m − 1)
n∑

i=1

yi
(
yi − θ

√
2 + y2i

θ2

)
θ(y2i + 2θ2)

= 0. (23)

Finding the existence and uniqueness of nonlinear equation solutions can be difficult and
depends on a number of variables. So, in this section, wewill give the equation defined in (23)
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Table 1. The MLE θ̂m for various combinations of n and α.

Sample size (n)

α̂m 30 60 100 150

0.5 1.700 1.582 1.411 1.489
1.0 2.390 2.719 2.008 2.287
2.0 7.755 4.784 4.789 6.072
4.0 5.354 5.701 5.973 6.346

a visual representation that’s simpler to comprehend. Potential problems like having many
solutions or none at all are identified. Table 1 demonstrates that solutions of θ exist for differ-
ent n and α combinations, further demonstrating the uniqueness and existence of θ̂ . Hence,
from Table 1, we can conclude that solution of θ does exist and is unique.

The 100(1 − γ )% two-sided asymptotic confidence intervals (ACIs) for the unknown
parameters α and θ are given by

α̂m ∓ zγ /2
√

κ̂11, θ̂m ∓ zγ /2
√

κ̂22,

where zγ /2 is obtained from the probability P[Z > zγ /2] = γ /2 with Z as the standard nor-
mal rv and (κ̂11, κ̂22) are the diagonal elements of the inverse Fisher’s information matrix
estimated using the MLEs α̂m and θ̂m.

The Fisher’s information matrix is given by

I(α, θ) =

⎡
⎢⎢⎣

−E
[
∂2 logL

∂α2

]
−E

[
∂2 logL
∂θ∂α

]

−E
[
∂2 logL
∂α∂θ

]
−E

[
∂2 logL

∂θ2

]
⎤
⎥⎥⎦

where

E
[
∂2 logL

∂α2

]
= − n

α2 ,

E
[
∂2 logL
∂θ∂α

]
=

n∑
i=1

E

⎡
⎢⎢⎣
yi

(
yi − θ

√
2 + y2i

θ2

)
θ(y2i + 2θ2)

⎤
⎥⎥⎦ ,

E
[
∂2 logL

∂θ2

]
=

n∑
i=1

E

[
4θ4n + y4i (−α + n − 2) + 2θ2y2i (2n − 3(α + 2))

θ2
(
2θ2 + y2i

)2

+ 4(α − 1)θ3yi
√

y2i
θ2

+ 2 + (α − 1)θy3i

√
y2i
θ2

+ 2

θ2
(
2θ2 + y2i

)2
⎤
⎥⎦ .

As the closed expressions are not possible for Fisher’s information matrix. Using R software,
we can easily compute the Hessian matrix which is approximate to Fisher’s information
matrix. Notwithstanding that the MLE is the most popular method for estimating the
unknown parameters, it is not necessarily unbiased. The fitness of the distribution may
undoubtedly be affected by the bias. So for reducing the bias, we adopt a corrective approach
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to derive the MLE with possible minimum mean squared error (MSE). Bartlett (1953) was
first to introduce a bias correction formula for one parameter case. It was then extended by
Cox and Snell (1968) for multi-parameter models. In recent past, many authors used this
approach to propose the bias corrected MLE for some probability distributions. Following
Cox and Snell (1968), the general estimator of the bias of the parameter τs, s = 1, 2, . . . , p is
given by

B(τ̂s) =
p∑

i=1

p∑
j=1

p∑
l=1

κ siκ jl
[
1
2
κijl + κij,l

]
+ O(n−2), s = 1, 2, . . . , p, (24)

where κ ij is the (i, j)th element of the inverse of Fisher’s information matrix,

κij = E

[
∂2


∂λi∂λj

]
, κijl = E

[
∂3


∂λi∂λj∂λl

]
,

κij,l = E

[(
∂2


∂λi∂λj

)(
∂


∂λl

)]
, κ l

ij = ∂κij

∂λl
, i, j, l = 1, 2, . . . , p,

and 
 denotes the log-likelihood function.
In the case considered here, we have p = 2, s = 1, 2, τ1 = α, τ2 = θ and biases of the

MLEs are

B
(
α̂
) = 1

2
(
κ11)2 κ111 + 1

2
κ12κ22κ222 + 3

2
κ11κ12κ112 + 1

2
κ11κ22κ122 + (

κ12)2 κ122,

B(θ̂) = 1
2
κ12κ11κ111 + 1

2
(
κ22)2 κ222 + 1

2
κ112

[
2
(
κ12)2 + κ11κ22

]
+ 3

2
κ122 κ12κ22.

After thorough algebraic manipulation, we obtained the following expressions for the Lt2D:

κ111 = ∂3


∂α∂α∂α
= 2n

α3 , κ112 = ∂3


∂α∂α∂θ
= 0,

κ122 = ∂3


∂α∂θ∂θ
=

n∑
i=1

[
δ′′
θ

δ
−

(
δ′
θ

δ

)2]
,

κ222 = ∂3


∂θ∂θ∂θ
= −2n

θ3
− 3

2

n∑
i=1

[
φ′′′

θ

φ
− φ′′

θ φ′
θ

φ2 − 2φ′
θφ

′′
θ

φ2 + 2
(

φ′
θ

φ

)3]

+ (α − 1)
n∑
i=1

[
δ′′′
θ

δ
− δ′′

θ δ′
θ

δ2
− 2δ′′

θ δ′
θ

δ2
+ 2

(
δ′
θ

δ

)3]
,
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where

φ′
θ = −2y2i

φ3 , φ′′
θ = 6y3i

θ4
, φ′′′

θ = −24y3i
θ5

,

δ′
θ = −yi

[
1

θ2
√

φ
− φ′

θ

2θφ3/2

]
,

δ′′
θ = yi

[
2

θ3
√

φ
+ φ′

θ

2φ3/2θ2
+ φ′′

θ

2θφ3/2 − 3(φ′
θ )

2

4θφ5/2 − φ′
θ

2θ2φ3/2

]
,

δ′′′
θ = −6

θ4
√

φ
− φ′

θ

φ3/2θ3
+ φ′′′

θ

2θφ3/2 − 9φ′
θφ

′′
θ

4θφ5/2 + 15(φ′
θ )

2

8θφ7/2 + 3(φ′
θ )

2

4θ2φ5/2 − φ′′
θ

2θ2φ3/2 .

All the terms appearing above are computed using the MLEs of parameters. Then BMLEs of
α and θ are obtained as α̂b = α̂m − B(α̂m) and θ̂b = θ̂m − B(θ̂m), respectively.

6.2.1. Method of percentiles
The pth percentile of the distribution is an observation that divides the whole area into the
ratio of 100(p)% and 100(1 − p)%. Let (y1, y2, . . . , yn) be a random sample drawn from the
quantile function Q(u;	) given in (8), where 	 is a vector of parameters. A key idea of
getting percentile estimates is to equate the theoretical and sample percentiles as the assumed
distribution should possess the characteristics of the data if the assumption of the distribution
is correct. Using the order statistics (y(1:n), y(2:n), . . . , y(n:n)) corresponding to random sample
(y1, y2, . . . , yn), the pth percentile is defined by

ζ
(
pi
) =

{
Y([np]+1:n), if np ∈ Z,
Y(np:n), if np �∈ Z,

(25)

where [a] is the largest integral. The percentile estimates (PEs) (α̂p, θ̂p) of the parameters
(α, θ) can be obtained by solving the following non-linear quantile equations:

ζ
(
pi
) = Q

(
pi
)
, i = 1, 2.

The percentile points pi, i = 1, 2 need to be decided by the experimenter. It has been observed
that the distribution sometimes lacks to explain the tails of the frequency curve. We may
consider the percentiles from the tails. Here, we suggest to use (p1 = 0.1, p2 = 0.9) or (p1 =
1/4, p2 = 3/4). The PEs α̂p and θ̂p of α and θ , respectively, can be computed by solving the
following non-linear quantile equations:

ζ
(
p1

) =
θ

(
2p

1
α
1 − 1

)
√
2p

1
α
1

(
1 − p

1
α
1

) , (26)

ζ
(
p2

) =
θ

(
2p

1
α
2 − 1

)
√
2p

1
α
2

(
1 − p

1
α
2

) . (27)
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Subtracting (26) from (27), the PE θ̂p given α̂p is computed by solving the following relation:

θ̂p = ζ
(
p2

) − ζ
(
p1

)
g(p1, p2, α̂p)

, (28)

where g(p1, p2,α) = (2p
1
α
2 −1)√

2p
1
α
2 (1−p

1
α
2 )

− (2p
1
α
1 −1)√

2p
1
α
1 (1−p

1
α
1 )

and α̂p can be obtained as the solution of

the following non-linear equation:

ζ
(
p1

)√√√√2p
1
α̂p
1

(
1 − p

1
α̂p
1

)
− ζ

(
p2

) − ζ
(
p1

)
g(p1, p2, α̂p)

(
2p

1
α̂p
1 − 1

)
= 0. (29)

Equation (29) can be solved numerically.

6.3. Whenµ is unknown

Suppose (y1, y2, . . . , yn) is a random sample of size n from the Lt2D(α, θ ,μ) with pdf given
by (5). The log-likelihood function of 	 = (α, θ ,μ) is given by


(	 | y) = n ln(α) − n ln(θ) − n(α − 1) ln(2)

− 3
2

n∑
i=1

ln

(
2 +

(
yi − μ

θ

)2
)

+ (α − 1)
n∑
i=1

ln

⎛
⎜⎜⎝1 + yi − μ

θ

√
2 +

(
yi−μ

θ

)2
⎞
⎟⎟⎠ .

(30)

The following log-likelihood equations are obtained from the log-likelihood function (30),

n
α

− n ln(2) +
n∑

i=1
ln δ(yi) = 0, (31)

− n
θ

− 3
2

n∑
i=1

φ′
θ (yi)

φ(yi)
+ (α − 1)

n∑
i=1

δ′
θ (yi)
δ(yi)

= 0, (32)

− 3
2

n∑
i=1

φ′
μ(yi)

φ(yi)
+ (α − 1)

n∑
i=1

δ′
μ(yi)
δ(yi)

= 0, (33)

where

φ(yi) =
(
2 +

(
yi − μ

θ

)2
)
, φ′

μ(yi) = −2
(
yi − μ

θ

)
, φ′

θ (yi) = −2
(yi − μ)2

θ3
,

δ(yi) =

⎛
⎜⎜⎝1 + yi − μ

θ

√
2 +

(
yi−μ

θ

)2
⎞
⎟⎟⎠ , δ′

θ (yi) = −
(
yi − μ

θ

){
1

θ
√

φ(yi)
+ φ′

θ (yi)
2φ(yi)3/2

}
,

δ′
μ(yi) = − 1

θ

(
1√

φ(yi)
+ (yi − μ)φ′

μ(yi)
2φ(yi)3/2

)
.
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Equations (31), (32) and (33) can be simultaneously solved to get the MLEs α̂m, μ̂m and θ̂m.
From Equation (31), the MLE α̂m can be uniquely determined using the following relation:

α̂m = n

(
n ln(2) −

n∑
i=1

ln δ̂(yi)

)−1

, (34)

where δ̂(yi) = δ(yi) =
(
1 + yi−μ̂m

θ̂m

(
2 +

(
yi−μ̂m

θ̂m

)2)−1/2)
.

However, the MLEs μ̂m and θ̂m can be determined as the simultaneous solution of Equa-
tions (32) and (33) for given α̂m defined in (34). Since the closed-form expressions of θ̂m and
μ̂m are not possible to derive, an iterative method is used for numerical computation of the
estimates.

TheACIs andBMLEs for the parameters can be determined using the procedure discussed
in the previous section. We omit the discussion from here.

To estimate the parameters (α, θ ,μ) using the percentiles, we need to equate three theoret-
ical and sample percentiles. The PEs α̂p, θ̂p and μ̂p can be computed by solving the following
non-linear quantile equations:

ζ
(
pi
) = Q

(
pi
)
, i = 1, 2, 3. (35)

Simplifying Equation (35), the α̂p is obtained by solving the equation,

ζ
(
p3

) − ζ
(
p2

)
ζ
(
p2

) − ζ
(
p1

) − h(p2, p3,α)

g(p1, p2,α)
= 0, (36)

where

h(p2, p3,α) =

(
2p

1
α
3 − 1

)
√
2p

1
α
3

(
1 − p

1
α
3

) −

(
2p

1
α
2 − 1

)
√
2p

1
α
2

(
1 − p

1
α
2

)

and g(p1, p2,α) is defined in the previous section.
For given α̂p, the PE θ̂p is

θ̂p = ζ
(
p2

) − ζ
(
p1

)
g(p1, p2, α̂p)

. (37)

Using α̂p and θ̂p, the PE μ̂p is given by

μ̂p = ζ
(
p1

) − θ̂p

(
2p

1
α̂p
1 − 1

)
√√√√2p

1
α̂p
1

(
1 − p

1
α̂p
1

) . (38)

Equations (36), (37) and (38) can be solved numerically.



20 V. K. SHARMA ET AL.

7. Accelerated failure time regression and estimation

From the previous sections, we could see the impressive features of the Lt2D including the
useful skewed shapes, uni-modal hrf, explicitly defined statistical measures and convenient
estimation procedures. We may curiously think of studying the use of the Lt2D in paramet-
ric regression analysis. There are various situations where the assumption of normal random
error does not meet the requirement. In such cases, it is sought to use non-normal distri-
bution for the random error component. Great efforts have been made for the development
of the regression models with non-normal response and error distributions. See Kalbfleisch
andPrentice (2002, Section 2.3) andLiu (2012, Chapter 4). There are variousways to incorpo-
rate the co-factors into parametric regressionmodel.Wemay consider either of the following
functions: hrf, mean parameter, shape and scale parameters and linear predictor.

In this paper, we consider the linear model having only one predictor variable,

y = β0 + β1x + σε, (39)

where y is the response variable defined on (−∞,∞), β0 is the intercept, β1 is the regres-
sion coefficient, x is the independent/predictor variable, σ is the scale parameter and ε is the
random disturbance that is assumed to follow the Lt2D(α) defined on (−∞,∞).

The model defined by Equation (39) is called accelerated failure time regression model.
The reliability/survival function for the ith response is

SYi
(
y | x) = Pr

(
εi ≥ y − β0 − β1xi

σ

)
,

= S0
(
y − β0 − β1xi

σ

)
, i = 1, 2, . . . , n, (40)

where S0(.) is the survival function associated with Lt2D(α).
The corresponding hrf is given by

hYi
(
y | x) = 1

σ
h0

(
y − β0 − β1xi

σ

)
, i = 1, 2, . . . , n, (41)

where h0(.) is the survival function associated with Lt2D(α).
The pdf for the ith response is readily obtained as

fYi
(
y | x,	) = 1

σ
h0

(
y − β0 − β1xi

σ

)
S0

(
y − β0 − β1xi

σ

)
, i = 1, 2, . . . , n, (42)

where −∞ < y < ∞ and 	 = {α,β0,β1, σ }.
The pdf can be easily extended for more than one predictors by replacing the linear

predictor, β0 + β1xi in (42) by X′β = β0 + β1x1 + · · · + βpxp for p variates.
For the Lt2D regression model defined by (42), the MLEs of 	 can be obtained by

maximizing the log-likelihood function,

log L
(

	 | y
−
, x−

)
= −n log σ +

n∑
i=1

log h0 (zi) +
n∑

i=1
log S0 (zi) , (43)
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where zi = yi−β0−β1xi
σ . The MLEs α̂m, β̂0m, β̂1m and σ̂m can be determined by solving the

following log-likelihood equations:

d
dα

log L
(

	 | y
−
, x−

)
=

n∑
i=1

hα
0 (zi)
h0 (zi)

+
n∑

i=1

Sα
0 (zi)
S0 (zi)

= 0, (44)

d
dβ0

log L
(

	 | y
−
, x−

)
=

n∑
i=1

hβ0
0 (zi)
h0 (zi)

+
n∑

i=1

Sβ0
0 (zi)
S0 (zi)

= 0, (45)

d
dβ1

log L
(

	 | y
−
, x−

)
=

n∑
i=1

xih
β1
0 (zi)

h0 (zi)
+

n∑
i=1

xiS
β1
0 (zi)

S0 (zi)
= 0, (46)

d
dσ

log L
(

	 | y
−
, x−

)
= n +

n∑
i=1

zihσ
0 (zi)

h0 (zi)
+

n∑
i=1

ziSσ
0 (zi)

S0 (zi)
= 0. (47)

Equations (44), (45), (46) and (47) can be solved numerically using a suitable iterativemethod
as discussed in Section 6.2.1. We may also obtain ACIs for the parameters involved in (42)
using the asymptotic property of the MLE.

8. Simulations

In this section, we carry out Monte Carlo simulations for the estimation of the parameters
of the Lt2D discussed in Section 7 and the Lt2D regression model given in Section 8. In
the first case, we consider location parameter to be known and estimation of the scale and
shape parameters is performed. The simulation experimentsmay be easily extended for three
parameters case as it is done for the regressionmodel with four parameters. In the latter case,
we conduct simulation experiments for the estimation of the parametersα,β0,β1 andσ while
the independent variable is taken to be uniformly distributed in (0, 10). The comparison
is made on the basis of bias (B), MSE and absolute bias (AB) of the estimators. Follow-
ing combinations are considered to execute the simulation experiments: (α = 1, θ = 0.5),
(α = 1, θ = 1), (α = 2, θ = 1), (α = 1.5, θ = 1) and (α = 2, θ = 2) for varying sample sizes
n = 20, 40, 60, 80.

We simulated 10000 random samples from the Lt2D using the quantile function

xi = μ + θ
(
2u1/α − 1

)
√
2u1/α

(
1 − u1/α

) ,
where ui ∼ Uniform(0, 1), i = 1, 2, . . . , n. Then we compute bias, MSE and AB for MLEs,
BMLEs and PEs. The MSE, bias and AB are computed as follows:

MSE(τ ) = 1
10000

10000∑
i=1

(
τ − τ̂i

)2 , B(τ ) = 1
10000

10000∑
i=1

(
τ̂i − τ

)
,

AB(λ) = 1
10000

10000∑
i=1

|τi − τ̂i|,

where τ̂ is either of the MLE, BMLE and PE of τ . For the BMLEs, the bias can be extracted
directly using Equation (24).
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Figure 3. TheMSE and absolute bias of (α̂m, θ̂m), (α̂b, θ̂b) and (α̂p, θ̂p) for simulated samplewithα = 1 and
θ = 0.5.

The results are shown in Figures 3–7. From these figures, we observe that the MSEs of
BMLEs of both the parameters are smaller than that of the correspondingMLEs and PEs. Bias
of α̂b also appears substantially smaller than the biases of α̂m and α̂p for all the combinations
of the parameters and for every n.We also note here that ABs of α̂b and θ̂b are smaller than the
ABs of (α̂m, α̂p) and (θ̂m, θ̂p), respectively.We also found from the simulations that increasing
sample size results in decreasing the bias, MSE and AB of all the estimators in all the cases of
the n. From the above study, we can state here that the BMLEs are better than the MLEs and
PEs for both parameters.

We now conduct simulation experiments to assess the long-run performance of theMLEs
of Lt2D regression parameters. We take varying sample sizes n = 20, 40, 60, 80, 100 and dif-
ferent combinations of the parameter values α = 0.5, 1, 2,β0 = 0, 2,β1 = 1, 2 and σ = 1.We
generate n uniform random variates (X ∼ Uniform(0, 10)) as a co-variate and n random dis-
turbances distributed as ε ∼ Lt2D(α). The model given in Equation (39) is used to simulate
the response variates for the given values of the parameters. The MLEs are computed using
the simulated samples with varying sample sizes. The average MLEs, biases and MSEs of the
MLEs are reported on the basis of 10,000 iterations. Simulation results are shown in Table 2.
Following are the conclusions from the simulation.

• We observe that β1 is showing smaller bias on almost all the sample sizes as compared to
the other parameters.
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Figure 4. TheMSE and absolute bias of (α̂m, θ̂m), (α̂b, θ̂b) and (α̂p, θ̂p) for simulated samplewithα = 1 and
θ = 1.

• We also note that the MSE of MLEs of all Lt2D regression parameters decreases as the
sample size increases. This shows that the MLEs are consistent.

• The average estimate and bias are also decreasing as the sample size is increasing.

9. Strength datamodelling

This section proposes the use of the methodologies, presented in the previous sections, for
modelling strength data obtained from a life-test of 1.5 cm glass fibres. The life test was con-
ducted at UK National Physical Laboratory. Obubu et al. (2019) used this data set in their
study of fitting Gompertz length-biased exponential distribution. It is apparent from the
statistics given in Table 3 that the strength data is left tailed and has higher peak than the
normal curve since the Pearson’s coefficient of skewness β1 < 0 and kurtosis β2 > 3. The
Lt2Dmay be a pertinentmodel for fitting this data set because its characteristics arematching
with that of the strength data. To prove the efficacy of the Lt2D for real life data applications,
we compare the goodness-of-fit test results with five well-known flexible extensions of the
normal and t distributions. The pdfs are defined as follows:

(1) Topp–Leone normal distribution (TLND) by Sharma (2018)

f (x) = 2αφ (x) [1 − �(x)]�(x)α−1 [2 − �(x)]α−1 , −∞ < x < ∞, α > 0.
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Figure 5. The MSE and absolute bias of (α̂m, θ̂m), (α̂b, θ̂b) and (α̂p, θ̂p) for simulated sample with α = 1.5
and θ = 1.

Figure 6. TheMSE and absolute bias of (α̂m, θ̂m), (α̂b, θ̂b) and (α̂p, θ̂p) for simulated samplewithα = 2 and
θ = 1.
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Figure 7. TheMSE and absolute bias of (α̂m, θ̂m), (α̂b, θ̂b) and (α̂p, θ̂p) for simulated samplewithα = 2 and
θ = 2.

(2) Skew normal distribution (SND) by Azzalini (1985)

f (x) = 2φ(x)�(αx), −∞ < x < ∞, α > 0.

(3) Power normal distribution (PND) by Gupta and Gupta (2008)

f (x) = αφ(x) [�(x)]α−1 , −∞ < x < ∞, α > 0.

(4) Beta-t distribution (BtD) by Basalamah et al. (2018)

f (x) = 1
B(α,β)

ft(x)Ft(x)α−1(1 − Ft(x))β−1, −∞ < x < ∞, α > 0, β > 0.

(5) Kumaraswamy skew-t distribution (KStD) by Said et al. (2018)

f (x) = αβft(x)Ft(x)α−1(1 − F(x)α)β−1, −∞ < x < ∞, α > 0, β > 0.

In the above pdfs, φ(x) (�(x)) denotes the pdf(cdf) of the normal distribution with mean
μ and variance σ 2 > 0 and ft(x) (Ft(x)) denotes the pdf(cdf) of the t distribution with ν

degrees of freedom.
The appropriacy of the distributions is assessed and compared using the information crite-

rion such as Akaike information criterion (AIC = −2 ln(
) + 2p) and Bayesian information
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Table 2. Average MLE, MSE and bias for the Lt2D regression parameters using simulated samples.

(α = 1, β0 = 0, β1 = 1, σ = 1) (α = 1, β0 = 2, β1 = 2, σ = 1)

α β0 β1 σ α β0 β1 σ

n = 20 Mean 1.285 2.285 3.285 4.285 1.287 1.754 2.000 0.882
Bias 0.285 −0.245 0.000 −0.118 0.287 −0.246 0.000 −0.118
MSE 1.031 1.046 0.015 0.123 1.043 1.050 0.015 0.123

n = 40 Mean 1.134 −0.091 1.001 0.966 1.134 1.909 2.001 0.966
Bias 0.134 −0.091 0.001 −0.034 0.134 −0.091 0.001 −0.034
MSE 0.279 0.324 0.006 0.046 0.279 0.324 0.006 0.046

n = 60 Mean 1.071 −0.053 1.000 0.984 1.071 1.947 2.000 0.984
Bias 0.071 −0.053 0.000 −0.016 0.071 −0.053 0.000 −0.016
MSE 0.100 0.187 0.004 0.030 0.100 0.187 0.004 0.030

n = 80 Mean 1.049 −0.040 1.001 0.987 1.049 1.960 2.001 0.987
Bias 0.049 −0.040 0.001 −0.013 0.049 −0.040 0.001 −0.013
MSE 0.059 0.133 0.003 0.022 0.059 0.133 0.003 0.022

n = 100 Mean 1.037 −0.026 1.000 0.989 1.037 1.974 2.000 0.989
Bias 0.037 −0.026 0.000 −0.011 0.037 −0.026 0.000 −0.011
MSE 0.042 0.102 0.002 0.018 0.042 0.102 0.002 0.018

(α = 2, β0 = 0, β1 = 2, σ = 1) (α = 0.5, β0 = 0, β1 = 1, σ = 1)

α β0 β1 σ α β0 β1 σ

n = 20 Mean 2.428 −0.370 1.999 0.690 0.5614 −0.1281 0.9987 0.9297
Bias 0.428 −0.370 −0.001 −0.310 0.0614 −0.1281 −0.0013 −0.0703
MSE 2.983 1.134 0.010 0.229 0.1146 1.0801 0.0262 0.1552

n = 40 Mean 2.517 −0.178 2.001 0.892 0.5236 −0.0639 1.0009 0.9743
Bias 0.517 −0.178 0.001 −0.108 0.0236 −0.0639 0.0009 −0.0257
MSE 2.392 0.464 0.004 0.064 0.0200 0.3823 0.0101 0.0693

n = 60 Mean 2.404 −0.109 2.000 0.950 0.5126 −0.0359 1.0003 0.9856
Bias 0.404 −0.109 0.000 −0.050 0.0126 −0.0359 0.0003 −0.0144
MSE 1.500 0.257 0.003 0.027 0.0101 0.2333 0.0063 0.0447

n = 80 Mean 2.299 −0.076 2.001 0.966 0.5092 −0.0287 1.0005 0.9879
Bias 0.299 −0.076 0.001 −0.034 0.0092 −0.0287 0.0005 −0.0121
MSE 0.955 0.172 0.002 0.018 0.0071 0.1695 0.0045 0.0328

n = 100 Mean 2.223 −0.052 2.000 0.975 0.5079 −0.0195 0.9998 0.9904
Bias 0.223 −0.052 0.000 −0.025 0.0079 −0.0195 −0.0002 −0.0096
MSE 0.637 0.125 0.001 0.013 0.0055 0.1314 0.0036 0.0260

Table 3. Descriptive statistics of strength data.

Statistic Strength

Minimum 0.55
Maximum 2.24
Mean 1.507
Median 1.59
SD 0.324
Q1 1.375
Q3 1.685
Skewness −0.899
Kurtosis 3.924

criterion (BIC = −2 ln(
) + 2 log(n)), where ln(
) is the value of log-likelihood function,
p is the number of estimated parameters. The AIC and BIC are used for ranking the fitting
of the models based on their likelihoods. Smaller values of these statistics correspond to the
better fittedmodel. Kolmogorov– Smirnov (KS) statistic with its p-value is also computed for
all the distributions. The KS statistic is employed to test the hypothesis that a distribution fits
the data significantly at given level of significance. If p-value of the KS statistic is greater than
0.025, it suggests that the distribution fits the data significantly at 5% level of significance.
The MLE with their standard errors (S.E.), negative log-likelihood (NLL) and KS statistic
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Table 4. TheMLEs, negative log likelihood(NLL), KS statistic along with p-value for the distributions based
on strength data.

Model MLEs S.E. NLL KS p-value

Lt2D 0.665 1.64 0.139 0.13 0.034 0.028 12.985 0.072 0.899
TLND 0.264 1.924 0.222 0.189 0.093 0.069 15.057 0.157 0.09
SND 0.017 1.502 0.322 2.281 0.587 0.03 17.912 0.181 0.032
PND 0.103 1.941 0.137 0.105 0.131 0.057 15.636 0.16 0.079
BtD 31.021 2.662 67.596 5.848 0.506 103.405 21.004 0.205 0.01
KStD 24.551 3.69 66.305 3.464 1.493 246.507 18.79 0.19 0.021

Table 5. AIC and BIC of the distributions for the strength data.

Model AIC BIC

Lt2D 31.969 38.399
TLND 36.114 42.543
SND 41.824 48.253
PND 37.272 43.701
BtD 48.009 54.438
KStD 43.58 50.009

Table 6. MLE, BMLE and PE for Lt2D based on strength data.

MLE Bias BMLE PE SE 95% CI

α 0.6650 0.0244 0.6406 2.212 0.1300 (0.410, 0.920)
μ 1.6404 −0.0046 1.6450 0.856 0.0344 (1.573, 1.708)
θ 0.1393 0.0000 0.1393 0.195 0.0276 (0.085, 0.193)

along with the corresponding p-value are exhibited in Table 4. The AIC and BIC are shown
in Table 5.

We note from Tables 4 and 5 that the AIC, BIC and KS statistic have smaller values for
the Lt2D as compared to the extensions of the normal and t distributions. From above fit-
ting results, we can state that the Lt2D gives a better fitting than all the other distributions
used for comparison. From Figure 8, we can also see that the Lt2D captures well both tails
and peakedness of the frequency distribution of the strength data. We also compute the esti-
mates of the parameters using the percentiles and bias corrected MLE methods. We take
u1 = 0.25, u2 = 0.5 and u3 = 0.95, and obtain the PEs of α, θ and μ that are presented in
Table 6. Using the MLE, BMLE and PE, the estimated quantiles and reliability are plotted in
Figures 9(a) and (b), respectively. We can see that the BMLE provides the estimates closer to
the empirical estimates. The PE is far away from the reality.

Besides the uni-variate data fitting, we wish to illustrate the regression model for strength
data set. Since co-variates are not available for the strength data, we simulate a co-variate
fromuniformpopulation in (0,10) and estimate the parameters and reliability for the strength
data. Table 7 shows the MLE, SE Bias, BMLE, PE and 95% confidence intervals for the Lt2D
regressionmodel. Conditional reliability is estimated using theMLE for the regressionmodel
for the given different values of x (see Figure 10). We can note that the median strength
increases as x increases. The estimated reliability is closely fitted with the empirical one.
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Figure 8. Fitted density plots of the distributions for strength data.

Figure 9. Q–Q and reliability plots for the strength data using Lt2D: (a) Q–Q plot and (b) reliability plot.

10. Conclusion

In this article, we proposed three-parameter Lehmann-type I t distribution with 2 degrees of
freedom, which accomodates upside-down bathtub-shaped hrf. We also derived the statisti-
cal properties such as shape of the density and hrf, moments, order statistics and associated
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Figure 10. Reliability plots for strength of glass fibre data using the Lt2D regression model.

Table 7. MLE, SE and 95% CI for Lt2D regression parameters for strength data.

MLE SE 95% CI

α 0.561 0.102 (0.361, 0.760)
β0 0.511 0.038 (0.436, 0.586)
β1 0.000 0.006 (−0.012, 0.012)
σ 0.078 0.015 (0.047, 0.108)

measures, entropy, quantile function, density quantile function, quantile hazard and mean
residual quantile function. Measures of dispersion using the moments and L-moments are
derived. We also study the skewness and kurtosis of the distribution based on quantile func-
tion. It is observed that Lt2D accommodates the shapes with varying degrees of skewness and
higher levels of the peakedness.

The Lt2D holds the identifiability condition in the skewness parameter. The unknown
parameters of the distribution are estimated using the method of MLE, BMLE and PE. Their
performances were compared through the simulation experiments. It was observed that the
BMLE outperforms the MLE and PE.

We fit the strength data using the Lt2D and compare with five another extensions of the
normal and t distributions. It was found that the Lt2D is enough flexible to model negative
skewed and high peaked data.

The distribution is also utilized to develop parametric regression model to study the sig-
nificance of co-variate on glass fibre strength data. Simulation experiments are performed for
the MLE of the Lt2D regression model. So, by summing up it can be stated that Lt2D can be
effectively used for non-monotone shaped hazard rate data sets.
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