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ABSTRACT
In mixture experiments, the observed response is determined by the
relative proportions of the components, consequently rendering the
experimental region a simplex. This paper focuses primarily on the
optimal designs of mixture experiments that involve process variables.
Prior research has extensively delved into optimal orthogonal block
designs for some classic mixture models with process variables. Based
on the framework of general blending models, this paper proposes a
class of symmetric linear mixture models, which can be regarded as
a generalization of many existing ones. Under the orthogonal block-
ing conditions, orthogonal block designs are devised through Latin
squares in thepresenceof process variables. TheD-,A-, and E-optimality
criteria are utilized to obtain optimal designs at the boundary of the
simplex in the case of 3 components. As the values of the exponents
change, numerically derived optimal design points are presented to
illustrate the pattern of their variations, and to verify the consistency of
the results with previous research on some specific symmetric general
blending models.
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1. Introduction

Mixture experiments are typically used to investigate the effects of the proportions of mix-
ing components on the response variable, and are common in fields such as chemistry,
pharmaceuticals, material science and food industry (see e.g., Atkinson et al., 2007; Wu
&Hamada, 2021). Inmixture experiments, the basic constraint is that the total proportion of
all components adds up to 1, and the experimental region is a regular (q − 1)-dimensional
simplex.

Models are powerful tools for analysing data frommixture experiments. There is no con-
stant term inmixturemodels, because a constant term can always be replaced through the lin-
ear constraints (see also Cornell, 2002). Scheffé polynomials, also known as canonical poly-
nomials, originated from re-parameterization of the standard polynomials by Scheffé (1958),
and have played a significant role in the development of mixture experiments since then.
Three homogeneous models were then suggested by Becker (1968), which could describe
more complex interactions than Scheffé polynomials. Brown et al. (2015) introduced general
blendingmodels (GBM) to describe complicated curvilinear effects, whichwere general cases
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of several mixture models, including Scheffé polynomials and Becker’s H2 and H3 models.
GBM is non-linear and its coefficients are challenging to estimate, but it often demonstrates
good fit in data analysis, particularly in instances where there exist unknown non-additive
effects of the components (Bao, 2021).

Designs are usefulmethodologies for collecting data scientifically inmixture experiments.
The choice of designs plays a critical role in ensuring the quality and efficiency of statistical
analysis. Kiefer (1959) proposed the concept of optimal designs, and the well-known D-, A-
and E-optimality criteria were defined, tominimize the variance of the coefficients in param-
eter estimation. Formore information on optimal designs, please refer to Pukelsheim (2006).
In recent years, the optimal problems have become increasingly complex, involving the appli-
cation of newmodels or optimality criteria. See also Dette et al. (2022) and Zhou et al. (2024).
Along these lines, a series of noteworthy papers, Peter et al. (2016), Duarte et al. (2021), Gong
et al. (2022) and Li et al. (2024), developed a range of optimal designs inmixture experiments.

Process variables refer to qualitative factors other than mixture components, typically
encompassing operational conditions or settings, such as temperature and pressure, which
can potentially influence the response (see also Donev, 1989; Sinha et al., 2014). The prob-
lem of mixture experiments involving process variables was introduced by Scheffé (1963).
Subsequently, Nigam (1970) and Nigam (1976) constructed block designs through mutu-
ally orthogonal Latin squares, and gave orthogonal blocking conditions for quadratic Scheffé
polynomial. Following this, Czitrom (1988), Lewis et al. (1994), Aggarwal et al. (2002) and
Mario and Peter (2023) sequentially obtained optimal orthogonal block designs for various
mixture models under different criteria. Aggarwal et al. (2013) used F-squares to construct
orthogonal block designs for Becker’s models of 3 and 4 components.

In this paper, we introduce the symmetric general blending model as a class of mixture
models, and develop orthogonal block designs aimed at mitigating the impact of process
variables on the estimation of parameters. We take into account D-, A-, and E-optimality
criteria, and provide theoretical and numerical results in the case of 3 components.

2. Symmetric general blendingmodel

In this chapter, we will introduce several commonly used models in mixture experiments, all
of which are second-order, with q single terms and

(q
2
)
binary terms, where q is the number

of mixture components. Let y denote the response, and x1, x2, . . . , xq denote the proportions
of the q components. Remain that the experimental region is a regular (q − 1)-dimensional
simplex, i.e.,

Sq−1 =
{

(x1, x2, . . . , xq)
∣∣∣∣

q∑
i=1

xi = 1, xi ≥ 0, i = 1, 2, . . . , q

}
. (1)

We begin with a general form of mixture models of order 2, that is,

E[y] =
q∑

i=1
βixi +

q∑
i<j

βijh(xi, xj), (2)

where h(xi, xj) is a function of xi and xj that characterizes the joint effects between them, and
βi and βij are linear coefficients to be estimated, i, j = 1, 2, . . . , q.
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Definition 2.1: (Liu & Neudecker, 1997; Li et al., 2017) A mixture model is symmetric,
when it is symmetrically invariant with respect to the components x1, x2, . . . , xq. In other
words, for x = (x1, x2, . . . , xq), the function value remains unchanged upon swapping any of
its components.

By Definition 2.1, a second-order mixture model (2) is symmetric, when its binary terms
satisfy that,

∑q
i<j h(xi, xj) is a symmetric function of x1, x2, . . . , xq. It is obvious that, three

classic mixture models, i.e., the quadratic Scheffé polynomial (3) and Becker’s H2 (4) andH3
models (5) are symmetric, respectively:

E[y] =
q∑

i=1
βixi +

q∑
i<j

βijxixj, (3)

E[y] =
q∑

i=1
βixi +

q∑
i<j

βij
xixj

xi + xj
, (4)

E[y] =
q∑

i=1
βixi +

q∑
i<j

βij
√
xixj. (5)

The general blendingmodel (GBM) (Brown et al., 2015) considersmore complex joint effects,
which is structured as follows:

E[y] =
q∑

i=1
βixi +

q∑
i<j

βij
xriji x

rji
j

(xi + xj)sij
, (6)

where rij, rji and sij (i < j, i, j = 1, 2, . . . , q) are exponents.
Based on the structure of GBM (6), we define a class of linearmixturemodels, named sym-

metric general blending model (SGBM), which retains flexible utilization of the exponents
and also satisfies the symmetry properties defined in Definition 2.1.

Definition 2.2: A second-order SGBM can be formulated by

E[y] =
q∑

i=1
βixi +

q∑
i<j

βij
(xixj)r

(xi + xj)s
, (7)

where r and s are exponents to be assigned. Typically, we consider that r > 0 and s ≥ 0. To
avoid meaningless results, we set h(0, 0) = 0, where h(xi, xj) = (xixj)r

(xi+xj)s
, for i, j = 1, 2, . . . , q.

Through the exponents in SGBM (7), we are able to flexibly describe the interaction of
the components in different mixture models. It is clear that, Models (3)–(5) are all particular
cases of SGBM, with exponents assigned to (r = 1, s = 0), (r = 1, s = 1) and (r = 1

2 , s = 0),
respectively. Note that Becker’s H1 model (also known as the minimum polynomial) is not
a special case of SGBM, and thereby the optimal conclusions proposed in this paper are not
applicable to the H1 model.
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3. Orthogonal block designs

Process variables, introduced as factors that affect the response independent of the compo-
nents in mixture experiments, are addressed by blocking the design to mitigate their impact
on parameter estimation.

Let n denote the total number of runs, and m denote the number of process variables. A
second-order SGBM (7) with process variables can be written as

E[y] =
q∑

i=1
βixi +

q∑
i<j

βij
(xixj)r

(xi + xj)s
+

m∑
k=1

αkzk, (8)

where zk’s are process variables, and αk’s are corresponding block difference parameters, for
k = 1, 2, . . . ,m. Model (8) can also be expressed in the matrix notation:

E[y] = Xβ + Zα, (9)

where y is the response vector of length n, X is the n × q(q+1)
2 (extended) design matrix,

Z = (z1, z2, . . . , zm) is the n × m block matrix, z1, z2, . . . , zm are process vectors of length n,
α and β are both parameter column vectors of lengthm and q(q+1)

2 , respectively.
According to the orthogonal blocking condition for quadratic Scheffé polynomial given

by Nigam (1970), we define similar conditions for SGBM’s (9) to ensure that the effects of
mixture components can be unbiased estimated and not affected by the effects of process
variables.

Definition 3.1 (Orthogonal blocking condition): A block design for SGBM with pro-
cess variables (9) satisfies the orthogonal blocking condition, when the estimates of the
coefficients are independent of the block effects, that is

X�Z = 0 q(q+1)
2 ×m, (10)

where 0 q(q+1)
2 ×m is a matrix of zeros.

For each block, the orthogonal blocking condition (10) is equivalent to

∑
w

xiw = li;
∑
w

(
xiwxjw

)r(
xiw + xjw

)s = lij,

where li and lij are constants for i< j, i, j = 1, 2, . . . , q, and the range of w depends on the
entries of each block.

Block designs can be generated through somewell-established constructionmethods, and
we utilize mutually orthogonal Latin squares (MOLS) to achieve the orthogonal blocking
condition (10). If q is a prime power, there exist (q − 1) MOLS of order q, denoted q−1
MOLS(q). Referring to the construction by Bose (1938), we construct q−1 MOLS(q), given
in the forms of L1, L2, . . . , Lq−1, as follows. For 1 ≤ k ≤ q − 1 and 1 ≤ i, j ≤ q, the element
in the i-th row and j-th column of Lk is derived from

Lk,ij = (k · (j − 1) + i − 1) mod q. (11)

This construction makes sure that the first column of each Latin square is always
(0, 1, 2, . . . , q − 1)�, and there are no duplicate runs among q−1 MOLS(q). Then, we can
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replace the numbers 0, 1, 2, . . . , in order with the parameters a, b, c, . . . , and add the cen-
troid of the simplex Sq−1, i.e., ( 1q ,

1
q , . . . ,

1
q ), into each Latin square, to ensure a non-singular

information matrix 1
nX

�X. Overall, an orthogonal block design with (q2 − q + 1) support
points will be subsequently obtained.

The number of process variables and their corresponding levels determine the number of
blocks. When q = 3, we can construct an exact design with 8 runs throughout 2 MOLS(3),
for an SGBM including a 2-level process variable (8):(

p1 p2 . . . p6 p7
1
8

1
8 . . . 1

8
1
4

)
, (12)

where points p1, p2, . . . , p6 come from 2 MOLS(3), with parameters 0 ≤ a, b, c ≤ 1
(a+ b+ c = 1), and p7 = ( 13 ,

1
3 ,

1
3 ) is the centroid of S2, which is arranged into both blocks

to enhance the balance of the design (hence, the number of replicates is 2 for p7):

B1 =

⎛
⎜⎜⎝
x1 x2 x3

p1 a b c
p2 b c a
p3 c a b
p7 1

3
1
3

1
3

⎞
⎟⎟⎠, B2 =

⎛
⎜⎜⎝
x1 x2 x3

p4 a c b
p5 b a c
p6 c b a
p7 1

3
1
3

1
3

⎞
⎟⎟⎠.

When it comes to m 2-level process variables, we can divide the design for components
into 2m blocks. For each block, the design of the components is a repetition 2m−1 ofB1 andB2.
Simultaneously, the process variables are constructed by full factorial designs, which ensures
that all process variables take the same level combination in the same block. We provide
examples form = 1, 2 as follows.

Example 3.2: The case of one process variable. Take the process variable at -1 level for Block
1 and at+1 level for Block 2, and the corresponding 8×6 designmatrix and 8×1 blockmatrix
under Design (12) are

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 x2 x3 x2 : x3 x1 : x3 x1 : x2
a b c h(b, c) h(a, c) h(a, b)
b c a h(a, c) h(a, b) h(b, c)
c a b h(a, b) h(b, c) h(a, c)
1
3

1
3

1
3 h( 13 ,

1
3 ) h( 13 ,

1
3 ) h( 13 ,

1
3 )

a c b h(b, c) h(a, b) h(a, c)
b a c h(a, c) h(b, c) h(a, b)
c b a h(a, b) h(a, c) h(b, c)
1
3

1
3

1
3 h( 13 ,

1
3 ) h( 13 ,

1
3 ) h( 13 ,

1
3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
−1
−1
+1
+1
+1
+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (13)

where h(xi, xj) = (xixj)r

(xi+xj)s
, for i �= j, i, j = 1, 2, 3.

Example 3.3: The case of two process variables. Based on the design matrix (13) form = 1,
the 16×6 design matrix and 16×2 block matrix form = 2 can be written as

X′ =
(

X
X

)
, Z′ = (

z1 z2
) =

⎛
⎜⎜⎝

−14 −14
+14 −14
+14 +14
−14 +14

⎞
⎟⎟⎠ (14)
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where 14 is a 4-dimensional column vector of ones. Note that, z�
1 z2 = 0 and 1

16 (X
′)�X′ =

1
16 · 2X�X = 1

8X
�X, i.e., the information matrix remains invariant despite the change ofm.

Then we can prove that Design (12) satisfies the orthogonal blocking conditions with any
number ofm process variables.

Theorem 3.4: Design (12) is an orthogonal block design for 3-component SGBM with 2-level
process variables.

Proof: We start with the case of one 2-level process variable. Certainly, the sufficient con-
dition for orthogonal blocking is satisfied: X�Z = 06×1. When m = 2, it can be shown
from (14) that, (X′)�z1 = 06×1, (X′)�z2 = 06×1, and therefore (X′)�Z′ = 06×2. In the case
of a general m, the 2m+2 × 6 design matrix and 2m+2 × m block matrix under Design (12)
can always be expressed by X in (13) and orthogonal vectors z1, z2, . . . , zm, and similarly to
m = 2, orthogonal blocking condition can be verified. �

Observations at or near the boundary of the experimental region exert a more significant
influence on both the estimation of coefficients and the variance of predictions, compared to
observations collected deepwithin the simplex (Cornell, 2002).Whether the optimal orthog-
onal block design achieves optimal values at the edge of the simplex has been a topic of
discussion in previous studies, and researchers have verified that some optimality criteria
tend to achieve their minimun at the boundary for some specific mixture models (see, e.g.,
Aggarwal et al., 2002; Chan, 1999; Czitrom, 1988). In this paper, we mainly focus on the
orthogonal block designs for the 3-component SGBM with a 2-level process variable, with
some support points located at the edge of the simplex.Without loss of generality, we assume
that c = 0, 0 ≤ a ≤ b ≤ 1 (and hence, a+ b = 1), and define ξ as any design on Sq−1 that
satisfies the structure of Design (12) with c = 0, and � as the set of all such ξ ’s.

4. Optimal designs

In this chapter, the optimal ξ in � will be studied, using D-, A- and E-optimality criteria,
in order to minimize the variance of the estimator in Model (9) based on least squares esti-
mation. The following standard assumption should be mentioned: the random errors are
assumed to be identically independently normally distributed, with 0 expectation and con-
stant variance. We begin with the study of the information matrix, which associates design
ξ with the optimal criteria and directly determines the magnitude of the variance of the
estimator, given by 1

nX
�X. Denote

M = X�X =
(

(A − B)I3×3 + BJ3×3 (E − F)I3×3 + FJ3×3
(E − F)I3×3 + FJ3×3 (C − D)I3×3 + DJ3×3

)
, (15)

where I3×3 is the identity matrix of order 3, J3×3 is a 3 × 3 matrix of ones, and

A = 2
(
a2 + b2 + 1

9

)
, B = 2

(
ab + 1

9

)
, C = 2

(
(ab)2r + 32s−4r

22s

)
,

D = 32s−4r

22s−1 , E = 3s−2r−1

2s−1 , F = (ab)r + 3s−2r−1

2s−1 . (16)
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Lemma 4.1: The eigenvalues ofM are

λ1, λ2 =
T1 ±

√
T2
1 − 4T2

2
, λ3, λ4 =

T3 ±
√
T2
3 − 4T4

2
, (17)

where λ1 and λ2 are both of multiplicity 2, and

T1 = (A − B) + (C − D),

T2 = (A − B)(C − D) − (E − F)2,

T3 = (A + 2B) + (C + 2D),

T4 = (A + 2B)(C + 2D) − (E + 2F)2. (18)

Proof: Using the properties of the block matrix (note that (λ − A + B)I3×3 − BJ3×3 should
be non-singular), the characteristic equation of M can be simplified through algebraic
operations:

|λI6×6 − M| = (λ2 − T1λ + T2)
2(λ2 − T3λ + T4) = 0, (19)

and the eigenvalues can thus be derived. �

Following Lemma 4.1, the criteria of optimality can be expressed in terms of the eigenval-
ues:

�(M) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|M−1| = λ−2
1 λ−2

2 λ−1
3 λ−1

4 = T−2
2 T−1

4 , (20)

tr(M−1) = 2λ−1
1 + 2λ−1

2 + λ−1
3 + λ−1

4 = 2
T1

T2
+ T3

T4
, (21)

λmax(M−1) = max(λ−1
1 , λ−1

2 , λ−1
3 , λ−1

4 ), (22)

where Equations (20)-(22) correspond to the D-, A- and E-optimality criteria, respectively,
and minimizing them allows for the derivation of the optimal design. In the subsequent
sections, we will systematically discuss three optimal criteria in detail.

4.1. D-Optimality

The D-optimal criterion aims to minimize the generalized variance of the estimators, i.e.,
|Cov(β̂)|, which is proportional to the determinant ofM−1. Thus, theD-optimal orthogonal
block design (denoted as ξ∗

D) in � is obtained by maximizing |M|. Recall that, we have set
b = 1 − a, c = 0, and consequently, |M| can be simplified to a function of single variable
a (0 ≤ a ≤ 1

2 ), that is

|M| = T2
2T4

= (
(A − B)(C − D) − (E − F)2

)2
× (

(A + 2B)(C + 2D) − (E + 2F)2
)

= 192a4r(1 − a)4r
(
a − 1

2

)4 (
(a − a2)r − 3s−2r+1

2s

)2

. (23)
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Let u = a − a2 (0 ≤ u ≤ 1
4 ), and t = 3s−2r+1

2s . Then we have

|M(u)| = 192u4r
(
u − 1

4

)2
(ur − t)2. (24)

The theorem below provides the necessary condition for ξ to be D-optimal.

Theorem 4.2: The D-optimal parameter u∗
D must be obtained at the endpoints and critical

points of |M(u)|. Given values of the exponents r and s, u∗
D necessarily satisfies the following

equation:

r(3ur − 2t)(1 − 4u) − 4u(ur − t) = 0. (25)

The solution to Equation (25) that maximizes |M(u)| is the D-optimal u. Consequently, ξ∗
D will

be computed from a∗
D = 1

2 −
√

1
4 − u∗

D.

Proof: |M(u)| is continuous and differentiable within [0, 14 ]. Hence, its maximum value can
either be found at the endpoints (0 and 1

4 ) or the critical points where its derivative equals
zero, i.e., ∂|M(u)|

∂u = 0. Note that, |M(u)| reaches its minimum, 0, at the endpoints u = 0 and
1
4 , so the D-optimal umust satisfy ∂|M(u)|

∂u = 0, which can be simplified as

u4r
(
u − 1

4

)
(ur − t)(r(3ur − 2t)(1 − 4u) − 4u(ur − t)) = 0. (26)

Equation (25) is derived after eliminating u = 0, 14 and t
1
r , which maximize |M(u)|. �

Theorem 4.2 enables us to systematically compute the values of unknown parameters a
for various combinations of r and s, which could be illustrated through an example provided
below.

Example 4.3: D-optimal orthogonal block design for quadratic Scheffé polynomial. When
r = 1 and s = 0, the SGBM turns into the quadratic Scheffé polynomial (3), and
Equation (25) becomes

8u2 − 7
2
u + 1

3
= 0. (27)

The approximate solution to Equation (27) in [0, 14 ] is 0.1401, and upon verification,
u∗
D = 0.1401 is the point that maximizes |M(u)|. Accordingly, ξ is D-optimal when

a = 0.1685,b = 0.8315 and c = 0, and this result is consistent with Czitrom (1988)’s work.

We have calculated the values of the D-optimal parameter a∗
D for certain specific combi-

nations of r and s, and the results are presented in Table A1 in Appendix. We can observe
that, when 0 < r ≤ 1, with r held constant, a∗

D gradually increases as s increases, and simi-
larly, with s held fixed, the values tend to gradually increase with the rise of r. When r>1, the
value of a∗

D locally increases with s, but the change in the value of a∗
D becomes more complex,

and an intuitive pattern is no longer evident.
The D-optimal values of a in the orthogonal block designs for the three classic mixture

models with process variable have been numerically collected in Table A1 and the results are
presented in Figure 1.
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Figure 1. D-optimal orthogonal block designs for the classic mixture models.

4.2. A-optimality

The A-optimal criterion focuses on minimizing the average variance of the parameters to
estimate, which is proportional to the trace ofM−1, i.e.,

tr(M−1) = 2
T1

T2
+ T3

T4

= 2
A − B + C − D

(A − B)(C − D) − (E − F)2
+ A + 2B + C + 2D

(A + 2B)(C + 2D) − (E + 2F)2

= 4
(a(1 − a))2r − 3a(1 − a) + 1

3(a(1 − a))2r(2a − 1)2
+ 3(a(1 − a))2r + 4 + ( 3

s−2r+1

2s )2

2(a(1 − a)r − 3s−2r+1

2s )2
. (28)

Let u = a − a2, t = 3s−2r+1

2s (0 ≤ u ≤ 1
4 , u �= t

1
r ). Then

tr(M−1(u)) = 4
u2r − 3u + 1
3u2r(1 − 4u)

+ 3u2r + 4 + t2

2(ur − t)2
. (29)

A-optimal orthogonal block design will be obtained by the following necessary condition.

Theorem 4.4: The A-optimal parameter u∗
A must be obtained at the critical points of

tr(M−1(u)). Given values of the exponents r and s, u∗
A necessarily satisfies the following

equation:

4(4u2r+1 − 24ru2 + 14ru + u − 2r)(ur − t)3 − 3ru3r(3tur + t2 + 4)(1 − 4u)2 = 0. (30)

The solution to Equation (30) that minimizes tr(M−1(u)) is the A-optimal u. Consequently, ξ∗
A

will be generated from a∗
A = 1

2 −
√

1
4 − u∗

A.
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Figure 2. A-optimal orthogonal block designs for the classic mixture models.

Proof: The proof is similar to that of Theorem 4.2. Note that tr(M−1(u)) → ∞ when
u → 0 and 1

4 , and therefore, only the critical points could minimize tr(M−1(u)). Thereby,
Equation (30) is simplified from ∂tr(M−1(u))

∂u = 0. �

Theorem 4.4 offers a structured approach to constructing A-optimal designs tailored to
different exponent settings, and it could be directly illustrated through the following example.

Example 4.5: A-optimal orthogonal block design for Becker’s H3 model.
For Becker’s H3 model (5), we have r = 1

2 and s = 0, so Equation (30) turns into

144u4 + 304u
7
2 − 264u3 + 8u

5
2 + 137u2 − 169u

3
2 + 40u + 24u

1
2 − 8 = 0. (31)

The approximate solution to Equation (31) for 0 < u < 1
4 is 0.1302, and upon verification,

u∗
A = 0.1302 is the point that minimizes tr(M−1(u)), and thereby the A-optimal design ξ∗

A
has (a = 0.1538, b = 0.8462, c = 0). This result is consistent with Aggarwal et al. (2002)’s
work.

Under different combinations of specified r and s, a∗
A’s can be calculated. FromTable A2 in

Appendix, we can observe that, when 0 < r ≤ 1, with r held constant, a∗
A increases with the

growth of s, and the rate of increase gradually slows down. This is similar to the phenomenon
demonstrated by the numerical results of D-optimality in Table A1. However, the difference
lies in the fact that as r increases from around 0.9, the changes in a∗

A start to become compli-
cate, making it difficult to describe the underlying patterns. Moreover, the critical values at
which these changes occur are influenced by both r and s.

The A-optimal orthogonal block designs for the three classic mixture models have been
included in Table A2 and are plotted in Figure 2. Comparing Figures 1 and 2, the sequence
of the optimal a∗ values for D- and A-optiamlity across the three models is consistent.
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Figure 3. Graphs of λ1 and λ3 against u for quadratic Scheffé polynomial.

4.3. E-optimality

The E-optimal criterion aims to minimize the maximum variance of the estimators, which is
equivalent tomaximizingλmin(M) = min(λ1, λ3) (forλ1 ≤ λ2 andλ3 ≤ λ4). Letu = a − a2

(0 ≤ u ≤ 1
4 ), t = 3s−2r+1

2s , and we have

λ1(u) =
T1 −

√
T2
1 − 4T2

2
= u2r − 3u + 1 −

√
(u2r + 3u − 1)2 + u2r, (32)

λ3(u) =
T3 −

√
T2
3 − 4T4

2
= u2r + t2 + 4

3
−

√(
u2r + t2 − 4

3

)2
+ 4

(
ur + t

3

)2
. (33)

Whenever r and s are fixed, we need to compare λ1 and λ3 to find the point that maximizes
λmin(M). Two possible situations are illustrated below through two examples.

Example 4.6: E-optimal orthogonal block design for quadratic Scheffé polynomial. When
r = 1 and s = 0, the SGBM turns into the quadratic Scheffé polynomial (3), and the graphs
of λ1(u) and λ3(u) for (0 ≤ u ≤ 1

4 ) are shown in Figure 3.
It can be clearly observed that, the E-optimal u∗

E occurs at the intersection of λ1(u) and
λ3(u), that is, it satisfies

3u + 10
27

+
√

(u2 + 3u − 1)2 + u2 −
√(

u2 − 35
27

)2
+ 4

(
u + 1

27

)2
= 0. (34)

By solving Equation (34), we find that u∗
E = 0.1307 maximizes λmin(M). Utilizing this value

of u∗
E, we obtain the E-optimal design ξ∗

E , with (a = 0.1546, b = 0.8454, c = 0). This result is
consistent with Chan (1999)’s work.
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Figure 4. Graphs of λ1 and λ3 against u for Becker’s H2 model.

The alteration of s may lead to different outcomes. Let us proceed to the subsequent
example.

Example 4.7: E-optimal orthogonal block design for Becker’s H2 model. When it comes
to Becker’s H2 model (4), we have r = 1 and s = 1, and the graphs of λ1(u) and λ3(u) for
(0 ≤ u ≤ 1

4 ) are shown in Figure 4.
Figure 4 indicates that, λ1(u) < λ3(u) always holds for 0 < u < 1

4 , i.e., λmin(M) = λ1(u).
Differentiate λ1(u) with respect to u, and solve for u ∈ [0, 14 ] in the equation ∂λ1(u)

∂u = 0,
which can be simplified as

2u − 3 − u + (2u + 3)(u2 + 3u − 1)√
(u2 + 3u − 1)2 + u2

= 0. (35)

Among the critical points and endpoints of λ1(u), it is found that u∗
E = 0.1889 maximizes

λmin(M). Utilizing this value of u∗
E, we obtain the E-optimal design ξ∗

E , corresponding to
the E-optimal design ξ∗

E with (a = 0.2527, b = 0.7473, c = 0). This result is consistent with
Aggarwal et al. (2002)’s work.

Table A3 in Appendix displays the variations in the value of the E-optimal a∗
E’s under dif-

ferent combinations of r and s. Note that when r is fixed, several a∗
E values remain the same

and do not vary with changes in s. This is because, as in Example 4.7, a∗
E’s are derived from

the maximum points of λ1 in (32), which are independent of s. Nonetheless, it is impor-
tant to mention that the exponent s persistently shapes the curve of λ3 in (33), consequently
influencing the final value of the a∗

E’s.
The numerical pattern for E-optimality is completely different from those of D- and

A-optimality. Additionally, the E-optimal orthogonal block designs for the classic mixture
models in Figure 5 indicate that, the sequence of the optimal a∗ values for E-optimality across
the models does not align with those for D- and A-optimality.
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Figure 5. E-optimal orthogonal block designs for the classic mixture models.

5. Conclusions

In this paper, we propose the symmetric general blendingmodel (SGBM) as a class ofmixture
models, on the basis of the structure of general blending models. We then introduce process
variables into SGBM for practical application scenarios, and construct the orthogonal block
designs to eliminate the influence of process variables on parameter estimation.

D-, A- and E-optimality criteria are considered to reduce the variance of coefficients in
parameter estimation. The following are some potential future research directions for us. In
previous research, orthogonal block designs were always set at the boundary of the simplex to
obtain optimal designs (see, e.g., Aggarwal et al., 2013). We also impose such a constraint to
facilitate the solution of optimality. It is difficult to prove that the optimal design indeed lies
on the boundary (which is very likely influenced by the values of the exponents). Moreover,
we are committed to extending optimal orthogonal block designs for SGBM in q components
(q ≥ 4), based on the construction (11) we provide and some feasible combinatorial design
theories. See also, Wang et al. (2018) and Pang et al. (2022).

Necessary conditionswith examples are provided in Section 4, offering optimality solution
processes, to help obtain optimal designs for specified SGBM’s more conveniently. Experi-
menters can also directly refer to the numerical results under various combinations of the
exponents in the Appendix.

We finally describe and compare the trend of optimal design points changing with the
exponents under three optimality criteria. The underlying patterns would benefit from
further theoretical exploration.
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Table A1. Values of a∗
D for SGBM’s under different combinations of r and s.

r

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5

0 0.0353 0.0642 0.0876 0.1068 0.1227 0.1358 0.1467 0.1556 0.1628 0.1685 0.3546 0.3531 0.3652 0.3765
0.1 0.0358 0.0649 0.0886 0.1080 0.1240 0.1373 0.1484 0.1576 0.1650 0.1710 0.1794 0.3537 0.3654 0.3765
0.2 0.0362 0.0656 0.0895 0.1090 0.1253 0.1388 0.1501 0.1594 0.1671 0.1734 0.1830 0.3543 0.3655 0.3766
0.3 0.0366 0.0662 0.0903 0.1100 0.1264 0.1401 0.1516 0.1612 0.1691 0.1756 0.1866 0.3550 0.3657 0.3767
0.4 0.0370 0.0668 0.0911 0.1110 0.1275 0.1414 0.1531 0.1628 0.1710 0.1777 0.1903 0.3558 0.3659 0.3767
0.5 0.0373 0.0674 0.0918 0.1118 0.1286 0.1426 0.1544 0.1644 0.1727 0.1796 0.1939 0.3566 0.3662 0.3768
0.6 0.0377 0.0679 0.0924 0.1127 0.1295 0.1437 0.1557 0.1658 0.1743 0.1814 0.1974 0.3574 0.3664 0.3769
0.7 0.0380 0.0684 0.0931 0.1134 0.1304 0.1447 0.1568 0.1671 0.1758 0.1831 0.2010 0.3583 0.3666 0.3770
0.8 0.0382 0.0689 0.0937 0.1141 0.1312 0.1457 0.1579 0.1684 0.1772 0.1847 0.2045 0.3593 0.3669 0.3771
0.9 0.0385 0.0693 0.0942 0.1148 0.1320 0.1466 0.1590 0.1695 0.1786 0.1862 0.2079 0.3603 0.3672 0.3772
1 0.0388 0.0697 0.0948 0.1154 0.1328 0.1474 0.1599 0.1706 0.1798 0.1876 0.2113 0.3615 0.3674 0.3773
2 0.0406 0.0727 0.0986 0.1201 0.1382 0.1536 0.1669 0.1785 0.1886 0.1975 0.2393 0.3798 0.3714 0.3785
3 0.0417 0.0744 0.1009 0.1228 0.1412 0.1571 0.1708 0.1829 0.1935 0.2029 0.2556 0.2539 0.3789 0.3806
4 0.0424 0.0755 0.1022 0.1244 0.1431 0.1592 0.1732 0.1854 0.1963 0.2060 0.2642 0.2784 0.3952 0.3842
5 0.0428 0.0762 0.1031 0.1254 0.1443 0.1605 0.1746 0.1870 0.1980 0.2079 0.2689 0.2926 0.2819 0.3911
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Table A2. Values of a∗
A for SGBM’s under different combinations of r and s.

r

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5

0 0.0330 0.0732 0.1068 0.1334 0.1538 0.1686 0.1782 0.1832 0.1845 0.1833 0.4012 0.3732 0.3734 0.3791
0.1 0.0346 0.0752 0.1091 0.1363 0.1573 0.1730 0.1837 0.1897 0.1917 0.1908 0.4052 0.3743 0.3737 0.3792
0.2 0.0360 0.0770 0.1112 0.1387 0.1603 0.1768 0.1884 0.1955 0.1985 0.1981 0.4096 0.3754 0.3740 0.3794
0.3 0.0372 0.0785 0.1129 0.1408 0.1629 0.1800 0.1925 0.2006 0.2047 0.2051 0.1702 0.3766 0.3744 0.3795
0.4 0.0383 0.0798 0.1145 0.1425 0.1650 0.1827 0.1959 0.2051 0.2102 0.2116 0.1746 0.3779 0.3748 0.3796
0.5 0.0392 0.0809 0.1158 0.1440 0.1668 0.1849 0.1989 0.2089 0.2151 0.2176 0.1792 0.3792 0.3751 0.3797
0.6 0.0400 0.0819 0.1169 0.1453 0.1684 0.1869 0.2013 0.2121 0.2192 0.2229 0.1840 0.3806 0.3755 0.3799
0.7 0.0407 0.0828 0.1178 0.1464 0.1697 0.1885 0.2034 0.2148 0.2228 0.2274 0.1888 0.3821 0.3760 0.3800
0.8 0.0414 0.0836 0.1187 0.1474 0.1708 0.1898 0.2051 0.2170 0.2257 0.2314 0.1939 0.3837 0.3764 0.3801
0.9 0.0419 0.0842 0.1194 0.1482 0.1717 0.1910 0.2065 0.2189 0.2282 0.2347 0.1991 0.3854 0.3769 0.3803
1 0.0424 0.0848 0.1200 0.1489 0.1725 0.1919 0.2077 0.2204 0.2303 0.2374 0.2045 0.3872 0.3774 0.3805
2 0.0452 0.0880 0.1234 0.1524 0.1764 0.1964 0.2131 0.2271 0.2389 0.2488 0.2650 0.4129 0.3845 0.3826
3 0.0462 0.0891 0.1244 0.1535 0.1775 0.1975 0.2143 0.2285 0.2406 0.2508 0.3000 0.2526 0.3971 0.3863
4 0.0467 0.0896 0.1249 0.1539 0.1779 0.1979 0.2147 0.2289 0.2410 0.2513 0.3060 0.3043 0.4205 0.3927
5 0.0469 0.0898 0.1251 0.1540 0.1780 0.1980 0.2148 0.2290 0.2411 0.2514 0.3070 0.3286 0.2839 0.4044
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Table A3. Values of a∗
E for SGBM’s under different combinations of r and s.

r

s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 2 3 4 5

0 0.1542 0.0938 0.1297 0.1585 0.1820 0.1733 0.1667 0.1618 0.1578 0.1546 0.1398 0.3927 0.3660 0.3627
0.1 0.0337 0.0938 0.1297 0.1585 0.1820 0.2010 0.1844 0.1752 0.1688 0.1638 0.1435 0.3946 0.3671 0.3627
0.2 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2087 0.1914 0.1813 0.1741 0.1472 0.3966 0.3682 0.3627
0.3 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2123 0.1959 0.1856 0.1511 0.3986 0.3694 0.3627
0.4 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2140 0.1989 0.1552 0.4007 0.3706 0.3627
0.5 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2391 0.2147 0.1594 0.4028 0.3718 0.3627
0.6 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2349 0.1638 0.4050 0.3731 0.3627
0.7 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.1684 0.4073 0.3744 0.3627
0.8 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.1731 0.4096 0.3757 0.3627
0.9 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.1781 0.4120 0.3771 0.3627
1 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.1833 0.4145 0.3785 0.3627
2 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.4462 0.1928 0.3949 0.3679
3 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.3074 0.2371 0.4162 0.3806
4 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.3074 0.3142 0.2295 0.3969
5 0.0488 0.0938 0.1297 0.1585 0.1820 0.2014 0.2176 0.2312 0.2428 0.2527 0.3074 0.3333 0.2731 0.4179
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